矩阵可交换性质

合集下载

矩阵可交换性的应用讲解

矩阵可交换性的应用讲解

2015届学士学位毕业论文矩阵可交换性的应用学号:11404111姓名:郭冬冬班级:数学1101指导教师:闫慧凰专业:数学与应用数学系别:数学系完成时间:2014年4月学生诚信承诺书本人郑重声明:所呈交的论文《矩阵可交换性的应用》是我个人在导师闫慧凰指导下进行的研究工作及取得的研究成果。

尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得长治学院或其他教育机构的学位或证书所使用过的材料。

所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

签名:日期:论文使用授权说明本人完全了解长治学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。

签名:日期:指导教师声明书本人声明:该学位论文是本人指导学生完成的研究成果,已经审阅过论文的全部内容,并能够保证题目、关键词、摘要部分中英文内容的一致性和准确性。

指导教师签名:时间摘要矩阵在高等数学中是一个极重要且应用广泛的概念,是线性代数的核心。

而且在一些重要领域也用到了矩阵的计算,像应用数学、计算数学、经济学、数学物理、卫星通信等等,许多工作人员在大量计算这些矩阵时发现了一些对于特殊矩阵成立的公式和规律,本文将用这些规律来叙述一些特殊矩阵(可交换矩阵)的应用。

关键词:矩阵;可交换目录1.绪论 (1)2.基础知识 (1)2.1 矩阵相关概念 (1)2.2 线性变换相关概念 (2)3.矩阵可交换的应用 (3)3.1线性变换与矩阵(可交换)之间的联系 (3)3.2上三角矩阵可交换的应用 (4)矩阵可交换性的应用11404111 郭冬冬 数学与应用数学指导教师 闫慧凰1.绪论随着社会经济的发展,数学显得格外重要,在生产、生活中都或多或少的涉及到了数学,所以数学是每个人必须学会的,而对于一些技术分子则不仅仅是掌握基本的数学知识,而且要对数学中的一些比较高深的内容进行进一步的了解,之后对其进行应用,像从事计算科学、无线电技术和卫星通信领域工作的人都涉及到了矩阵的可交换方面的知识。

可交换矩阵的性质及应用_孟献青

可交换矩阵的性质及应用_孟献青

n
…b n
2
n n
b 。 n nn 1n
性质 2 若矩阵 A, B 可交换, 则对任一多项式 f
(λ),有 (f A)B=BFra bibliotekf A)。性质 3[1] 设 A, B 为 n 阶可交换方阵,且 A, B 都
可对角化, 则存在可逆矩阵 P, 使 P-1AP 与 P-1BP 同
时为对角阵。
证明 由于 A 可对角化,从而存在可逆矩阵 T, 使
(1) (2)
λbn1=λbn1,i=n,j=1,
(3)
λbi1+bi+11=λbi1,i≠n,j=1,
(4)
由(4)得:bi+11=0,即
b21=b31=…bn1=0。
(5)
由(2)得:bnj-1=0,即
bn1=bn2=…bnn-1=0。
由(1)得:bi+1j=bij-1。
(6)
令 j=2 得:bi+12=bi1=0,i≠1,
第 29 卷第 2 期 2013 年 4 月
文章编号:1674-0874(2013)02-0006-03
山西大同大学学报(自然科学版) Journal of Shanxi Datong University(Natural Science)
Vol.29.No.2 Apr 2013
可交换矩阵的性质及应用
k叟1,证明|A+B|=|B|。
证明 因 AB=BA,由性质 4 知,存在可逆矩阵
P使
λ*
* *
1
*
*
P-1AP=
* * *
λ2
*
*
*
**
*
μ*
* *
1
*
*
P-1BP=

矩阵可交换的定义

矩阵可交换的定义

矩阵可交换的定义嘿,朋友们!今天咱来唠唠矩阵可交换这个事儿。

咱先想想啊,矩阵就像是一群排好了队的数字小兵。

那可交换呢,就好比这些数字小兵可以互相换换位置,而且换了之后没啥大影响。

比如说,你有两个矩阵 A 和 B,它们要是可交换,那 A 乘以 B 就等于B 乘以 A 呀。

这就好像你有两堆玩具,你先从第一堆里拿一个,再从第二堆里拿一个,和你先从第二堆里拿一个,再从第一堆里拿一个,最后的结果差不多。

这有啥用呢?用处可大啦!就像你走路,有时候走这条路能到目的地,走另一条路也能到,这就让你有了更多的选择呀。

你想想,如果矩阵不可交换,那多麻烦呀!就跟你出门,规定了你只能先迈左脚,再迈右脚,不能反过来,那多别扭呀。

咱再打个比方,矩阵可交换就像是朋友之间相处很融洽,可以互相换位子也不影响感情。

要是不可交换,那不就跟两个合不来的人似的,非得按照特定的顺序来,不然就闹别扭。

在实际应用中,矩阵可交换也很重要呢。

比如在一些科学研究、工程计算里,要是能找到可交换的矩阵,那就能让计算变得简单很多,就像找到了一把钥匙,能轻松打开难题的大门。

而且哦,研究矩阵可交换还能让我们更深入地理解数学的奥秘呢。

就好像探索一个神秘的洞穴,每走一步都可能有新的发现,多刺激呀!咱平常生活中不也经常遇到类似的情况嘛。

比如你做事的顺序,有时候换一换也没啥,有时候就不行。

这和矩阵可交换是不是有点像呀?所以啊,矩阵可交换可不是什么遥不可及的高深概念,它就藏在我们生活的各个角落呢。

只要我们用心去感受,去发现,就能明白它的奇妙之处啦。

总之呢,矩阵可交换是数学里一个很有趣也很有用的概念,它就像一把神奇的钥匙,能打开很多知识的大门,让我们看到更广阔的世界。

我们可不能小瞧它呀,要好好去研究它,利用它,让它为我们的学习和生活带来更多的便利和惊喜!。

论文,夏杰矩阵可交换的条件

论文,夏杰矩阵可交换的条件

长沙学院信息与计算科学系本科生科研训练矩阵可交换的条件系部:信息与计算科学专业:数学与应用数学学号: 2009031123学生姓名:夏杰成绩:2012 年6月矩阵可交换的条件夏杰长沙学院 信息与计算科学系, 湖南 长沙, 410022摘要:本文通过对矩阵的理论研究,给出了矩阵可交换的部分充分条件和部分充要条件. 关键词:矩阵,可交换1 引言在高等代数以及线性代数的教学中,矩阵是一个重要的教学内容。

由矩阵的理论可知。

矩阵的乘法不同于数的乘法,矩阵的乘法不满足交换律,即当矩阵A B 有意义时,矩阵B A 未必有意义,即使矩阵A B 、B A 都有意义时它们也未必相等。

或者说,在一般情况下,矩阵AB BA ≠,但是在某些特殊情况下,矩阵的乘法也是满足交换律的,从而研究矩阵A B 与B A 的关系具有重要的意义。

我们知道若对n 阶实方阵A 、B ,如果满足AB BA =,则称A 与B 可交换。

可交换矩阵有许多良好的性质,研究矩阵可交换的条件及可交换矩阵的一些性质对矩阵理论的研究具有重要的意义(文中的矩阵均指n 阶实方阵).2 矩阵可交换的充分条件定理1[1] (1)设,A B 至少有一个为零距阵,则,A B 可交换;(2)设,A B 至少有一个为单位矩阵,则,A B 可交换;(3)设,A B 至少有一个为数量矩阵,则,A B 可交换;(4)设,A B 均为对角矩阵,则,A B 可交换;(5)设,A B 均为准对角矩阵,则,A B 可交换;(6)设A *是A 的伴随矩阵,则A 与A *可交换;(7)设A 可逆,则A 与1A -可逆;(8)设AB E =,则,A B 可交换.证明 (1)对任意矩阵A ,均有:00A A =,0表示零距阵;(2)对任意矩阵A ,均有:AE EA =,E 表示单位矩阵;(3)对任意矩阵A ,均有:()()A kE kE A =,k 为任意实数;(4)、(5)显然成立;(6) A A AA A E **==;(7) 11A A AA E --==;(8)当AB E =时,,A B 均可逆,且互为逆矩阵.定理2[1] (1)设AB A B αβ=+,其中,αβ为非零实数,则,A B 可交换;(2)设m A AB E α+=,其中m 为正整数,α为非零实数,则,A B 可交换.证明 (1)由AB A B αβ=+可得()()A E B E E βααβ--= 即1()()A E B E E βααβ--= 故依定理1(8)得1()()B E A E E αβαβ--=于是BA A B E E αβαβαβ--+=所以BA A B AB αβ=+=;(2)由m A AB E α+=得1()m A A B E α-+=,故依定理1(8)得1()m A B A E α-+=, 于是m A BA E α+=,所以可得AB BA =.定理3[1] (1)设A 可逆,若0A B =或A AB =或A BA =,则,A B 可交换;(2)设,A B 均可逆,若对任意实数k ,均有()A A kE B =-,则,A B 可交换.证明 (1)若0A B =,由A 可逆得11()()0B A A B A AB --===,从而0B A =,故AB BA =;若A AB =同理可得111()()B A A B A AB A A E ---====,故AB BA =;若A BA =,则111()()B B AA BA A AA E ---====,故AB BA =.(2)因,A B 均可逆,故由()A A kE B =-得A kE -可逆且1()B A kE A -=-,则 1[()][()]A B A kE B A kE A -''''=--111()[()]()()()()()B A kE A A kE B A A kA A kE B A A kE A kE B A E B A A B ---''''=--'''''=--''''=--'''''===两边取转置可得AB BA =.3 矩阵可交换的几个充要条件定理4[1] 下列均是,A B 可交换的充要条件:(1)22()()()()A B A B A B A B A B -=+-=-+;(2)222()2A B A AB B ±=±+;(3)()AB A B '''=;(4)()AB A B ***=.证明 (1)由22()()A B A B A AB AB B +-=-+-及22()()A B A B A AB AB B -+=+--可证得;(2)由222()A B A AB AB B ±=±±+可证得;(3)分别由,()AB BA AB A B '''==两边取转置可证得;(4)分别由,()AB BA AB A B ***==两边取转置可证得.定理5[1] 可逆矩阵,A B 可交换的充要条件是111()AB A B ---=.证明 分别111,()AB BA AB A B ---==两边取逆矩阵可证得.定理6[1] (1)设,A B 均为(反)对称矩阵,则,A B 可交换的充要条件是A B 为对称矩阵;(2)设,A B 有一为对称矩阵,另一为反对称矩阵,则,A B 可交换的充要条件是A B 为反对称矩阵.证明 (1)设,A B 均为对称矩阵,由定理4(3),()AB A B AB '''==,因此A B 为对称矩阵;若,A B 为反对称矩阵,则()()()AB A B A B AB '''==--=,因此A B 也为对称矩阵.(2)仿照(1)可证得.定理7[1] 设,A B 均为对称正定矩阵,则,A B 可交换的充要条件是A B 为对称正定矩阵.证明 充分性由定理6(1)可得;下证必要性:因,A B 为对称正定矩阵,故由可逆矩阵,P Q ,使,A PP B QQ ''==,于是1,()()AB PP Q Q P ABP P Q P Q -'''''==,所以1P ABP -为对称正定矩阵,其特征值全为正数,而A B 与1P ABP -相似,从而A B 的特征值也全为正数,因此A B 为对称正定矩阵.引理1[2] 当A 矩阵为对角阵,即12(,,,)n A diag a a a = ,且(1,2,,)i a i n = 互不相同时,与它可交换的B 矩阵必可表示成A 的1n -次多项式.证明 与对角矩阵可交换的矩阵用求解方程()AB BA =的办法可以得到结论:B 必须是一个对角阵12(,,,),(1,2,,)n i B diag c c c c i n == 可以取任何实数.如果我们考虑下面方程:1011n n B p I p A p A --=++ .它实际上是一个011,,,n p p p - 作为未知数的线性方程组,其系数矩阵正好是一个范德蒙行列式,当(1,2,,)i a i n = 互不相同时,该系数行列式不为零,所以可求得(0,1,2,,1)i p i n =- 是唯一解,故引理的结论得证.定理8[2] 一个矩阵A 化成Jordan 标准型J 后,若J 中没有纯量矩阵的Jordan 块c J ,那么与A 可交换的B 矩阵其充要条件为B 可以化成A 的1n -次多项式,即11011()n n n B P A p I p A p A ---==++ .证明 对于与A 可交换的B 矩阵应满足的方程AB BA =中,若将A 化成Jordan 标准型1A P JP -=,其中P 为满秩阵J 的标准型,将A 代入上面方程,得11P JPB BP JP --=.若令1X PBP -=,则方程化成JX X J =.这就表明:要求A 的可交换矩阵,可先求A 的Jordan 标准型J 的可交换矩阵C ,则与A 可交换的矩阵1B PCP -=.由于本定理的前提中表明Jordan 标准型J 中没有c J 型(纯量矩阵Jordan 块),c J 型Jordan 块由引理1即知与n J 可交换的矩阵可表示为n J 的1n -次多项式.我们知道,将一个矩阵化成Jordan 标准型工作量很大,要等到标准型化成才能应用被定理作出判断,那也太麻烦了,事实上不必作出Jordan 标准型的分解即可判别一个矩阵是否含有纯量矩阵Jordan 块.参考文献[1] 王霞.矩阵可交换成立的条件及性质[J ].内江科技,2009,8(30):161.[2] 钱微微,蔡耀志.论矩阵可交换的充要条件[J ].大学数学,2007,5(23):143-146.[3] 北京大学数学系几何与代数教研室前代数小组.高等代数(第三版)[M].北京:高等教育出版社,2003.9.。

交换矩阵

交换矩阵

A
=
1 2
2 3
的可交换矩阵。
解:设矩阵
B
a c
b d

A
的可交换矩阵。则有
AB
BA.
AB
=
1 2
2a
3
c
b d
a 2c 2a 3c
b 2d 2b 3d
C
a b 1 2 a 2b 2a 3b
BA
c
d
2
3
c
2d
2c
3d
D
a 2 a 2b
dn1
d1n

dnn
显然有 C D 。 (3) AB 与 BA 均有意义,且二者阶数也相同但是最后具体的乘积方阵还是 不一样。
比如说:矩阵
A
=
2 1
1 1

B
=
1 1
2 2

AB
=
2 1
1 1 1 1
2 3 2 2
6 4
=
C

但是
BA
=
1 1
2 2 2 1
1 1
4 4
3 3
=
D
。显然
C
定理 6: ( A B)2 A2 2AB B2 ; 证明:充分性 ( A B)2 ( A B)( A B) A2 AB BA B2
又 ( A B)2 A2 2AB B2 , 从而 AB BA 2AB 即 AB BA; 必要性: 若 AB BA 则 ( A B)2 ( A B)( A B) A2 AB BA B2 A2 2AB B2 , 必要性得证。 定理 7: (AB) AB ; 证明:充分性 由题知 (AB) AB ,又因为 (BA) AB ,

与矩阵A可交换的全体矩阵的性质

与矩阵A可交换的全体矩阵的性质
第 35 卷 第 7 期
(自 然 科 学 版 )
Vol.35 No.7
2019年7月 JournalofHebeiNorthUniversity (NaturalScienceEdition) Jul.2019
与矩阵犃 可交换的全体矩阵的性质
丁 晓 业1, 李 红 菊1, 何 健2
(1. 安徽新华学院通识教育部,安徽 合肥 230088;2. 吉首大学数学系,湖南 吉首 416000)
摘要:目的 针对一些满足特殊条件的可交换矩阵,研究与矩阵 犃 可交换的全体矩阵的性质。方法 从
可交换矩阵的概念出发,给出矩阵可交换的条件。再通过一些特殊的矩阵,利用可交换矩阵的定义和矩阵的乘
犫21
犫22
… 犫1狀燄

犫2狀
,则称矩阵 (犮犻犼)犿×狀
燀犪犿1 犪犿2 … 犪犿狊燅
燀犫狊1 犫狊2 … 犫狊狀燅
来稿日期:2018 07 11 基 金 项 目 : 安 徽 新 华 学 院 校 级 重 点 教 研 项 目 (2016jy008) 作 者 简 介 : 丁 晓 业 (1990), 男 , 安 徽 省 合 肥 市 人 , 硕 士 , 助 教 , 研 究 方 向 为 代 数 学 与 矩 阵 理 论 。
·1·
2019年7月 河北北方学院学报 (自然科学版) 第7期
为矩 阵 犃 与 矩 阵 犅 的 乘 积 矩 阵。记 作 犃犅,即 犃犅 = (犮犻犼)犿×狀,其 中犮犻犼 = 犪犻1犫1犼 +犪犻2犫2犼 + … +犪犻狊犫狊犼 =

∑犪犻犽犫犽犼(犻=1,2,…,犿;犼=1,2,…,狀)。乘积矩阵 犃犅 读作犃 左乘犅 或右乘犃。
般地,矩阵的乘法不满足交换律,即 犃犅 ≠ 犅犃 。但是在某些特殊情况下,矩阵的乘法也满足交换律,即

两矩阵可交换的条件

两矩阵可交换的条件

两矩阵可交换的条件我觉得这两矩阵可交换啊,这里面的事儿可太有意思了。

你想啊,就好像两个人打交道似的,矩阵也得有自己的规矩和默契才能交换。

我就想起我以前认识的一个老学究,那家伙戴着个厚厚的眼镜,镜片就像瓶底儿似的。

他成天就研究这些个矩阵的事儿。

有一回我问他:“您说这矩阵咋就能交换呢?”他那眼睛从镜片后面翻着看我,跟看个怪物似的,然后慢悠悠地说:“这哪是一两句话能说清的事儿。

”我就不服气啊,我觉得这事儿肯定有个简单的门道。

我就自己琢磨。

这矩阵就像两个小方阵,每个小方阵里的数字就像一个个小兵。

这两个矩阵要能交换,就好比两个军队要换防,那得满足一定的条件啊。

你看啊,要是两个矩阵都是那种规规矩矩的方阵,就像两个整齐的兵团,那可能就比较容易交换。

但要是一个矩阵长得歪七扭八的,就像一群散兵游勇,那和另一个矩阵交换起来肯定就麻烦。

这就像你让一群训练有素的士兵和一群乌合之众换地方,那不乱套了嘛。

有时候我看着那些矩阵里的数字,就好像看到一个个小人在里面晃悠。

我就想啊,这些个数字小人是不是也得互相商量好了才能交换呢?比如说这个数字小人对另一个矩阵里的数字小人说:“兄弟,咱们换换位置呗。

”然后另一个小人说:“行啊,但是你得满足我们这儿的条件。

”我还见过那种特别复杂的矩阵,那数字密密麻麻的,就像一群蚂蚁在纸上爬。

看着那样的矩阵,我脑袋都大了,更别说想它们可交换的条件了。

我就想,这要是把老学究叫来,他估计也得挠头。

不过我觉得,这矩阵可交换的条件,肯定和它们的大小、形状还有里面数字的规律有关系。

就像人与人之间的交往,得看身份、性格还有彼此的需求一样。

这矩阵也得看自己的“身份”,也就是它的行数和列数,还有那些数字之间的微妙关系。

有时候一个小小的数字变化,可能就像在平静的湖水里扔了块石头,整个矩阵的可交换性就变了。

我还和一个年轻的学生讨论过这事儿。

那学生眼睛亮晶晶的,充满了求知欲。

他说:“刘老师,我觉得这矩阵可交换可能就像拼图一样,得严丝合缝才行。

矩阵分析小论文-线性变换的可交换性

矩阵分析小论文-线性变换的可交换性

故 AB=BA
参考文献 [1] 史荣昌,魏丰.矩阵分析(第 3 版)[M].北京:北京理工大学出版社,2010 [2] 高明.线性变换及矩阵可交换的性质与应用[J].阴山学刊(自然科学版).2013(3)
x1 + λ1 x2 + + λ1n −1 xn = µ1 n −1 µ2 x + λ x + + λ2 xn = 考虑方程组 1 2 2 n −1 µn x1 + λn x2 + + λn xn =
1 λ1 λ1n −1 1 λ2 λ2 n −1 = ∏ (λi − λ j ) ≠ 0 该方程组的系数行列式 1≤ j ≤i ≤ n 1 λn λn n −1
4 应用
设 V 是数域 F 上的 n 线性空间, A,B 为 V 上的两个线性变换, A 在 F 上有 n 个互异的特征 值,则:1) AB=BA 的充要条件是 A 的特征向量都是 B 的特征向量;2) AB=BA 的充要条件是 B 是 ε , A , A 2 , , A n −1 的线性组合,其中 ε 为 V 的恒等变换。 证明:设 λ1 , λ2 , , λn 是 A 的 n 个互异的特征值, α1 , α 2 , , αn 是 A 的分别属于特征值
(a1ε +a2B + +an −1B n −1 )(αi )=A (αi )
由于 α1 , α 2 , , α n 是 V 的一组基 故 A = a1ε +a2B + +an −1B n −1 充分性 若 A = a1ε +a2B + +an −1B n −1 ,则
BA = α1B +a2B 2 + +an B n , AB = α1B +a2B 2 + +an B n

(整理)可交换矩阵成立的条件和性质.

(整理)可交换矩阵成立的条件和性质.

内蒙古财经大学本科学年论文可交换矩阵成立的条件与性质作者:系别:专业:年级:学号:指导教师:导师职称:指导教师评语:该学生在整个论文书写过程中态度端正,能配合指导教师,指导教师交给的任务基本能在规定时间内的完成。

在开题以后,对论文题目理解正确,在指导下能完成论文初稿的书写,书写基本符合规范。

但对参考书目及参考文献的依赖性太大,应在论文中添加自己独立的理解及总结。

成绩:中指导教师:内容提要矩阵是高等数学中一个重要的内容,在数学领域中以及其他科学领域中有着重大的理论意义.众所周知,矩阵的乘法在一般情况下是不满足交换律的,即在通常情况下,AB BA.但是,在某种特殊情况下,矩阵的乘法也能满足交换律.可交换矩阵有着很多特殊的性质和重要的作用.本文从可交换矩阵和相关知识的定义出发,探讨了矩阵可交换的一些条件和可交换矩阵的部分性质,并且介绍了几类特殊的可交换矩阵.关键字:矩阵可交换条件性质上三角矩阵AbstractMatrix is an importantcontent inaltitude-mathematics,it has agreattheoretic significanceintheaspectofbothmathematicsandothersciencefields.Asfaraswehaveconcerned,themultiplicationofmatrixcouldnotsatisfytheexchangeruleunderthenormal condition,thatis tosay,normally, AB BA.Whereas, insomecertainconditions, the multiplication of matrix couldsatisfy the exchange rule. Theexchangeable matrixhasmanyspecial properties and important effections. This paperdiscussessomeconditionsofthematrixexchangeandpartsofthepropertyof theexchangeablematrix,andalsointroducesseveralkindsofspecificexchangeablematrix.All of thesearediscussed from the conceptof exchangeable matrix and relativeinformation.KeyWords:matrix interchangeable conditions property upper triangularmatrix目录引言⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 一可交换矩阵及相关定义⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1(一)矩阵⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1(二)可交换矩阵⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 二可交换矩阵成立的条件与性质⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3(一)可交换矩阵成立的条件⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3(二)相关结论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5(三)可交换矩阵的性质⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 三几类常用的可交换矩阵⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 四可交换矩阵的应用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 五总结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 参考文献⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 致谢⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10可交换矩阵成立的条件与性质引言随着科学技术的迅速发展和计算机技术的进步,科学与工程计算即科学计算的研究受到科学技术人员的极大重视,其应用范围已经渗透到各个学科领域.计算机的普及,使得矩阵理论越来越受到学者、工程技术人员和科技人员的关注.矩阵理论不仅仅是一门重要的数学理论,而且在数值分析、数学建模、最优化方法等数学分支上有极其重要的应用,还在计算机科学、无线电技术和卫星通信等尖端技术科学领域和社会学、经济数学等许多方面都有着重要的用途和具体应用背景.利用矩阵理论与方法来处理错综复杂的工程问题时,具有表达简洁、对工程问题的实质刻画深刻的优点,因此应用矩阵理论和方法来处理工程技术上的各种问题,越来越受到工程界人士的极大重视,逐渐成为数学建模中解决实际问题常用的一种方法,矩阵理论与应用已成为众多学科领域的教学工具.在科学技术人员和学者在解决这些矩阵的计算问题时,逐渐发现把数学的一些计算公式,如平方和、平方差等许多运算律运用到矩阵的计算中来,既利于计算速度的提高,也方便于通过计算机的编程来进行大型矩阵的迅速计算.一、可交换矩阵及相关定义㈠矩阵1、矩阵的定义由m n个数a ij i1,2,,m,j1,2, ,n 排成的m行n列的数表a11 a12a1na21 a22 a2nA1a n1 a n2a nn称为m行n列矩阵,简称m n矩阵,为表示它是一个整体,总是加一个括弧,并用大写黑体字母表示它,也可以记为A a ij或A mn.这里的a ij表示位于A的第i行第j列的元素.m n称为矩阵的阶数.矩阵可分为实矩阵与复矩阵.当行数与列数相等,矩阵称为方阵.只有一行的矩阵称为行矩阵,只有一列的矩阵称为列矩阵.所有元素为0的矩阵称为零矩阵,记为O.两个矩阵如果行数与列数完全相同,则称为同型矩阵.2、矩阵的运算1加减法设Aa ij mn,Bbij mn为同型矩阵,则A B a ij b ij mn 2这里若设B为B的负矩阵,即 B bij m n,则可以定义减法运算A B a ijb ij mn 32数与矩阵的乘积设A a ijmn,kR为实数,则kA称为矩阵A的数乘,且kAka ijmn 4 即给A的每个元素均乘以数k.3矩阵的乘积设A aijm5,B bij5n,则ABCc ijmn 5 称c为矩阵A与矩阵B的乘积.其中c ij a i1b1j a i2b2j a i5b5j i 1,2, ,m;j 1,2, ,n即C的第i行第j列元素为A的第i行各元素与B的第j列各元素对应相乘再相加.注意:只有当A的行数与B的列数相等时,A与B才能相乘.4对称矩阵在一个n阶方阵A中,若元素满足如下性质:A ij A ji,0i,jn1 6 则称A为对称矩阵.5反对称矩阵设A是一个n阶方阵,如果A T A 7 则称A为反对称矩阵.㈡可交换矩阵一般情况下,矩阵的乘法不满足交换律,其原因有以下几点: 1. AB 有意义时,BA 不一定有意义.2. AB 与BA 均有意义时,可能它们的阶数不相等.3.AB 与BA 均有意义时,且它们的阶数相等时,仍可能出现 ABBA.因此,把满足乘法交换律的矩阵称为可交换矩阵,即若矩阵A,B 满足:ABBA8则称矩阵A 和B 是可交换的.二、矩阵可交换成立的条件与性质若AB BA 成立,则称方阵A 与B 为可交换矩阵.设fxa m x ma m1x m1a 1x 1a 09 系数a 0,a 1, ,a m 均为数域P 中的交换数,A 为P 上的一个n 阶方阵,记faaA mam1 A m1aAa Em1 0容易看出:任何方阵A 都与其伴随矩阵 A *是可交换的,且二者的乘积为 AIn;对于任何方阵A ,fx a A PaA P1a p I 与gAbA qb A q1 bI 可交换. 011 q (一)可交换矩阵成立的条件定理1[1]设n 阶方阵A,B 满足条件A BAB.则A,B 可交换. 证明由条件A BAB,diage 1,e nI ,变形可得I AIBAB(AI)B(IA)(AI)(B I)即(A I)(B I) I ,所以A I 为可逆矩阵,其逆矩阵为 BI ,有(AI)(BI) (BI)(AI)I即ABABI BABAI ,从而可得AB BA.定理2[3]设A,B 均为对称矩阵,则A,B 可交换的充要条件是AB 为对称矩阵. 证明设A,B 均为对称矩阵,由于AB BA ,故AB TB T A TBAAB 所以AB 是对称的.推论设A为n阶对称矩阵,则A,A T都可交换.定理3[3]设A为对称矩阵,B为反对称矩阵,则A,B可交换的充要条件是AB为反对称矩阵.证明设A T A,B T B,由于AB BA,所以AB T B T A T BA AB 10所以AB为反对称矩阵.反之,若AB为反对称矩阵,则AB AB T B T A T BA11 从而ABBA.定理4[3]设A,B均为反对称矩阵,则A,B可交换的充要条件是AB为对称矩阵.证明因A,B均为反对称矩阵,故有A T A,B T B,又因为A,B可交换,故有ABBA成立.从而AB T B T A T B A AB BA 12 反之,若AB为对称矩阵,则AB AB T B T A T B A BA AB 13 所以A,B是可交换矩阵.定理5[3]若A,B为同阶可逆矩阵,则A,B可交换的充要条件是A1,B 1可交换.证明因AB BA,故有AB1BA1B1A1A1B 114 即A1与B1是可交换的.反之,因A 1,B1可交换,故有BA1A1B1B1A1AB 115 两边求逆得到ABBA.推论可逆矩阵A,B可交换的充要条件是AB1B1A1.定理6[3]若A,B为n阶方阵,则AB可交换的条件是AB T A T B T证明如果ABBA,那么AB T BA T A T B T精品文档精品文档定理7[5]矩阵A能与一切n阶矩阵可交换的充分必要条件是A为数量矩阵.证明若A与一切n阶矩阵可交换,自然与对角线上元素互不相同的对角矩阵可交换,由此可知A必为一对角线矩阵.设d1d2A ..d n取矩阵1 1 . . 10 0 . . 0B . . . . 0. . . . .0 0 . . 0代入条件AB BA,得d1d2d n,所以A是一个数量矩阵.反之,设A aI,B为任意n阶矩阵,则AB aIB aB Ba BIa BIa BA 16引理1(1)A0时(即A为零矩阵时),与A可交换得矩阵B可以是任意的与A同价的B矩阵.(2)A的幂矩阵总是与A可交换.定理8[7]与A可交换的多项式矩阵总可以转化为小于等于n1次的多项式矩阵.定理9[7]一个矩阵A化为约当标准型后,若中没有纯量矩阵的约当块,那么与A可交换的矩阵其充要条件为B可化为A的n1次多项式.定理10[7]下列均是A,B可交换的充要条件:(1)A B ABABABAB(2)AB'A'B'定理11[5]可逆矩阵A,B可交换的充要条件是:ABAB.定理12[7](1)设A,B均为(反)对称矩阵,则A,B可交换的充要条件是AB为对称矩阵.(2)设A,B有一为对称矩阵,另一为反对称矩阵,则A,B可交换的充要条件是AB为反对称矩阵.(二)相关结论定理13[7]设A,B是可交换矩阵,则以下结论成立:(1)A2B2 A B A B A B A B(2)AB(3)AB 2A 2 2AB B22A 2 2AB B2精品文档(4) AB K B K A K,AB m B m A,其中k,m分别为正整数A mB m ABA m1A m2B B m1B m m(5) A C m k A mk B kk0证明(1) 因为A B A B A2AB BA B2A B A B A2AB BA B2由已知AB BA,可得A2B2ABAB ABAB(2) A B2ABA B A2ABBAB2由已知AB BA,可得A B2A22AB B2同理可得:A B2A22AB B2(3)由已知ABBA,可得AB k ABAB AB AABB AB AA AB B A k B k,AB m ABB B BAB B BB BA B m A(4)运用数学归纳法①当m 2时,由(1)等式成立,即A2B2 A B A B②假设m k 1时,等式成立,即有A k1B k1AB A k2 A k3BB k2③当m k时,由已知AB BA,有A kB k A k1B k1ABA k1B B k1AABA k2A k3B B k2ABA k2BB k1AA k A k1B A2B k2 B2A k2 B3A k3 B3A k1BB k1A由性质有B k1AAB k1,A k1BBA k1因此,上式可转化为:A kB k A k A k1B A2B k2 B2A k2 B k A k1BB k1AA k A k1B A2B k2 AB k1BA k1-B2A k2 B3A k3 B k 精品文档ABA k1A k2B B k1A k1ABA k2BAB B k1AB即证得A mB m A BA m1A m2B B m1同理可证得A mB m A m1A m2B B m1 A B(5)对m用数学归纳法同(4)即可得证.(三)可交换矩阵的性质高等代数中可交换矩阵具有一些特殊的性质.[2]性质1 设A,B可交换,则有:(1)ABBA,BAAB,其中m,k都是正整数(2)AfBfBA,其中fB是B的多项式,即A与B的多项式可交换(3) A BA BAAB?B AAB?BABB m m(4) A C m k A m1B kk0性质2[4](矩阵二项式定理) 设A,B可交换,则有:(1)若A,B均为对合矩阵,则AB也为对合矩阵(2)若A,B均为幂等矩阵,则AB,A B AB也为幂等矩阵(3)若A,B均为幂幺矩阵,则AB也为幂幺矩阵(4)若A,B均为幂零矩阵,则AB,A B均为幂零矩阵.三、几类常用的可交换矩阵假设以下矩阵均为n阶实方阵,定理14[7](1)设A,B至少有一个为零矩阵,则A,B可交换(2)设A,B至少有一个为单位矩阵,则A,B可交换(3)设A,B至少有一个为数量矩阵,则A,B可交换(4)设A,B均为对角矩阵,则A,B可交换(5)设A,B均为准对角矩阵,则A,B可交换精品文档(6)设A*是A的伴随矩阵,则A*与A可交换(7)设A可逆,则A与A可交换(8) 设AB E,则A,B可交换.定理15[7](1) 设AB AB,其中, 为非零实数,则A,B可交换(2) 设Am ABE,其中m为正整数, 为非零实数,则A,B可交换.定理16[7](1) 设A可逆,若ABO或A AB或A BA,则A,B可交换(2) 设A,B均可逆,若对任意实数k,均有AA kEB,则A,B可交换.四、可交换矩阵的应用例1设A与所有的n阶矩阵均可交换,证明A一定是数量矩阵.证明记a ijnn,用E ij将第i行第j列的元素表示为1,而其余元素为零的n n矩阵.因A与任何矩阵均可交换,因此必与E ij可交换.由AE ij E ij A,得a ii a jj i,j 1,2, ,n及a ij0i j,i,j 1,2, ,n.故A是数量矩阵.例2与任意一个n阶方阵相乘都可交换的方阵必为数量矩阵?解不妨设B为可逆矩阵,由于AB BA,所以对于任意可逆阵B都有B 1AB A即A的任意线性变换仍是A自己,这样的矩阵只能是KI.例3 如果矩阵A与所有的n阶矩阵可交换,则A一定是数量矩阵,即 A aE.证明记A ij用E ij将第i行第j列的元素表示为1,而其余元素为零的矩阵.因A与任何矩阵均可交换,所以必与E可交换.由AE ij E ij A得a ji a ij(i j 1,2,3, n 及a ij0i不等于j)故A是数量矩阵.例4若矩阵A1,A2都与B可交换,则KA1 LA2,A1A2也都与B可交换.解由已知A1B BA1,A2B BA2,那么KA1LA2B KA1B LA2B BKA1 BLA2 BKA1 LA2A1A2B A1A2B A1BA2A1BA2BA1A2.精品文档例 5 A与B可交换(即AB BA)的充分必要条件是AB为对称矩阵(即AB T AB).解题目根本就是错的,A取单位阵,B取任意非对称阵,那么AB非对称但ABBA.一定要加一个条件A和B本身都是对称阵才有结论.若ABBA,则AB T BA T A T B T AB.反之,若AB T AB,则AB B T A T BA.例6设A,B为乘积可交换的n阶矩阵,且初等因子为一次的,则存在n阶可逆矩阵P,使得都为对角矩阵.证明在V中选取一组基,存在线性变换,它们在该基下的矩阵分别为A,B,且A,B 与对角形相似.例7所有与A可交换的矩阵对于矩阵的加法和乘法作成环.解一般地,由于交换性问题,乘法公式对于n阶矩阵的多项式不再成立,如果所出现的n阶矩阵互相都是交换的,则乘法公式成立.例如A B2A22AB B2A和B可交换.A B AB A2B2A和B可交换.A和B 可交换(不是!)有二项公式.例8(1)设矩阵A diaga1,a2, ,a n为对角矩阵,其中ij 时,a i a j i,j1,2, ,n,则A,B可交换的充要条件是B为对角矩阵.若A,B均为对角矩阵则,A,B可交换.若B与A diaga1,a2,,a n可交换,i不等于j 时,a i a j,(i,j 1,2,n),证明设Bb ijnn,AB C ij nn,BA d ij n n,因为A为对角矩阵,故c ij a i b ij,d ij a j b ij i,j 1,2,,n由AB BA,即c ij d ij i,j 1,2,,n得a i a jb ij 0而i j时,a i a j0i,j 1,2, ,n,精品文档故b ij0i j,i,j 1,2, ,n所以B为对角矩阵.五、总结本文通过大量的例题对可交换矩阵在计算与证明以及应用三方面进行了总结分析,在证明方面,涉及了矩阵的条件与性质和矩阵列(行)向量线性相关性等问题,利用可交换矩阵可以很清晰地描述线性方程组的解与其相关内容,对一些具体的解与矩阵行(列)向量组线性相关性之间的关系给出了结论.通过本文的论述,充分体现了可交换矩阵在代数计算与证明方面所具有的一定的优越性,也给出了可交换矩阵和矩阵可交换在代数学中所具有的重要地位,当然在对可交换矩阵的应用的论述上本文并不是所有类型的证明与计算都进行了讨论,只是针对一些具有代表性的应用例子上进行证明,所以在应用的完整性上还有待改进,并可以继续进行研究探讨.于此同时,通过课题的详细研究,也让我进一步巩固和加深了对可交换矩阵的理解,在今后的探讨中相信也会有所进步.参考文献[1].北京大学数学系几何与代数教研室前代数小组编.高等代数(第三版)[M].高等教育出版社.2007:181-186.[2]. 戴立辉,《矩阵可交换的条件及可交换矩阵的性质》,华东地质学院学报,2002(04)[3].阎家灏,赵锡英,《可交换矩阵》,兰州工业高等专科学校学报2002(03)[4].戴笠辉、颜七笙,《矩阵可交换的条件及可交换矩阵的性质》,华东地质学院学报,2002,25(4)[5].李瑞娟、张厚超,《可交换矩阵浅析》,和田师范专科学校学报,2009(4)[6].呙林兵,《与方阵可交换的矩阵为矩阵多项式的探讨》,长沙大学学报,2010,24(5)[7].赵锡英、闫家瀛,《可交换矩阵》,兰州工业高等专科学校学报,2002,9(3)[8].龙兴华、马圣荣、颜世建,《矩阵方程AX+XB=C的显式解及其应用》,2002致谢本文是在老师的细心指导下完成的,导师从我们每一个人的论题出发,给予我们详细的指导,并结合知识点进行讲解,这使我们从开始的茫然变的思路清晰,课题才得以顺利进行,导师在学习上的谆谆教诲和身体力行以及无私的帮助使我受益终身,在此谨精品文档向导师表示衷心的感谢!导师高度的敬业精神,为学生们树立了良好的风范,也是我今后所追求的目标.“登泰山始懂尊冠五岳,遇导师才知德高智睿”,师恩浩瀚,溢于言表!课题的顺利进行,还得益于和我同行的两位同学和四年来各位同学的支持和帮助,在此特别感谢在论文的书写和编辑上帮助我的同组同学和在文献查阅与思路启发上给予的莫大帮助的同学们,为论文顺利的进行奠定了基础.感谢我的同学提供的友好合作和无私帮助,永远难忘在一起拼搏的日日夜夜.最后谨向所有帮助和支持过我的领导、老师、同学及亲友们表示最诚挚的谢意.精品文档。

反循环矩阵相乘的可交换性研究

反循环矩阵相乘的可交换性研究

2013年02月下半月刊272艺术文化交流在力学、物理学中,经常会遇到许多关于循环矩阵的计算和应用问题,要解决解决这些问题,首先就要了解一些特殊矩阵的基本概念。

定义1复数域上012110121230n n n a a a a a a a a a a a a −−−− = −−−A L L L L LL L的矩阵称为n 阶反循环矩阵。

3.2反循环矩阵的性质及相关例题下面讨论反循环矩阵的一些性质。

性质1[1] 若A B 、是n 阶反循环矩阵,则AB 也是反循环矩阵,而且=AB BA 。

证明 根据矩阵的乘法和反循环矩阵的定义很容易验证=AB BA 。

例2 已知矩阵123312231=−−−A ,111111111Β− −−。

求证:AB 是反循环矩阵,且=AB BA 。

证明:略。

性质2 若A 为可逆的反循环矩阵,则1−A 也是反循环矩阵。

例2 已知123321231=− −− A ,验证A 的逆矩阵是否为反循环矩阵。

解 因为380=≠A ,所以Α可逆。

设0121201120b b b b b b b b b −=− −−A ,所以012,,b b b 满足方程组012012012321230320b b b b b b b b b −−=+−=++= 对该方程的增广矩阵作初等行变换,可求得127111,,383838b b b ===。

所以1711111711381117− =−−−A 所以123321231=−−−A 的逆矩阵1711111711381117− =−− − A 是反循环矩阵。

参考文献:[1]北京师范大学数学系.高等代数[M].北京:高等教育出版社,2005.[2]王济荣.反循环矩阵的逆[J].数学通报,1992,62(3):42-43.[3]何承源.对称反循环矩阵的几个性质[J].重庆师范学院学报,1996,12(4):32-38.[4]张亚圳.反循环矩阵与矩阵对角化[J].三明学院学报,2006,22(4):21-22.作者简介:季静(1993.07-),女,河南省洛阳市宜阳县,本科,黄淮学院数学科学系数学与应用数学专业,研究方向:数学教学。

论矩阵可交换的充要条件

论矩阵可交换的充要条件

论矩阵可交换的充要条件大学数学第23卷第五期钱微微,浙江中医大学 蔡耀志,浙江大学摘要:从分析二阶矩阵可交换的情况出发,推测出一般矩阵可交换的充要条件,通过矩阵A 化成约当标准型后的不同情形,可最后证明若A 矩阵中没有纯量阵的对角块,那么与它可交换的矩阵B 是A 的n-1次多项式,其中n 为A 矩阵的阶数。

一个A 矩阵可交换的B 矩阵所应满足的充要条件为:除A 很特殊的情形外(参看本文)B 与A 可交换的充要条件是B 是A 的n-1次多项式:21121()n nn p A p I p A p A P A --=++++引理1(i )A=0时(即A 为零矩阵时),与A 可交换得矩阵B 可以是任意的与A 同价的B 矩阵。

(ii )当A 是纯量矩阵时,即nA aI =,a 是实数,nI 是n 阶单位矩阵,则与A 可交换得矩阵也可以是任意与A 同价的矩阵;(iii)A 的幂矩阵总是与A 可交换。

定理1与A 可交换的多项式矩阵总可以转化为小于等于n-1次的多项式矩阵。

证:应用哈密顿-凯莱定理,即可将高于n-1次的A 的幂矩阵转化为小于等于n-1次的多项式矩阵。

本定理即为本文结论的充分性论述。

为证明必要性,不妨先分析一下一般二阶矩阵的情形设11122122aa A a a ⎛⎫= ⎪⎝⎭,此时,与它可交换得矩阵B 不妨写成11122122x x x x x ⎛⎫= ⎪⎝⎭。

由x A A=得()()()1111122111112112111212221211221221112221112121222112222212212222(1)234a x a x a x a x a x a x a x a x a x a x a x a x a x a x a x a x +=+⎧⎪+=+⎪⎨+=+⎪⎪+=+⎩ 消去原方程组中左右相同的项后,(1)(4)二式相同1221a x =2112a x (5)由(2)得(设12a ≠0)()112212112212a a x x x a --= (6)由(3)得(设210a≠)()112221112221a a x xx a --= (7)从(5)(6)(7)中推得A 可交换得条件为1、 当122111220,a a a a ===,由引理1(ii )可知x 可取任意二阶矩阵。

可交换矩阵成立的条件和性质

可交换矩阵成立的条件和性质

内蒙古财经大学本科学年论文可交换矩阵成立的条件与性质作者:系别:专业:年级:学号:指导教师:导师职称:指导教师评语:该学生在整个论文书写过程中态度端正,能配合指导教师,指导教师交给的任务基本能在规定时间内的完成。

在开题以后,对论文题目理解正确,在指导下能完成论文初稿的书写,书写基本符合规范。

但对参考书目及参考文献的依赖性太大,应在论文中添加自己独立的理解及总结。

成绩:中指导教师:内容提要矩阵是高等数学中一个重要的内容,在数学领域中以及其他科学领域中有着重大的理论意义.众所周知,矩阵的乘法在一般情况下是不满足交换律的,即在通常情况下,BAAB≠.但是,在某种特殊情况下,矩阵的乘法也能满足交换律.可交换矩阵有着很多特殊的性质和重要的作用.本文从可交换矩阵和相关知识的定义出发,探讨了矩阵可交换的一些条件和可交换矩阵的部分性质,并且介绍了几类特殊的可交换矩阵.关键字:矩阵可交换条件性质上三角矩阵AbstractMatrix is an important content in altitude-mathematics,it has a great theoretic significance in the aspect of both mathematics and other science fields. As far as we have concerned, the multiplication of matrix could not satisfy the exchange rule under the normal condition, that is to say, normally, AB≠. Whereas, in some certain conditions, the multiplication of matrix BAcould satisfy the exchange rule. The exchangeable matrix has many special properties and important effections. This paper discusses some conditions of the matrix exchange and parts of the property of the exchangeable matrix , and also introduces several kinds of specific exchangeable matrix. All of these are discussed from the concept of exchangeable matrix and relative information.Key Words:matrix interchangeable conditions propertyupper triangular matrix目录引言 (1)一可交换矩阵及相关定义 (1)(一)矩阵 (1)(二)可交换矩阵 (3)二可交换矩阵成立的条件与性质 (3)(一)可交换矩阵成立的条件 (3)(二)相关结论 (5)(三)可交换矩阵的性质 (7)三几类常用的可交换矩阵 (7)四可交换矩阵的应用 (8)五总结 (10)参考文献 (10)致谢 (10)可交换矩阵成立的条件与性质引 言随着科学技术的迅速发展和计算机技术的进步,科学与工程计算即科学计算的研究受到科学技术人员的极大重视,其应用范围已经渗透到各个学科领域.计算机的普及,使得矩阵理论越来越受到学者、工程技术人员和科技人员的关注.矩阵理论不仅仅是一门重要的数学理论,而且在数值分析、数学建模、最优化方法等数学分支上有极其重要的应用,还在计算机科学、无线电技术和卫星通信等尖端技术科学领域和社会学、经济数学等许多方面都有着重要的用途和具体应用背景.利用矩阵理论与方法来处理错综复杂的工程问题时,具有表达简洁、对工程问题的实质刻画深刻的优点,因此应用矩阵理论和方法来处理工程技术上的各种问题,越来越受到工程界人士的极大重视,逐渐成为数学建模中解决实际问题常用的一种方法,矩阵理论与应用已成为众多学科领域的教学工具.在科学技术人员和学者在解决这些矩阵的计算问题时,逐渐发现把数学的一些计算公式,如平方和、平方差等许多运算律运用到矩阵的计算中来,既利于计算速度的提高,也方便于通过计算机的编程来进行大型矩阵的迅速计算.一、可交换矩阵及相关定义㈠矩阵1、矩阵的定义由m n ⨯个数ij a ()n j m i ,,2,1,,,2,1 ==排成的m 行n 列的数表⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a a a a a A 212222111211 ()1 称为m 行n 列矩阵,简称n m ⨯矩阵,为表示它是一个整体,总是加一个括弧,并用大写黑体字母表示它,也可以记为()ij a A =或n m A ⨯.这里的ij a 表示位于A 的第i 行第j 列的元素.n m ⨯称为矩阵的阶数.矩阵可分为实矩阵与复矩阵.当行数与列数相等,矩阵称为方阵.只有一行的矩阵称为行矩阵,只有一列的矩阵称为列矩阵.所有元素为0的矩阵称为零矩阵,记为O .两个矩阵如果行数与列数完全相同,则称为同型矩阵.2、矩阵的运算()1加减法设()()n m ij n m ij b B a A ⨯⨯==,为同型矩阵,则()n m ij ij b a B A ⨯+=+ ()2这里若设B -为B 的负矩阵,即()n m ij b B ⨯-=-,则可以定义减法运算()n m ij ij b a B A ⨯-=- ()3()2数与矩阵的乘积设()R k a A n m ij ∈=⨯,为实数,则kA 称为矩阵A 的数乘,且()n m ij ka kA ⨯= ()4即给A 的每个元素均乘以数k .()3矩阵的乘积设()()n ij m ij b B a A ⨯⨯==55,,则()n m ij c C AB ⨯== ()5称c 为矩阵A 与矩阵B 的乘积.其中()n j m i b a b a b a c j i j i j i ij ,,2,1;,,2,1552211 ==+++=即C 的第i 行第j 列元素为A 的第i 行各元素与B 的第j 列各元素对应相乘再相加.注意:只有当A 的行数与B 的列数相等时,A 与B 才能相乘.()4对称矩阵在一个n 阶方阵A 中,若元素满足如下性质:1,0,-<<=n j i A A ji ij ()6则称A 为对称矩阵.()5反对称矩阵设A 是一个n 阶方阵,如果A A T -= ()7则称A为反对称矩阵.㈡可交换矩阵一般情况下,矩阵的乘法不满足交换律,其原因有以下几点:1.AB 有意义时,BA 不一定有意义.2.AB 与BA 均有意义时,可能它们的阶数不相等.3.AB 与BA 均有意义时,且它们的阶数相等时,仍可能出现BA AB ≠. 因此,把满足乘法交换律的矩阵称为可交换矩阵,即若矩阵B A ,满足:BA AB = ()8 则称矩阵A 和B 是可交换的.二、矩阵可交换成立的条件与性质若BA AB =成立,则称方阵A 与B 为可交换矩阵.设()01111a x a x a x a x f m m m m ++++=--()9 系数m a a a ,,,10 均为数域P 中的交换数,A 为P 上的一个n 阶方阵,记()E a A a A a A a a f m m m m 0111++++=--容易看出:任何方阵A 都与其伴随矩阵*A 是可交换的,且二者的乘积为n AI ;对于任何方阵A ,()I a A a A a x f p P P +++=- 110与()Ib A b A b A g q q q +++=- 110可交换.(一) 可交换矩阵成立的条件定理1[1] 设n 阶方阵B A ,满足条件AB B A =+.则B A ,可交换.证明 由条件AB B A =+,[]I e e diag n = ,1,变形可得)()(A I B I A AB B I A I -+-=-+-=-))((I B I A ---=即I I B I A =--))((,所以I A -为可逆矩阵,其逆矩阵为I B -,有I I A I B I B I A =--=--))(())((即I A B BA I B A AB +--=+--,从而可得BA AB =.定理2[3] 设B A ,均为对称矩阵,则B A ,可交换的充要条件是AB 为对称矩阵.证明 设B A ,均为对称矩阵,由于BA AB =,故()AB BA A B AB T T T ===所以AB 是对称的.反之,由于()AB AB T =,所以()BA A B AB AB T T T===,因此,B A ,可交换.推论 设A 为n 阶对称矩阵,则T A A ,都可交换.定理3[3] 设A 为对称矩阵,B 为反对称矩阵,则B A ,可交换的充要条件是AB 为反对称矩阵.证明 设A A T -=,B B T -=,由于BA AB =,所以()()AB BA A B AB T T T -=-== ()10 所以AB 为反对称矩阵.反之,若AB 为反对称矩阵,则()11 从而BA AB =.定理4[3] 设B A ,均为反对称矩阵,则B A ,可交换的充要条件是AB 为对称矩阵.证明 因B A ,均为反对称矩阵,故有A A T -=,B B T -=,又因为B A ,可交换,故有BA AB =成立.从而()()()BA AB A B A B AB T T T ==--== ()12 反之,若AB 为对称矩阵,则()()()AB BA A B A B AB AB T T T ==--=== ()13所以B A ,是可交换矩阵.定理5[3] 若B A ,为同阶可逆矩阵,则B A ,可交换的充要条件是11,--B A 可交换.证明 因BA AB =,故有()14 即1-A 与1-B 是可交换的.反之,因1-A ,1-B 可交换,故有()15两边求逆得到BA AB =.推论 可逆矩阵B A ,可交换的充要条件是()111---=A B AB .()()()BA A B AB AB T T T -===-()()111111------===B A BA AB A B ()()111111------===AB A B B A BA定理6[3] 若B A ,为n 阶方阵,则AB 可交换的条件是()T T TB A AB = 证明 如果BA AB =,那么()()T T TT B A BA AB ==反之,若()T T T A B AB =,则()()TT T T BA A B AB ==,即BA AB =. 定理7[5] 矩阵A 能与一切n 阶矩阵可交换的充分必要条件是A 为数量矩阵. 证明 若A 与一切n 阶矩阵可交换,自然与对角线上元素互不相同的对角矩阵可交换,由此可知A 必为一对角线矩阵.设⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=n d d d A ..21 取矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0..00.....0....0..001..11B 代入条件BA AB =,得n d d d === 21,所以A 是一个数量矩阵. 反之,设aI A =,B 为任意n 阶矩阵,则()()()BA Ia B a BI Ba aB B aI AB ======()16引理1 (1)0=A 时(即A 为零矩阵时),与A 可交换得矩阵B 可以是任意的与A 同价的B 矩阵.(2)A 的幂矩阵总是与A 可交换.定理8[ 7 ] 与A 可交换的多项式矩阵总可以转化为小于等于1-n 次的多项式矩阵.定理9[ 7 ] 一个矩阵A 化为约当标准型后,若中没有纯量矩阵的约当块,那么与A 可交换的矩阵其充要条件为B 可化为A 的1-n 次多项式.定理10[7] 下列均是A ,B 可交换的充要条件:(1)()()()()B A B A B A B A B A +-=-+=-(2)()'''B A AB = 定理11[5] 可逆矩阵A , B 可交换的充要条件是:()B A AB ⨯=. 定理12[7] (1)设A ,B 均为(反) 对称矩阵, 则A ,B 可交换的充要条件是AB 为对称矩阵.(2)设A ,B 有一为对称矩阵,另一为反对称矩阵,则A ,B 可交换的充要条件是AB 为反对称矩阵.(二)相关结论定理13[7] 设A ,B 是可交换矩阵,则以下结论成立:(1)()()()()B A B A B A B A B A -+=+-=-22(2)()2222B AB A B A ++=+(3)()2222B AB A B A +-=- (4)()A B AB A B AB m m K K K==,,其中m k ,分别为正整数 ()()121---+++-=-m m m m m B B A A B A B A(5)()k k m m k k m mB AC B A -=∑=+0 证明 (1)因为()()22B BA AB A B A B A --+=-+()()22B BA AB A B A B A -+-=-+由已知BA AB =,可得()()()()B A B A B A B A B A -+=+-=-22(2)()()()222B BA AB A B A B A B A +++=++=+ 由已知BA AB =,可得()2222B AB A B A ++=+同理可得: ()2222B AB A B A +-=-(3)由已知BA AB =,可得 ()k k k B A B AB AA AB AABB AB ABAB AB ==== ,A B BA BB B BAB B ABB AB m m =====(4)运用数学归纳法①当2=m 时,由(1)等式成立,即()()B A B A B A +-=-22②假设1-=k m 时,等式成立,即有()()23211-----+++-=-k k k k k B B A A B A B A ③当k m =时,由已知BA AB =,有()()A B B A B A B A B A k k k k k k 1111----+-+-=-()()()A B B A B A B B A A B A k k k k k 12232-----+-++++-= A B B A B A B A B B A B A A k k k k k k k 1133322221------+-----+++= 由性质有11--=k k AB A B ,11--=k k BA B A因此,上式可转化为:A B B A B A B B A B A A B A k k k k k k k k k 1122221-----+----+++=- k k k k k k k k B A B A BA AB B A B A A ----++++=------ 332211221B - ()()121---+++-=k k k B B A A B A()()()B A B B A B A B A A k k k -++-+-=---121即证得()()121---+++-=-m m m m m B B A A B A B A 同理可证得()()B A B B A A B A m m m m m -+++=----121 (5)对m 用数学归纳法同(4)即可得证.(三) 可交换矩阵的性质高等代数中可交换矩阵具有一些特殊的性质.性质1[2] 设A ,B 可交换,则有:(1)BA AB =,AB BA =,其中m ,k 都是正整数(2)()()A B f B Af =,其中()B f 是B 的多项式,即A 与B 的多项式可交换(3)()()()()B A B AB A B AB A B A B A -++=++-=-??(4)()k m mk k m mB AC B A 10-=∑=+ 性质2[4](矩阵二项式定理) 设B A ,可交换,则有:(1)若B A ,均为对合矩阵,则AB 也为对合矩阵(2)若B A ,均为幂等矩阵,则AB B A AB -+,也为幂等矩阵(3)若B A ,均为幂幺矩阵,则AB 也为幂幺矩阵(4)若B A ,均为幂零矩阵,则B A AB +,均为幂零矩阵.三、几类常用的可交换矩阵假设以下矩阵均为n 阶实方阵,定理14[7] (1)设B A ,至少有一个为零矩阵,则B A ,可交换(2)设B A ,至少有一个为单位矩阵, 则B A ,可交换(3)设B A ,至少有一个为数量矩阵,则B A ,可交换(4)设B A ,均为对角矩阵,则B A ,可交换(5)设B A ,均为准对角矩阵,则B A ,可交换(6)设*A 是A 的伴随矩阵,则*A 与A 可交换(7)设A 可逆,则A 与A 可交换(8)设E AB =,则B A ,可交换.定理15[7] (1)设B A AB βα+=,其中βα,为非零实数,则B A ,可交换(2)设E AB Am =+α ,其中m 为正整数,α为非零实数,则B A ,可交换. 定理16[7] (1)设A 可逆,若O AB =或AB A =或BA A =,则B A ,可交换(2)设B A ,均可逆,若对任意实数k,均有()B kE A A -=,则B A ,可交换.四、可交换矩阵的应用例1 设A 与所有的n 阶矩阵均可交换,证明A 一定是数量矩阵. 证明 记()n n ij a ⨯,用ij E 将第i 行第j 列的元素表示为1,而其余元素为零的n n ⨯矩阵.因A 与任何矩阵均可交换,因此必与ij E 可交换.由A E AE ij ij =,得()n j i a a jj ii ,,2,1, ==及()n j i j i a ij ,,2,1,,0 =≠=.故A 是数量矩阵.例2 与任意一个n 阶方阵相乘都可交换的方阵必为数量矩阵?解 不妨设B 为可逆矩阵,由于BA AB =,所以对于任意可逆阵B 都有A AB B =-1即A 的任意线性变换仍是A 自己,这样的矩阵只能是KI .例3 如果矩阵A 与所有的n 阶矩阵可交换,则A 一定是数量矩阵,即aE A =.证明 记ij A 用ij E 将第i 行第j 列的元素表示为1,而其余元素为零的矩阵.因A 与任何矩阵均可交换,所以必与E 可交换.由A E AE ij ij =得ij ji a a = (n j i ,3,2,1== 及0=ij a i 不等于j )故A 是数量矩阵.例4 若矩阵21,A A 都与B 可交换,则2121,A A LA KA +也都与B 可交换. 解 由已知11BA B A =,22BA B A =,那么()()21212121LA KA B BLA BKA B LA B KA B LA KA +=+=+=+()()()()2121212121A A B A B A BA A B A A B A A ====.例5 A 与B 可交换(即BA AB =)的充分必要条件是AB 为对称矩阵(即()AB AB T =).解 题目根本就是错的,A 取单位阵,B 取任意非对称阵,那么AB 非对称但BA AB =.一定要加一个条件A 和B 本身都是对称阵才有结论.若BA AB =,则()()AB B A BA AB T T TT ===.反之,若()AB AB T =,则 BA A B AB T T ==.例6 设A ,B 为乘积可交换的n 阶矩阵,且初等因子为一次的,则存在n 阶可逆矩阵P ,使得都为对角矩阵.证明 在V 中选取一组基,存在线性变换,它们在该基下的矩阵分别为B A ,,且A ,B 与对角形相似.例7 所有与A 可交换的矩阵对于矩阵的加法和乘法作成环.解 一般地,由于交换性问题,乘法公式对于n 阶矩阵的多项式不再成立,如果所出现的n 阶矩阵互相都是交换的,则乘法公式成立.例如()⇔+±=±2222B AB A B A A 和B 可交换.()()⇔-=-+22B A B A B A A 和B 可交换.A 和B 可交换⇒(不是⇔!)有二项公式.例8 (1)设矩阵()n a a a diag A ,,,21 =为对角矩阵,其中j i ≠时,()n j i a a j i ,,2,1, =≠,则B A ,可交换的充要条件是B 为对角矩阵.若B A ,均为对角矩阵则,B A ,可交换.若B 与()n a a a diag A ,,,21 =可交换,i 不等于j 时,j i a a ≠,(n j i ,2,1,=),证明 设()()()n n ij n n ij n n ij d BA C AB b B ⨯⨯⨯===,,,因为A 为对角矩阵,故()n j i b a d b a c ij j ij ij i ij ,,2,1,, ===由BA AB =,即()n j i d c ij ij ,,2,1, ==得()0=-ij j i b a a而j i ≠时,(),,,2,1,0n j i a a j i =≠⋅故 ()n j i j i b ij ,,2,1,,0 =≠=所以B 为对角矩阵.五、总结本文通过大量的例题对可交换矩阵在计算与证明以及应用三方面进行了总结分析,在证明方面,涉及了矩阵的条件与性质和矩阵列(行)向量线性相关性等问题,利用可交换矩阵可以很清晰地描述线性方程组的解与其相关内容,对一些具体的解与矩阵行(列)向量组线性相关性之间的关系给出了结论.通过本文的论述,充分体现了可交换矩阵在代数计算与证明方面所具有的一定的优越性,也给出了可交换矩阵和矩阵可交换在代数学中所具有的重要地位,当然在对可交换矩阵的应用的论述上本文并不是所有类型的证明与计算都进行了讨论,只是针对一些具有代表性的应用例子上进行证明,所以在应用的完整性上还有待改进,并可以继续进行研究探讨.于此同时,通过课题的详细研究,也让我进一步巩固和加深了对可交换矩阵的理解,在今后的探讨中相信也会有所进步.参考文献[1].北京大学数学系几何与代数教研室前代数小组编.高等代数(第三版)[M].高等教育出版社.2007:181-186.[2].戴立辉,《矩阵可交换的条件及可交换矩阵的性质》,华东地质学院学报,2002(04)[3].阎家灏,赵锡英,《可交换矩阵》,兰州工业高等专科学校学报2002(03)[4].戴笠辉、颜七笙, 《矩阵可交换的条件及可交换矩阵的性质》,华东地质学院学报,2002,25(4)[5].李瑞娟、张厚超 ,《可交换矩阵浅析》,和田师范专科学校学报,2009(4)[6].呙林兵,《与方阵可交换的矩阵为矩阵多项式的探讨》,长沙大学学报,2010,24(5)[7].赵锡英、闫家瀛,《可交换矩阵》,兰州工业高等专科学校学报,2002,9(3)[8].龙兴华、马圣荣、颜世建,《矩阵方程AX+XB=C的显式解及其应用》, 2002致谢本文是在老师的细心指导下完成的,导师从我们每一个人的论题出发,给予我们详细的指导,并结合知识点进行讲解,这使我们从开始的茫然变的思路清晰,课题才得以顺利进行,导师在学习上的谆谆教诲和身体力行以及无私的帮助使我受益终身,在此谨向导师表示衷心的感谢!导师高度的敬业精神,为学生们树立了良好的风范,也是我今后所追求的目标.“登泰山始懂尊冠五岳,遇导师才知德高智睿”,师恩浩瀚,溢于言表! 课题的顺利进行,还得益于和我同行的两位同学和四年来各位同学的支持和帮助,在此特别感谢在论文的书写和编辑上帮助我的同组同学和在文献查阅与思路启发上给予的莫大帮助的同学们,为论文顺利的进行奠定了基础.感谢我的同学提供的友好合作和无私帮助,永远难忘在一起拼搏的日日夜夜.最后谨向所有帮助和支持过我的领导、老师、同学及亲友们表示最诚挚的谢意.友情提示:方案范本是经验性极强的领域,本范文无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用。

矩阵交换律的条件

矩阵交换律的条件

矩阵交换律那点事儿:啥时候能“你换我,我换你”?嘿,各位数学爱好者们,今天咱们来聊聊矩阵世界里的一个有趣话题——矩阵交换律的条件。

别一听这名字就觉得头疼,其实咱们用接地气的语言来聊聊,这事儿也挺有意思的。

首先,咱们得明白啥是矩阵交换律。

简单来说,就是两个矩阵相乘的时候,能不能先换个位置再乘,结果还跟原来一样。

就像是你和朋友交换礼物,你送我个苹果,我送你个橙子,不管谁先给谁,最后你手里还是橙子,我手里还是苹果,这就是交换律。

但在矩阵的世界里,可不是所有时候都能这么“随便换”的。

那么,啥条件下矩阵才能愉快地交换位置相乘呢?这里得提到一个关键概念——矩阵乘法满足交换律的特殊情况。

简单来说,就是当这两个矩阵满足某些特定条件时,它们就可以“你换我,我换你”,结果不变。

具体来说,有这么几种情况:单位矩阵:任何矩阵和单位矩阵相乘(不管是左乘还是右乘),结果都还是原矩阵。

这时候,你可以把单位矩阵想象成一个“超级变变变”的道具,它能让矩阵保持原样,所以交换位置当然没问题。

方阵且可交换:如果两个矩阵都是方阵(就是行数和列数相等的矩阵),并且它们相乘的结果与相乘的顺序无关,那么这两个矩阵就可以交换位置相乘。

这种情况比较少见,就像是在茫茫人海中找到两个能“互相理解”的朋友一样难得。

特殊矩阵:还有一些特殊的矩阵,比如对角矩阵、数量矩阵(所有元素都是同一个数的矩阵)等,它们在某些情况下也满足交换律。

这些矩阵就像是数学里的“明星”,有着自己独特的性质和规则。

总之啊,矩阵交换律可不是随便就能用的。

你得先看看这两个矩阵是不是满足上面提到的那些条件。

如果满足了,那你就可以放心大胆地“换位置”相乘了;如果不满足嘛,那就得老老实实按照矩阵乘法的规则来算了。

希望今天的分享能让大家对矩阵交换律的条件有更清晰的认识。

记得哦,学数学就像是在探索一个奇妙的世界,只要保持好奇心和耐心,你一定能发现更多有趣的秘密!。

可交换矩阵浅析

可交换矩阵浅析

= a22 , b11 = b22 ,所以 AB = BA 。
′ −1 −1 A′B′ = ⎡( A − kE ) B ⎤′ ⎡( A − kE ) A⎤ = B′ ( A − kE )′ A′ [ ( A − kE )′] = ⎣ ⎦ ⎣ ⎦ −1 −1 B′( A2 − kA)′ [ ( A − kE )′] = B′ [ ( A − kE ) A]′ [ ( A − kE )′] = B′A′ = ( AB)′ 。
[3]
ai ≠ a j (i ≠ j ) ,
B = ( bij ) n×n (i, j = 1, 2,L , n) ,因 AB = BA ,得到元素 ai ·bij = bij ·a j = a j ·bij , ai - a j ) bij = 0, ai ≠ a j , ( 因
199
2009 年
αβ
( A − β E )( B − α E ) = E , 故 依 定 理 2.1 ⑥ 得 : 1 ( B − α E )
αβ
性质 4.2 与主对角线上的元素互不相等的 n 阶对角阵 A 可交换
( A − β E ) = E ,于是 BA − α A − β B + αβ E = αβ E ,故 BA = α A +
两边取转置得 AB = BA 。或由 A−1 B −1 = ⎡( A − kE ) B ⎤ ⎣ ⎦
−1
−1
−1
⎡( A − kE )−1 A⎤ = B −1 ( A − kE )−1 A−1 ( A − kE ) = B ( A − kA) ⎣ ⎦
−1
2
aij ) n×n 中元素满足 aij =0, ≠ j , i
定义 1.3 在 n 阶对角阵 A 中, a11 若

矩阵可交换的条件及其性质

矩阵可交换的条件及其性质

中文摘要特殊矩阵在矩阵分析和矩阵计算中占有十分重要的地位,它们在计算数学、应用数学、经济学、物理学等方面都有着广泛的应用,对特殊矩阵的研究取得的实质性的进展,都将会对计算数学的发展起着重要的推动作用.随着矩阵应用程度的不断加深,矩阵的可交换性越来越被学者和技术人员所重视.矩阵的可交换性不仅在矩阵计算中起着重要作用,而且在卫星通讯等等许多领域也有着直接的应用.关键词:矩阵交换矩阵可交换特殊矩阵上三角矩阵数量矩阵ABSTRACTSpecial matrices play an important role in matrix analysis and matrix computation and have wide applications in computational mathematics, economics,physics,biology,applied mathematics and etc.Great progress obtained in the researchers on special matrices will give improvements in computational mathematics.With the applications of matrices are more and more abroad,the commutativity of matrix is more and more recognition by scholar and technology worker.The commutativity of matrix not only plays an important part in the matrix computation,but also in the secondary planet, communication and other fields.Keywords:the commutant of matrix,mathematics,exchangeable,special matrices,upper triangle matrices,scalar matrices矩阵的可交换性在各类矩阵的运算中应用十分重要,特别是在现在这种信息时代,在卫星通讯、网络安全方面、解码器以及电路系统镇定性问题、路由交换处理器等等都有着不可替代的作用.本文主要介绍了矩阵的可交换性质和可交换条件的研究以及矩阵交换的相关概念和基本定义.对矩阵可交换的基本定理和一些优美性质进行了叙述和总结,以及对一些特殊的矩阵例如数量矩阵、上三角矩阵等等,满足可交换条件的矩阵进行了探究.在高等代数及线性代数的教学中,矩阵是一个重要的教学内容。

矩阵可交换的条件及其性质

矩阵可交换的条件及其性质

中文摘要特殊矩阵在矩阵分析和矩阵计算中占有十分重要的地位,它们在计算数学、应用数学、经济学、物理学等方面都有着广泛的应用,对特殊矩阵的研究取得的实质性的进展,都将会对计算数学的发展起着重要的推动作用.随着矩阵应用程度的不断加深,矩阵的可交换性越来越被学者和技术人员所重视.矩阵的可交换性不仅在矩阵计算中起着重要作用,而且在卫星通讯等等许多领域也有着直接的应用.关键词:矩阵交换矩阵可交换特殊矩阵上三角矩阵数量矩阵ABSTRACTSpecial matrices play an important role in matrix analysis and matrix computation and have wide applications in computational mathematics, economics,physics,biology,applied mathematics and etc.Great progress obtained in the researchers on special matrices will give improvements in computational mathematics.With the applications of matrices are more and more abroad,the commutativity of matrix is more and more recognition by scholar and technology worker.The commutativity of matrix not only plays an important part in the matrix computation,but also in the secondary planet, communication and other fields.Keywords:the commutant of matrix,mathematics,exchangeable,special matrices,upper triangle matrices,scalar matrices矩阵的可交换性在各类矩阵的运算中应用十分重要,特别是在现在这种信息时代,在卫星通讯、网络安全方面、解码器以及电路系统镇定性问题、路由交换处理器等等都有着不可替代的作用.本文主要介绍了矩阵的可交换性质和可交换条件的研究以及矩阵交换的相关概念和基本定义.对矩阵可交换的基本定理和一些优美性质进行了叙述和总结,以及对一些特殊的矩阵例如数量矩阵、上三角矩阵等等,满足可交换条件的矩阵进行了探究.在高等代数及线性代数的教学中,矩阵是一个重要的教学内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵可交换的条件及其性质摘要:矩阵在高等数学中是一个极重要且应用广泛的概念,是线性代数的核心。

本文通过对可交换矩阵理论的深入研究,对矩阵的可交换做了深入的探讨,归纳总结了矩阵可交换的条件及性质,给出了与已知矩阵可交换的矩阵的求法.关键词:矩阵;可交换;可交换矩阵The Conditions For The Commutation Of Matrix and SomePropertiesAbstract: Matrix in higher mathematics is a very important and widely used concept, is the coreof the linear algebra.This article through to exchange matrix theory research, the matrix interchange to do a further study and summarizes the matrix interchangeable condition and properties are given, and the known matrix can exchange the matrix is introduced.Key words:Matrix;Commutation;The Commutation Of Matrix目录1 引言........................................................................................................................................ - 1 -2 可交换矩阵的基本定义........................................................................................................ - 1 -3 矩阵可交换的条件................................................................................................................ - 1 -3.2 矩阵可交换的几个充要条件............................................................................................... - 3 -4 可交换矩阵的性质.................................................................................................................. -5 -5 与已知矩阵可交换的矩阵的求法........................................................................................ - 5 -5.1 定义法.......................................................................................................................... - 5 -6 结论(结束语).................................................................................................................... - 9 -7 致谢...................................................................................................................................... - 10 - 参考文献.................................................................................................................................... - 10 -1 引言矩阵在高等代数以及线性代数中是一个重要的内容.本文从可交换矩阵的定义出发,通过对矩阵理论的深入研究,总结归纳了矩阵可交换的充分条件、充要条件以及可交换矩阵的一些性质及给出了求可交换矩阵的一些方法,对矩阵理论的研究具有重要的意义(文中的矩阵均指n阶实方阵).2 可交换矩阵的基本定义一般说来,矩阵的乘法不适合交换律,即BAAB≠,这是由于在乘积中一方面要求第一个因子的列数等于第二个因子的行数,否则没有意义.所以当矩阵AB有意义时,矩阵BA未必有意义;另一方面,即使矩阵AB、BA都有意义时,它们的级数也未必相等.因为乘积的行数等于第一个因子的行数,列数等于第二个因子的列数.由此我们给出可交换矩阵这一特殊矩阵的定义.定义2.1[]1对于两个n阶方阵A,B,若BAAB=,则称方阵A与B是可交换的。

3 矩阵可交换的条件3.1 矩阵可交换的充分条件定理3.1.1(1)设A、B至少有一个为零矩阵,则A、B可交换;(2)设A、B至少有一个为单位矩阵,则A、B可交换;(3)设A、B至少有一个为数量矩阵,则A、B可交换;(4)设A、B均为对角矩阵,则A、B可交换;(5)设A、B均为准对角矩阵,则A、B可交换;(6)设*A是A的伴随矩阵,则A与*A可交换;(7)设A是可逆矩阵,则A与1-A可交换;(8)设EAB=,则A、B可交换.证明:(1)对任意矩阵A,均有:A0=,0表示零矩阵;A0(2)对任意矩阵A,均有:EAAE=,E表示单位矩阵;(3)对任意矩阵A,均有:A)(=,k为任意实数;(kEkEA)(4、5)显然成立; (6)E A A A AA ⋅==**; (7)E A A AA ==--11;(8)当E AB =时,A 、B 均可逆,且为互逆矩阵. 定理3.1.2(1) 设B A AB βα+=,其中α,β为非零实数,则A ,B 可交换; (2) 设E AB A m =+α,其中m 为正整数,α为非零实数,则A ,B 可交换 证明(1) 由B A AB βα+=可得()()E E B E A αβαβ=--即()()E E B E A =--αβαβ1,故依定理3.1.1()8得()()E E A E B =--αααβ1,于是E E B A BA αβαββα=+--,所以AB B A BA =+=βα;(2) 由E AB A m =+α得()E B A A m =+-α1,故依定理3.1.1()8得()E B Am =+-α1,于是E BA A m =+α,所以可得BA AB =定理3.1.3(1) 设A 可逆,若O AB =或AB A =或BA A =,则A ,B 可交换;(2) 设A ,B 均可逆, 若对任意实数k , 均有()B kE A A -=,则A ,B 可交换[]2证明(1) 若O AB =,由A 可逆得()()O AB A B A A B ===--11, 从而O BA =,故BA AB =;若AB A =,同理可得()()E AB A B A A B ===--11,故BA AB =;若BA A =,则()()E A BA AA B B ===--11,故BA AB =(2) 因A ,B 均可逆, 故由()B kE A A -=得kE A -可逆, 且()A kE A B 1--=,则()[]()[]()()()()()()()'=''=-'-'''=-''-'''=⎥⎦⎤⎢⎣⎡'-''-'='-'-=''----AB A B kE A kE A A B kE A A k A A B kE A A kE A B AkE A B kE A B A 1111两边取转置可得BA AB =.或由()[]()[]()()()()()[]()111112111111111--------------=--=--=--=--=A B kE A A kE A B kE A kEA B kE A A kE A B A kE A B kE A B A两边取逆可得BA AB =.3.2 矩阵可交换的几个充要条件定理3.2.1下列均是A,B 可交换的充要条件①))(())((22B A B A B A B A B A +-=-+=-②2222)(B AB A B A +±=±;③''')(B A AB =; ④***)(B A AB =证明:(1)由22))((B BA AB A B A B A -+-=-+及22))((B BA AB A B A B A --+=+-可证得;(2)由222)(B ba AB A B A +±±=±可证得;(3)分别由BA AB =,''')(B A AB =两边取转置可证得; (4)分别由BA AB =,***)(B A AB =两边取伴随可证得.定理3.2.2 可逆矩阵A ,B 可交换的充要条件是()111---=B A AB . 证明 分别由BA AB =,()111---=B A AB 两边取逆可证得 定理3.2.3( 1) 设A ,B 均为(反) 对称矩阵, 则A ,B 可交换的充要条件是AB 为对称矩阵;(2) 设A ,B 有一为对称矩阵,另一为反对称矩阵,则A ,B 可交换的充要条件是AB 为反对称矩阵证明(1) 设A ,B 均为对称矩阵, 由定理3.2.1(3) ,()AB B A AB =''=',因此AB 为对称矩阵;若A ,B 均为反对称矩阵,则()()()AB B A B A AB =--=''='因此AB 也为对称矩阵.仿(1)可证(2)定理3.2.4[]6 设A ,B 均为对称正定矩阵, 则A ,B 可交换的充要条件是AB 为对称正定矩阵.证明 充分性由定理3.2.3(1)可得,下面证明必要性 因,A B 为对称正定矩阵,故有可逆矩阵P ,Q ,使P P A '=,Q Q B '=于是Q Q P P AB ''=,()()'''=-Q P Q P ABP P 1所以ABP P 1-为对称正定矩阵, 其特征值全为正数.而AB 与ABP P 1-相似, 从而AB 的特征值也全为正数,因此AB 为对称正定矩阵定理3.2.5 1-=PCP A ,1-=PDP B ,则A 与B 可交换的充分必要条件是C 、D 可交换.证明 因BA AB =,1-=PCP A ,1-=PDP B ,得1-=PAP C ,1-=PBP D ,()()()()DC P BA P P AB P PBP PAP CD ====----1111,所以C 、D 可交换.另一方面,DC CD =,()()()BA P DC P CDP P DP P CP P AB ====----1111, 所以C 、D 可交换.4 可交换矩阵的性质设B A ,可交换,则有(1),,)(,l l k k k m m BA B A B A AB A B AB ===其中l k m ,,都是正整数; 证明 (1)由BA AB =可得A B A B B B B BA B B A AB mm m m m =====-个个个1 同理可证ll k k k BA B A B A AB ==,)(.(2)A B f B Af )()(=,其中)(B f 是B 的多项式,即A 与B 的多项式可交换; (3)))((121---+++-=-m m m m m B B A A B A B A))((121B A B B A A m m m -+++=---(4)))(0k k m mk kmmB AC B A -=∑=+(矩阵二项式定理).5 与已知矩阵可交换的矩阵的求法5.1 定义法求此类矩阵的基本思路是:按定义,设未知数,列齐次方程组,求通解。

相关文档
最新文档