八下 分式 第2课时 分式的基本性质(1) 含答案
八下8.2分式的基本性质(1)

3a 6ab (3) (b 0) a 6 2ab 12b
9x 4 ( x 2 ) (4)3x 2
2
3x 2
3
例1、填空
x (5)
(6)
2
2 xy
2
x 4y
2
2
x x 2y
6a 2ab
2a
3a b
填空
a 1 1 、 2b 2ab
x (1) 2 1 x
(2)
y y 2 y y
2
x x x 解( ) 2 1 2 2 1 x ( x 1) x 1
y y ( y y) y y (2) 2 2 2 y y y y y y
2 2 2
3a 1、将 a b中的a、b都变为原来的3 倍,则分式的值 ( A )
3ac 3a 2 、 4b 4b c
a 3 、
b a 2 b2
2 2
2
a-b
a b
a b 4、 a b
a b 1
例2 不改变分式的值,把下列各式的分子与分母中 各项的系数都化为整数。
1 m 0.5 0.5 x y (1) 3 (2) 0.2 x 4 1 0.25m 0.5 x+y 0.5 x+y 10 5 x 10 y 解 (1) : 0.2 x 4 0.2 x 410 2 x 40
12 x 30 y 1、 20 x 15
10 x 6 y 2、 60 x 5 y
例3 不改变分式的值,使下列分式的分子和 分母都不含“-”号:
5b (1) 6a
(2)
x 3y
(3)
2m n
9.1.1分式的基本性质第(1)课时

xy
6/19/8
2xy (_____)
x y
x y x y
2 2 2 2
,
3x x y
15 x ( x y )
2 5(x+y) (______)
1 (_____)
x y
六、分层提高
5.下列变形不正确的是(
A. b 2a b 2a
B. b 2a
9.1.1分式的基本性质
第(1)课时
2018/6/19
一、温故知新
1、分式的概念:
(1)A、B都是整式,则
6/19/2018
A B A B
一定是分式。
(×) (×)
(2)若B中含有字母,则
一定是分式。
(3) 下列各式中,属于分式的是( A、
x 1 2
B)
x y
2
B、
2 x 1
C、
1 2
D、
七、总结归纳
三、知识讲解
①
6/19/2018
下列从左到右的变形成立吗?为什么?
a
2a 1 2
a
0 0
②
n m
1
n
2
mn
m , n
③
1 (a 3 )
b
b (a 3 )
b
0,a 3
类比分数的基本性质,你能归纳出分 式的基本性质吗?会用字母表达式表示吗? 说说看!
1 15
下列两式成立吗?为什么?
3 4 3c 4c (c 0 );
5c 6c 5 6 (c 0 )
成立
二、复习导入
复习分数的 基本性质
6/19/2018
分式的概念和性质+答案

分式的概念和性质(提高)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0 的条件. 2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算.【要点梳理】【高清课堂403986 分式的概念和性质知识要点】要点一、分式的概念A 一般地,如果A、B 表示两个整式,并且B 中含有字母,那么式子A叫做分式. 其中AB叫做分子,B 叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的. 分数是整式,不是分式,分式是两个整式相除的商式. 分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母” ,但π表示圆周率,是一个常数,不是字母,如a是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式2不能先化简,如x y是分式,与xy 有区别,xy 是整式,即只看形式,x不能看化简的结果.要点二、分式有意义,无意义或等于零的条件1. 分式有意义的条件:分母不等于零.2. 分式无意义的条件:分母等于零.3. 分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0 的整式,分式的值不变,这个性质叫做A A M A A M分式的基本性质,用式子表示是: A A M,A A M(其中M是不等于零的整式).B B M B B M要点诠释:(1)基本性质中的A、B、M表示的是整式. 其中B≠0 是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠ 0 是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0 这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化. 例如:,在变形后,字母x 的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变2 4解:整式有:23,2y 2, 2y 2;其中任何一个或三个,分式成为原分式的相反数 要点诠释: 根据分式的基本性质有 b a b bb. 分式a与 a 互为相反数a a ab b重要的作用 .要点五、分式的约分,最简分式 与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的 值,这样的分式变形叫做分式的约分 . 如果一个分式的分子与分母没有相同的因式 (1 除外), 那么这个分式叫做最简分式 .要点诠释: (1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分 母再没有公因式 .( 2)约分的关键是确定分式的分子与分母的公因式. 分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式 的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子 与分母是不能再分解的因式积的形式,然后再进行约分 .要点六、分式的通分与分数的通分类似, 利用分式的基本性质, 使分式的分子和分母同乘适当的整式, 不改 变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分 .要点诠释:(1)通分的关键是确定各分式的最简公分母: 一般取各分母所有因式的最高 次幂的积作为公分母 .2)如果各分母都是单项式, 那么最简公分母就是各系数的最小公倍数与相 同字母的最高次幂的乘积; 如果各分母都是多项式, 就要先把它们分解 因式,然后再找最简公分母 .3)约分和通分恰好是相反的两种变形, 约分是对一个分式而言, 而通分则 是针对多个分式而言 .典型例题】 类型一、分式的概念高清课堂 403986 分式的概念和性质 例 1】. 根据有理数除法的符号法则有分式的符号法则在以后关于分式的运算中起着1、指出下列各式中的整式与分式:1 ,1 ,a b ,x , 3 ,, , , ,2 ,x x y 2 x 12y 2,2 x ,思路点拨】 判断分式的依据是看分母中是否含有字母, 如果含有字母则是分式, 如果不含有字母则不是分式. 【答案与解析】∵ x 2 为非负数,不可能等于- 1, ∴ 对于任意实数 x ,分式都有意义; 当 x 0 时,分式的值为零.(2)当 x 2 0即 x 0时,分式有意义; 当 x 0, 即 x 5 时,分式的值为零x 5 0,(3)当 x 5 0,即 x 5 时,分式有意义; 当 x 5 0, ①时,分式的值为零,2x 10 0 ②由①得 x 5时,由②得 x 5 ,互相矛盾.2x 10∴ 不论 x 取什么值,分式 2x 10 的值都不等于零.x5【总结升华】 分母不为零时,分式有意义;分子的值为零,而分母的值不为零时,分式的值 为零. 举一反三:【变式 1】若分式的值为 0,则的值为 _________________________ . 【答案】 - 2;|x| 2 0 |x| 2 0 提示:由题意 2, ,所以 x 2.x 2 5x 6 0 x 3 x 2 0分式有:1,1 , 3 , x2 x x y x 2 1 x总结升华】 判断分式的依据是看分母中是否含有字母.此题判断容易出错的地方有两处: 一个是把 π 也看作字母来判断, 没有弄清 π 是一个常数; 另一个就是将分式化简成整式后2再判断,如 x 和 x x,前一个是整式,后一个是分式,它们表示的意义和取值范围是不相同的.类型二、分式有意义, 分式值为 0 高清课堂 403986当 x 取什么数时,下列分式有意义?当2、 分式的概念和性质 例 2】x 取什么数时,下列分式的值为零?( 1) 2x x 2 答案与解析】2)x52;x3) 2x 10 x5解:( 1)当 x 20,即 x21时,分式有意义.x2变式 2】当 x 取何值时,分式 的值恒为负数? 2x 6 答案】 x 2 0, 或 x 2 0, 2x 6 0, 2x 6 0. 解不等式组x 2 0,该不等式组无解.2x 6 0,解不等式组x 2 0,得 3 x 2. 2x 6 0.所以当 3x 2 时,分式x 2的值恒为负数. 2x 6类型三、分式的基本性质高清课堂 403986 分式的概念和性质 例 4】 3、不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数(1) ; (2) ; (3) . 答案与解析】解:(1) ;(3).【总结升华】 (1) 、根据分式的意义, 分数线代表除号, 又起括号的作用; (2) 、添括号法则: 当括号前添“+”号,括号内各项的符号不变;当括号前添“—”号,括号内各项都变号 举一反三:解: 由题意可知(2)a1 a 2 2a 1 ;2;a 22变式】 列分式变形正确的是(A .2 x2ymn(m n)2 (m n)(m n)(m n)2答案】C .x 21x 2x 11 x1ab 2 aD ;提示:条件.将分式变形时,注意将分子、分母同乘(或除以)同一个不为 其中A 项分子、分母乘的不是同一整式,B 项中 m n 0 的整式这一0这一条件不知是1x 否成立,故 A 、B 两项均是错的. C 项左边可化为: 1 x 2(1 x)21 1x11,故 C x1项亦错,只有 D 项的变形是正确的.类型四、分式的约分、通分如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,也就是分子、分母系数的最大公约数与相同字母的最低次幂. 通分的关键是确定几个分式的最简公分 母,若分母是多项式, 则要因式分解, 要防止遗漏只在一个分母中出现的字母以及符号的变 化情况. 类型五、分式条件求值225、若 x 2,求 x 22 2xy 3y 22 的值.y x 2 6xy 7 y 2【思路点拨】 本题可利用分式的基本性质, 采用整体代入法, 或把分式的分子与分母化成只 含同一字母的因式,使问题得到解决. 【答案与解析】x 解法一:因为 2 ,可知 y 0 ,y222(x 22xy3y 2) g12x2x g3所以x 22xy3y 2yyy所以2x 26xy7y 2(x 26xy 7y 2)g12 y2x6 x g7yy4、约分:(1)2;(2) 2n 2 m 3 ;2mn 4n通分:3)3 2a 2ba b ;ab 2c4)x 24x42 x2答案与解析】解:(1) a 2 2a 1a 21(a1)2 ( a 1)(a 1)1;a12) 2 n 2 m2mn 4n 32n 2 m2n (m 2n 2)(m2n 2) 2n (m 2n 2 )1 2n ;3)最简公分母是 222a 2b 2c . 3 g bc222a 2b 2a 2b g bc3bc22 2a b cb ab 2c(a b) g 2a ab 2c g 2a22a 22ab2a 2b 2c4)最简公分母是(x 2)(x 2) ,1 x2x2 (x 2)( x 2)x 2 ,4 xx 2 4 x 2 44x x 2 42(x 2)x 2 (x 2)( x 2)2x 4 x 2 4总结升华】( 2)2 2 ( 2) 3 5 ( 2)2 6 ( 2) 7 9解法二:因为 x 2 , y所以 x 2y ,且 y 0 ,22x 2 2xy 3y 2 (x 3y)(x y) x 3y x 2 6xy 7y 2 (x 7y)(x y) x 7y【总结升华】 本题的整体代入思想是数学中一种十分重要的思想. 一般情况下, 在条件中含 有不定量时,不需求其具体值,只需将其作为一个“整体”代入进行运算,就可以达到化简 的目的. 举一反三: 【变式】已知x 3 y4z(xyz 0) ,求xy 26x 2yz 2 y zx 2的值.z 2【答案】x解: 设yz k(k 0) ,则 x 3k,y4k , z 6k3 46∴xyyz zx3k g4k 4k g6k 6k g3k54k 2 54 ∴2x2 y2z22(3k)2 (4k)2(6k) 261k 2 61【巩固练习】 一. 选择题a 2 91.若分式 2a 9 的值为 0,则 a 的值为( )a 2 a 6A .3B .-3C .±3D . a ≠- 2中的 x 、y 都扩大 m 倍( m ≠ 0),则分式的值()2.把分式 2x2y 3y 5 2y 7y 9xy14. 已知 13. A .扩大 m 倍 5a b若分式 5a b 有意义,则 a 、 3a 2b B .缩小 m 倍C .不变 b 满足的关系是( 4. 5. 6.D .不能确定A . 3a 2b 1b 若分式 12 b 2b 2 A . b < 0 面四个等式: ④xy 2 0个 A . 化简B . a 15bC . b D.23b的值是负数,则 1 b 满足( B .b ≥1 C . b <1 D. b >1 ① x 2 y x 2y ;② xy 2 x 2y ;③ xy 2x y;2xy 2 b 22a a 2 2ab b 2 ab ab 二. 填空题 A .7. 使分式 (x 2x 其中正确的有( B . 1 个 的正确结果是( B . a a b b 2 有意义的条件为 3)2 C . 2个 D . 3个C .1 2abD .2a 1b8. 分式 (x 2x 51)2有意义的条件为 2 分式 |x| 4 x4 m n ( mn 11.填入适当的代数式,使等式成立.9.当 时, 的值为零.10.填空: (1) ) n m m n ;(2) mn 2a 2b2a)2b1) a 2 ab 2b 2 a 2 b 2 ( ) ( 2) ab1a1a b ( ba 2 m 12. 分式 2m 2 1 约分的结果是 m 2 三. 解答题 2 x 13. 若 2 x 23x1的值为零,求 2 的值.2 (x 1)21 x 2,求 3x 7xy 3y 的值.2x 3xy 2y7. 8.15. (1)阅读下面解题过程:已知 2,求 524x的值.x 4 11. 解:∵ 2xx 21 ∴1∴1xx2 5,2,即 5,即 2x 4x1 21 x2 x1 (x 1x )2 2 x2)请借鉴( 已知2 x 2 答案与解析】 . 选择题 答案】 B ; 解析】 由题意 2. 答案】 C ; 解析】 3. 答案】 解析】 4. 答案】 解析】 5. 6. 9. 1)x 3x 2mxmx my D;中的方法解答下面的题目: 2, 求 4 x 0且am 2x m(x y)由题意, 3a D;因为 2b 2 1 答案】 解析】①④正确 . 答案】 解析】. 填空题【答案】【答案】【解析】【答案】2b 0 , C;B; 22ab 22 a 2ab b2x 2x2x xy所以的值.0,所以 1 b aba2abx 3.x 为任意实数;x 为任意实数,分母都大于零x 4 ;1 (52)2 2 170 ,解得 a 3.23b .0,即 b >1.ab ab2,| x| 4 0 解析】 ,所以 x 4 . x40x 2 x 0 ,即 x(x 1) 0 x 2 3x 2 0 (x 1)(x 2) 0x 0 或 x 1 0x 1 0且 x 2 0 x 0或 x 1, x 1且 x 2, x 0 ,14. 【解析】 解:方法一:∵ 1 1 y x 2 ,x y xy等式两边同乘以 xy ,得 2xy y x .x y 2xy .3x 7xy 3y 3(x y) 7 xy 2x 3xy 2y 2( x y) 3xy11 xy【解析】2a ab 2b 2a b a 2b ;1 b ba 2b 2abab1 a bab b12. 【答案】 11m;;m【解析】2m 2m 1 2m 1 1 m10. 【答案】(1)-;(2)+;11. 【答案】(1) a 2b ;(2) b a ;a ab 21 m 1 m 1 m 1 m三. 解答题13. 【解析】ab ba解:由已知得: 将 x 0 代入得:1 ( x 1)2 1 (0 1)2 1 (0 1)21.3 2 xy 7xy xy 2 2 xy 3xy 7xy方法15. 【解析】解:∵ 2xx23x 1 ∴1x13x2x42x x 1121x 2 1x12 x1 21x3x7xy3y3 y72x3xy2y23y 3 x31x1 y73271 2x21 x1 y322372,2 ,∴ x1 4.72 45.12。
八年级数学分式的基本性质(一)(北师版)(基础)(含答案)

分式的基本性质(一)(北师版)(基础)一、单选题(共11道,每道9分)1.根据分式的基本性质,分式可变形为( )A. B.C. D.答案:C解题思路:依据分式的基本性质可知:故选C试题难度:三颗星知识点:略2.下列分式:①;②;③;④,从左到右的变形,错误的有( )A.1个B.2个C.3个D.4个答案:D解题思路:根据分式的基本性质对各个选项进行判断:①,分子中的y没有乘2,变形错误;②,不符合分式的基本性质,变形错误;③,分母中的b没有乘-1,变形错误;④,分子分母不是乘的同一个整式,变形错误;所以四个都是错误的.故选D试题难度:三颗星知识点:略3.下列选项错误的是( )A. B.C. D.答案:C解题思路:,故选项A正确;,故选项B正确;,故选项C错误;分子分母同时扩大10倍,得,故选项D正确.故选C.试题难度:三颗星知识点:略4.若分式(,均为正数)中每个字母的值都扩大为原来的3倍,则分式的值( )A.扩大为原来3倍B.缩小为原来的C.不变D.缩小为原来的答案:B解题思路:,所以分式的值缩小为原来的.故选B.试题难度:三颗星知识点:略5.若的值均扩大到原来的2倍,则下列分式的值保持不变的是( )A. B.C. D.答案:D解题思路:A:,不符合题意;B:,不符合题意;C:,不符合题意;D:,符合题意.故选D.试题难度:三颗星知识点:略6.不改变分式的值,如果把其分子和分母中的各项系数都化为整数,那么所得的正确结果为( )A. B.C. D.答案:A解题思路:不改变分式的值,如果把其分子和分母中的各项系数都化为整数,则分子分母需要同时扩大10倍,即.故选A.试题难度:三颗星知识点:略7.南京至上海的铁路长300km,原来某列车的行驶速度是60km/h,为了适应经济的发展,该列车的行驶速度每小时比原来增加了2akm,现在由南京到上海所用时间为( )小时.A. B.C. D.答案:A解题思路:∵该列车的行驶速度每小时比原来增加了2akm∴该列车的行驶速度为(60+2a)km/h∴现在本次列车由南京到上海所用的时间为小时故选A试题难度:三颗星知识点:略8.走一段长10千米的路,步行用4x小时,骑自行车所用时间比步行所用时间的一半少0.2小时,则骑自行车的平均速度为( )千米/小时.A. B.C. D.答案:C解题思路:∵骑自行车所用时间比步行所用时间的一半少0.2小时∴骑自行车所用时间为(2x-0.2)小时∴骑自行车的平均速度为千米/小时故选C试题难度:三颗星知识点:略9.一辆汽车以60千米/时的速度行驶,从A城到B城需要t小时,如果该车的行驶速度增加3v(千米/时),那么从A城到B城需要( )小时.A. B.C. D.答案:B解题思路:由题意可得,A城到B城的距离为60t如果该车的行驶速度增加3v,那么增加后的速度为(60+3v)所以增速后从A城到B城需要小时故选B试题难度:三颗星知识点:略10.果园里一共栽了1000颗树,其中有10行桃树,每行4a颗,梨树比桃树每行多栽8颗,则梨树栽的行数是( )A. B.C. D.答案:A解题思路:由题意可得,果园里栽的桃树的数量为,∴果园里栽的梨树的数量为,∵梨树比桃树每行多栽8颗∴果园里栽的梨树的行数为;故选A试题难度:三颗星知识点:略11.小红要打一份20000字的文件,第一天她打字100min,打字速度为a字/min,第二天她打字速度是第一天打字速度的2倍还多10字,若两天打完全部文件,则第二天她打字用了( )min.A. B.C. D.答案:A解题思路:由题意可得,第一天她打了100a字,∴第二天她需要打20000-100a,∵第二天她打字速度是第一天打字速度的2倍还多10字,∴第二天她打字速度为2a+10,∴第二天她打字用了;故选A试题难度:三颗星知识点:略。
数学北师大版八年级下册分式的基本性质(1)

对老师说,你还有什么困惑?
通过本课时的学习,需要我们 1.掌握分式的基本性质:分式的分子与分母乘(或除以) 同一个不等于0的整式 ,分式的值不变. 2.能利用分式的基本性质对分式进行恒等变形. 3.在对分式进行变形时要注意乘(或除以) 的整式是同 一个并且不等于0.
习题15.1
4题, 5题 12题(选做)
用式子表示为:
C , C
C .( C 0 ) C
其中A,B,C是整式。
判断下列分式从左边变形为右边正确吗?
x (1) y
=
xa ya
(2)
xy 2 x
y = x
x a a (a b) (3) = (4) ab 3y a b
(1)“同一个”
勤能补拙是良训, 一份耕耘一份才! ---华罗庚
x ( x 1) = 3 y ( x 1)
2 2
运用分式的基本性质应注意什么?
(2)“不为0的整式”
• 自学例2,完成学案中设问导读的第3、4、5题。 不改变分式的值,使下列分子与分母都不 含“-”号
2x ⑴ 5y
⑵
3a 7b
⑶
10 m 3n
自学检测
第1、2、3题
不改变分式的值,把下面分式的分 子与分母的各项系数都化为整数
1 1 x y 3 2 1 x y 3 1 1 ( x y ) 6 3 2 解:原式= 1 ( x y ) 6 3 2 x 3 y 6 x 2 y
对自己说,你有什么收获? 对同学说,你有什么温馨提示?
衙下中学
瓦亚文
复习回顾:
(二人小组完成)
完成学案复习回顾第1、2、3题
1.理解分式的基本性质 .
5.1第2课时分式的基本性质(教案)2023-2024学年八年级下册数学北师大版(安徽)

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式相关的实际问题,如购物打折、制作饼干等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示分式的基本原理,如通分、约分等。
(3)分式的乘方运算:掌握分式乘方的运算规则,特别是指数法则的应用。
举例:分析分式乘方时,如何将分子和分母分别进行乘方运算,并简化结果。
(4)分式在实际问题中的应用:学会将现实问题转化为分式问题,并运用所学知识解决问题。
举例:讲解如何将现实生活中的问题转化为分式表达式,运用分式的性质和运算方法解决问题。
最后,我会在课后及时了解同学们的疑问和困惑,针对性地进行辅导,确保每个人都能在分式这部分内容上学有所得。同时,我也会在今后的教学中,更加注重培养同学们的动手能力和团队协作能力,让他们在解决实际问题的过程中,真正掌握分式的核心知识。
(1)分子、分母的符号变化:探讨分式分子、分母同时乘以或除以同一个非零数时,分式的值不变。
(2)分式的乘除法:分析分式乘法、除法的运算规律,以及分式乘除法的简化方法。
(3)分式的乘方:讲解分式乘方的运算方法,以及如何运用指数法则简化计算。
3.分式的基本运算:结合实际例题,引导学生掌握分式的加减运算、乘除运算以及乘方运算。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
苏科版八年级数学下册教学课件-10.2分式的基本性质(1)

根 据
分式的基本性质
分式的计算
拓展提升
11 已知: 4
xy
2x 3xy 2y
求
的值
y 2xy x
课堂小结 本堂课你学到了什么? 你还有哪些疑惑? 请与你的伙伴说一说
谢谢
10.2 分式的基本性质
自主学习
1、把下列各组分数通分:
1,3,5 246
1,4, 7 5 9 15
2x
3y
4xy
2、分式 6x2 y2 、6x2 y2 、6x2 y2 有什么共
同点?试将它们分别化为最简分式。
1
1
2
3、分式 3xy2 、2x2 y 、3xy 分母不相同,
试将它们变形为分母相同的分式。
ax 1 bx 1
是 abx 1x 1 ;
1
(2)
,
1的最简公分母来自x2 y2 x2 2xy y2
是 x y 2 x y 。
尝试应用
例1.通分:
(1)3 与 b 2a 3ac
(2) 2x 与 3x xy x y
尝试应用 例2.通分:
(1) 1 与 1 x2 y2 x2 xy
(2) x , y , z
合作探究 活动二:
1、试找出分式— 2 , 7c 的最简公分
母.
9a2b 12ab3
归纳:分母都是单项式的分式通分时,取各 分母系数的最小公倍数与各分母所有因式的 最高次幂的积作为公分母,这样的公分母叫 做最简公分母。
合作探究 活动二:
1
练习:(1) 2x2 y ,
1
的最简公分母是
6
x
2
y
2
;
6xy2
1 (2) ,
6.2 分式的基本性质课件(1) (苏科版八年级下)

1 2 2 a b 2 + 2 b2 a ( ) 2 (2) ab 2a 2b
a2-b2 a- b (3) = 2 . 2 (a +2a b + b ) a+ b
课堂练习
1.P38练习:第1题. 2.下列等式的右边是怎样从左边得到的?
a ac (1) = (c≠0); 2b 2bc
x3 x2 (2) xy = y .
这些分式值相等吗? 由此你发现了什么?
知识归纳
分式的基本性质:
分式的分子与分母都乘以(或除以)同一个 不等于零
的整式,分式的值不变. 用式子表示是: A A· M , = B B· M A÷M A = B÷M B
(其中M是不等于零的整式)
例题讲解
例 1. 填空: ab b (1) a = ( 2 ) ; a
在数学里,发现真理的主要方法 是归纳与类比。 ——拉普拉斯
知识回顾
2 1 1.问题: (1) 与 相等吗?为什么? 4 2 6 2 (2) 与 相等吗?为什么? 9 3
分数的基本性质 如果分数的分子和分母都乘以(或除以)同一 个不等于0的数,那么分数的值不变。
2.思考:分式也有类似的性质吗?
探索研究
1 x+ 2 (1) 1 x2
2 y 3 2 y 3
0.3a + 0.5b (2) 0.2a - b
小结思考
通过本节课的学习你有哪些收获?还有哪些困惑?
作业布置
作业:P41习题1、2题.
s t 如果t h行驶 skm,那么火车的速度为_________km/h. 2s 如果2t h行驶2s km,那么火车的速度为_______km/h; 2t
3s 如果3t h行驶3s km,那么火车的速度为_______km/h 3t
北师大版八年级下册数学《认识分式》分式与分式方程教学说课(第2课时)

活动探究
问题2:化简下列分式:
1
a2bc ab
解:a2bc ab
= ab ac ab
=ac
2
x2 -1 x2 -2x+1
解: x2 -1 x2 -2x+1
= x+1 x-1 x-12
= x+1 x-1
约分:把分式的分子和分母的公因式约去,这种变形叫做约分.
活动探究
探究点三 问题1:在约分时,小颖和小明出现了分歧.你对他们两人的做法有什么看法?
的值( B )
A.扩大两倍
B.不变
C.缩小两倍
D.缩小四倍
4.若把分式
xy x y
中的x 和y 都扩大3倍,那么分
式
A
的A.值扩( 大3).倍 B.扩大9倍
C.扩大4倍 D.不变
5.下列各分式,哪些是最简分式?哪些不是最简分式?
1
m2 2m 1 m2
1
;
2
a b
b2 a4
;
3
x2
y2
y2
;
4
分析:约分时,分子或分母若是多项式,能分解
则必须先进行因式分解.再找出分子和分母的
公因式进行约分.
解:(2)x2
x2
9 6x
9
(x
3)(x (x 3)2
3)
x 3. x3
做一做
约分:(1)a2bc ; ab
解:(1)a2bc ab ac ac.
ab
ab
(2) x2 1 . x2 2x 1
分数的分子与分母同时乘以(或除以)一个 不等于零的数,分数的值不变.
讲授新课
✓ 典例精讲 ✓ 归纳总结
讲授新 课分式的基本性质
苏科版八年级数学下_10.2分式的基本性质

别除以它们的公因式,叫做分式的约分.
2. 找公因式的方法
(1)当分子、分母都是单项式时,先找分子、分母系数的最
大公约数,再找相同字母的最低次幂,它们的积就是公
因式;
(2)当分子、分母都是多项式时,先把多项式分解因式,再
按(1)中的方法找公因式.
感悟新知
3. 约分的方法
知2-讲
(1)若分式的分子、分母都是单项式,就直接约去分子、分
(1) 1255xx2yy2=
(
3x 5y
);(2)a+ab22b=(a2a+22ba2b );
(3)
x23-x xy=
3
(x-y
).
知1-讲
解题秘方:观察等号两边已知的分子或分母发生了
什么样的变化,再根据分式的基本性质
用相同的变化确定所要填的式子.
感悟新知
知1-讲
解法提醒: 解决与分式的恒等变形有关的填空题时,一般从分子
常取最简公分母.
感悟新知
3. 通分的一般步骤 (1)确定最简公分母;
知3-讲
(2)用最简公分母分别除以各分母求商;
(3)用所得的商分别乘各分式的分子、分母得出同分母分式.
4. 约分与通分的关系
感悟新知
例 7 把下列各组分式通分:
(1) 6x52yz3和 4x33y2z;
(2)
x-a y,
3x-b 3y,
式,再按照分母都是单项式时求最简公分母的方法,
从系数、相同因式、不同因式三个方面去确定.
感悟新知
知2-讲
解:(1)分母 6x2yz3、4x3y2z 的的最简公分母是 12x3y2z3, 6x52yz3= 6x52·yz32·xy2xy= 1120xx3yy2z3, 4x33y2z= 4x33·y2z3·z23z2= 129xz32y2z3;
八年级数学下 第5章 分式与分式方程5.1 认识分式第2课时分式的基本性质习题北师大

12.当 x 为何值时,分式xx2+-24有意义? 【点拨】求解使分式有无意义的字母的取值范围时,不能先约去
分子与分母的公因式,以免出现如下错解:xx2+-24= (x+2)x+(2x-2)=x-1 2,从而误认为只要当 x≠2 时,分式 xx2+-24就有意义.
解:由 x2-4=(x+2)(x-2)≠0,得 x≠-2 且 x≠2.所以当 x≠-2 且 x≠2 时,分式xx2+-24有意义.
9.【2020·孝感】已知 x= 5-1,y= 5+1,那么代数式x(x3- x-xyy2) 的值是( D ) A.2 B. 5 C.4 D.2 5
10.【中考·滨州】下列分式中,最简分式是( ) x2-1 x+1 x2-2xy+y2 x2-36
A.x2+1 B.x2-1 C. x2-xy D.2x+12
【点拨】选项 A 为最简分式;选项 B,xx2+-11=(x+1x)+(1x-1) = x-1 1;选项 C,x2-x22-xyx+y y2=x((xx--yy))2=x-x y;选项 D, 2xx2-+3162=(x+2(6)x+(6x)-6)=x-2 6,故选 A.
【答பைடு நூலகம்】A
*11.下列计算中,错误的是( ) A.00..27aa+ -bb=27aa+ -bb B.2xx2=2x C.ab- -ba=-1 D.ab=abcc(c≠0)
(2)求-2((m2+m+n)2n2+)32m2n2的值. 解:∵m+n=mn, ∴-2((m2+m+n)2n2+)32m2n2= -2((m2nm)n2)+23m2n2=4mm22nn22=14.
探究培优 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月27日星期日2022/3/272022/3/272022/3/27
5.分式的基本性质-北师大版八年级数学下册课件

典例精析
例1 填空:
思考:(1)中为什 看分母如何变化,想么分不子给如出何x 变≠0化,而. (2) 看分子如何变化,想中分却母给如出何了变b 化≠0.?
(1)x3 xy
(x2 ), 3x2 3xy
y
6x2
x (
2
x) y(x
0);
(2)1
1
a b2
.
2
“n ” 与 “n 2 ” 相 等 吗 ?
m
mn
(a , m, n 均 不 为0)
想一想:类比分数的基本性质,你能猜想分
式有什么性质吗?
知识要点
分式的基本性质: 分式的分子与分母同时乘以(或除以)同一
个不等于0的整式,分式的值不变.
上述性质可以用字母式子表示为: A A C , A A C(C 0). B BC B BC
(0.3x 0.04)100 30x 4
(0.6a (0.7a
5
3 2
b) 30 b) 30
18a 21a
50b 12b
5
练一练
不改变分式的值,使下列分子与分母都不含“-”号
⑴ 2x
5y
⑵ 3a
7b
⑶ 10m 3n
明确三个符号:分子的符号、分母的符号、分式的符号
解:(1)原式= 2x 5y
(
a
), 2a b
(
2ab b2 )(b
0).
ab
a2b
a2
a2b
强调要点
想一想: 运用分式的基本性质应注意什么? (1)“都” (2) “同一个” (3) “不为0的整式”
性质运用
例2 不改变分式的值,把下列各式的分子与分母 的各项系数都化为整数.
01分式的基本性质(含答案)

分式的基本性质一、选择题1.若分式21x -有意义,则x 的取值范围是 A. x ≠1 B. x >1 C. x=1 D. x <1【答案】1.A【解析】1.试题解析:∵分式有意义时,分母不等于零,∴x-1≠0,解得x≠1.故选A.2.若分式2424x x --的值为零,则x 等于( ). A. 2 B. 2- C. 2± D. 0【答案】2.B【解析】2.试题解析:若分式2424x x --的值为零, 则24=0{ 240.x x --≠ 解得: 2.x =-故选B.3.x 为任何实数时,下列分式中一定有意义的是( ) A. 21x x + B. 211x x -- C. 11x x -+ D. 211x x -+ 【答案】3.D【解析】3.A.当x=0时,分母为零,分式没有意义,故选项错误;B.当x=±1时,分母为零,分式没有意义,故选项错误;C.当x=−1时,分母为零,分式没有意义,故选项错误;D.无论x 为何值,分母都不为零,分式有意义,故选项正确.故选:D.4.下列判断错误..的是( ) A. 当23x ≠时,分式132x x +-有意义 B. 当a b ≠时,分式22ab a b-有意义 C. 当12x =-时,分式214x x +值为0 D. 当x y ≠时,分式22x y y x --有意义 【答案】4.B【解析】4.A 、当分母3x-2≠0,即当x≠23时,分式x 13x 2+-有意义.故本选项正确; B 、当分母a 2-b 2≠0,即a≠±b 时,分式22ab a b-有意义.故本选项错误; C 、当分子2x+1=0,即x =−12时,分式2x 14x +值为0.故本选项正确;D 、当分母y-x≠0,即x≠y 时,分式22x y y x--有意义.故本选项正确; 故选:B .5.下列分式中是最简分式的是( ) A. 221x x + B. 42x C. 211x x -- D. 11x x -- 【答案】5.A 【解析】5.试题分析:最简分式是指不能继续化简的分式.A 、无法化简;B 、原式=2x ;C 、原式=11x +;D 原式=-1. 6.如果把分式2x y xy+中的x 、y 都扩大5倍,那么分式的值( ). A. 是原来的15 B. 扩大5倍 C. 不变 D. 以上都不正确 【答案】6.A【解析】6.∵分式2x y xy+中的x , y 都扩大5倍, ∴()555155225252x y x y x y x y xy xy+++==⨯⋅⋅⋅, 分式的值缩小为原来的15, 故选A . 7.()0.50.3530.70.6m n m n m n ++=-. A. 7m -6nB. 70m -6nC. 7m -60nD. 5m +3n【答案】7.A【解析】7.观察等式: ()0.50.3530.70.6m n m n m n ++=- 可知:分子乘以了10,因此由“分式的基本性质”可知,分母也要乘以10,而: ()100.70.676m n m n -=-.故选A.8.下列各分式中,不论x 取何值时分式均有意义的是( ) A. 121x + B. 121x - C. 213x x - D. 2512x x ++ 【答案】8.D【解析】8.A.当12x =- 时,分式无意义;B. 当12x =时,分式无意义; C.当0x = 时,分式无意义;D. 20x ≥Q , 211x ∴+≥ ,故不论x 取何值分式有意义; 故选D.二、填空题9.当x =______时,分式236x x -无意义. 【答案】9.2【解析】9.根据题意得,3x-6=0,解得x=2.故答案为: 2.10.化简2244a a a --+=_________________. 【答案】10.12a -【解析】10.原式=()()2211222a a aa ---==---. 11.22222m n mn m n +=2mn【答案】11.m+n【解析】11.∵()2222222mn m n m n mn m n m n mn mn mn+++==⋅, ∴空格处应填“m n +”.12.若分式−67−x 的值为正数,则x 的取值范围_______. 【答案】12.x >7【解析】12.试题解析:由题意得:−67−x >0, ∵-6<0,∴7-x <0,∴x >7.13.对于分式,当x= 时,分式无意义;当x= 时,分式的值为0.【答案】13.﹣4,4.【解析】13.试题分析:根据分母为零,分式无意义;分母不为零,分式有意义,分子为零分母不为零分式的值为零,可得答案.解:分式,当x=x=﹣4时,分式无意义;当x=4时,分式的值为0,故答案为:﹣4,4.14.若的值为零,则x 的值是 .【答案】14.﹣1【解析】14.试题分析:分式的值为零,分子|x|﹣1=0且分母x 2+2x ﹣3≠0,由此求得x 的值.解:依题意得:|x|﹣1=0且x 2+2x ﹣3≠0,所以x=±1且(x+3)(x ﹣1)≠0,所以x=﹣1.故答案是:﹣1.三、解答题15.不改变下列分式的值,将分式的分子和分母中的各项的系数化为整数.(1) 11521243x y x y -+; (2) 0.10.30.50.02x y x y +- 【答案】15.(1) 12301540x y x y -+;(2) 51525x y x y+-【解析】15.试题分析:(1)先找出各式分子与分母的分母的最小公倍数,再根据分式的基本性质进行解答即可;(2)把分子与分母同时乘以100即可得出结论.试题解析:(1)分式的分子与分母同时乘以60得, 原式=12301540x y x y -+. (2)分式的分子与分母同时乘以100得, 原式=51525x y x y+-. 16.把下列各式化为最简分式: (1)2216816a a a --+=_________; (2)()()2222x y z x y z--+-=_________. 【答案】16.(1)44a a +-,(2)x y z x y z -+++ 【解析】16.(1)2216816a a a --+=()()()244444a a a a a +-+=-- ; (2)()()2222x y z x y z --+-=()()()()x y z x y z x y z x y z x y z x y z +--+-+=+++-++ 17.已知x =√3+1,y =√3−1,求x2−2xy+y 2x 2−y 2的值。
知识点077--分式的基本性质(解答题)

三.解答题(共34小题)1.填写出未知的分子或分母:(1),(2).考点:分式的基本性质。
分析:(1)观察分母的变化,根据分式的基本性质,则分子分母应同乘以x﹣y;(2)观察分子的变化,根据分式的基本性质,则分子分母是同除以y+1.解答:解:根据分式的基本性质,则(1)分子分母应同乘以x﹣y,故分母3x(x﹣y)=3x2﹣3xy;(2)分子分母是同除以y+1,分母变为y+1.点评:此类题应当首先观察已知的分子或分母的变化,再进一步根据分式的基本性质进行填空.分式的基本性质:分式的分子、分母同除以(或除以)一个不等于0的式子,分式的值不变.2.已知:,求证x+y+z=0.考点:分式的基本性质。
专题:证明题。
分析:设恒等式等于一个常数,求出x,y,z与这个常数的关系式,再进行证明.解答:解:设=k,则x=ka﹣kb,y=kb﹣kc,z=kc﹣ka,x+y+z=ka﹣kb+kb﹣kc+kc﹣ka=0,∴x+y+z=0.点评:设出恒等式等于一个常数,求出x,y,z与这个常数的关系式是解答本题的关键.3.(1)你能利用分式的基本性质,使分式的分子不含“﹣”号吗(不能改变分式的值)?试一试,做一做,然后与同伴交流.(2)不改变分式的值,使分式的分子和分母都不含“﹣”号:①;②.(3)你能不改变分式的值,使分式中a和x的系数都为正数吗?①;②.考点:分式的基本性质。
专题:阅读型。
分析:根据分式的分子、分母和分式本身任意两处都乘以﹣1,分式的值不变解答.解答:解:(1)能.==;(2)①==;②=;(3)①==;②==.点评:本题主要考查分式的分子、分母和分式本身三处的符号任意改变其中的两处,分式的值不变,熟练掌握这一性质对今后的解题大有帮助.4.不改变分式的值,使下列分式的分子和分母都不含“﹣”号.(1);(2);(3).考点:分式的基本性质。
分析:根据分式的基本性质作答.①分数值除以﹣1,分母除以﹣1,②③分子分母同时除以﹣1.解答:解:(1)=;(2)=;(3)=﹣.点评:解答此类题一定要熟练掌握分式的基本性质.5.(1)=;(2)=;(3)=;(4)=.考点:分式的基本性质。
八年级数学北师大版初二下册--第五单元5.3《分式的加减法:第二课时--通分》课件

知1-练
1
分式
2 ,a - 1 ,2 3a - 2a2 4a3
的最简公分母是(
C)
A.24a2
B.24a3
C.12a3
D.6a3
知1-练
2
分式
1 , 1 ,1 a+1 a2-2a+1 a-1
的最简公分母是
( B)
A.(a+1)2(a-1)
B.(a-1)2(a+1)
C.(a-1)2(a2-1)
D.(a-1)(a+1)
知1-练
3 下列说法错误的是( D )
A.
1与 a 3x 6x2
的最简公分母是6x2
B. 1 与 1 的最简公分母是m2-n2 m+ n m- n
C.
1 3ab
与1 3bc
的最简公分母是3abc
D.
1
a(x -
与1
y) b(y-
x) 的最简公分母是ab(x-y)(y-x)
知识点 2 通 分
知2-讲
分式
x
1 2-
, 1
xx2 -
1 x
,
x2
+
1 2x +
1
的最简公分母是
__x__(x_+__1_)_2_(x_-__1_)__.
导引:找最简公分母,需要将每一个分式的分母分解因 式,按照找最简公分母的方法求解. ∵x2-1=(x+1)(x-1),x2-x=x(x-1), x2+2x+1=(x+1) 2. ∴此三个分式的最简公分母是x (x+1)2(x-1).
中系数都取正数).
请完成《典中点》 Ⅱ 、 Ⅲ板块 对应习题!
第五章 分式与分式方程
5.3 分式的加减法
第2课时 通分
第二课时分式的基本性质

分式约分的结果
最简分式或整式的形式
巩固练习
1、下列各式中是最简分式的( B )
a b x y A、 B、 ba x y
2
2
x 4 C、 D、 x2
2
x y 2 2 x y
巩固练习
2、化简下列分式(约分)
(1)
a bc ab
32a 3 b 2 c 24a 2 b 3 d
x( x 2 1) = 3y( x 2 1)
反思:运用分式的基本性质应注意什么? (1) “都” (2) “同一个” (3) “不为0”
巩固练习 二、选一选
y 的 和 都扩大两倍,则分式的值( 1.若把分式 x y
x y x
B
)
A.扩大两倍 B.不变 C.缩小两倍 D.缩小四倍 xy 2.若把分式 中的 和 都扩大3倍,那么分式 x y 的值( A ).
.
ab 1 1 1 (苏州·中考)已知 , 则 的值是多 a b 2 a b
少?
通分:
1 1 c a b (1) 2 , 3 2 ; (2) , , ; 2a b 3a b ab bc ac y x 1 4a 3c 5b (3) , 2 , ; (4) 2 , , 2 2 2 x 3 y 4 xy 5b c 10a b 2ac ; 1 1 1 1 (5) 2 , ; (6) 2 , ; 2 2 x xy xy y x y x y 1 1 1 1 (7 ) 2 , 2 ; (8) 2 , 2 x x x x x x x 2x 1
2
(2)
(3)
15a b 25a b
2
x 1 (1) 2 x 2x 1 2 m 3m ( 2) 2 9m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 分式的基本性质(1)
1.下列分式与a m n
--相等的是 ( ) A .a m n - B .a m n -+ C .a m n + D .-a m n
+ 2.如果把5x x y
+的x 与y 都扩大10倍,那么这个代数式的值 A .不变
B .扩大50倍
C .扩大10倍
D .缩小为原来的110 3.填空:
(1)()2 2a b ab a b +=
(2)()22 2x xy x x -= (3)()
2 33y xy xy =
(4)()()210 2a a a a b ++=≠ 4.不改变分式的值,使分式的分子与分母都不含负号:
(1)32x y --=_______; (2)23a b
--=-_______. 5.当()23
221212x k x x x y --=时,k 代表的代数式是_______. 6.下列等式的右边是怎样从左边得到的?
(1)2212a b a b a ab b +=+++ (2)21644
x x x -=-+
7.使等式27722x x x x
=++自左到右变形成立的条件是 ( ) A .x <0 B .x>0 C .x ≠0 D .x ≠0且x ≠7
8.(2013.淄博)下列运算错误的是 ( )
A .()()
221a b b a -=- B .1a b a b --=-+ C .0.55100.20.323a b a b a b a b ++=-- D .a b b a a b b a
--=++ 9.把分式2
x x y
-中的x 和y 都扩大为原来的2倍,那么这个分式的值 ( ) A .扩大为原来的2倍
B .不变
C .缩小到原来的12
D .扩大为原来的12倍 10.已知034
x
y =≠,则22x y x y +-的值是_______. 11.当x_______时,2121
x x ----为正数. 12.不改变分式的值,把下列式子的分子和分母中各项的系数都化为整数:
(1)0.30.21x x +- (2)12251223
x y x y +-
13.不改变分式的值,使分式的分子、分母中的首项的系数都不含“-”号. (1)211x x --+ (2)2212x x x -+-- (3)2131
x x x ----+
14.已知x 2-3x -1=0,求: (1)1x x -的值;
(2)221x x +的值.
参考答案
1.B 2.A 3.(1)2a 2+2ab (2)x -2y (3)1 (4)2ab 4.(1)
32x y (2)23a b - 5.3
2xy 2 6.(1)分子、分母同乘(a +b) (2)分子、分母同除(x +4)
7.C 8.D 9.A 10.-115
11.x>-12 12.(1)原式=103210x x +- (2)原式=15121520x y x y +- 13.(1)211x x --- (2)2212x x x -+-- (3)2131
x x x ++- 14.(1)3 (2)11。