含绝对值不等式PPT课件
合集下载
绝对值不等式(共12张PPT)
• 对于不等式 |ax+b|<c (c>0),乃基本不等式 的推广,应用整体思想,视ax+b为一个整体, 可迅速地将原不等式转化为-c<ax+b<c.
第2页,共12页。
• 例1 解不等式 |3x-4|≥x+2 • 解绝对值不等式,重在去绝对值符号,回绕
此来展开思路,不难产生如下想法. • 思考一:讨论3x-4的符号去绝对值符号; • 思考二:讨论x+2的符号; • 思考三:直接去绝对值符号. • 原不等式可化为 • 3x-4≤-(x+2) 或 3x-4≥x+2 • 解得 x≤1/2 或 x≥3.
• 解得 x<-2 或 x>3
• 因此 ∁U A={x | -2≤x≤3 }. • ∵ ∁U A∩B=B,∴ B ∁U A • 当c≤0时,B=,显然B是A的子集.
• 当c>0时,由 |x+1|<c 得 -c<x+1<c,故 -c-1<x<c-1.
∵AB,∴c--c-1≤1≥3 -2
解得 c≤1. ∴ 0<c≤1.
例 解关于x的不等式 a|x-1|>2+a
• 当a<0时,x∈R. 当c≤0时,B= ,显然B是A的子集.
观察:|x-3|-|x+1|<1的点应位于点的右侧,故不等式的解集为 {x | x>1/2}. 当a=1时,y=a,此时函数 y=(1-a)x-a=-1为常函数,
• 当a=0时,x∈R且x≠0。 1) 函数y=|x-3|-|x+1|的值域为____.
Ⅲ)
x>3 (x-3)-(x+1)<1
I)
的解集为空集;Ⅱ)的解为
1 2
<x≤3;Ⅲ)的解为 x>3
综上所述,原不等式的解集为{x | x>12 }. 另解: 注意到式子|x-3|-|x+1|表示数轴上坐标为x的一点到坐标 为3的点的距离与到坐标为-1的点的距离的差.
绝对值不等式ppt
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
效不清零。自动续费,前往我的账号 -我的设置随时取消。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
整体就可以了,此时可以得到:
| ax b | c c ax b c | ax b | c ax b c 或 ax b c
(c 0)
例1 解不等式|2x 5| 7 . 解:由原不等式可得
2x 5 7,或 2x 5 7 .
整理,得 x 6,或 x 1 . 所以,原不等式的解集是
式 的 解 集 是 , 3 2,
例5 解不等式 x 1 x 2 5
解 法2: 当x 2,时, 原 不 等 式 可 以 化 为 ( x 1) ( x 2) 5,
解 得x 3,此 时 不 等 式 的 解 集 为 ,3
当 2 x 1时,原 不 等 式 可 以 化 为 ( x 1) ( x 2) 5,
解析:(等价转换法)原不等式
x2 3 2x或x2 3 2x x2 2x 3 0或x2 2x 3 0
x>3或x<-1或-3<x<1. 故原不等式的解集为{x|x<1或x>3}.
练习:把下列绝对值不等式转 化为同解的非绝对值不等式。
1、|2x-3|<5x 2、|x2-3x-4|>4
①利用绝对值不等式的几何意义 ②零点分区间法 ③构造函数法
绝对值不等式PPT课件
所以 |2x+3y-2a-3b|<5ε.
例2 两个施工队分别被安排在公路沿线的两个
地点施工,这两个地点分别位于公路路碑的第
10km和第20km处。现要在公路沿线建两个施
工队的共同临时生活区,每个施工队每天在生
活区和施工地点之间往返一次。要使两个施工
队每天往返的路程之和最小,生活区应该建于
何处? ·
当 c 0 时, x R
课堂练习一: 试解下列不等式:
(1) | 3 2x |≥ 7
(2) | x2 3 x | 4
解:∵| 3 2x |≥ 7 ∴ 2 x 3 ≥ 7
∴ 2x 3≥ 7或2x 3 ≤ 7 ∴ x ≥ 5或x ≤ 2
∴原不等式的解集为,2 5, .
(1, 4)
(3) | 3x 2 | 1
·
·
10
x
20
分析:假设生活区建在公路路碑的第xkm处,两 个施工队每天往返的路程之和为S(x)km,则有 S(x)=2(|x-10|+|x-20|),要求问题化归为求该函数 的最小值,可用绝对值三角不等式求解。
绝对值不等式的解法
1:形如|x|<a和|x|>a (a>0)的含绝对值的不等式的解集
① 不等式|x|<a的解集为{x|-a<x<a}
分类讨论30的当-思(xX想<--1.2)时+(,X+原2)不≥等5式同解于
X<-2
X≤-3
-(X-1)-(X+2) ≥5
综合上述知不等式的解为x 2或x -3
例 解不等式|x-1|+|x+2|≥5
解 原不等式化为|x-1|+|x+2|-5 ≥0
例2 两个施工队分别被安排在公路沿线的两个
地点施工,这两个地点分别位于公路路碑的第
10km和第20km处。现要在公路沿线建两个施
工队的共同临时生活区,每个施工队每天在生
活区和施工地点之间往返一次。要使两个施工
队每天往返的路程之和最小,生活区应该建于
何处? ·
当 c 0 时, x R
课堂练习一: 试解下列不等式:
(1) | 3 2x |≥ 7
(2) | x2 3 x | 4
解:∵| 3 2x |≥ 7 ∴ 2 x 3 ≥ 7
∴ 2x 3≥ 7或2x 3 ≤ 7 ∴ x ≥ 5或x ≤ 2
∴原不等式的解集为,2 5, .
(1, 4)
(3) | 3x 2 | 1
·
·
10
x
20
分析:假设生活区建在公路路碑的第xkm处,两 个施工队每天往返的路程之和为S(x)km,则有 S(x)=2(|x-10|+|x-20|),要求问题化归为求该函数 的最小值,可用绝对值三角不等式求解。
绝对值不等式的解法
1:形如|x|<a和|x|>a (a>0)的含绝对值的不等式的解集
① 不等式|x|<a的解集为{x|-a<x<a}
分类讨论30的当-思(xX想<--1.2)时+(,X+原2)不≥等5式同解于
X<-2
X≤-3
-(X-1)-(X+2) ≥5
综合上述知不等式的解为x 2或x -3
例 解不等式|x-1|+|x+2|≥5
解 原不等式化为|x-1|+|x+2|-5 ≥0
含绝对值的不等式PPT课件
的温度范围是(
).
A.18℃~20℃ B.20℃~22℃ C.18℃~21℃ D.18℃~22℃
2.求下列不等式的解集:
(1)3 x 1
3.求不等式
1
|
;(2) − 1 ⩽ 2 ;(3)| 3x 2 | 1 ;(4) x +1| ≥ 3 .
2
+ ≥ (b > 0)
4.求不等式 x < 5 的解集.
2
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
如图所示是某矿泉水的标签,显示该矿泉水的pH值(25℃)为
7.3 ± 0.5,该矿泉水pH值的取值范围是什么?
设该矿泉水的pH值(25℃)为x,则x的取值范围可表示为
x 7.3 ≤ 0.5
设
就是
t x 7.3
.
,那么不等式 x 7.3 ≤ 0.5 可化为得 | t | ≤ 0.5 ,也
变量的代数式,即用单一字表示一个代数式,从而将一些数学问题化
难为易、化繁为简.
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
例2 求不等式 | 2 x 3 | ≤1 的解集.
解 不等式 | 2 x 3 | ≤1 ,也就是 1 ≤ 2 x 3 ≤1 ,于是 2 ≤ 2x ≤ 4 ,
0.5 ≤ t ≤ 0.5
,由此解得
0.5 ≤ x 7.3 ≤ 0.5
,即 6.8 ≤ x ≤ 7.8
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
一般地,形如 + < 和 + > ( > 0)的不等式可以通
过 “变量替换”的方法求解.
绝对值不等式PPT课件
方法技巧
1.形如|ax+b|≤c(≥c)(c>0)的三种解法 解法一:等价法 |ax+b|≤c⇔-c≤ax+b≤c. (|ax+b|≥c⇔ax+b≤-c或ax+b≥c) 解法二:分类讨论法
|ax+b|≤c⇔aaxx
b b
0, c
或ax(axbb)0,
c.
解法三:平方法
|ax+b|≤c⇔(ax+b)2≤c2. 2.形如|x+a|+k|x+b|≤c(≥c)的解法
x
|
x
5 2
或x
7 2
.
(2)解法一:因为|x+1|+|m-x|≥|x+1+m-x|=|m+1|,
由题意得|m+1|≥6,
即m+1≥6或m+1≤-6,
解得m≥5或m≤-7,
即m的取值范围是(-∞,-7]∪[5,+∞).
2x m 1, x m,
解法二:①当m<-1时, f(x)=m 1, m x 1,
2
围.
解析 令f(x)=|2x-1|+|x+2|,
易求得f(x)min=
5 2
,
依题意得a2+ 1 a+2≤ 5 ⇔-1≤a≤1 .
2
2
2
考点突破
考点一 绝对值不等式的解法
典例1 解不等式:|x-1|-|x-5|<2. 解析 ①当x<1时,原不等式等价于1-x-(5-x)<2,即-4<2,不等式恒成立, ∴x<1. ②当1≤x≤5时,原不等式等价于x-1-(5-x)<2,即x<4, ∴1≤x<4. ③当x>5时,原不等式等价于x-1-(x-5)<2,即4<2,无解. 综合①②③知原不等式的解集为(-∞,4).
绝对值不等式的解法公开课PPT课件
| f (x) | g(x) g(x) f (x) g(x)
小试身手:
(1)|x2-3|>2x
解集为{x|x<1或x>3}.
x (2) x 2
x x2
解集为{x| -2< x<0}
对于(2)中, “>”换成“≥”解集变化了吗?如何变化?
例4:解不等式:|x-5|+|x+3|≥10.
解法一:
即为原不等式的解集
优点:利于分析最值以及相应的x的取值
变式:1. |x-5|+|x+3|≥a恒成立,则a的范围____ 2.方程 |x-5|+|x+3|=2a-5有无数解,则a的值为___
例4:解不等式:|x-5|+|x+3|≥10.
解法三:由绝对值的几何意义可知,|x-5|+|x+3|表示数轴上
复习回顾:|x|的意义:
一个数的绝对值表示:
x X>0
与这个数对应的点到
|x|= 0 X=0
原点的距离,|x|≥0,|x|≥x
- x X<0
x2
B
O
|x1| =|OA|
几何意义
x1
A
X
|x2|=|OB|
|AB|=| x2 -x1 |
代数意义
易得:不等式|x|<a和|x|>a (a>0)的解集。去掉a>0,解集还能这样表示吗?
解集为 ( 10 , 5] [1, 2)
33
3
例3:解不等式| 5x-6 | < 6 – x
解: 由绝对值的意义,原不等式转化为:
6-x>0
(Ⅰ)或
-(6-x)<5x-6<(6-x)
6-x≤0
(Ⅱ)
无解
解(Ⅰ)得:0<x<2; (Ⅱ) 无解 综合得解集{x|0<x<2}
《含绝对值的不等式》课件
零点分段法
将数轴分为几个区间,分 别讨论每个区间内不等式 的解,最后取并集。
几何意义法
利用绝对值的几何意义, 将不等式问题转化为图形 问题,通过观察图形求解 。
代数法
通过代数运算和不等式性 质,去掉绝对值符号,转 化为普通的不等式问题。
含绝对值的不等式的应用
解决实际问题
数学建模中的应用
含绝对值的不等式在现实生活中有广 泛的应用,如距离问题、费用问题、 时间问题等。
通过使用绝对值不等式,我们可以将复杂的问题简化,从而 更快地找到解决方案。此外,绝对值不等式还可以帮助我们 证明一些数学定理和性质,进一步加深对数学的理解。
在物理中的应用
在物理学中,绝对值不等式也具有广泛的应用。例如,在解决力学、电磁学、热 学等方面的问题时,我们经常需要用到绝对值不等式来建立数学模型和进行数值 模拟。
绝对值不等式可以帮助我们理解物理现象的本质,预测物理系统的行为,并为实 验提供理论支持。此外,绝对值不等式还可以帮助我们优化物理实验的设计,提 高实验的精度和可靠性。
在经济中的应用
在经济学中,绝对值不等式也被广泛应用于各种问题中。 例如,在研究市场供需关系、投资组合优化、风险管理等 方面,绝对值不等式都发挥着重要的作用。
通过使用绝对值不等式,我们可以更好地理解市场的运行 规律,预测市场的变化趋势,并为决策提供科学依据。此 外,绝对值不等式还可以帮助我们评估投资风险和回报, 优化资产配置,提高投资效益。
05
总结与思考
对含绝对值不等式的总结
01
绝对值不等式的定义与性质
绝对值不等式是数学中一类重要的不等式,它涉及到绝对值的运算性质
。通过学习,我们掌握了绝对值不等式的定义、性质以及解法。
中职数学基础模块上册《含绝对值的不等式》课件
y≥0
练习题6:解不等式 |x-1|+|y-2|≥3,x≥0,
y≥0
练习题7:解不等式 |x-1|+|y-2|=3,x≥0,
y≥0
练习题8:解不等式 |x-1|+|y-2|≠3,x≥0,
y≥0
感谢观看
汇报人:
04
解含绝对值不等式的方法
代数法
绝对值定义:表示一个数与0的距离
单击此处添加文本具体内容,简明阐述您的观点
绝对值性质:|a|=a(a≥0),|a|=-a(a<0)
单击此处添加文本具体内容,简明阐述您的观点
绝对值不等式:|a|≤b(a≤b,a≥-b)
单击此处添加文本具体内容,简明阐述您的观点
代数法步骤: a. 确定不等式两边绝对值的符号 b. 确定不等式两边 绝对值的大小关系 c. 解出绝对值不等式 d. 判断解的合理性
中职数学基础模块上册《含绝对值 的不等式》ppt课件
单击添加副标题
汇报人:
目录
01
课件介绍
02
03
含绝对值不等式的定义与性质
04
05
例题解析
06
课件目录结构 解含绝对值不等式的方法
练习题与答案
01
课件介绍
课件内容概述
课程目标:掌握含绝对值的不等式的基本概念和性质 课程内容:包括绝对值的定义、性质、运算法则等 教学方法:采用案例教学、互动教学等方式 课程评价:通过课堂练习、课后作业等方式进行评价
数轴上的点表示 数:数轴上的点 表示数,点的位 置表示数的大小。
数轴上的点表示 不等式:数轴上 的点表示不等式, 点的位置表示不 等式的解集。
利用数轴求解含 绝对值不等式: 利用数轴求解含 绝对值不等式, 可以通过数轴上 的点表示不等式, 点的位置表示不 等式的解集。
练习题6:解不等式 |x-1|+|y-2|≥3,x≥0,
y≥0
练习题7:解不等式 |x-1|+|y-2|=3,x≥0,
y≥0
练习题8:解不等式 |x-1|+|y-2|≠3,x≥0,
y≥0
感谢观看
汇报人:
04
解含绝对值不等式的方法
代数法
绝对值定义:表示一个数与0的距离
单击此处添加文本具体内容,简明阐述您的观点
绝对值性质:|a|=a(a≥0),|a|=-a(a<0)
单击此处添加文本具体内容,简明阐述您的观点
绝对值不等式:|a|≤b(a≤b,a≥-b)
单击此处添加文本具体内容,简明阐述您的观点
代数法步骤: a. 确定不等式两边绝对值的符号 b. 确定不等式两边 绝对值的大小关系 c. 解出绝对值不等式 d. 判断解的合理性
中职数学基础模块上册《含绝对值 的不等式》ppt课件
单击添加副标题
汇报人:
目录
01
课件介绍
02
03
含绝对值不等式的定义与性质
04
05
例题解析
06
课件目录结构 解含绝对值不等式的方法
练习题与答案
01
课件介绍
课件内容概述
课程目标:掌握含绝对值的不等式的基本概念和性质 课程内容:包括绝对值的定义、性质、运算法则等 教学方法:采用案例教学、互动教学等方式 课程评价:通过课堂练习、课后作业等方式进行评价
数轴上的点表示 数:数轴上的点 表示数,点的位 置表示数的大小。
数轴上的点表示 不等式:数轴上 的点表示不等式, 点的位置表示不 等式的解集。
利用数轴求解含 绝对值不等式: 利用数轴求解含 绝对值不等式, 可以通过数轴上 的点表示不等式, 点的位置表示不 等式的解集。
含有绝对值的不等式课件(共17张PPT)
解 (1)这个不等式等价于 -5<2x-3<5,
-5+3<2x-3+3<5+3, -2<2x<8,
把x的系数化为1,得 -1<x<4,
因此,原不等式的解集为(-1,4).
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
(2)原不等式等价于
数学
基础模块(上册)
第二章 不等式
2.2.4 含有绝对值的不等式
人民教育出版社
第二章 不等式 2.2.4 含有绝对值的不等式
学习目标
知识目标 能力目标
理解含有绝对值的不等式概念及其解集的学习,掌握含有绝对值的不等式的 解题方法
学生运用分组探讨、合作学习,掌握含有绝对值的不等式的解题方法,提高 运用含有绝对值的不等式知识解决实际问题能力
一般地,一元二次不等式可以通过配方化为x2>m2和 x2<m2(m>0)的形式,于是,我们可以将一元二次不等 式化为含有绝对值的不等式进行求解. 试一试
(1)x≤3;
(2) 2 x -1>3
分析 将不等式化成x≤m或>m的形式后求解.
解 (1)原不等式的解集为[-3,3];
(2)这个不等式可化>2,故其解集为
(- ,- 2)U(2,+ )。
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
2x-3≥5,
①
或
2x-3≤-5,
②
不等式①的解集为[4,+ ),不等式②的解集为(- ,-1].
因此,原不等式的解集为(- ,-1]∪[4,+ ).
探索研究 用配方法求解一元二次不等式.
-5+3<2x-3+3<5+3, -2<2x<8,
把x的系数化为1,得 -1<x<4,
因此,原不等式的解集为(-1,4).
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
(2)原不等式等价于
数学
基础模块(上册)
第二章 不等式
2.2.4 含有绝对值的不等式
人民教育出版社
第二章 不等式 2.2.4 含有绝对值的不等式
学习目标
知识目标 能力目标
理解含有绝对值的不等式概念及其解集的学习,掌握含有绝对值的不等式的 解题方法
学生运用分组探讨、合作学习,掌握含有绝对值的不等式的解题方法,提高 运用含有绝对值的不等式知识解决实际问题能力
一般地,一元二次不等式可以通过配方化为x2>m2和 x2<m2(m>0)的形式,于是,我们可以将一元二次不等 式化为含有绝对值的不等式进行求解. 试一试
(1)x≤3;
(2) 2 x -1>3
分析 将不等式化成x≤m或>m的形式后求解.
解 (1)原不等式的解集为[-3,3];
(2)这个不等式可化>2,故其解集为
(- ,- 2)U(2,+ )。
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
2x-3≥5,
①
或
2x-3≤-5,
②
不等式①的解集为[4,+ ),不等式②的解集为(- ,-1].
因此,原不等式的解集为(- ,-1]∪[4,+ ).
探索研究 用配方法求解一元二次不等式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解题回顾】解含字母系数的不等式,要进行分类讨论, 分类时,要做到不重复、不遗漏.
4.解下列不等式: (1)(x-2)(x2+x-2)(x2-x+3)≤0; (2) (4x2-20x+18)/(x2-5x+4)≥3
【解题回顾】解高次不等式及分式不等式,应经过变形 使右边为零,然后用在数轴上用零点分区法或符号分析 法求解.
返回
课前热身
1.不等式(3-2x)/(2-3x)≤1的解集是__________
2.不等式|1/(x-1)|<2的解集为(B) (A)(1/2,1)∪(1,32) (C)(-∞,1)∪(32,+∞) (B)(-∞,12)∪(32,+∞) (D)(12,1)∪(32,+∞)
3.已知a>0,b>0.则不等式-b<1x<a的解集是________
(2)当Δ =b2-4ac=0时,二次函数y=ax2+bx+c(a>0)与x轴有且只有一 个交点(x0,0);对应的一元二次方程ax2+bx+c=0(a>0)有两个相等 的实根x0;对应的一元二次不等式ax2+bx+c>0(a>0)的解是: x≠x0,ax2+bx+c<0(a>0)的解是:x∈φ . (3)当Δ =b2-4ac<0时,二次函数y=ax2+bx+c(a>0)与x轴没有公共 点;对应的一元二次方程ax2+bx+c=0(a>0)没有实根;对应的一元 二次不等式ax2+bx+c>0(a>0)的解是x∈R,ax2+bx+c<0(a>0)的 解是:x∈φ .
2.二次函数y=ax2+bx+c(a>0)、一元二次方程ax2+bx+c=0(a>0)与 一元二次不等式ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0)之间的关 系.
(1)当Δ =b2-4ac>0时,二次函数y=ax2+bx+c(a>0)与x轴有两个 交点(x1,0),(x2,0)(设x1<x2);对应的一元二次方程ax2+bx+c=0 有两个不等实根x1,x2;对应的一元二次不等式ax2+bx+c>0(a>0) 的解是:x<x1或x>x2,ax2+bx+c<0(a>0)的解是:x1<x<x2
返回
【解题回顾】熟悉ax>b的解是本题正确解答的关键
2.已知不等式ax2-5x+b>0的解集是{x|-3<x<-2},求不等 式bx2-5x+a>0的解集
【解题回顾】解法一体现了一元二次不等式和一元二次方 程、二次函数的密切联系;解法二体现了转化的思想
3.解关于x的不等式: (1)x2+ax+4>0(a∈R); (2)x2-(a+1/a)x+1<0(a≠0)
返回
延伸·拓展
5.解关于x的不等式(x2-2ax+12a)/(2a+1)>12a
【 解 题 回 顾 】 先 将 ( x2-2ax+12a)/(2a+1)>12a 等 价 化 成 (x+4a)(x-6a)/(2a+1)>0 是十分重要的.如何进行讨论, 既要从去分母这一角度又要从“根”的大小来考虑.这样才 不至于“漏”和“重”.
答案: (1) {x|x≤-1或x>2/3} (2) B (3) {x|x<-1/b或x>1/a}
4.已知奇函数f(x),g(x),f(x)>0的解集为(a2,b),g(x)>0 的解集为(a2/2,b/2),则f(x)g(x)>0的解集是( ) (A)(a2/2,b/2) (B)(-b2,-a2) (C)(a2,b/2)∪(-b/2,-a2) (D)(a2/2,b/2)∪(-b2,-a2)
第2课时 含绝对值不等式与一元二 次不等式的解法
要点·疑点·考点 课
前 热 身 能力·思维·方法 延伸·拓展
误
解 分 析
要点·疑点·考点
1.一元二次不等式ax>b的解是: 当a>0时,x>b/a; 当a<0时,x<b/a; 当a=0,b≥0时,x∈φ; 当a=0,b<0时,x∈R.
5.若a<0,则关于x的不等式x2-4ax-5a2>0的解是( ) (A)x>5a或x<-a (B)x>-a或x<5a (C)-a<x<5a (D)5a<x<-a
答案: (4)Βιβλιοθήκη C (5) B返回能力·思维·方法
1 . ( 1 ) 解 关 于 x 的 不 等 式 ( x+2)/k>1+(x3)/k2(k∈R,k≠0); (2)若上述不等式的解集为(3,+∞),求k值; (3)若x=3是上述不等式的一个解,试确定k的范围
返回
误解分析
1.在解分式不等式时,不能像解方程那样,两边同乘一个 不等于零的式子.除非知道这个式子的“符号”,这一点要 特别注意. 2.对解含参数的不等式时,要分类讨论根的情况,这样才 能做到不重不漏. 3.正确画出不等式中对应函数的图象是使用数形结合得出 准确结果的根本.尤其是要熟悉|f(x)|和f(|x|)与f(x)图象 之间的关系
3.关于含绝对值的不等式有如下等价关系 (1)|f(x)|≥g(x)f(x)≥g(x)或f(x)≤-g(x) (2)|f(x)|≤g(x)-g(x)≤f(x)≤g(x) (3)|f(x)|≥|g(x)|f2(x)≥g2(x) (4)|f(x)|≤|g(x)|f2(x)≤g2(x) 4.关于分式不等式,可先化为f(x)/g(x)≥0或 f(x)/g(x)≤0,再转化为整式不等式,即 f(x)/g(x)≥0f(x)·g(x)≥0且g(x)≠0, f(x)/g(x)≤0f(x)·g(x)≤0且g(x)≠0