二次根式的有关概念及性质

合集下载

二次根式知识点归纳

二次根式知识点归纳

二次根式知识点归纳定义:一般的,式子a (a ≥0)叫做二次根式。

其中“”叫做二次根号,二次根号下的a 叫做被开方数。

性质:1、2≥0,等于a;a<0,等于-a3、45612789一.1.【05A.25 B.52 C.542.【05南京】9的算术平方根是(???).A.-3B.3C.±3D.813.【05南通】已知2x <,的结果是(???).A 、2x -B 、2x +C 、2x --D 、2x -4.【05泰州】下列运算正确的是(???).A .a 2+a 3=a 5B .(-2x)3=-2x 3C .(a -b)(-a +b)=-a 2-2ab -b 2D =5.【05无锡】下列各式中,与y x 2是同类项的是()A 、2xyB 、2xyC 、-y x 2D 、223y x6.【05武汉】若a ≤1,则化简后为(???). A.??B. C.???D.7.【05绵阳】化简时,甲的解法是:==,乙的解法是:,以下判断正确的是(???).A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确8.【05(A)a >9.【05A.8 10.【05A.2411.【05A.(-1)312.【05A 、x 213.【05A .114.【05 A 15.【05A .aa b ++b a b +=1B .1÷b a ×a b =1 C .21()a b +·22a b a b --=1a b +二、填空题1.【05连云港】计算:)13)(13(-+=.2.【05南京】10在两个连续整数a 和b 之间,a<10<b,那么a,b 的值分别是。

3.【05上海】计算:)11=4.【05嘉兴5.【05丽水】当a ≥0.6.【05南平=.7.【05漳州,2,(第n 个数).8.【05曲靖】在实数-2,31,0,-1.2,2中,无理数是. 9.【05黄石】若最简根式b a a +3与b a 2+是同类二次根式,则ab =.10.【05太原】将棱长分别为a cm 和bcm 的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为.(不计损耗)11.【05黄岗】立方等于–64的数是。

专题01 二次根式的有关概念和性质(知识点串讲)(解析版)

专题01 二次根式的有关概念和性质(知识点串讲)(解析版)

专题01 二次根式的有关概念和性质知识网络重难突破知识点一 二次根式的有关概念 二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。

【注意】 1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。

2.二次根式是一个非负数。

3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。

二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

【典型例题】1.(2018·黔西县期中)下面式子是二次根式的是( A ) A 21a +B 333C 1-D .12a 2.(2019·朝阳市期中)下列各式中不是二次根式的是(B ) A 21x +B 4-C 0D 2()a b -3.(2018·48n n 是( B ) A .6B .3C .48D .24.(2018·26的值在( D ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.(2019·虹桥区期末)在平面直角坐标系中,点M (a ,b )的坐标满足(a ﹣3)22b -0,则点M 在( A )A .第一象限B .第二象限C .第三象限D .第四象限6.(2019·孝感市期中)已知三角形的三边长为a 、b 、c ,如果2(5)12130a b c -+--=,则△ABC 是( C )A .以a 为斜边的直角三角形 B .以b 为斜边的直角三角形C .以c 为斜边的直角三角形D .不是直角三角形7.(2019·滨州市期中)下列式子:①13;②3-;③﹣21x +;④327;⑤2(2)-,是二次根式的有(B )A .①③ B .①③⑤C .①②③D .①②③⑤8.(2019·汕头市期末)若211a aa a--=,则a 的取值范围是( D ) A .0a >B .1a ≥C .01a ≤≤D .01a <≤9.(2019·抚顺市期末)若二次根式51x -有意义,则x 的取值范围是( B ) A .x >15B .x≥15C .x≤15D .x≤510.(2018·德州市期末)使代数式34x x --有意义的自变量x 的取值范围是(C ) A .x≥3B .x >3且x≠4C .x≥3且x≠4D .x >311.(2017·东胜市期末)方程有两个实数根,则的取值范围(B )A .B .且C .D .且12.(2018·泉州市期中)若a ab+有意义,那么直角坐标系中点A(a,b)在( A ) A .第一象限B .第二象限C .第三象限D .第四象限知识点二 二次根式的性质 二次根式的性质:1.含有两种相同的运算,两者都需要进行平方和开方。

2、二次根式的定义及性质

2、二次根式的定义及性质

二次根式的定义与性质二次根式基本知识点1.a ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)2,(0)a a =≥ (2)==a a 2(3)积的算术平方根的性质:b a ab ⋅=(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积. (4)商的算术平方根的性质b a ba =(0≥a ,0>b ) ,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.注:注一: 二次根式的概念在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以0a ≥0a ≥)的非负性0a ≥)表示a 的算术平方根,0a ≥)0≥(0a ≥) 这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,0=,则a=0,b=0;||0b =,则a=0,b=0;20b =,则a=0,b=0。

0=,则2018()x y +=____________ a (a >0) a -(a <0) 0 (a =0);注三:二次根式2的性质:2,(0)a a =≥文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

1、 a 是正数还是负数。

若是正数或0,则等于a ||,(0)a a a ==≥若a 是负数,则等于a 的相反数-a,||,(0)a a a ==<;2a 的取值范围可以是任意实数,即不论a3||a ,再根据绝对值的意义来进行化简。

注五:22,(0)a a =≥1、不同点:a 的取值范围不同,化简的结果也可能不同2、相同点:当被开方数都是非负数,即0a ≥时,2=例:1、二次根式有意义(1)、x 的取值范围是 .(2)x 的取值范围是(3)有意义,那么,直角坐标系中点(,)P m n 的位置在()A 、第一象限B 、第二象限C 、第三象限D 、第四象限2、二次根式定义的运用(1) 若2021y =,则x y +=⇒2()x y =+,则x -y 的值为( )A .-1B .1C .2D .3(2)、当a 1取值最小,并求出这个最小值。

数学中的二次根式与分式

数学中的二次根式与分式

数学中的二次根式与分式在数学中,二次根式和分式是我们经常会遇到的两个概念。

它们在解决方程、计算和简化表达式等方面都具有重要的作用。

本文将详细介绍二次根式和分式的定义、性质以及它们在数学中的应用。

一、二次根式的定义与性质二次根式是指根号下包含二次项的表达式。

具体地说,对于一个非负实数a和正整数n,我们定义二次根式√a为满足以下条件的实数x:x的n次方等于a,即x^n = a。

其中,n称为根式的指数,而a则是根式的被开方数。

二次根式的性质如下:1. 非负性质:二次根式的值不会小于0,即根号下的被开方数必须为非负实数。

2. 分解性质:对于一个二次根式√ab,可以将其分解为√a * √b。

3. 合并性质:对于两个同类项的二次根式√a和√b,可以合并为√(a+b)。

4. 化简性质:如果被开方数能够整除完全平方数,那么二次根式就可以化简为一个有理数。

二、分式的定义与性质分式是数学中的一种表达形式,通常由分子和分母组成,中间用分数线分隔。

分式可以表示两个数之间的关系,其中分子表示被除数,分母表示除数。

分式的定义如下:对于两个整数a和b(其中b≠0),我们定义分式a/b为两个整数a和b的比值。

在分式中,a被称为分子,b被称为分母。

分式的性质如下:1. 除法性质:分式表示的是除法运算,即a/b = a÷b。

2. 分子和分母的性质:在一个分式中,如果分子和分母乘(或除)以同一个非零实数k,则分式的值不变。

3. 分式的简化:如果分子和分母有一个公因数,那么可以进行约分,将分式化简为最简形式。

4. 分式的加减乘除:两个分式的加减可以通过通分和化简的方法进行,两个分式的乘除可以通过分子乘分子、分母乘分母的方法进行。

三、二次根式与分式的联系与应用二次根式和分式在数学中经常会有联系,并在解决问题中应用到一起。

1. 化简分式时可以利用二次根式的性质进行转化。

比如,在分式中出现二次根式时,可以将其转化为最简形式,使得分母中不存在二次根式。

二次根式的性质与化简

二次根式的性质与化简

二次根式的性质与化简二次根式是指含有平方根的表达式,它在数学中有着重要的应用。

本文将探讨二次根式的性质以及化简方法。

一、二次根式的性质1. 二次根式的定义与表示:二次根式是指形如√a的表达式,其中a为非负实数。

二次根式可以用分数指数表示,即a的1/2次方。

2. 二次根式的运算性质:(1)加法与减法:当二次根式的根数相同时,可以进行加法或减法运算。

例如√a + √b = √(a + b),√a - √b = √(a - b)。

(2)乘法与除法:当二次根式的根数相同时,可以进行乘法或除法运算。

例如√a × √b = √(a × b),√a / √b = √(a / b)。

3. 二次根式的化简与分解:对于二次根式而言,有时可以进行化简与分解。

例如√(a^2) = a,√(a/b) = √a / √b。

二、二次根式的化简方法1. 化简含有相同根数的二次根式:当两个二次根式具有相同根数时,可以根据运算规律进行化简。

例如√(a) × √(b) = √(a × b),√(a) / √(b) = √(a / b)。

2. 化简含有不同根数的二次根式:当两个二次根式具有不同根数时,可以通过有理化的方法进行化简。

有理化的目的是将二次根式的分母消去。

具体操作步骤如下:(1)将含有二次根式的分母有理化,即将分母中的二次根式去除。

(2)将有理化后的分母进行分配。

(3)将相同根数的二次根式合并,并进行运算。

3. 示例:化简二次根式√(15) / √(3):(1)将含有二次根式的分母进行有理化,即√(3) × √(3) = 3。

(2)有理化后的分母为3。

(3)利用有理化后的分母,进行分配运算,即(√(15) × √(3)) / 3。

(4)合并二次根式,即√(45) / 3。

(5)化简二次根式,即3√(5) / 3。

(6)最终得到化简后的结果:√(5)。

4. 注意事项:化简二次根式时,需要注意分母不能为零,同时要注意因式分解的方法,以便于简化运算步骤。

二次根式的有关概念和性质

二次根式的有关概念和性质

专题01二次根式的概念和性质(知识点考点串编)【思维导图】◎考点1:二次根式的值例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0【答案】B【解析】【分析】把0x =解题即可【详解】◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。

【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。

2.二次根式是一个非负数。

3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。

解:把0x =2=故选:B .【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是( )个A .3个B .4个C .5个D .6个【答案】B 【解析】【分析】0)a >的代数进行分析得出答案.【详解】共4个.故选:B .【点睛】0)a >的代数式,正确把握定义是解题关键.练习2.(2021·河北·结果相同的是( ).A .321-+B .321+-C .321++D .321--【答案】A【解析】【分析】根据有理数运算和二次根式的性质计算,即可得到答案.【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a -C .32a -D .23a -【答案】C【解析】【分析】由题意直接根据二次根式的性质以及去绝对值的方法,进行分析运算即可.【详解】解:∵12a <<,212132a a a a a a -=---=-+-=-.故选:C.【点睛】本题考查二次根式和去绝对值,熟练掌握二次根式的性质以及去绝对值的方法是解题的关键.◎考点2:求二次根式中的参数例.(2021·n 的最小值是( )A .2B .4C .6D .8【答案】C【解析】【分析】=,则6n 是完全平方数,满足条件的最小正整数n 为6.【详解】解:=∴6n 是完全平方数;∴n 的最小正整数值为6.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D .-1【答案】D【解析】【分析】根据非负数的性质可求出x 、y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵0x +=,∴x +2=0,y -2=0,∴x =﹣2,y =2,∴220190192=12x y -æöæöç÷è=-ç÷èøø.故选:D .【点睛】本题主要考查了非负数的性质,明确实数绝对值和二次根式的非负性以及﹣1的奇次幂的性质是解题关键.练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B .1C .7D .±1【答案】D【解析】【分析】根据二次根式的性质求出x 、y 的值,再代入求解即可.解:由题意可得:24020x x -+¹=,,解得:2x =,故3y =,则21x y -=,故2x y -的平方根是:±1.故选:D .【点睛】本题考查了关于二次根式的运算问题,掌握二次根式的性质、平方根的性质是解题的关键.练习3.(2021·全国·n 的值是( )A .0B .1C .2D .5【答案】D【解析】【分析】首先化简二次根式进而得出n 的最小值.【详解】=∴最小正整数n 的值是5.故选D .【点睛】本题考查了二次根式的定义,正确化简二次根式得出是解题的关键.例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C .x >2D .x ≠2【答案】C 【解析】◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

二次根式的概念和性质是什么

二次根式的概念和性质是什么

二次根式的概念和性质是什么一般地,形如√a的代数式叫做二次根式,其中,a 叫做被开方数。

下面是店铺给大家整理的二次根式的概念和性质简介,希望能帮到大家!二次根式的概念和性质定义如果一个数的平方等于a,那么这个数叫做a的平方根。

a可以是具体的数,也可以是含有字母的代数式。

即:若,则叫做a的.平方根,记作x= 。

其中a叫被开方数。

其中正的平方根被称为算术平方根。

关于二次根式概念,应注意:被开方数可以是数,也可以是代数式。

被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。

最简二次根式最简二次根式条件:1.被开方数的因数是整数或字母,因式是整式;2.被开方数中不含有可化为平方数或平方式的因数或因式。

二次根式化简一般步骤:1.把带分数或小数化成假分数;2.把开方数分解成质因数或分解因式;3.把根号内能开得尽方的因式或因数移到根号外;4.化去根号内的分母,或化去分母中的根号;5.约分。

算术平方根非负数的平方根统称为算术平方根,用(a≥0)来表示。

负数没有算术平方根,0的算术平方根为0。

二次根式的性质1. 任何一个正数的平方根有两个,它们互为相反数。

如正数a的算术平方根是,则a的另一个平方根为﹣ ;最简形式中被开方数不能有分母存在。

2. 零的平方根是零,即 ;3. 负数的平方根也有两个,它们是共轭的。

如负数a的平方根是。

4. 有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。

5. 无理数可用连分数形式表示,如: 。

6. 当a≥0时, ; 与中a取值范围是整个复平面。

7. [任何一个数都可以写成一个数的平方的形式;利用此性质可以进行因式分解。

8. 逆用可将根号外的非负因式移到括号内,如(a>0) , (a<0),﹙a≥0﹚, (a<0)。

9.注意:,然后根据绝对值的运算去除绝对值符号。

10.具有双重非负性,即不仅a≥0而且≥0。

二次根式的概念和性质

二次根式的概念和性质

【答案】
2 ,9 5
【解析】
2a 2b c 2a 2b c 4 2 5b c 5a 5b c 5a 25 5
3


3 12 3 3 3 12 9 36 3 6 9

12、 (2013 初二上期末大兴区)若最简二次根式
a _________
1 1 5 1 5; 16 4 16 4
4
2
4, ;
7、估计 88 的大小应( ) A.在 9.1~9.2 之间 B.在 9.2~9.3 之间 C.在 9.3~9.4 之间 D.在 9.4~9.5 之间 【答案】 C 【解析】 设 88 9 x( x是小数部分) ;则有: 9 x 88 ,即: x2 18x 7 ,得 18x 7 , x 0.38 ,
二次根式比较大小的方法 (1) a b 0 a b (2)二次根式比较大小:能直接比较大小的直接比较;不能直接比较大小的,先平方再比 较. (3)估算法 (4)分子有理化 (5)倒数法 七、二次根式的乘除 二次根式的乘除法
第 2 页,共 17 页
二次根式
二次根式的乘法法则: a b ab ( a 0 , b 0 ) . 二次根式的除法法则:
3 2 2 a 4与 6a 2 1 是同类二次根式,则 2 3
【答案】 1 【解析】 该题考查的是二次根式. 满足下列两个条件的二次根式,叫做最简二次根式: (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式. 几个二次根式化成最简二次根式后, 如果被开方数相同, 这几个二次根式叫做同类二次根式. 根据题意可列: a2 4 6a2 1 解得: a 1

二次根式知识点

二次根式知识点

二次根式知识点知识回顾:算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。

一、二次根式的概念一般地,我们把形如√a(a≥0)的式子叫做二次根式,“√”称为二次根号。

★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“√”,“√”的根指数为2,即“√2”,我们一般省略根指数2,写作“√”。

如√52可以写作√5。

(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。

(3)式子√a表示非负数a的算术平方根,因此a≥0,√a≥0。

其中a≥0是√a 有意义的前提条件。

(4)在具体问题中,如果已知二次根式√a,就意味着给出了a≥0这一隐含条件。

(5)形如b√a(a≥0)的式子也是二次根式,b与√a是相乘的关系。

要注意当b是分数时不能写成带分数,例如83√2可写成8√23,但不能写成223√2。

二、二次根式的性质:=|a|=a (a≥0)或=|a|= - a(a<0)★(√a)2(a≥0)与√a2的区别与联系:典型例题剖析题型一:二次根式有意义的条件当x取何值时,下列各式在实数范围内有意义?;(3)√x−3+√3+x(1)√x+5-√3−2x;(2)√2x−1√1−x题型二:利用二次根式的非负性化简求值已知a+√b−2=4a-4,求√ab的值。

题型三:二次根式非负性的简单应用已知实数x,y满足|x-4|+√y−8=0,则以x,y的值为两边长的等腰三角形的周长是()题型四:利用√a2=|a|并结合数轴化简求值已知实数a,b在数轴上的位置如图所示。

试化简:√a2+√b2+√(a−b)2+√(b−1)2-√(a−1)2题型五:√a2=|a|与三角形三边关系的综合应用在△ABC中,a,b,c是三角形的三边长,化简√(a−b+c)2-2|c-a-b|题型六:逆用(√a)2= a(a≥0)在实数范围内分解因式在实数范围内分解因式:(1)x-4;(2)x-4√x+4三、二次根式的乘除:1、单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

二次根式的应用

二次根式的应用

二次根式的应用二次根式是数学中重要的一种特殊形式,它在实际生活中有着广泛的应用。

本文将介绍二次根式的概念以及在几个实际场景中的具体应用。

一、二次根式的概念和性质二次根式是指具有形如√a的表达式,其中a为非负实数。

它可以用带有根号的形式表示,也可以用有理数的形式表示,具体取决于根号内的数是否为完全平方数。

二次根式的运算包括加减、乘除、化简等。

二次根式在几何上有着重要的应用,它可以表示一些与平方相关的几何问题。

例如,在解决面积、体积等问题时,常常会遇到二次根式的出现。

二、二次根式在几何中的应用1. 面积问题二次根式在计算面积问题中起到重要的作用。

例如,当我们需要计算一个圆的面积时,就需要用到半径的平方,而半径的平方可以表示为二次根式。

同样地,计算一个三角形的面积时,需要用到底边和高的乘积,其中高可以表示为二次根式。

2. 体积问题二次根式在计算体积问题中也有广泛的应用。

例如,在计算一个圆柱体的体积时,我们需要用到半径的平方和高的乘积,其中半径的平方可以表示为二次根式。

三、二次根式在物理中的应用1. 物理运动问题在物理学中,二次根式常常用于描述物体的运动状态。

例如,在自由落体运动中,物体下落的距离可以用二次根式表示。

同样地,在抛体运动中,物体的轨迹也可以用二次根式表示。

2. 波动问题二次根式在描述波动问题中也有重要的应用。

例如,在波的传播中,波的幅度通常可以用二次根式表示。

另外,在声音的传播中,声音的强度也可以用二次根式表示。

四、二次根式在工程中的应用1. 结构稳定性问题在工程领域中,二次根式可以用于研究结构的稳定性。

例如,在分析桥梁结构的承载能力时,需要用到材料的强度,而材料的强度可以用二次根式表示。

2. 电路问题二次根式在电路分析中也有着重要的应用。

例如,在求解电阻、电容等元件的阻抗时,常常会遇到二次根式的计算。

综上所述,二次根式作为数学中重要的一种特殊形式,在实际生活、几何、物理和工程等领域中都有着广泛的应用。

二次根式主要知识点

二次根式主要知识点

二次根式主要知识点二次根式是一个重要的数学概念,主要涉及到一些基本定义、性质和运算法则。

以下是关于二次根式的主要知识点的详细解释:1.二次根式的定义:对于非负实数a,它的二次根式表示为√a。

如果a是一个非负实数的平方,则√a是一个实数。

否则,√a是一个虚数。

2.二次根式的符号:一般情况下,√a表示正根式。

我们通常将正根式表示为√a=b,其中b≥0。

负根式表示为-√a=-b,其中b≥0,它们之间的关系是:-√a=√a*(-1)。

3.二次根式的基本性质:a)正根式的值总是非负实数。

b)负根式的值总是负实数或者是虚数。

c)对于任何非负实数a和b,如果a=b,则√a=√b。

d)对于任何非负实数a,(√a)^2=a。

4.二次根式的化简:当二次根式的被开方数有一个因子是一些完全平方数时,可以将其化简。

例如,√16=√(4*4)=45.二次根式的加减法:a)当两个二次根式的被开方数相同时,可以进行加减法。

例如,√5+√5=2√5b)当两个二次根式的被开方数不同时,无法进行加减法。

6.二次根式的乘法:对于任何非负实数a和b,有√(a*b)=√a*√b。

例如,√2*√3=√67.二次根式的除法:对于任何非负实数a和b,有√(a/b)=√a/√b。

例如,√6/√2=√38.混合根式:混合根式是指含有不同次方的根式。

例如,√(2+√3)。

对于混合根式,通常需要根据具体情况进行化简或者进行运算。

9.二次根式的大小比较:对于任何非负实数a和b,如果a>b,则√a>√b。

例如,√2>√110.二次根式的应用:二次根式在数学和物理等领域有广泛的应用。

例如,在几何学中,二次根式可以表示长度、面积和体积等量;在物理学中,二次根式可以表示速度、加速度和力等物理量。

总结起来,二次根式是数学中的一个重要概念,它涉及到一些基本定义、性质和运算法则,如根式的符号、基本性质、化简、加减法、乘除法、大小比较和应用等。

掌握这些知识点,有助于我们更好地理解和运用二次根式。

二次根式的定义及性质

二次根式的定义及性质

二次根式的定义及性质1、二次根式的定义形如)0(≥a a 的代数式叫二次根式(1)式子中含有二次根号“”;(2)a 可以表示数也可以表示代数式(3)二次根式)0(≥a a 表示非负数a 的算术平方根,0≥a ,即二次根式的两个非负性 二次根式的两个非负性:)0(≥a a ;0≥a ,具有非负性的还有02≥a ;0≥a ;几个非负数的和等于零,那么这几个非负数均为零。

2、二次根式的主要性质 (1)())0(2≥=a a a (2)⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2a a a aa a a3、分母有理化:把分母中的根号化去,叫做分母有理化.方法:①单项二次根式:利用a =来确定.②两项二次根式:利用平方差公式()()22b a b a ba -=-+来确定.如: aa4、最简二次根式:被开方数中不含分母,并且被开方数中不含开的尽方的因数或因式叫最简二次根式 最简二次根式的条件①号内不含有开的尽方的因数或因式,②根号内不含有分母,③分母不含有根号。

5、 同类二次根式:被开方数相同的最简二次根式叫做同类二次根式6、 乘法公式:)0,0______(≥≥=⋅b a b a ;反之:)0,0_______(≥≥=b a ab7、除法公式:)0,0______(>≥=b a ba ;反之:)0,0______(>≥=b a b a 8、合并同类二次根式:__________________;=-=+a n a m a n a m形如)0(≥a a 的代数式叫二次根式例1、下列式子中二次根式的个数有( )(1)31(2)3-(3)12+-x (4)38(5)2)31(-(6))1(1>-x x A.2个 B.3个 C.4个 D.5个【变式练习】1、下列各式中,一定是二次根式的有______________________________① a ;②z y +;③6a ;④32+x ;⑤962++x x ;⑥12-x2、222++a a 是不是二次根式?___________(填“是”或“否”)二次根式)0(≥a a 表示非负数a 的算术平方根,0≥a ,即二次根式的两个非负性例2、(2012.德阳)使代数式12-x x 有意义的x 的取值范围是( ) A.0≥x B.21≠x C.210≠≥x x 且 D.一切实数 例3、 函数1213-+-=x x y 的自变量x 的取值范围是_______________【变式练习】1、 使12--x x 在实数范围内有意义的x 的取值范围是______________ 2、(2012.杭州)已知0)3(<-a a ,若a b -=2,则b 的取值范围是___________3、若2)(11y x x x +=---,则______=-y x())0(2≥=a a a例4、计算: (1) (2) (3) (4)(b ≥0) (5)【变式练习】计算: (1); (2); (3); (4). ⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2a a a a a a a例5、化简: (1); (2); (3); (4).例6、2x =,则x 的取值范围是 。

八下数学16.1二次根式概念和性质

八下数学16.1二次根式概念和性质

2
2 3
32
2
2 3 6
2
2
(5) x xy x2 xy x2 xy x3 y
反之,a ( a ) 2 (a 0)
1.利用a ( a ) 2 (a 0) 把下列非负 数分别写成一个非负数的平方的形式。
(1)9
(2)5 (3)2.5
解:9= 92=32
解:5=
2
5
(4)0.25
x2 2x 1 = (x-1)2 = | x 1|
当x 3时,
原式= | 3-1 | = 3+1
试一试
1.计算下列各题:
2
(1) 15 (2)
1
2
5
2.若 (1 x)2 1 x ,则x的取值范围为 (
)A. x≤1 B. x≥1 C. 0≤x≤1 D.一切有理数
3.
a2

(√
a
2

a
二次根号
a 读作“根号 ”
形如 a (a 0)的式子叫做二次根式.
1.表示a的算术平方根 2. a可以是数,也可以是式. 3. 形式上含有二次根号 4. a≥0, a≥0 ( 双重非负性) 5.既可表示开方运算,也可表示运算的结果.
(1) 代数式 a 是二次根式吗?
答:代数式 a 只有在条件a≥0的情况下,才属于二次根式!
分母不为0 被开方数大于等于0 结合数轴,写出解集来
二次根式的定义:
形如 a (a 0) 的式子叫做二次根式。
二次根式有意义的条件:
a0
当a 0时,a表示a的算术平方根,故 a 0 当a=0时,a表示0的算术平方根,故 a =0
二次根式性质: a 0 , a 0 (双重非负性)

二次根式的计算与性质

二次根式的计算与性质

二次根式的计算与性质二次根式是数学中的一个重要概念,在许多数学问题的解答中经常涉及。

它的计算和性质具有一定的规律和特点。

本文将深入探讨二次根式的计算方法和性质,并结合实例进行说明。

一、二次根式的定义与基本性质二次根式是指形如√a的数,其中a为非负实数,是它的被开方数。

二次根式具有以下基本性质:1. 当a≥0时,二次根式有意义。

2. 当a>0时,√a>0。

3. 当a>b≥0时,有√a>√b。

4. 二次根式的平方等于被开方数本身。

二、二次根式的四则运算1. 二次根式的加减运算:对于二次根式√a与√b,满足以下运算规律:√a ± √b = √(a ± b)。

这意味着可以通过合并二次根式进行简化。

举例:(1)化简√8 + √2。

解:√8 + √2 = √(4 × 2) + √2 = 2√2 + √2 = 3√2。

2. 二次根式的乘法运算:对于二次根式√a与√b,满足以下运算规律:√a × √b = √(a × b)。

这意味着可以通过合并二次根式进行简化。

举例:(1)化简√3 × √5。

解:√3 × √5 = √(3 × 5) = √15。

3. 二次根式的除法运算:对于二次根式√a与√b,满足以下运算规律:√a ÷ √b = √(a ÷ b)。

这意味着可以通过合并二次根式进行简化。

举例:(1)化简√16 ÷ √4。

解:√16 ÷ √4 = √(16 ÷ 4) = √4 = 2。

三、二次根式的化简与有理化1. 化简二次根式:对于二次根式√a,可以通过确定a的因式分解式来进行化简。

举例:(1)化简√72。

解:√72 = √(2 × 2 × 2 × 3 × 3) = √(2^2 × 3^2) = 2√2 × 3 = 6√2。

二次根式

二次根式

二次根式一、定义1.二次根式:形如式子a (a ≥0)叫做二次根式。

说明:(1)二次根式的概念是从形式上界定的,必须含有二次根号“ ”,“ ”的根指数是2,一般把根指数2省略。

(2)二次根式中的被开方数既可以是一个数,又可以是一个带有字母的式子,但必须注意a ≥0是a 为二次根式的前提;(3)形如b (a ≥0)的式子也是二次根式b 与a 是相乘的关系,要注意当b 是分数时,不能写成带分数的形式。

二、性质1.二次根式的性质:(1)a (a ≥0)即一个非负数的算术平方根是一个非负数。

(2)(a )2=a (a ≥0);即一个非负数的算术平方根的平方等于它本身。

(3)==a a 2 即任意一个数的平方的算术平方根等于它本身的绝对值。

2、典型例题例1、如果 是二次根式,那么m,n 应满足的条件是( )例2、求下列二次根式中字母的取值范围例3、 - ; =例4、如果a+ =1,那么a 的取值范围是()。

例5、若化简|1-x|- 的结果是2x-5,则x 的取值范围是() 例6、要使式子有意义,则M 的取值范围是( )a (a >0)a -(a <0)0 (a =0);例7、已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()例8、已知a,b为两个连续的整数,且a>则a+b=( )例9、 + =( )例10、=·成立的条件是()+|x+y-2|=0,则x-y=()例11、如果=成立,那么()A. m≥3B. m﹥3C.0≤m≤3D. m≥0例12、已知数a,b=b-a,则 ( )A. a>bB. a<bC. a≥bD. a≤b例13、x为何值时,在实数范围内有意义()A. x>1B. x<0C. x≥1D. x≤0例14、 =3-a,则3与a的大小关系是( )A. 3>aB. 3<aC. 3≥aD. 3≤a例15、如果x<-4,那么|2- |的值是( )A. 4+xB. -xC. -4-xD. x例16、若有意义,则m能取的最小整数值是()A. m=0B. m=1C. m=2D. m=3三、化简、运算1、二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(a ≥0,b ≥0);此法可推广到多个二次根式相乘的情况即 · ·= (a ≥0,b ≥0,c ≥0)b ≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算。

二次根式性质与运算

二次根式性质与运算

(1) 2(a 1) 2a 4
xy y2 (2)
x y
(3) 1 2 1
(4) 3 5 2 3 3 52 3
【例7】 若最简二次根式 2 3
3m2 2 与 n21 4m2 10 是同类二次根式,求 m、n 的值.
计算:
【例8】
化简
1
1
1
n2 (n 1)2
,所得的结果为(

A.1 1 1 n n1
C.1 1 1 n n1
B. 1 1 1 n n1
D.1 1 1 n n1
1.【难度】1 星
【解析】二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或
0.
【答案】二次根式有: 2 、 x(x 0) 、 0 、 x y (x≥0,y≥0);不是二次根式的
(3 5 2 3)2
19 4 15
3 5 2 3 (3 5 2 3) (3 5 2 3)
11
【答案】(1) (a 1) 2a 4 ;(2) y x y ;(3) 2 1;(4) 19 4 15 .
a2
11
.7【难度】2 星
【解析】依题意,得
3m2 2 n2 1

m

2
2.
n 3 n 3 n 3
n 3
8..【难度】1 星 【解析】待选项不再含根号,从而可预见被开方数通过配方运算后必为完全平方式形式.
(1
1 )2 n

2 n

(n
1 1)2

(
n 1)2 n

2 n

(n
1 1)2

二次根式的定义和基本性质

二次根式的定义和基本性质

二次根式的定义和基本性质二次根式,也称为平方根,是数学中常见的一种运算。

它的定义和基本性质在代数学和几何学中有着广泛的应用。

本文将介绍二次根式的定义,并探讨其基本性质。

在此之前,我们先来了解一下二次根式的定义。

二次根式的定义:二次根式是指一个数的平方根,如√x表示x的平方根,其中x为一个非负实数。

当x小于0时,√x是一个虚数。

在计算平方根时,我们通常提取其中的正根,即非负实数解。

基本性质:1. 非负数的平方根:对于非负实数a,它的平方根√a是一个非负实数。

例如,√9 = 3,因为3的平方等于9。

2. 平方根的乘法:对于非负实数a和b,有以下运算规则:√(a * b) = √a * √b例如,√(4 * 9) = √4 * √9 = 2 * 3 = 63. 平方根的除法:对于非负实数a和b(b不等于0),有以下运算规则:√(a / b) = √a / √b例如,√(25 / 4) = √25 / √4 = 5 / 2 = 2.54. 平方根的加法与减法:对于非负实数a和b,有以下运算规则:√a ± √b 通常不能进行化简,可以合并成一个复合根。

例如,√2 + √3 无法化简,但可以合并为一个复合根√(2 + 3) = √55. 平方根的乘方:对于非负实数a和正整数n,有以下运算规则:(√a)^n = a^(1/n)例如,(√9)^2 = 9^(1/2) = 36. 平方根的传递性:对于非负实数a和b,如果a小于b,则√a小于√b。

例如,√4小于√9,因为4小于9。

通过以上基本性质,我们可以在实际问题中用到二次根式。

例如,在几何学中,可以通过求解平方根来计算物体的边长或面积;在代数学中,平方根可以用来求解方程的解等。

需要注意的是,对于负数的平方根,我们引入了虚数单位i。

虚数单位i定义为√(-1),它满足i^2 = -1。

负数的平方根被称为虚数,属于复数的一种。

虚数在物理学和电气工程等领域有着重要的应用。

二次根式知识点

二次根式知识点

二次根式知识点二次根式是高中数学中的重要知识点,主要涉及到二次方程、二次函数和根的性质等内容。

下面将从概念、性质、应用和解题方法等方面详细探讨二次根式相关知识,共计2000字。

第一部分:概念和性质引入二次根式的概念,首先需要明确根的定义。

根,也称为平方根,是指一个非负数b,使得b的平方等于一个给定的数a。

根的符号为√,如√a表示根号下a。

在二次根式中,被开方的数被称为被开方数或者被开方式,√a称为二次根式。

二次根式的性质包括如下几点:1. 二次根式的结果为非负数,即√a≥0。

2. 二次根式的结果可以是一个有限小数,也可以是一个无限循环小数。

3. 二次根式的运算可以进行加、减、乘、除等操作,遵循相应的运算规则。

第二部分:应用二次根式在数学中的应用广泛,下面介绍几个常见的应用场景。

1. 几何中的长度计算:在三角形或其他几何图形中,二次根式可以用来计算边长、斜边等长度。

例如,在勾股定理中,直角三角形的斜边长度就可以通过二次根式求解。

2. 物理中的速度计算:在物理中,速度的大小通常使用二次根式表示。

例如,某物体从静止开始以匀加速度运动,其速度可以表示为v=a√t,其中a为加速度,t为时间。

3. 统计中的标准差计算:在统计学中,标准差用于衡量数据的离散程度。

标准差的计算中涉及到对平方根的运算。

第三部分:解题方法解决二次根式相关问题需要掌握一些常用的解题方法。

1. 提取公因式法:当二次根式分子、分母都有相同的因式时,可以提取公因式进行简化。

例如,化简√(20/45),可以提取公因式得到√(4/9)。

2. 平方差公式:平方差公式可以用来化简一些特殊形式的二次根式。

例如,化简√(a-b)(a+b),可以利用平方差公式得到√(a^2-b^2)。

3. 有理化分母法:当二次根式的分母是一个二次根式时,可以通过有理化分母的方法来进行化简。

例如,化简1/√3,可以将分母有理化为√3/3。

4. 定理运算法:在一些复杂的二次根式运算中,可以通过引入一个合适的定理来进行化简。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的有关概念及性质
一、二次根式的有关概念:
1.二次根式:式子(a≥0)叫做二次根式。

2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式;
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式。

如不是最简二次根式,因被开方数中
含有4是可开得尽方的因数,又如,,..........都不是最简二次根式,而,
,5,都是最简二次根式。

3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根
式就叫做同类二次根式。

如, , 就是同类二次根式,因为=2,=3,
它们与的被开方数均为2。

4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两
个代数式互为有理化因式。

如与,a+与a-,-与+,互为有理化因式。

二、二次根式的性质:
1.(a≥0)是一个非负数, 即≥0;
2.非负数的算术平方根再平方仍得这个数,即:()2=a(a≥0);
3.某数的平方的算术平方根等于某数的绝对值,即=|a|=
4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即=·
(a≥0,b≥0)。

5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即=
(a≥0,b>0)。

三、例题:
例1.x为何值时,下列各式在实数范围内才有意义:
(1)(2)(3)
(4)+(5)(6)+
分析:这是一组考察二次根式基本概念的问题,要弄清每一个数学表达式的含义,根据分式和根式成立的条件去解,即要考虑到分式的分母不能为0并且偶次根号下被开方数要大于或等于零。

解:(1)∵6-x≥0,∴x≤6时原式有意义。

(2)∵x2≥0, ∴x2+3>0, ∴x取任意实数原式都有意义。

(3)
∵∴
∴当x<3且x≠-3时,原式有意义。

(4)
∵∴
∴当-≤x<时,原式有意义。

(5)

∴当x≥0且x≠1时,原式有意义。

(6)
∵∴∴x=2
∴当x=2时,原式有意义。

例2.写出下列各等式成立的条件:
(1)=-3x(2)=-mn
(3)=1+2a(4)=·
(5)-=7
分析:本题考察算术平方根的概念及二次根式的性质。

解:(1)∵=|3x|=-3x,
∴-3x≥0,3x≤0, ∴x≤0.
(2)∵==|mn|=-mn,
∴mn≤0, ∵成立,隐含m≥0,
∴m≥0且n≤0.
(3)∵=|2a+1|=1+2a
∴1+2a≥0, ∴a≥-.
(4)由题意得∴
∴x=±1.
(5)∵-
=-
=|x+5|-|2-x|=7
∴只有|x+5|=x+5, |2-x|=x-2时才成立,
∴∴∴x≥2.
例3.化简下列各式:
(1)(2)a2(m<0) (3)+|2-x|+(2<x<3)
(4)(5)(x-y)+
(6)(y<0) (7)+
分析:
在二次根式化简的题目中,若有已知条件或隐含条件,则根据已知或隐含条件化简,若没有已知条件或隐含条件时,则必须加以讨论,特别是对于开方后式中有两个绝对值以上的题目,要采取零点分段的方法逐一加以考虑。

解:(1)∵π>3, ∴=|3-π|=π-3.
(2)∵m<0, 要使有意义,则a<0,
∴a2=a2=a2·=-=-a.
(3)∵2<x<3, ∴原式=+|2-x|+
=|2-x|+|2-x|+|x-3|
=x-2+x-2+3-x=x-1.
(4)=|3x-1|=
在这里我们分3x-1≥0或3x-1<0两种情况进行了讨论。

(5)(x-y)+
∵有意义,∴y-x>0
∴原式=(x-y)·+
=+|x-y|
=+y-x=-+y-x.
(6)∵y<0,
∴原式=
=2|xy|
=-2|x|y
当x≥0时, 原式=-2xy,
当x<0时, 原式=2xy。

(7)+
=+=|4-x|+|x+1|
∵若|4-x|=0,则x=4;若|x+1|=0则x=-1,则本题需要将x的取值分成三段,即分x≤-1, -1<x<4, x≥4三段来进行讨论。

当x≤-1时,原式=4-x+(-x-1)=4-x-x-1=3-2x.
当-1<x<4时, 原式=4-x+x+1=5.
当x≥4时,原式=x-4+x+1=2x-3.
例4.把根号外的因式移至根号内:
(1)2(2)-5(3)m(m≥0)
(4)x(x≤0)(5)a
分析:本题需逆用性质=·(a≥0,b≥0)只能将根号外的正因式移至根号内。

解:(1)2=·=。

(2)-5=-·=-。

(3)∵m≥0, ∴m=·=。

(4)x(x≤0) ∴x=-·=-。

(5)∵成立,∴隐含a<0,
∴a·=-·=-=-。

例5.(1)已知:y-1=,求:x+2y的值。

(2)若+|x-2y|=0, 求:x2+y2的值。

分析:(1)观察已知条件,等式右边有两个根式,要使两个根式有意义,则
∴x=2,
∴y=1, 从而可求出x+2y的值。

(1)解:由已知可得:∴x=2, y=1
当x=2, y=1时
x+2y=2+2×1=4.
(2)解:∵+|x-2y|=0
两个非负数的和为零,则只有每个非负数都为零,
∴∴
当x=0, y=0时
∴x2+y2=0+0=0.。

相关文档
最新文档