电路分析基础第四章4-4,5,6
电路分析基础第四章(李瀚荪)ppt课件
编辑版pppt
41
例3 10 10
20 +
15V -
解:
20 2A
+ 5V-
10 10
5 + -85V
R多大时能从电路中
R 获得最大功率,并求 此最大功率。
20 20
+ 15V
-
5V+-
5
10 10
2A
+ -85V
R
10 +
2A
5
+
R
10V -
-85V
编辑版pppt
42
10 10
例1、求 ab 端钮的等效电阻。(也叫ab端输入电阻)
I 100 a
+
Uab
10
_
50 I
b
解: Uab = 100I +10(I + 50I ) = 610I
\ R = Uab = 610W
I
编辑版pppt
30
例2、 求 ab 端钮的等效电阻。
a
I1
1.5k
1.5k 1.5k
结论
Rab =600
对电源内部则是不等效的。
例:当RL= 时,电压源的内阻 R0 中不损耗功率, 而电流源的内阻 R0 中则损耗功率。
(2) 等效变换时,两电源的参考方向要一一对应。
+
a
E
– R0
IS
b
a–
a
E
R0
+ R0
IS
b
b
a R0
b
(3) 理想电压源与理想电流源之间无等效关系。
(4) 任何一个电动势 E 和某个电阻 R 串联的电路,
电路分析基础第5版第4章 分解方法及单、双口网络
9V
4Ω 3
I1
应用举例
例1:求图示电路中各支路电流。
解: 将3Ω电阻用电流源置换
I3 = 2.7
I1
9 4
1 2
0.9
2.7
A
I2
9 4
1 2
0.9
1.8
A
I4
I5
1 2
I3
0.45
A
I1
2
+
9V
I3 3
2
2
I2
I4
4- 3
2 I5
I1
0.9A I3
2
+
9V
2
I2
2 2
I4
I5
结论:置换后对其他支路没有任何影响。
电压u =α和端口电流i =β,则N2 (或N1)可用一个电压为 α 的电
压源或用一个电流为 β 的电流源置换 ,置换后对 N1 (或N2 ) 内各支路电压、电流没有影响。
i=β
N1
+
u=α
N2
i=β
+
N1
α
N1
+ u=α
β
置换定理适用于线性和非线性电路。
二. 置换的实质
置换:如果一个网络N由两个单口网络组成,且已
联立(1)、(2),解得 u=12V, i=-1A
用12V电压源置换N1,可求得 i1
用-1A电流源置换N2,可求得 u2=12V
[例]求上一例题中N1和N2的等效电路
0.5i1
6Ω
i
5Ω i1
+
+ 10Ω 1A
12V u
- -2
+
电路分析基础第4章 动态电路的时域分析
第4章 动态电路的时域分析 解 (1) 先计算电容电压uC(0-)和电感电流iL(0-)。开关
开启前电路已处于直流稳定状态,这时电容相当于开路,电 感相当于短路,t=0-时的等效电路如图4.2-5(a)所示。由图(a) 可得
图4.2-5 例4.2-2用图(二)
第4章 动态电路的时域分析
第4章 动态电路的时域分析
(2) 根据换路定律,有
iL(0+)=iL(0-)=1 A (3) 画出换路后瞬间t=0+时的等效电路,计算其他支路 电压、电流的初始值。根据置换定理,用一个电流值等于
iL(0+)=1 A的理想电流源代替电感元件,画出t=0+时的等效电 路如图(b)所示。对图(b)中右边一个回路应用KVL,得
第4章 动态电路的时域分析 图4.2-1 动态电路过渡过程说明用图
第4章 动态电路的时域分析
4.2.2 换路定律 如果电容电流iC和电感电压uL在无穷小区间[t0-,t0+]
为有限值,则上面两式中等号右边第二项积分为零,于是有
uC (t0 iL (t0
) uC (t0 ) iL (t0 )
4.2.1 动态电路的过渡过程 当动态电路的结构或元件参数发生变化时,电路将从一
个稳定状态变化到另一个稳定状态,这种变化一般需要经历 一个过程,这个过程称为过渡过程。通常把电路中电源的接 入或断开,以及元件参数或电路结构的突然改变,统称为 “换路”。下面以图4.2-1(a)所示的动态电路为例来说明过 渡过程的概念。
第4章 动态电路的时域分析
4.1 电容元件和电感元件
4.1.1 电容元件 1. 电容元件的定义 电容元件是从实际电容器中抽象出来的理想化模型。实
电路分析基础第五版第4章
3A 9V
3
4
U
6
U
U
图 2.10 例 2.5 图
(a)
(b)
(c)
解: 电压源单独作用如图(b) 电流源单独作用如图(c) 所求电压
U U U 12 V
U
6 9 6V 36 3 U 6 ( 3) 6V 36
例4、电路如图(a)所示,求电压U。
i1
+ R1 uS
a
is i2 R2
(2)第二项是该电路us=0 时,is单独作用时在R2中 产生的电流。
即:由两个激励产生的响应可表示为每一个激 励单独作用时产生的响应之和。这就是电路理 论中的“叠加性”。
叠加定理:在线性电路中,求某支路(元件)的电压 或电流(响应)等于每个独立源(激励)分别单独作用 时,在该支路产生电压或电流的代数和。
isc
b
1
1
i 1A 2 2
a
2
1
(c)
isc
b
(b)
0.2 1 图(b)中 i sc A 2 10
1 1 1 i1 i2 ( 图(c)中 i sc 1 1) A 11 1 2 6
1 1 4 所以:i sc i sc i sc A 10 6 15 (2)再求Req,把图(a)中电流源断开,电压源短 a 路,如图(d) 2 1 R eq 2 1 1 1 4 Geq S 1 1 2 3 2 3
(b)
o
(1)求开路电压uoc, 即断开ab支路后,求 ab之间的电压,如图 (b)所示。 uoc = uab=uao- ubo
根据电阻分压公式: 6 uao 18 12V 36
(完整版)电路分析基础知识点概要(仅供参考)
电路分析基础知识点概要请同学们注意:复习时不需要做很多题,但是在做题时,一定要把相关的知识点联系起来进行整理复习,参看以下内容:1、书上的例题2、课件上的例题3、各章布置的作业题4、测试题第1、2、3章电阻电路分析1、功率P的计算、功率守恒:一个完整电路,电源提供的功率和电阻吸收的功率相等关联参考方向:ui=P-P=;非关联参考方向:ui<P吸收功率0P提供(产生)功率>注意:若计算出功率P=-20W,则可以说,吸收-20W功率,或提供20W功率2、网孔分析法的应用:理论依据---KVL和支路的VCR关系1)标出网孔电流的变量符号和参考方向,且参考方向一致;2)按标准形式列写方程:自电阻为正,互电阻为负;等式右边是顺着网孔方向电压(包括电压源、电流源、受控源提供的电压)升的代数和。
3)特殊情况:①有电流源支路:电流源处于网孔边界:设网孔电流=±电流源值电流源处于网孔之间:增设电流源的端电压u并增补方程②有受控源支路:受控源暂时当独立电源对待,要添加控制量的辅助方程3、节点分析法的应用:理论依据---KCL和支路的伏安关系1)选择参考节点,对其余的独立节点编号;2)按标准形式列写方程:自电导为正,互电导为负;等式右边是流入节点的电流(包括电流源、电压源、受控源提供的电流)的代数和。
3)特殊情况:①与电流源串联的电阻不参与电导的组成;②有电压源支路:位于独立节点与参考节点之间:设节点电压=±电压源值位于两个独立节点之间:增设流过电压源的电流i 并增补方程③有受控源支路:受控源暂时当独立电源对待,要添加控制量的辅助方程4、求取无源单口网络的输入电阻i R (注:含受控源,外施电源法,端口处电压与电流关联参考方向时,iu R i =) 5、叠加原理的应用当一个独立电源单独作用时,其它的独立电源应置零,即:独立电压源用短路代替,独立电流源用开路代替;但受控源要保留。
注意:每个独立源单独作用时,要画出相应的电路图;计算功率时用叠加后的电压或电流变量求取。
电路分析基础_04用等效化简的方法分析电路
5
1.5V_
0.3A
结论
RS
+ US_
含独立 源和电 阻电路
或
RS
IS
(二) 等效化简的方法——逐步化简 例 1:求图(a)单口网络的等效电路。
将电压源与电阻的串联等效变换为电流源与电阻的并联。
将电流源与电阻的并联变换为电压源与电阻的串联等效。
例2:求 I
6_
3
+
9V
+
6V_
2
+ _ 1V
I 8
G
u
Gk
k 1
R1
R2
R
R R1R2
R1 R2
3. 理想电压源串联
+
US1__
+
US2+
US_
+
US3_
4. 理想电流源并联
US = US1 US2 + US3
电源与等效电源参考 方向一致为+,反之为-
IS1
IS2 IS3
IS = IS1IS2 +
IS
IS3
5. 电压源并联
+ (1) + 5V_ 5V_
T
i1
2
4
0.5A
1/3A
说明:。。。
T
N1
T
1'
例3: 图4-32(a)电路中,已知电容电流iC(t)=2.5e-tA,用 置换定理求i1(t)和i2(t) 。
图4-32
图4-32
解:图(a)电路中包含一个电容,它不是一个电阻电路。用 电流为iC(t)=2.5e-tA的电流源替代电容,得到图(b)所示 线性电阻电路,用叠加定理求得:
电路分析基础第四版课后习题第四章第五章第六章答案
/i4-16 用戴维南定理求图题4-11所示电路中流过20k Ω电阻的电流及a 点电压。
a U 解将电阻断开,间戴维南等效电路如图题解4-16所示。
20k Ω,a bk Ω60//3020120120(30120100)V 60V6030a OCR k k k U ==Ω+=×−+=+ 将电阻接到等效电源上,得20k Ω3360mA 1.5mA2020(2010 1.510100)V 70V ab a i U −==+=×××−=− 4-21 在用电压表测量电路的电压时,由于电压表要从被测电路分取电流,对被测电路有影响,故测得的数值不是实际的电压值。
如果用两个不同内险的电压表进行测量,则从两次测得的数据及电压表的内阻就可知道被测电压的实际值。
设对某电路用内阻为的电压表测量,测得的电压为45V ;若用内阻为510Ω5510×Ω的电压表测量,测得电压为30V 。
问实际的电压应为多少? 解将被测电路作为一含源二端网络,其开路电压,等效电阻OC U O R ,则有5OC 555o o OC OC 454OCo OC 4o 10451045104510(18090)V 90V 30510151051030510u R R u u u R u R ⎧×=⎪⎧+=−×⎪⎪⇒⇒=⎨⎨=×−×⎪⎪⎩××=⎪+×⎩−=4-28 求图题4-20所示电路的诺顿等效电路。
已知:12315,5,10,R R R =Ω=Ω=Ω。
10V,1A S S u i ==解对图题4-20所示电路,画出求短路电流和等效内阻的电路,如下图所示SC i对左图,因ab 间短路,故0,0i i α==,10A 0.5A 155SC i ==+ 对右图,由外加电源法,106ab R α=Ω− 4-30 电路如图题4-22所示。
电路分析基础第四章答案
4-2.5μF 电容的端电压如图示。
(1)绘出电流波形图。
(2)确定2μs t =和10μs t =时电容的储能。
解:(1)由电压波形图写出电容端电压的表达式:10 0μs 1μs10 1μs 3μs ()1040 3μs 4μs 0 4μs t t t u t t t t≤≤⎧⎪≤≤⎪=⎨-+≤≤⎪⎪≤⎩ 式中时间t 的单位为微秒;电压的单位为毫伏。
电容伏安关系的微分形式:50 0μs 1μs 0 1μs 3μs()()50 3μs 4μs 0 4μs t t du t i t C t dt t<<⎧⎪<<⎪==⎨-<<⎪⎪<⎩上式中时间的单位为微秒;电压的单位为毫伏;电容的单位为微法拉;电流的单位为毫安。
电容电流的波形如右图所示。
(2)电容的储能21()()2w t Cu t =,即电容储能与电容端电压的平方成正比。
当2μs t =时,电容端电压为10毫伏,故:()()22631010μs 11()5101010 2.510J 22t w t Cu ---===⨯⨯⨯⨯=⨯当10μs t =时,电容的端电压为0,故当10μs t =时电容的储能为0。
4-3.定值电流4A 从t=0开始对2F 电容充电,问:(1)10秒后电容的储能是多少?100秒后电容的储能是多少?设电容初始电压为0。
解:电容端电压:()()()00110422t tC C u t u i d d t C τττ+++=+==⎰⎰;()1021020V C u =⨯=; ()1002100200V C u =⨯=()()211010400J 2C w Cu ==; ()()2110010040000J 2C w Cu ==4-6.通过3mH 电感的电流波形如图示。
(1)试求电感端电压()L u t ,并绘出波形图;(2)试求电感功率()L p t ,并绘出波形图;(3)试求电感储能()L w t ,并绘出波形图。
电路分析基础第4章分解方法及单口网络
is
is is1 is2 isK
5.电流源的串联 电流值相等的电流源可作方向相同的串联,电 流值不相等的电流源不允许串联。
a is1 is2 b
a
is b
is is1 is2
17
6.电流源与二端网络的串联 N1的等效网络不是理想电流源支路。
a
is N1 b
a is b
3
4-2 单口网络的电压电流关系
单口网络的描述方式:
• 详尽的电路图; • VCR(表现为特性曲线或数学公式); • 等效电路。
VCR只取决于单口本身的性质,与外接电路无关。
因而:
• 可以孤立出单口,而用外施电源法求它的VCR; • 求解单口(例如N2)内各电压、电流时,其外部 (例如N1)可 用适当的电路代替。
a
10
10
-
4
2 24V
I +-
+
b 12V
Isc
-
2 24V
+-
+
12V 图(a)
解:把原电路除4电阻以外的部分化简为诺顿等效电 路。为此先把拟化简的单口网络短路,如图(a)所示:
根据叠加原理求短路电流Isc,可得:
Isc
24 10
12 10 // 2
2.4
7.2
9.6 A
35
N a iK
N' uK NK
b
已知:
uk ,或 ik
a
a
N' isk
N'
usk
b
b
isk
usk
11
例:已知电路中U=1.5V,试用置换定理求U1
电路分析基础全套课件完整版ppt教程
2020/5/10
7
第1章 电路的基本概念和定律
电路的组成:由电源、负载和中间环节所组成。 电源:是向电路提供能量和信号的元件。如电池、发电机等; 负载:是使用电能和输出信号的器件。如电灯、电炉、显像管
等;
中间环节:是把电源和负载连接在一起。如导线、开关、电视
机内部电路等。
电路举例:
开关
电池
灯泡
手电筒实际电路
2020/5/10
8
第1章 电路的基本概念和定律
1.1.2 电路图
• 电路原理图:
是为分析电路而将电路中的元器件用电路模型与符号来代 替实物而画的电路图。
如下图是手电筒的电路原理图。
开关
S
电池
E 灯泡
S
+
US
-
R
R0
(a) 实物图
(b) 原理图
(c) 电路模型图
实际电路与电路模型
电流的实际方向
电流的参考方向 i
i>0
电流的参考方向 i
i<0
电流参考方向和实际方向的关系
2020/5/10
17
第1章 电路的基本概念和定律
5.电流的分类
直流电流,简称直流(DC或dc)
交流电流,简称交流(AC或ac)
i
i
t
恒定直流电流
i
T
2
O
Tt
正弦交流电流
O
Tt
脉动直流电流
i
O
t
无规律变化交流电流
2020/5/10
18
1.2.2
第1章 电路的基本概念和定律
电压
• 1. 电压的定义与单位:
• 在电路中,电荷能定向移动是因为电路存在电场。在电场 力的作用下,把单位正电荷从电路的a点移到b点所做的功, 称为从a→b的电压。即:
电路分析基础第4章课件.ppt
4.1 正弦量
大小和方向都按正弦规律变化的电压和电流称为 正弦电压或正弦电流,常称为正弦量。其相应的波形 称为正弦波。
正弦电流 i I m cos(t i ) 的波形如图所示。
4.1.1 正弦量的三要素
1.频率、周期和角频率
要完全描述一个正弦量,必须知道正弦量的 I m、 、i
这三个物理量称为正弦量的三要素。
N
、
i
eL
i
u
eL L
u
磁链 匝数
磁通
电感系数 L NΦ
ii
单位:亨(H,mH)
N
由电磁感应定律和楞次定律,感应电动势与磁链之间的 关系为
eL
d
dt
N d dt
L di dt
则
u
eL
L di dt
2.电压与电流的关系 设电压、电流的参考方向关联,有
u L di dt
设 i 2I cost ,代入上式有
2
f 314 50Hz u(0) 100cos 100cos30 86.6V
2
6
该正弦电压的波形如图所示。 若
u 100 cos(314 t 30 )V
波形如何?
【例4.2】已知同频率正弦电流分别为
i1
20 c os (314t
)A 3
i2
10sin(314t
)A 4
试求(1)画出波形图、求相位差;(2)若以 t 0.005s
2
2U cos(t u )
(3)有效值
感抗
令 X L L 单位(Ω)
则 U I XL
容抗 X L L 是频率的函数, 表示电感在电路
中因感抗随着频率变化而起的作用而不同。
《电路分析基础》第2版-习题参考答案
《电路分析基础》各章习题参考答案第 1 章习题参考答案1- 1 (1) 50W ; (2) 300 V、25V, 200V、75 V ; (3) 2=12.5 Q R a=100 Q, R4=37.5 Q1- 2 V A=8.5V, V m=6.5V, V B=0.5V, V C=- 12V, V D=-19V, V p=-21.5V, U AB=8V, U BC=12.5,U DA=-27.5V1- 3 电源(产生功率): A 、 B 元件;负载(吸收功率): C、 D 元件;电路满足功率平衡条件。
1- 4 (1) V A=1 00V , V B=99V, V C=97V, V D=7V, V E=5V, V F=1V, U AF=99V, U CE=92V, U BE=94V, U BF=98V, U CA=- 3 V;(2) V C=90V, V B=92V , V A=93V, V E=-2V, V F=-6V, V G=- 7V, U AF=99V, U CE=92V, U BE=94V, U BF=98V, U CA=- 3 V1- 5 I 〜0.18A , 6 度,2.7 元1- 6 I=4A, I1=11A,I2=19A1- 7 (a) U=6V, (b) U=24 V, (c) R=5Q, (d) I=23.5A1- 8 (1) i6=-1A ; (2) u4=10V, u6=3 V; (3) P1=-2W 发出, P2 =6W 吸收, P3 =16W 吸收, P4 =-10W 发出, P5 =-7W 发出, P6 =-3W 发出1- 9 I=1A , U s=134V , R~ 7.8Q1- 10 S 断开:U AB=- 4.8V , U AO=- 12V , U BO=-7.2V ;S 闭合:U AB =-12V, U AO =- 12V , U BO=0V1- 11 支路 3,节点 2,网孔 2 ,回路 31- 12 节点电流方程: (A) I1 +I3- I6=0,(B)I6- I5- I7=0,(C)I5 +I 4-I3=0回路电压方程:① I6 R6+ U S5 +I 5 R5- U S3 +1 3 R3=0 ,②-15 R5- U S5+ I 7R7- U S4 =0 ,③-丨3 R3+ U S3 + U S4 + I 1 R2+ I 1 R1=01- 13 U AB=11V , I2=0.5A , l3=4.5A , R3~ 2.4 Q1-14 V A=60V V C=140V V D=90V U AC=- 80V U AD=- 30V U CD=50V1- 15 I1=- 2A I2=3A I3=- 5A I4=7A I5=2A第 2 章习题参考答案2- 1 2.4 Q 5 A2- 2 (1) 4 V 2 V 1 V; (2) 40 mA 20 mA 10 mA2- 3 1.5 Q 2 A 1/3 A2- 4 6 Q 36 Q2- 5 2 A 1 A2- 6 1 A2- 7 2 A2- 8 1 A2- 9 I1 = -1.4 A I2 = 1.6 A I3 = 0.2 A2- 10 I1 = 0 A I2 = -3 A P1 = 0 W P2 = -18 W2- 11 I i = -1 mA , I2 = - 2 mA , E3 = 10 V2- 12 I1 = 6 A , I2 = -3 A , I3 = 3 A2- 13 I1 =2 A , I2 = 1A , I3 = 1 A , I4 =2 A , I5 = 1 A2-14 V a = 12 V , I1 = - 1 A, I2 = 2 A2-15 V a = 6 V , I1= 1.5 A , I2 = - 1 A ,I3 = 0.5 A2-16 V a = 15 V , I1 = - 1 A , I2 =2 A , I3 = 3 A2-17 I1 = -1 A , I2 = 2 A2-18 I1 =1.5 A , I2 = - 1 A , I3 = 0.5 A2-19 I1 =0.8 A , I2 = - 0.75 A , I3 = 2 A , I4 = - 2.75 A , I5 = 1.55 A2-20 I3 = 0.5 A2-21 U o = 2 V , R o = 4 Q, I0 = 0.1 A2-22 I5 = -1 A2-23 (1) I5 = 0 A , U ab = 0 V ; (2) I5 = 1 A , U ab = 11 V2-24 I L = 2 A2-25 I s =11 A , R0 = 2 Q2-26 18 Q, - 2 Q, 12 Q2-27 U = 5 V2-28 I =1 A2-29 U = 5 V2-30 I =1 A2-31 10 V , 180 Q2-32 U0 = 9 V , R0 = 6 Q, U=15 V第3章习题参考答案3- 1 50Hz, 314rad/s, 0.02s, 141V, 100V, 120 °3- 2 200V, 141.4V3- 3 u=14.1si n (314t-60 °V3- 4 (1) ®u1-贏2= 120°(2) ®1 = -90° %= - 210°, %1-屁=120° (不变)3-5 (1) U^50 .^_90 V , U2 =50 .2 -0 V ;(2) U3=100 2 sin (3t+ 45 °)V , U4=100 ■■ 2 sin ( ®t+ 135 °)V3- 6 (1) i 1=14.1 sin ( 72 °)A ; (2) U2=300 sin ( 3—60 °)V3- 7 错误:(1),⑶,(4), (5)3- 8 (1) R; (2) L ; (3) C; (4) R3- 9 i=2.82 sin (10t-30 °)A , Q~ 40 var3- 10 u=44.9sin (3141-135 °V, Q=3.18 var3- 11 (1) I=20A ; (2) P=4.4kW3- 12 (1)I ~ 1.4A , I 1.4 - 30 A ; (3)Q~ 308 var, P=0W ; (4) i~ 0.98 sin (628t-30 °)A3- 13 (1)I=9.67A , I =9.67450 A , i=13.7 sin (314t+150 °) A ; (3)Q=2127.4 var, P=0W;(4) I C=0A3- 14 (1)C=20.3 尸;(2) I L = 0.25A ,l c = 16A第4章习题参考答案4-1 (a) Z =5. 36.87 J, Y =0.2 /36.87 S; (b) Z =2.5 - 2/45 门,Y =0.2.2/45 S4- 2 Y=(0.06-j0.08) S , R~ 16.67 Q, X L=12.5 Q, L~0.04 H4- 3 U R=6 0^0 V U L=80/90 V , U S=100^53.13 V4- 4 卩=2 0 £ 3 6.874-5 Z =100 2^45 ;:■,卩=1^0 A , U R=100^0 V , U L=125/90 V , U C=25/ 90 V4-6 Y =0.25 2^45 S , U =4 “2/0 V ,卩R = .2. 0 A , I L =0.^ 2 / 90 A , I C=1.2.2/90 A4- 7 ll =1 0.「2 4 5,A U S=100 乙90 V4- 8 (a) 30 V ; (b) 2.24 A4- 9 (a) 10 V ; (b) 10 A4- 10 (a) 10 V ; (b) 10 V4- 11 U=14.1 V4- 12 U L1 =15 V , U C2 =8 V , U S=15.65 V4-13 U X1 =100 V, U2 =600 V, X1=10 Q, X2=20 Q, X3=30 Q4- 14 Z =20 .2 45 门,l =2. -45 A , h = 2 0 A , .2/-90 A , U ab=0V 4- 15 (1)1 =£2 A, Z RC=5、2「,Z =5 10 门;(2) R =10 门,X^10'J4- 16 P = 774.4 W , Q = 580.8 var, S = 968 V A-4- 17 l1 = 5 A , l2 = 4 A4-18 I1 = 1 A , I2 =2 A , l =.5. 26.565 A , S =44.72. -26.565 V A4-19 Z=10", I=190A, U R2 =5 2 135 V , P =10 W64-20 a =5X10 rad/s , p= 1000 Q, Q = 100 , l = 2 mA , U R =20 mV , U L = U C = 2 V4-21 30 =104rad/s , p= 100 Q, Q = 100 , U = 10 V, I R = 1 mA , I L = I C = 100 mA4-22 L1 = 1 H , L2 ~ 0.33 H第5章习题参考答案5- 3 M = 35.5 mH5- 4 301 =1000 rad/s ,302 =2236 rad/s5- 5 Z1 = j31.4 Q , Z2 = j6.28 Q 5- 6 Z r = 3+7.5 Q5- 7 M = 130 mH5- 8 “2 二-2/45 A5- 9 U1 = 44.8 V5- 10 M12 = 20 mH , 11 = 4 A5- 11 U2 = 220 V , I1 = 4 A5- 12 n = 1.95- 13 N2 = 254 匝,N3 = 72 匝5- 14 n = 10 , P2 = 31.25 mW章习题参考答案 (1) A 相灯泡电压为零,B 、C 相各位为220V I L = I p = 4.4 A ,U p = 220 V ,U L = 380 V ,P = 2.3 kW (2) I p = 7.62 A ,I L = 13.2 A A 、C 相各为2.2A ,B 相为3.8A U L = 404 V U A N =202/ -47 V cos $ = 0.961 , Q = 5.75 kvar Z =334 28.4 门 (1) I p = 11.26 A , Z = 19.53 / 42.3 °Q; (2) I p = I l = 11.26 A , P = 5.5 kW U l = 391 V i A =22 2sin(・t —53.13 ) A i B =22 .2sin(・t —173.13 ) A i C =22 2 sin(,t 66.87 ) A U V = 160 V (1) 负载以三角形方式接入三相电源 (2) I — =3.8 T 2 -15 A , 1仁 =3.^-2/ 135 A , 仁 =3.8、「2也105 A I A =3.8、. 6/「45 A , I B =3.8I Q 「165 A , I c =3.8.6. 75 A L = 110 mH , C = 91.9 mF 章习题参考答案 P = 240 W, Q = 360 var P = 10.84 W (1) i(t) 4.7sin( t 100 ) - 3sin3 t A (2)I ~ 3.94 A , U ~ 58.84 V , P ~ 93.02 W 0MU m n o L 1 r~2 ------------- 2 u 2(t) m sin(,t —-arctan 1)V , R 2 (丄J 2 z 2 R ' 直流电源中有交流,交流电源中无直流 U 1=54.3 V , R = 1 Q, L = 11.4 mH ;约为 8% , ( L'= 12.33 mH ) 使总阻抗或总导纳为实数(虚部为 0)的条件为 尺二& = Rx = ■ L/C G =9.39 折,C 2 =75.13 M F L 1 = 1 H , L 2 = 66.7 mH C 1 = 10 M F, C 2 = 1.25 M F 章习题参考答案 第66-16-36-46-56-66-76-86-96-106-116-126-136-146- 15第77- 17-27-37-47-57-67-77-87-97- 10第88- 68-78-8i L(0+) = 1.5mA , U L(0+) = - 15Vh(0+) = 4A, i2(0+) = 1A , U L(0+) = 2V, i1(s)= 3A , i2(^)= 0, U L()= 0 i1 (0+) = 75mA , i2(0+) = 75mA , i3(0+) = 0, U L1 (0+) = 0, U L2(0+) = 2.25V6i c (t)二 2訂 A 4tU L (t) =6e _V u C (t) =10(1 _eg 0t )V , i C (t) =56说*人 500t 貝 u C (t) =115e~ sin(866 亠60 ) V10t 10t 山⑴=12e - V , L(t) =2(1 —e — )A 1 t U R (t) =~U s e 下2C V , U R (3 J - -U S e-V (1) T = 0.1s, (2) u c (t) =10e -0t V , (3) t = 0.1s u C (t) =10 _9e 」°t V 10t _ i L (t) =5e 一 A (a)f(t) =1(t —t 。
李瀚荪《电路分析基础》(第4版)课后习题详解-第4章 分解方法及单口网络【圣才出品】
第4章 分解方法及单口网络§4-2 单口网络的电压电流关系4-1 求图4-1所示单口网络的VCR。
图4-1解:标出端口u和i,电压u可认为是外施电压源电压,i流出网络,指向外施电源正极。
用网孔法列出电路方程。
设网孔电流和i均为顺时针方向。
找出i和u的关系得u=-12.5i+11.25 (1)如i指向网络内部,则u=12.5i+11.25 (2)u、i的单位分别为V、A。
列网孔方程就是如此规定的。
4-2 试用外施电源法求图4-2所示含源单口网络的VCR,并绘出伏安特性曲线。
图4-2解:图中u可认为是外施电压源的电压。
根据图中所示i的参考方向,可列出u=(3 Ω)i+(6 Ω)(i+5 A)+20 V=(3 Ω+6 Ω)i+(6 Ω)(5 A)+20 V=(9 Ω)i+50 V伏安特性曲线是条直线。
i=0时u=50 V,即u轴截距为50;u=0时,即i轴截距为4-3 试求图4-3所示电路的VCR。
图4-3解:施加电压源u于a、b两端,由KVL和KCL,可得§4-3 单口网络的置换——置换定理4-4 在图4-4所示电路中已知N的VCR为5u=4i+5,试求电路中各支路电流。
图4-4解:分割出图4-4所示虚线框内电路,设外施电压为u,为求其VCR,可列出节点方程整理得VCRu=2-1.2i以之与N的VCR联立可解出i,即5(2-1.2i)=4i+5解得i=0.5 A,u=1.4 V以1.4 V电压源置换N,可简便地估计到N存在的影响,由此可得4-5 试设法利用置换定理求解图4-5所示电路中的电压何处划分为好?置换时用电压源还是电流源为好?图4-5图4-6解:试从图4-6的虚线处将电路划分成两部分,对网络有整理得15u=117-14i(1)对网络有 联立(1)、(2)两式解得i=3 A。
用3 A电流源置换较为方便,置换后利用分流关系,可得4-6 电路如图4-7(a)所示,网络N的VCR如图4-7(b)所示,求u和i,并求流过两线性电阻的电流。
电路 第四版 答案(第四章)
第四章 电路定理电路定理是电路理论的重要组成部分,为我们求解电路问题提供了另一种分析方法,这些方法具有比较灵活,变换形式多样,目的性强的特点。
因此相对来说比第三章中的方程式法较难掌握一些,但应用正确,将使一些看似复杂的问题的求解过程变得非常简单。
应用定理分析电路问题必须做到理解其内容,注意使用的范围、条件,熟练掌握使用的方法和步骤。
需要指出,在很多问题中定理和方程法往往又是结合使用的。
4-1 应用叠加定理求图示电路中电压ab u 。
解:首先画出两个电源单独作用式的分电路入题解4-1图(a )和(b )所示。
对(a )图应用结点电压法可得1sin 5)121311(1tu n =+++ 解得 15sin 3sin 53n tu t V == (1)111113sin sin 2133n ab n u u u t t V =⨯==⨯=+对(b )图,应用电阻的分流公式有1132111135tt e i e A --+=⨯=++所以 (2)110.25t t abu i e e V --=⨯== 故由叠加定理得 (1)(2)s i n 0.2ta b a b a b u u u t e V -=+=+4-2 应用叠加定理求图示电路中电压u 。
解:画出电源分别作用的分电路如题解(a )和(b )所示。
对(a )图应用结点电压法有105028136)101401281(1++=+++n u 解得 (1)113.650.10.0250.1n u u +==++18.624882.6670.2253V ===对(b )图,应用电阻串并联化简方法,可求得10402(8)32161040331040183(8)21040si u V ⨯⨯++=⨯=⨯=⨯+++ (2)16182323si u u V -==-⨯=- 所以,由叠加定理得原电路的u 为(1)(2)24888033u u u V =+=-= 4-3 应用叠加定理求图示电路中电压2u 。
(大学物理电路分析基础)第4章网络定理
目录
• 基尔霍夫定律 • 叠加定理 • 戴维南定理 • 诺顿定理
01
CATALOGUE
基尔霍夫定律
定义
基尔霍夫定律是电路分析中的基本定律之一,它包括基尔霍夫电流定律(KCL)和 基尔霍夫电压定律(KVL)。
基尔霍夫电流定律指出,对于电路中的任一节点,流入该节点的电流之和等于流出 该节点的电流之和。
流和电压、计算功率等。
在解决复杂电路问题时,通常需要结合 其他电路定理和定律,如欧姆定律、电
源定理等,以简化问题的解决过程。
基尔霍夫定律是电路分析中的基础理论 之一,对于理解电路的工作原理、设计 电路以及解决实际问题具有重要的意义
。
02
CATALOGUE
叠加定理
定义
• 叠加定理:线性电路中,多个独立源共同作用产生的响应 ,等于各个独立源单独作用于电路所产生的响应之和。
内容
线性电路
01
叠加定理适用于线性电路,即电路元件的电压和电流成正比关
系。
独立源
02
叠加定理只适用于独立源,即源之间没有相互影响。
响应之和
03
各个独立源单独作用于电路所产生的响应是相互独立的,它们
的响应之和即为多个独立源共同作用产生的响应。
应用
简化计算
在复杂电路中,通过应用叠加定理, 可以将多个独立源的共同作用分解为 各个独立源单独作用于电路所产生的 响应,从而简化计算过程。
诺顿定理还可以用于验证电路分析的正确性和解决复杂电路问题,提高电 路分析的效率和准确性。
THANKS
感谢观看
基尔霍夫电压定律指出,对于电路中的任一闭合路径,沿该路径的电压降之和等于 零。
电路分析基础第四章
开路电压
等效电阻
二、戴维南定理证明:
置换
叠加
线性含源
线性或非线性
u ' = uoc
N中所有独立源产生的电压 电流源开路
' ''
u '' = − Rabi
电流源产生的电压 N0中所有独立源为零值
u = u + u = uoc − Rabi
u = uoc − Rabi
含源线性单口网络N可等效为 电压源串联电阻支路
Rab = 6 + 15 //(5 + 5) = 6 + 6 = 12Ω
Rcd = 5 //(15 + 5) = 4Ω
例3:试求图示电阻网络的Rab和Rcd。
Rab = 8 + {4 //[2 + 1 + ( 2 // 2)]} = 8 + {4 // 4} = 10Ω
Rcd = ( 2 // 2) + {1 //[4 + 2 + ( 2 // 2)]} = 1 + (1 // 7) = 1.875Ω
例5:求图中所示单口网络的等效电阻。
u R i = = ( μ + 1) R i
例6:求图所示单口网络的等效电阻。
u R Ri = = i 1+α
例7:求图示电路输入电阻Ri,已知α =0.99。
1. 外施电源法 2. 电源变换法
Ri = 35Ω
三、含独立源单口网络的等效电路:
1. 只含独立源、电阻,不含受控源 只含独立源、电阻不含受控源的网络,端口 VCR为u=A+Bi,u和i关联时,B为正。 2. 含受控源的有源单口网络 含受控源、独立源、线性电阻的网络,端口 VCR为u=A+Bi,B可正可负。 等效为电压源串联电阻组合或电流源并联电阻组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 例4-6-2 如图所示电路,试问当电阻 R 等于何值时?它可获
4 6
得最大功率, 最大功率等于多少。
2
i
2 2
2i 4 I
4i
U
解:
Uoc = 2i-2i+6 = 6V
R0
R R0 4Ω
Uoc
R
P
UOC 2
62
4R0 4 4
2.25W
4i 2I 8i 0
2i 6I 10i U
dP dRL
d dRL
(
uS2 RL RS RL
)
2
uS2
(
RS
RL )2 2RL (RS ( RS RL )4
RL
)
uS2 ( RS (RS
RL ) RL )3
0
RS RL 0, RL RS
最大功率传递定理的表述
若一个实际电源模型为一个可变负载电阻RL提供
能量。只有当负载电阻RL等于电源内电阻Rs时,负
Uoc' R 0 'R 3
R 3 rm R 0 'R 3
Uoc'
I sc
R
R3 3 (R
rm 0 'rm
)
U
oc
'
R0
Uoc I sc
R 3 (R 0 'rm ) R0 'R 3
I2
U2 Uoc R0 r0 R2
(R0'R3 )U2 (R 3 rm )Uoc' R3 (R0'rm ) (r0 R2 )(R 0'R3 )
I a 3I1 6I3 I1 2I3
I 6Ω
8 3
A
4
2I3
U U 6I3 4(I1 I3 )
b
6I3 12I3
R0
U I
18I 3 I3
18Ω
18I3
例 4 -
例4-5-6 如图所示电路,已知:
10
5
3
R = 4Ω时, I=2A,,求 R =10Ω
5I1
I1
时的电流I。
10
解: (
的等效电阻Rab。
u uOC Rabi
。.
证明
U UOC RabI
U’
U”
戴维南定理几点说明:
定戴理维只南适定用理于线几性点网说络明不适用于非线性网络;
等效电阻是指将单口网络内的所有独立源置零 受控源保留时从其端口看进去的等效电阻;
含源单口网络与外电路之间无任何耦合; 等效电路中电压源的电压参考极性应与原单口
网络的开路电压Uoc相一致。
例4-4-1 求下图所示电路中12k电阻的电流。
例4-3-1
解:
I UOC Rab 12
15.56 4.45 12
0.95mA
I' 20 10 10 0.556mA 8 10 18
UOC Uab 10k I'10 15.56V
8 10 Rab 8 10 4.45kΩ
(R1 R2 ) R3
i SC '
i0'
R1 R1 R2
iS1
iSC'' iS2
R0
uOC iSC
(R1 R2 )R3 R1 R2 R3
uS3
isc’’’
iSC'''
uS3 R3
例4-4-4 试用戴维南定理求桥路中RL的电流I。
例4-3-2
解:
I UOC R0 RL
(
R1 R1
1
1
1
)U
I' 5I1
5
10 5 10
5
I1
U 10
4 U I' 1 U
10
10
Uoc I (R0 R) R0 2(2 4) Uoc 12V
1 U I' 2
R0
U I'
2Ω
I R10
Uoc R0 R
12 1A 2 10
I’ U
I R
例4-5-7 求下图所示电路中流过R2的电流。
Rab Uoc
解:
b
b
3( 31U1 U( 311
4126U1 )2U1 8(61
1U)
6
2U1
24( 1
3
1 3
)
U2
1) U
6
U
2
12 8 34
22I3 U132OC
64V
Rab
64 18 Rab
I2Ω 3.2A
I 4Ω
32 11
A
I3
I3
3
U2 66
U1
I1
I I1 I3 2I3 I3
R2 )uS3
例4-4-3 求下图所示含源单口网络的VAR。
例4-3-4
iS1 uS3
解:
i0'
iS1
iS2
isc
isc’
iS2
isc”
uOC
R1 R3iS1 ( R1 R2 )R3iS2 ( R1 R2 )uS3 R1 R2 R3
iSC iSC'iSC''iSC'''
R1 R3iS1 ( R1 R2 )R3iS2 ( R1 R2 )uS3
UOC RS
诺顿定理的表述
任何一个线性含源单口网络N就其两个端纽ab来 看总可以用一个电流源~并联电阻组合来代替,电流源
的电流等于该网络的短路电流isc,并联电阻R0等于该网
络所有独立电源取零值时所得网络的等效电阻Rab。
a
N
isc
b
a
N0
Rab=R0
b
诺顿定理几点说明
,
定理只适用于线性网络不适用于非线性网络;
0
iSC
10 1500
1 150
A
500i 1000i 1000i u
1500i u
u R0 i 1500 1.5KΩ
例 例例4-5-34-5-5 如图所示电路,求ab端分别接 2Ω,4Ω,6Ω电阻时的电流I。
3 12V
I3 6
Ia
I Uoc
Ia
R0
R0 Rab
2I3 4 8V
ISC
1.67 9.6 4 1.67
2.38A
I SC'
12 2//10
7.2A
ISC 9.6A
I SC''
24 10
2.4A
2 10 R0 Rab 2 10 1.67Ω
例4-5-2 用诺顿定理求流经8Ω电阻的电流I。
Isc
解:
I SC
1
10 12
22 12
I
R0 R0 8
解:
(1)
U OC
150 360 300V 150 30
RO
30 150 30 150
25Ω
RL RO 25Ω
(2)
Pmax
Us2 4Rs
300 2 4 25
900W
(3)
I
30
360 25 150
7A
,
25 150
P360 360 7 2520W
η Pmax 900 100 35.71% P360 2520
§4-6 最大功率传递定理
The Maximum Power Transfer Theorem
uS 10V, RS 5Ω RL(Ω) 0 1 2
i uS RS RL
PRL
i 2 RL
(
RS
uS
RL
)2
RL
3456789
PRL(W) 0 2.78 4.08 4.69 4.94 5.00 4.96 4.86 4.73 4.60
6i I 0 i I
12i 6I U
6
12( I ) 6I U
6
4I U
R0
U I
4Ω
作业
作业:4-16,4-20,4-23 4-26,4-28, 4-29
R4 R2
)(
R2 R3
R3 R4
)
U
S
R1 R2 R1 R2
R3 R4 R3 R4
RL
U OC
Uac Ucb
R1 R1 R2
US
R3 R3 R4
U
S
R1 R4 ( R1 R2
)(
R2 R3
R3 R4
)
U
S
R0
Rab
R1 R2 R1 R2
R3 R4 R3 R4
§4-5 诺顿定理 The Norton's Theorem
例4-3-3 求下图所示含源单口网络的VCR i
u uoc R0i
例4-3-4 解:
R0 Rab ( R1 R2 ) //R3
u
(R1 R2 )R3
R1 R2 R3
uOC '
R1
R1 R3 R2
R3
iS1
i u u R3 R1 R2
R1 R2 R3 u
uOC ''
(R1 R2 ) R3 R1 R2 R3
iS2 R0
( R1 R2 ) R3 u (R1 R2 ) R3
i R1 R2 R3
uOC
'''
R1 R2 R1 R2 R3
uS3
uOC
uOC 'uOC ''uOC '''
R1 R3iS1
(R1 R2 )R3iS2 (R1 R1 R2 R3