5.2探索轴对称的性质-教案

合集下载

北师大版数学七年级下册5.2《探索轴对称的性质》教案

北师大版数学七年级下册5.2《探索轴对称的性质》教案

北师大版数学七年级下册5.2《探索轴对称的性质》教案一. 教材分析《探索轴对称的性质》这一节的内容,主要让学生了解轴对称的性质,并学会运用这些性质解决实际问题。

教材通过丰富的图片和实例,引导学生发现轴对称图形的性质,从而培养学生的观察能力、思考能力和实践能力。

二. 学情分析学生在七年级上册已经学习了轴对称的概念,对轴对称有了初步的认识。

但他们对轴对称的性质的理解还不够深入,本节课需要通过大量的实例和活动,让学生在实践中发现和总结轴对称的性质。

三. 教学目标1.知识与技能:让学生掌握轴对称的性质,并能运用性质解决实际问题。

2.过程与方法:通过观察、操作、交流等活动,培养学生发现规律、总结规律的能力。

3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决问题的能力。

四. 教学重难点1.重点:轴对称的性质。

2.难点:如何运用轴对称的性质解决实际问题。

五. 教学方法1.启发式教学:通过提问、引导,激发学生的思考。

2.情境教学:利用图片、实例,创设情境,让学生在实践中学习。

3.小组合作:引导学生分组讨论,共同解决问题。

六. 教学准备1.准备相关的图片和实例,用于引导学生发现轴对称的性质。

2.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用图片和实例,引导学生回顾轴对称的概念,激发学生对轴对称性质的兴趣。

2.呈现(10分钟)展示一系列具有对称性的图形,让学生观察并思考:这些图形有什么共同的特点?引导学生发现轴对称图形的性质。

3.操练(10分钟)让学生分组讨论,每组选择一个图形,尝试找出它的对称轴,并总结对称轴的特点。

然后,让学生尝试运用轴对称的性质解决实际问题。

4.巩固(10分钟)针对学生找出的对称轴,设计一些练习题,让学生解答,以巩固所学知识。

5.拓展(5分钟)引导学生思考:轴对称性质在实际生活中的应用。

可以让学生举例说明,也可以让学生自己设计一些应用场景。

6.小结(5分钟)对本节课的内容进行总结,强调轴对称的性质及其应用。

轴对称教案(第2课时)

轴对称教案(第2课时)
一、提出问题,引出概念
1、线段是轴对称图形吗?如果是请作出它的对称轴
二、探究归纳
1、线段的垂直平分线的定义:
我们把,叫做这条线段的垂直平分线.也叫
2、两个图形成轴对称的性质:
3、轴对称图形的性质:
4、线段垂直平分线的性质:
(1)自己动手,发现规律
(2教师演示验证结论。
(3)分析命题说出题设与结论
(4)证明命题得到性质
授课
题目
12.1轴对称
班级
授课人
微山昭阳一中
胡成伟
课时
第2课时
课型
新授课
教学目标
知识技能
1.了解两个图形成轴对称性的性质,了解轴对称图形的性质.
2.探究线段垂直平分线的性质.
过程方法
1.经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察.
2.探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力.
同学间讨论交流证明的过程。
结合几何图形并写出
已知:
求证:
证明:
性质1:
(5)合作探究性质2(要求课下完成过程同性质1)
性质2:
三、拓展应用:
解:
四、课堂过关
五、课堂小结:
六、作业:
必做:1Байду номын сангаас课本P37习题12.1 5题
2.完成线段垂直平分线的性质2的证明过程
选作:课本P38习题12.1 12题
情感态度价值观
通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力.
教学重点
1.轴对称的性质.
2.线段垂直平分线的性质.

教学设计《生活中的轴对称———探索轴对称的性质》

教学设计《生活中的轴对称———探索轴对称的性质》

教学实践新课程NEW CURRICULUM一、教材分析1.教材所处的地位“探索轴对称的性质”是七年级下册《生活中的轴对称》中的第二节内容。

本节课是对轴对称图形的性质进行探索,主要通过对轴对称图形的分析,培养学生动手、制作、实验、说理的能力,并且给了学生更多表述的机会。

本节课主要培养学生自主探索、合作交流、解决问题,并且要学生学会及时对自己的求解过程进行回顾与思考。

2.教学目标(1)知识与技能:探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等的性质。

(2)过程与方法:培养学生观察、分析能力。

(3)情感态度与价值观:通过创设情境,使学生体验数学就在身边,培养学生的审美情趣。

3.重点难点重点:(1)轴对称的性质的运用。

(2)运用轴对称的性质解决实际问题。

难点:灵活运用轴对称的性质解决实际问题。

二、教法分析鉴于教材特点及七年级学生模仿能力强、思维信赖于具体直观形象的特点,为了充分体现“以学生为主体,把课堂还给学生”的教学宗旨,结合本节课内容主要通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生“自主、合作、探究”的探究式和启发式教学法。

帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。

教学准备:多媒体,网格纸,圆规,刻度尺,量角器等。

三、教学过程设计(一)复习引入:什么是轴对称图形?什么是成轴对称的图形?二者有怎样的区别?(二)自主探究[活动一]操作(个体活动)1.师生都拿出网格纸,将网格纸对折,然后用笔尖或圆规在纸上扎出“14”这个数字。

(为了后面研究的方便,引导学生将“1,4”的转折点都扎在网格纸的格点上)再将纸打开后铺平。

C AC '12B 'E 'EBD F 34F 'D 'A 'l2.在全班展示操作活动的不同结果,利用多媒体演示结果。

北师大版七下《5.2 探索轴对称的性质》课件2

北师大版七下《5.2 探索轴对称的性质》课件2
想一想: (1)图中折痕m两旁的图形有什么关系?
m A C C1 A1
B D
E
ቤተ መጻሕፍቲ ባይዱ
E1
D1
B1
(2)连结C、C′的线段与直线m有什么关系? (3)线段AB与线段AB有什么位置关系和大小关系? (4)∠D与∠ D1有什么关系?说说你的理由.
轴对称的性质: 1.对应点连线段被对称轴垂直平分. 2.对应线段相等,对应角相等.
练一练:
1、在下列图形中,找出轴对称图形,并找 出它的两组对应点.
2.在下面的每个图形中找到轴对称图形,并
找出它的两组对应线段.
实验一: 想一想:(1)点A与点B关于直线m有什 么样的位置关系? (2)连结AB,请同学们用量角器、刻度尺度量并 判断线段AB与直线m有什么关系?
m A B
实验二:
试一试:
如图,EFGH是矩形的台球桌面,有 两球分别位于A、B两点的位置,试问 怎样撞击A球,才能使A球先碰撞台 边EF反弹后再击中B球?
解:1.作点A关于EF 的对称点A′
H
A B
G
2.连结A′B交EF于 点C则沿AC撞击黑球A ,必沿CB反弹击中白 E 球B.
C
A′
F
思考题
如图,在俯南河L边的空地上,房屋开发商准备 建一个三角形住宅小区,A、B两幢建筑物恰好 建在三角形住宅小区的两个顶点处,现要求小 区大门C建在俯河边且小区周边最短.如果你是 这个项目的总设计师,请确定出小区大门C的最 佳位置.并在图中标出. A 提示 1.小区的周边,哪 B 一条边的长度是固 C 定不变的? 2.要使小区周边最短,只需哪两边的和最短?
议一议
7 6
5
1
2 3 4
如图: 你能求出 这七个角 的和吗?

小学数学教案轴对称

小学数学教案轴对称

小学数学教案轴对称
教学目标:
1. 认识轴对称的概念;
2. 掌握轴对称的性质;
3. 能够通过观察和操作,找到图形的轴对称线;
4. 能够进行简单的轴对称作图。

教学准备:
1. 图形卡片:准备不同图形的卡片,如正方形、三角形、五角星等;
2. 练习册:准备一些练习册,让学生进行练习。

教学过程:
一、导入学习(5分钟)
教师向学生展示一些对称的图形,让学生找出它们的特点,引出轴对称的概念。

二、学习轴对称的性质(10分钟)
1. 定义轴对称,介绍轴对称的概念。

2. 讲解轴对称的性质,并示范如何找出图形的轴对称线。

三、实例演练(15分钟)
1. 让学生观察不同的图形,并找出它们的轴对称线。

2. 让学生自己尝试找出其他图形的轴对称线。

四、练习巩固(10分钟)
让学生打开练习册,完成一些关于轴对称的练习题。

五、作图练习(10分钟)
1. 让学生用直尺和圆规画出一个图形,然后找出它的轴对称线。

2. 让学生尝试画出其他图形的轴对称线。

六、课堂小结(5分钟)
教师和学生共同总结轴对称的概念和性质,巩固学习内容。

七、作业布置:
布置作业:让学生回家继续练习寻找图形的轴对称线,完成相关练习题。

5.2探索轴对称的性质课件(共13张PPT)

5.2探索轴对称的性质课件(共13张PPT)
5.2 探索轴对称的性质
情境引入
做一做: (1)在练习纸上画一个△ABC,在三角形外画直线MN,
沿MN折纸,用钉子钉出点A、B、C的对应点A’、B’、C’,
展开后画出△A’B’C’,并连结AA’,BB’,CC’。
(2)度量BQ、B’Q、CS、C’S、∠BQP、
∠CSN。你有什么发现,与同学进行交流。
(3)△ABC与△A’B’C’关于MN对称 ,则 △ABC≌△A’B’C’因此对应边、对应,连结AA交MN于P,那么△ABC 与△A’B’C’沿MN折叠后 ,点A与A’重合,于是 有AP=AP’,∠MPA=∠MPA’=90°。 也就是MN垂直平分AA’。 现在你能描述轴对称 的性质吗?
做一做
观察图7-6的轴对称图形: (1)找出它的对称轴。 (2)连接点A与点A’的线段与对称轴有什么关系? 连接点B与点B’的线段呢?
(3)线段AD与线段A’D’有什么关系?线段BC与 线段B’C’呢?为什么? (4)∠1与∠2有什么关系?∠3与∠4呢?说说你 的理由。
在图中,沿对称轴对折后,点A与点A’重合, 称点A关于对称轴的对应点是点A’.类似地, 线段AD关于对称轴的对应线段是线段 A’D’,∠3关于对称轴的对应角是∠4。
对应点所连的线段被对称轴垂直平分。
对应线段相等,对应角相等。
课堂小结
轴对称的性质:
1、对应点所连的线段被对称轴垂直平分。
2、对应线段相等,对应角相等。
巩固训练 1、在下列图形中,找出轴对称图形,并找出 它的两组对应点。
2、下图是在方格纸上画出的一棵树的一半, 以树干为对称轴画出树的另一半。
3、用笔尖扎重叠的纸可以得到下面 的两个图案 。
成轴对称
(1)找出它的两对对应点、两条对应线段和两 个对应角。 (2)用测量的方法验证你找到的对应点所连线 段分别被对称轴垂直平分。

北师大版七年级数学下册 5.2 《探索轴对称的性质》教学课件(共31张ppt)

北师大版七年级数学下册 5.2 《探索轴对称的性质》教学课件(共31张ppt)
称轴垂直平分,对应线段相等课,对堂应小角相结等.
2.画轴对称图形的步骤: (1)确定对称轴; (2)根据对称轴确定关键点的对称位置; (3)将找到的对称点顺次连接起来.
再见
D'
B
E
E'
B'
活动2.右图是一个轴对称图形:
D
(1)你能找出它的对称轴吗?
3
(2)连接点A与点A1的线段探与对究称轴新有知A B
C
什么关系?连接点B与点B1的线段呢?
D1
4
A1
C1 B1
(3)线段AD与线段A1D1有什么关系?线 段BC与B1C1呢?为什么?
12
(4)∠1与∠2有什么关系? ∠ 3与∠4呢?说说你的理由?
纸打开后铺平.如图
A
D B
C
1
3
F
E
C'
2
4
F'
E'
A'
D' B'
A
C
1
C'
A'
2
问(题 轴对1:称两)个“14”有什探么关究系新? 知B D
3
F
E
4
F'
E'
D' B'
问题2:在上面扎字的过程中,点E与点E′重合,点F与点F′重 合.设折痕所在直线为l,连接点E与点 E′的线段与l有什么关系?点F与 点F′呢?
6cm2

∴h=4 .
随堂练习
5.如图,已知牧马营地在M处,每天牧马人要 赶着马群先到河边饮水,再到草地吃草,然后
回到营地,试设计出最短的放牧路线.
随堂练习
解:以河为对称轴作M的对称点 ,过 作草地的 垂线,垂线和河的交点H就是所求的点.

探索轴对称的性质 教学设计

探索轴对称的性质 教学设计

第五章生活中的轴对称2 探索轴对称的性质一、教学目标1.探索轴对称的基本性质,掌握对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。

2.通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。

3.通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的情趣。

教学重点:1.掌握轴对称的性质。

2.运用轴对称的性质解决实际问题。

教学难点:灵活运用轴对称的性质解决实际问题。

教学方法:为了充分体现“以学生为主体”的教学宗旨,结合本节课内容主要采取了“自主、合作、探究”的探究式和启发式教学法。

教学手段和教具准备:长方形白纸一张,圆规一个,并运用了现代多媒体教学平台。

三、教学设计分析本节课设计了七个环节:复习引入、探索发现、巩固新知、能力拓展、课堂小结、布置作业、板书设计。

第一环节复习引入活动内容:(1)提问:什么样的图形是轴对称图形?怎么判断两个图形成轴对称?轴对称图形:如果一个图形沿某条直线对折后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形。

这条直线叫这个图形的对称轴。

轴对称:对于两个图形,把一个图形沿着某一条直线对折,如果它能够与另一个图形完全重合,那么就说这两个图形成轴对称。

这条直线是对称轴(幻灯片给出答案)。

(2)观察动画后回答1、动画(1)中的两个三角形有什么关系?2、动画(2)中的三角形是个什么图形?)活动目的:轴对称图形和两个图形成轴对称是学生比较容易混淆的概念,而本节课是探索轴对称的性质,实际上是以上两者都具备的性质,因此先对轴对称图形和两个图形成轴加强学生的学习目的。

实际教学效果:学生的学习目标得到了明晰,大大提高了课堂效率。

第二环节探索发现活动内容:各小组派代表展示自己课前所做的“14”,再结合幻灯片引导学生探索得到本节课的核心内容——轴对称的基本性质:对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2探索轴对称的性质-教案
第五章生活中的轴对称
2 探索轴对称的性质
一、学生起点分析
学生的知识技能基础:在本章前面一节课中,学生已经认识了轴对称现象,学习了轴对称的概念,加强了对图形的理解和认识,为接下来的学习奠定了知识和技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些认识轴对称以及轴对称图形的活动,解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析
本节课是对轴对称图形的性质进行探索,主要是通过对轴对称图形的分析,培养学生动手、制作、实验、说理的能力,并且给了学生更多表述的机会。

本节课主要培养学生自主探索、合作交流、解决问题,并且要学生学会及时对自己的求解过程进行回顾与思考。

具体地,本节课的教学目标是:
1.探索轴对称的基本性质,掌握对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。

2.通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。

3.通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的情趣。

教学重点:1.掌握轴对称的性质。

2.运用轴对称的性质解决实际问题。

教学难点:灵活运用轴对称的性质解决实际问题。

教学方法:为了充分体现“以学生为主体”的教学宗旨,结合本节课内容主要采
取了“自主、合作、探究”的探究式和启发式教学法。

活动内容:
1.如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。

2.图⑴是轴对称图形,根据轴对称图形的性子,你可以得到相等的线段是,相等的角是。

3.两个图形关于某直线对称,对称点一定在()
A.这直线的两旁B.这直线的同旁
C.这直线上D.这直线两旁或这直线上
4.轴对称图形沿对称轴对折后,对称轴两旁的部

分 ( )
A.完全重合B.不完全重合 C.两者都有
5.下面说法中正确的是()
A.设A,B关于直线MN对称,则AB垂直平分MN。

B.如果△ABC≌△DEF,则一定存在一条直线MN,使△ABC与△DEF关于MN对称。

C.如果一个三角形是轴对称图形,且对称轴不止一条,则它是等边三角形。

D.两个图形关于MN对称,则这两个图形分别在MN的两侧。

6. 已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A,C是对称点,则l垂直平分线段AC;④若B,D是对称点,则PB=PD 。

其中正确的结论有()
A. 1个
B. 2个
C. 3个
D. 4个
7.若直角三角形是轴对称图形,这个三角形三个内角的度数为。

活动目的:对本节知识进行巩固练习。

实际教学效果:学生基本都能准确完成本环节的内容,并且已基本掌握了轴对称的基本性质。

3、4、5、6都是概念性问题,应引导学生从两方面入手:(1)运用书上的概念加以判断;(2)肯于动手按要求画出图形再加以判断。

第7题由于有了多媒体的动画展示,学生会比较容易解决。

第四环节能力拓展
活动内容:
1.已知点A 、B 是直线MN 同侧两点。

点A 1、A 关于直线MN 对称。

连接A 1B 交直线MN 于点P,连接AP 。

(1)如图(2)若A 1B =5cm ,则AP+BP 的长为 5cm 。

(2)如图(3)若P 1为直线MN 上任意一点(不与P 重合),连结AP 1、BP 1, 试说明 AP 1+BP 1>AP+BP 。

(3)某乡为了解决所辖范围内张家村A 和李家村B 的饮水问题,决定在河MN 边打开一个缺口P 将河水引入到张家村A 和李家村B 。

为了节约资金,使修建的水渠最短,应将缺口P 修建在哪里?请你利用所学知识解决这一问题,并用红色线段画出水渠。

2.如图(5),已知点P是∠AOB 内任意一点,点P1,P关于OA 对称,点P2,P关于OB 对称。

连接P 1P 2,分别交OA ,OB 于C ,D 。

连接PC ,PD 。

若P 1P 2=10cm ,则△PCD 的周长为10cm 。

3.如图(6),△ABC 与△DEF 关于直线l 成轴对称
①请写出其中相等的线段;
②如果△ABC 的面积为6cm,且DE=3cm ,求△ABC 中AB 边上的高h 。

解:① AB=DE 、AC=DF 、BC=EF
A B
P A 1
N M
(2
(4A
1
A B P N M
P 1
( A
B P A 1
N M
(4)
A
B
C F
D
E
l
(6)
(5)

活动目的:通过由浅入深的习题设置,让学生在收获成功体验的同时突破难点,同时让学生体会到学习数学的意义——数学来源于生活,应用于生活。

此处留给学生充分的时间与空间去思考、动手、讨论,培养学生对某个问题作出正确判断、合理决策的能力,使学生在合作学习的过程中不仅学会如何应用所学知识,更增加了学生们的合作意识。

实际教学效果:由于习题的设置有明显的梯度,绝大部分学生都收获了成功体验,比较轻松的突破了本节课的难点,从而大大激发了学生的学习热情,起到了非常理想的效果。

第五环节 课堂小结
活动内容:师生互相交流总结这节课的体会,重新回顾这节课的知识点以及新知识点应用方面的一些技巧。

活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想包括在研讨活动中的收获(学生畅所欲言,教师给予鼓励)。

实际教学效果:学生畅所欲言自己的切身感受与实际收获,并再次感受到了合作学习的快乐。

第六环节 布置作业
1.独立完成习题5.2 知识技能:第1题、第2题;问题解决第1题、第2题。

2.小组合作探究联系拓广:第1题。

四、教学设计反思
1.对于教材的应用
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整,课件也只是一种辅助工具,应用时不宜过于受两者的拘束。

应以学生为出发点,根据不同学生的不同特点来决定如何应用教材以及课件上的内容。

2.相信学生并为学生提供充分展示自己的机会
新型课堂决定了学生是学习的主人,不仅仅在于接受老师所教授的,更应
2
2
331
62
4ABC DE cm
AB DE cm
S AB h cm h cm =∴===•=∴=
注重培养学生自己发现探索新知识及运用新知识能力。

这要求老师要充分的相信学生,把课堂还给学生。

3.注意改进的方面
在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。

教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。

根据不同学生的不同特点应注意适当增减内容以保证课堂教学的顺利完成。

相关文档
最新文档