6统计决策与贝叶斯估计
统计学中的贝叶斯统计和决策理论

统计学中的贝叶斯统计和决策理论统计学是研究数据收集、分析和解释的学科,而贝叶斯统计和决策理论是统计学中的两个重要分支。
贝叶斯统计理论是一种基于贝叶斯定理的统计推断方法,而决策理论则关注如何在面对风险或不确定性时做出最佳决策。
一、贝叶斯统计1. 贝叶斯理论的基本思想贝叶斯统计理论是以英国数学家Thomas Bayes的名字命名的,其基本思想是通过先验知识和新收集的数据来进行参数估计。
与传统频率统计不同,贝叶斯统计将概率看作是描述人们对不确定性的信念,通过更新这些信念来进行推理。
2. 先验概率和后验概率在贝叶斯统计中,先验概率是在考虑新数据之前已经拥有的关于参数的概率分布。
随着新数据的不断积累,我们可以更新先验概率,得到后验概率,从而更加准确地估计参数的值。
3. 贝叶斯公式贝叶斯公式是贝叶斯统计的核心公式。
根据贝叶斯公式,我们可以计算参数的后验概率,从而基于数据来更新我们对参数的估计。
4. 贝叶斯推断的优点和应用贝叶斯统计有一些独特的优点。
首先,它允许我们将先验知识与数据结合,从而得到更加准确的推断。
此外,贝叶斯统计还可以通过使用先验概率来处理缺乏数据的情况。
贝叶斯统计在各个领域中都有广泛的应用,包括医学诊断、金融风险评估和机器学习等。
二、决策理论1. 决策理论的基本概念决策理论是研究在面对不确定性和风险时如何做出最佳决策的学科。
决策问题涉及到选择行动和评估不同行动的后果。
决策理论包括概率理论、效用理论和风险管理等概念。
2. 概率理论在决策中的应用概率理论是决策理论中的一项重要概念,它用于描述事件发生的可能性。
决策者可以使用概率理论来估计不同决策的结果,并在不确定性下做出合理的决策。
3. 效用理论和决策权衡效用理论是决策理论中的另一个关键概念,它描述了个体对不同结果的偏好程度。
根据效用理论,决策者可以根据结果的效用来评估不同决策的价值,并选择效用最大化的决策。
4. 风险管理和决策优化决策理论还涉及到风险管理和决策优化。
统计学中的贝叶斯统计与决策理论

统计学中的贝叶斯统计与决策理论统计学中的贝叶斯统计学是一种基于贝叶斯公式和概率论原理的统计推断方法。
它与传统的频率主义统计学方法相比,具有许多独特的优势。
本文将介绍贝叶斯统计学的基本原理、应用领域以及与决策理论的关系。
一、贝叶斯统计学的基本原理贝叶斯统计学是由英国数学家托马斯·贝叶斯提出的,它基于概率论的贝叶斯公式:P(A|B) = P(B|A) * P(A) / P(B),其中P(A|B)表示在给定B发生的条件下A发生的概率,P(B|A)表示在给定A发生的条件下B 发生的概率,P(A)和P(B)分别表示A和B分别发生的概率。
贝叶斯统计学的基本原理是根据已有的先验知识和新的观测数据,通过不断更新概率分布来得出对未知参数的后验概率分布。
通过贝叶斯公式,可以将观测数据与已有知识相结合,得出对未知参数的概率分布,从而进行推断和预测。
二、贝叶斯统计学的应用领域贝叶斯统计学广泛应用于各个领域,包括医学、金融、生物学、工程学等。
其应用主要体现在以下几个方面:1. 参数估计:贝叶斯统计学通过考虑先验信息,对参数进行估计。
与传统的频率主义统计学方法相比,贝叶斯统计学能够更好地利用已有的知识,提供更准确的参数估计。
2. 假设检验:贝叶斯统计学提供了一种新的方法来进行假设检验。
通过计算后验概率与先验概率的比值,可以得到对不同假设的相对支持程度,从而在决策时提供更全面的信息。
3. 预测分析:贝叶斯统计学通过更新概率分布,可以对未来的事件进行预测。
这使得贝叶斯统计学在金融风险预测、天气预报等领域有着广泛的应用。
三、贝叶斯统计学与决策理论的关系贝叶斯统计学与决策理论密切相关。
决策理论主要研究如何在不确定情况下做出最优决策。
而贝叶斯统计学可以为决策提供一个统一的框架,通过计算不同决策的后验概率,从而选择概率最大的决策。
在贝叶斯决策理论中,需要考虑多个可能的决策结果以及每个决策结果的概率。
通过使用贝叶斯统计学中的贝叶斯公式,可以将观测数据与已有知识相结合,计算每个决策结果的后验概率,从而选择概率最大的决策。
统计决策理论bayes定理

2.1 Bayes定理
下面我们从一个两类情况的例子——癌细胞识别出发来 讨论,然后推广到一般情况。
• 假设每个要识别的细胞已作过预处理,并抽取出 了d个特征描述量,用一个d维的特征向量X表示, 识别的目的是要依据该X向量将细胞划分为正常 细胞或者异常细胞。这里我们用ω1表示是正常细 胞,而ω2则属于异常细胞。
所以这次化验的细胞被判断为异常类型细胞。
22
2.3 分类器的设计
23
2.3 分类器的设计
按最小错误率作决策时,决策规则的形式为
则相应的判别函数为: gi(X)=P(ωi|X), i=1,2
而决策面方程则可写成 g1(X)=g2(X)
决策规则也可以写成用判别函数表示的形式 如果gi(X)>gj(X) i,j=1,2 且 i≠j 则X∈ωi,
在连续的条件下,假设要识别的对象有d种特征测量
值 x1, x2,...xd ,每一种特征都是一个随机变量,因此
组成d维随机向量 x(x1,x2,...xd)T , d种特征的所有的 取值范围构成了d维特征空间。
3
贝叶斯决策理论方法所讨论的问题是:已知总共有c个 类别及各类别ωi=1,2,…,c的先验概率P(ωi)及类条件概 率密度函数p(x|ωi)已知的条件下,如何对某一样本按其 特征向量分类的问题。 由于属于不同类的待识别对象存在着呈现相同观察值的 可能,即所观察到的某一样本的特征向量为X,而在c类中 又有不止一类可能呈现这一X值,这种可能性可用P(ωi|X) 表示。如何作出合理的判决就是贝叶斯决策理论所要讨论 的问题。
14
所以这次化验的细胞被判断为正常类型细胞。 15
2风险Bayes决策是考虑各种错误造成损失不同 而提出的一种决策规则。
贝叶斯估计与贝叶斯决策的概念

贝叶斯估计与贝叶斯决策的概念贝叶斯估计和贝叶斯决策是概率论中重要的两个概念,它们在处理不确定性问题和统计推断中扮演着重要角色。
本文将介绍贝叶斯估计和贝叶斯决策的概念、原理以及应用。
一、贝叶斯估计贝叶斯估计是指在给定观测数据的条件下,利用贝叶斯定理来估计未知参数的方法。
在贝叶斯估计中,我们引入了先验概率和似然函数,并通过贝叶斯定理来更新我们对参数的估计。
贝叶斯估计的基本原理可以用以下公式表示:P(θ|X) = P(X|θ) * P(θ) / P(X)其中,P(θ|X) 表示在给定观测数据 X 的条件下,参数θ 的后验概率;P(X|θ) 是参数θ 给定观测数据 X 的似然函数;P(θ) 是参数θ 的先验概率;P(X) 是观测数据的边缘概率。
在贝叶斯估计中,先验概率可以通过领域知识或历史数据来确定,而似然函数则可以通过对观测数据的建模来获得。
通过不断地更新先验概率,我们可以得到后验概率,并将其作为参数的估计值。
贝叶斯估计在许多领域都有广泛的应用,例如机器学习、统计推断、信号处理等。
它能够有效地利用已知信息和数据,对未知参数进行准确的估计。
二、贝叶斯决策贝叶斯决策是一种基于贝叶斯准则的决策方法,它在已知观测数据的条件下,寻找一个决策规则来使得期望损失最小化。
贝叶斯决策的目标是选择一个最优的决策,使得在给定观测数据的条件下,使得期望损失最小。
贝叶斯决策的基本原理可以用以下公式表示:d* = argminΣL(d, a) * P(a|X)其中,d* 是最优决策,ΣL(d, a) 是决策 d 对于观测数据 X 情况下的期望损失,P(a|X) 是在观测数据 X 条件下决策 a 的后验概率。
贝叶斯决策需要利用先验概率和条件概率来对可能的决策进行评估,并选择最优的决策。
它能够充分考虑不确定性和风险,从而在决策问题中展现出优越性。
贝叶斯决策在许多实际问题中都有广泛的应用,例如医学诊断、金融风险评估、无人驾驶等。
通过考虑不确定性和风险,贝叶斯决策可以帮助我们做出最优的决策,提高决策的准确性和效果。
统计决策

A3
-15
33
73
110
第九章 统计决策
第二节 不确定型决策(例9.2.1)
解:1.按照乐观准则决策
(1)先从各方案中选取一个收益最大的值
A1 中最大收益值为: max{36,98,131,160} 160 万元
A2 中最大收益值为: max{23,64,162,210} 210万元
A3 中最大收益值为: max{15,33,73,110} 110万元
风险型决策与不确定型决策不同之处在于:风险型决策 是在估计出状态空间的概率分布的基础上进行决策。一般风 险型决策中,所利用的概率包括客观概率与主观概率。
第九章 统计决策
第三节 风险型决策
•进行风险型决策一般应具备以下条件:
➢ 具有明确的目标; ➢ 两个或两个以上的可能状态及不同可能状态出现的概率; ➢ 两个或两个以上的行动方案以及不同方案在不同可能状态下的 损益值。
解:由式 9.2.2 计算得
E( A1 )
1 4
(36
98
131 160)
88.25 ,
E(
A2
)
1 4
(23
64
162
210)
103.25
E( A3 )
1 4
(15
33
73 110)
50.25
根据计算结果,方案 A2 的平均收益最大,所以选择方案为 A2。
第九章 统计决策
第九章 统计决策
一、最大可能性准则决策
• 在决策中选择概率最大的自然状态,将其它概率 较小的自然状态予以忽略,然后比较各备选方案在这 种概率最大的自然状态下的收益或损失值,选取收益 最大或损失最小的方案作为行动方案。
贝叶斯方法(估计,推断,决策)

一 、统计推断中可用的三种信息
美籍波兰统计学家耐曼(E.L.Lehmann1894-1981) 高度概括了在统计推断中可用的三种信息: 1.总体信息,即总体分布或所属分布族给我们的信 息。譬如“总体视察指数分布”或“总体是正态分 布”在统计推断中都发挥重要作用,只要有总体信 息,就要想方设法在统计推断中使用 2.样本信息,即样本提供我们的信息,这是任一种 统计推断中都需要
p( x , , x
1
nห้องสมุดไป่ตู้
) ( )d
这就是贝叶斯公式的密度函数形式,其中 ( x1,, xn )称为θ 的后验密度函数,或 后验分布。而
p ( x1 , , xn ) p ( x1 , , xn ) ( )d
是样本的边际分布,或称样本 X1 ,, X n 的无条件分布,它的积分区域就是参数θ 的取值范围, 随具体情况而定。 前面的分析总结如下:人们根据先验信息对参数θ 已有一个认识,这个认识就是先验分布π (θ )。 通过试验,获得样本。从而对θ 的先验分布进行调 整,调整的方法就是使用上面的贝叶斯公式,调整 的结果就是后验分布 ( x1,, xn ) 。后验分布是三种 信息的综合。获得后验分布使人们对θ 的认识又前 进一步,可看出,获得样本的的效果是把我们对θ 的认识由π (θ )调整到 ( x1,, xn ) 。所以对θ 的 统计推断就应建立在后验分布 ( x1,, xn ) 的基础上。
1,0 1 ( ) 0, others
样本X与参数的联合分布为
h( x, ) Cnx x (1 )nx , x 0,1,, n,0 1
此式在定义域上与二项分布有区别。再计算X的边际密 度为
《应用统计学》课件-§6-统计决策问题

§6统计决策问题
案例研究: 一位投资顾问说,如果A国政府变更,那么石油 价格将上涨的可能性为90%,这显然不能算是一个精 确的概率,它只是用来表示该顾问相当确信石油会涨 价。在你据此作出任何行动前,一定得对相信此话的 风险表示接受。 (90%—石油价格将上涨的概率— 主观概率:凭 人们的实际感觉对某一事件的可能性作出测定) 案例研究: 一家装瓶公司为自己设计了装瓶机器。该机器标 明可把64盎司饮料装人瓶子。在他们自己的厂里,随 机抽取了500只装有饮料的瓶子。经检验,发现有两 瓶少于64盎司,这是由生产过程内在变异性所引起的 版权所有 肖智
2、贝努里概型:
1)主要功能:解决独立重复试验条件下
概率问题。
版权所有 肖智 重庆大学经济与工商管理学院
§6统计决策问题
2)判断条件:独立、重复、两种可能。 3)问题的一般描述:在N次独立重复试 验中,事件A恰好出现K次的概率。
版权所有 肖智 重庆大学经济与工商管理学院
§6统计决策问题
4)模型(公式):
§6统计决策问题
3)全概率公式:
(1)公式:
P ( B ) P ( A) P ( B | A) P ( A) P ( B | A)
其中:A、B均为事件, 为事件 AA的对立 事件。注:该公式可推广到多个事件。 (2) 图示:
A
A B
B A
A AB B
B
版权所有 肖智 重庆大学经济与工商管理学院
年 99 2000 2001 2002 2003 2004 2005 2006 2007 2008
状态
好
好
坏
好
坏
好
坏
好
统计决策与贝叶斯估计

统计决策与贝叶斯估计
一、统计决策
统计决策理论是指从统计上分析和评估各种可能的决策结果,取得最佳决策并做出正确的选择。
是将统计学和模型评估与管理决策整合使用的一种科学技术。
统计决策理论(SDT)是一种决策理论,其基本思想是应用统计学方法来分析和评估管理决策的决策潜力,以及各种可行决策结果的后果,从而使得经理能够从最优的角度决策,实现企业的最佳管理效果。
SDT有三个主要特点:
1、科学性:统计决策理论是以科学的方式来分析经济管理决策,使用统计学、经济学、模型评估等方法。
2、系统性:它充分考虑决策要素之间的关系,通过逻辑推理运用现代决策理论,系统地分析和评估决策内容,按照各种可行决策的潜力和可能性,从而使管理者能够选择最佳决策方案。
3、决策性:取决于决策者的主观能力,经过深入的分析评估后,最后从几种可行的决策中,根据客观情况,选择最有利的方案。
贝叶斯估计是一种概率模型,是用来估计未知参数的概率分布,它可以利用已经观察到的数据来改变我们对未知参数的概率的看法,并且可以进一步用来作出预测,从而进行概率预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9/24/2020
参数估计
第13页
基于上述三种信息进行统计推断的统计学称为 贝叶斯统计学。它与经典统计学的差别就在于 是否利用先验信息。贝叶斯统计在重视使用总 体信息和样本信息的同时,还注意先验信息的 收集、挖掘和加工,使它数量化,形成先验分 布,参加到统计推断中来,以提高统计推断的 质量。忽视先验信息的利用,有时是一种浪费, 有时还会导出不合理的结论。
9/24/2020
参数估计
第4页
二、统计决策函数及风险函数
1 统计决策函数
定义3.1 :定义在样本空间上X,取值于决策空 间A 内的函数d(x),称为统计决策函数,简称 决策函数
决策函数就是一个行动方案,如果用表达 式处理,2020
9/24/2020
参数估计
9/24/2020
第8页
参数估计
9/24/2020
第9页
参数估计
第10页
问题总结
1 风险函数是二元函数,极值往往不存在或不唯 一
2 在某个区间内的逐点比较不现实(麻烦) 3 对应不同参数的,同一决策函数,风险值不相
等
4 由统计规律的特性决定不能点点比较 5 必须由一个整体指标来代替点点比较
参数估计
第16页
3)贝叶斯公式的密度函数形式(后验分布)
➢ 设总体X 的分布密度函数P (x ; )在贝叶斯统计中 记为P (x | ),它表示在随机变量θ取某个给定值 时总体的条件概率密度函数; P (x ; )= P (x | )
➢ 根据参数 的先验信息确定先验分布( );
➢ 样本 x1, x2 , …, xn 的联合条件分布密度函数为
则称决策函数d1 优于d2
若R(
,
d1 )
R(
,
d2
),
,
则称d1,
d
等价
2
9/24/2020
参数估计
第7页
定义3.4 设D={d(X)}是一切定义在样本空间X 上,取值于决策空间A 上的决策函数全体, 若存在一个决策函数d*(X),使对任意一个d(X) 都有
则称d*(X)为一致最小风险决策函数,或一致 最优决策函数
参数估计
第15页
2)先验分布 利用先验信息的前提
(1)参数是随机的,但有一定的分布规律 (2)参数是某一常数,但无法知道
目标:充分利用参数的先验信息对未知参数作出更 准确的估计。
贝叶斯方法就是把未知参数视为具有已知分布的随 机变量,将先验信息数字化并利用的一种方法,
一般先验分布记为( )
9/24/2020
9/24/2020
参数估计
第11页
2.贝叶斯估计
1)统计推断的基础
➢ 经典学派的观点:统计推断是根据样本信息对 总体分布或总体的特征数进行推断,这里用到 两种信息:总体信息和样本信息;
➢ 贝叶斯学派的观点:除了上述两种信息以外, 统计推断还应该使用第三种信息:先验信息。
9/24/2020
参数估计
第12页
(1)总体信息:总体分布提供的信息。
(2)样本信息:抽取样本所得观测值提供的信息。
(3)先验信息:人们在试验之前对要做的问题在经 验上和资料上总是有所了解的,这些信息对 统计推断是有益的。先验信息即是抽样(试 验)之前有关统计问题的一些信息。一般说 来,先验信息来源于经验和历史资料。先验 信息在日常生活和工作中是很重要的。
3 损失函数
统计决策的一个基本假定是,每采取一个决策,必 然有一定的后果,统计决策是将不同决策以数量的形式 表示出来
9/24/2020
参数估计 常见的损失函数有以下几种
第3页
(1)线性损失函数
绝对损失函数
(2)平方损失函数 L( , d ) ( d )2
(3)凸损失函数 L( , d) ( )W (| d |) (4)多元二次损失函数 L( , d ) (d )T A(d )
9/24/2020
参数估计
第14页
贝叶斯学派的基本观点:任一未知量 都可看作
随机变量,可用一个概率分布去描述,这个分 布称为先验分布;在获得样本之后,总体分布、 样本与先验分布通过贝叶斯公式结合起来得到
一个关于未知量 新的分布—后验分布;任何 关于 的统计推断都应该基于 的后验分布进行。
9/24/2020
损失函数为 L(, d), d(X)为决策函数,
为决策函数d(X)的风险函数, R(, d),表示采取决策d(X)所 蒙受的平均损失( L(, d)的数学期望)
9/24/2020
参数估计
第6页
优良性准则
定义3.3 设d1, d2 是统计问题中的两个决策函数, 若其风险函数满足不等式
R( , d1) R( , d2 ),
参数估计
第5页
2 风险函数
决策函数 d(X),完全取决于样本,损失函数 L(, d) 也 是样本X 的函数,当样本取不同的值x时,决策 d(X) 可能不 同,所以损失函数值 L(, d) 也不同,不能判断决策的好坏,
一般从总体上来评价、比较决策函数,取平均损失,就是 风险函数
定义3.2 设样本空间,分布族分别为X,F*,决策空间为A,
参数估计
第1页
1、统计决策
一、统计决策的三个要素 1 样本空间和分布族
设总体X的分布函数为 F (x; ) ,是未知参数,若设X1 , …, Xn 是来自总体X的一个样本,则样本所有可能值组成的集合称
为样本空间,记为X
9/24/2020
参数估计
第2页
2 决策空间(判决空间)
对于任何参数估计,每一个具体的估计值,就是一 个回答,称为一个决策,一个统计问题中可能选取的全 部决策组成的集合称为决策空间,一个决策空间至少应 有两个决策。
➢ 这个分布综合了总体信息和样本信息;
9/24/2020
参数估计
第17页
➢ 0 是未知的,它是按先验分布( )产生的。为 把先验信息综合进去,不能只考虑0,对的
其它值发生的可能性也要加以考虑,故要用
( )进行综合。这样一来,样本x1 , …, xn和参 数 的联合分布为:
f (x1, x2 , …, xn, ) = q(x1, x2 , …, xn )( ),
简记为 f (x, ) = q(x )( )
这个联合分布把总体信息、样本信息和先验信 息三种可用信息都综合进去了;
9/24/2020
参数估计
第18页
➢ 在有了样本观察值 x1, x2 , …, xn 之后,则应依据