《有理数及其运算》单元测试题

合集下载

有理数及其运算单元测试卷及答案

有理数及其运算单元测试卷及答案

第二章 有理数及其运算2. 1 数怎么不够用了一、基础训练1、像5,1.2,21,…这样的数叫做 数;在正数的前面加上“-”号的数叫做 数。

2、0既不是______数,也不是______数。

3、______数和_______数统称有理数。

4、如果上升4m 记作+4m ,那么下降3m 记作__________。

5、如果盈利70元,记作+70元,那么亏损50元记作___________。

6、如果-15人表示缺少劳动力15人,那么+25人表示_____________________。

7、如果零上50C 记作+50C ,那么零下30C 记作________。

8、把下列各数填在相应的大括号:2,-0.3,0,+5,32- 正数集合{} ; 负数集合{}二、能力训练1、东、西为两个相反方向,如果-7米表示一个物体向西运动7米,那么+5米表示 _________,物体原地不动记作_______。

2、下列说法错误的是( )A 、零不是整数B 、-3是负有理数C 、-0.15是负分数D 、-2.17是负小数。

3、下表记录了某星期内股市的升跌情况,请完成下表:4、把下列各数分别填入相应集合的大括号里:+5,-7,23,-0.3,0, -32,8, 17,531+ 整数集合:{ } 分数集合:{ } 正数集合:{ } 负数集合:{}2. 2 数 轴一、基础训练1、数轴的三要素是______、 _________、 __________。

2、在数轴上原点表示的数是_____,原点右边表示的数是______数,原点左边表示的数 是_________数。

3、-1.3的相反数是_________。

4、41与________互为相反数。

0的相反数是_________。

5、数轴上离开原点5个单位的点表示的数是_____________。

6、指出数轴上A 、B 、C 、D 、E 各点分别表示的有理数,并用“<”将它们连接起来。

北师大版(2024版)七年级上册数学 第2章 有理数及其运算单元测试卷 ( 含答案)

北师大版(2024版)七年级上册数学 第2章 有理数及其运算单元测试卷 ( 含答案)

北师大版(2024版)七年级(上)数学单元测试卷第2章《有理数及其运算》满分120分时间100分钟题号得分一、选择题(共10题;共30分)1.−110的绝对值是( )A.110B.10C.−110D.−102.如果“亏损5%”记作−5%,那么+3%表示( )A.多赚3%B.盈利−3%C.盈利3%D.亏损3%3.如图,数轴上点P表示的数是( )A.-1B.0C.1D.24.2023年3月13日,十四届全国人大一次会议闭幕后,国务院总理李强在答记者问时表示,我们国家现在适合劳动年龄人口已经有近9亿人,每年新增劳动力是1500万人,人力资源丰富仍然是中国一个巨大优势或者说显著优势.其中1500万用科学记数法表示为( )A.1.5×103B.1500×104C.1.5×106D.1.5×1075.如图,数轴上的点A,B,C,D表示的数与−13互为相反数的是( )A.A B.B C.C D.D6.下列各式中,计算结果最大的是( )A.3+(−2)B.3−(−2)C.3×(−2)D.3÷(−2)7.式子−2−1+6−9有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是( )A.只有读法一正确B.只有读法二正确C .两种读法都不正确D .两种读法都正确8.用“▲”定义一种新运算:对于任何有理数a 和b ,规定a▲b =ab +b 2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A .−4B .4C .−8D .89.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A .a >0,b >0B .a >0,b <0C .a ,b 同号D .a ,b 异号,且正数的绝对值较大10.已知有理数a ,b ,c 在数轴上的位置如图所示,则a 2|a 2|−|b |b−c |c |=( )A .−1B .1C .2D .3二、填空题(共6题;共18分)11.既不是正数也不是负数的数是 . 12.−25 的倒数是 .13.某天最高气温为6℃,最低气温为−3℃.这天的温差是 ℃.14.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.15.比较大小:−|−8| −42.(填“>”“ <”或“=”)16.数轴上的A 点与表示−3的点距离4个单位长度,则A 点表示的数为 .三、解答题(共9题;共72分)17.(6分) 把下列数填在相应的集合内.−56,0,-3.5,1.2,6.(1)负分数集合:{}.(2)非负数集合:{ }.18.(8分)计算:(1)(−7)+13−5;(2)(−14)−(−34)−|12−1|.19.(6分)阅读下面的解题过程,并解决问题.计算:53.27−(−18)+(−21)+46.73−(+15)+21.解:原式=53.27+18−21+46.73−15+21…①=(53.27+46.73)+(21−21)+(18−15)…②=100+0+3…③=103(1)第①步经历了哪些转变:_____,体现了数学中的转化思想,为了计算简便,第②步应用了哪些运算律:_______.(2)根据以上解题技巧进行计算:−2123+314−(−23)−(+14).20.(8分)已知算式“(−2)×4−8”.(1)请你计算上式结果;(2)嘉嘉将数字“8”抄错了,所得结果为−11,求嘉嘉把“8”错写成了哪个数;(3)淇淇把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?21.(8分)如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是 ,点B表示的数是 .(2)点C表示的数是−13,点D表示的数是−1,请在数轴上分别画出点C和点D的位置.(3)将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.22.(8分)一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?23.(8分)如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A→B(+1,+3);从C 到D 记为:C→D(+1,−2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A→C ( , );C→B ( , ).(2)若甲虫的行走路线为:A→B→C→D→A ,请计算甲虫走过的路程.24.(8分)(1)如果a ,b 互为相反数(a ,b 均不为0),c ,d 互为倒数,|m |=4,则b a =______,求a +b 2024−cd +b a ×m 的值;(2)若实数a ,b 满足|a |=3,|b |=5,且a <b ,求a +13b 的值.25.(12分) 学习了绝对值的概念后,我们知道一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,即当a ≥0时,|a|=a ;当a <0时,|a|=−a .请完成下面的问题:(1)因为3<π,所以3−π<0,|3−π|=−(3−π)= ;(2)若有理数a <b ,则|a−b|= ;(3)(6分)计算:|13−12|+|14−13|+|15−14|+⋯+|12022−12021|+|12023−12022|参考答案一、选择题1.A 2.C 3.A 4.D 5.D 6.B 7.D 8.A 9.D 10.B二、填空题11.0 12.- 52 13.9 14.8 15.> 16.−7或1三、解答题17.(1)解:负分数集合:{−56,−3.5⋅⋅⋅}.(2)解:非负数集合:{0,1.2,6⋅⋅⋅}18.(1)解:(−7)+13−5=6−5=1(2)解:(−14)−(−34)−|12−1|=(−14)+34−|−12|=12−12=0.19.(1)去括号,省略加号;加法交换律、结合律(2)−1820.(1)−16(2)嘉嘉把“8”错写成了3(3)淇淇的计算结果比原题的正确结果大1021.(1)23;213(2)解:如图.(3)解:由数轴可知,213>22>−13−122.(1)解:如图所示,(2)解:|12|+|−8|+|4|=24km ,这个数据的实际意义是出租车行驶的总路程为24km.23.(1)+3;+4;-2;-1(2)如图所示,∵A→B =3+1=4,B→C =1+2=3,C→D =1+2=3,D→A =2+4=6.∴AB +BC +CD +DA =4+3+3+6=16.∴甲虫走过的路程为16.24.(1)−1,−5或3;(2)a +13b 的值是143或−4325.(1)π−3(2)b−a(3)解:原式=12−13+13−14+14−15+⋯+12021−12022+12022−12023=12−12023=20214046。

有理数及其运算单元测试题

有理数及其运算单元测试题

有理数及其运算单元测试题一、选择题(每小题3分,共30分) 1.若规定向东走为正,则-8 m 表示( ) A .向东走8 m B .向西走8 m C .向西走-8 m D .向北走8 m2.数轴上点A ,B 表示的数分别为5,-3,它们之间的距离可以表示为( ) A .-3+5 B .-3-5 C .|-3+5| D .|-3-5| 3.下面与-3互为倒数的数是( ) A .-13 B .-3 C.13D .34.如图1,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是( )图15.国家提倡“低碳减排”.某公司计划在海边建风能发电站,发电站年均发电量为213000000度,将数据213000000用科学记数法表示为( )A .213×106B .21.3×107C .2.13×108D .2.13×1096.下列说法错误的有( ) ①-a 一定是负数; ②若|a |=|b |,则a =b ; ③一个有理数不是整数就是分数; ④一个有理数不是正数就是负数. A .1个 B .2个 C .3个 D .4个7.如图2所示,数轴上两点A ,B 分别表示有理数a ,b ,则下列四个数中最大的是( )图2A.a B .b C.1a D.1b8.已知x -2的相反数是3,则x 2的值为( ) A .25 B .1 C .-1 D .-259.把一张厚度为0.1 mm 的纸对折8次后的厚度接近于( ) A .0.8 mm B .2.6 cm C .2.6 mm D .0.18mm10.在某一段时间内,计算机按如图3所示的程序工作,如果输入的数是2,那么输出的数是( )图3A.-54 B .54 C .-558 D .558 请将选择题答案填入下表:第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共18分)11.-2的相反数是________,-0.5的倒数是________. 12.绝对值小于2018的所有整数之和为________.13.如图4所示,有理数a ,b 在数轴上对应的点分别为A ,B ,则a ,-a ,b ,-b 按由小到大的顺序排列是________________.图414.若两个数的积为-20,其中一个数比-15的倒数大3,则另一个数是________.15.若数轴上的点A 表示的有理数是-3.5,则与点A 相距4个单位长度的点表示的有理数是__________.16.若|x|=5,y 2=4,且xy<0,则x +y =________.三、解答题(共72分)17.(6分)把下列各数填入相应的集合中:-3.1,3.1415,-13,+31,0.618,-227,0,-1,-(-3).正数集合:{ …}; 整数集合:{ …}; 负数集合:{ …}; 负分数集合:{ …}.18.(6分)画出数轴,用数轴上的点表示下列各数,并用“<”将它们连接起来. -5,2.5,-52,0,312.19.(8分)计算:(1)-24×⎝ ⎛⎭⎪⎫-56+38-112; (2)-9+5×(-6)-(-4)2÷(-8);(3)0.25×(-2)2-⎣⎢⎡⎦⎥⎤4÷⎝ ⎛⎭⎪⎫-232+1+(-1)2018; (4)-42÷⎝ ⎛⎭⎪⎫-135-⎣⎢⎡⎦⎥⎤56×⎝ ⎛⎭⎪⎫-34-⎝ ⎛⎭⎪⎫-123.20.(8分)规定一种新的运算:a ☆b =a ×b -a -b 2+1,例如:3☆(-4)=3×(-4)-3-(-4)2+1.请你计算下列各式的值:(1)2☆5; (2)(-2)☆(-5).21.(10分)某食品厂从生产的袋装食品中抽出20袋样品,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数表示,数据记录如下表:(1) 样品的平均质量比标准质量多还是少?多或少多少克?(2)(2若标准质量为每袋450克,则抽检的总质量是多少克?22.(10分)在数轴上有三个点A,B,C,回答下列问题:图523.(12分)一名足球守门员练习折返跑,从球门线出发,向前记为正,返回记为负,他的记录如下(单位:米):+5,-3,+10,-8,-6,+12,-10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线的最远距离是多少?(3)守门员全部练习结束后,他共跑了多少米?24.(12分)在数轴上点A表示数a,点B表示数b,点C表示数c,b是最小的正整数,且a,c 满足|a+2|+(c-7)2=0.(1)填空:a=________,b=________,c=________;(2)画出数轴,并把A,B,C三点表示在数轴上;(3)P是数轴上任意一点,点P表示的数是x,当PA+PB+PC=10时,x的值为多少?1.B 2.D 3.A 4.C 5.C 6.C 7.D 8.B 9.B 10.C 11.2 -2 12.0 13.-a <b <-b <a 14.10 15.-712或1216.3或-317.解:正数集合:{3.1415,+31,0.618,-(-3),…}; 整数集合:{+31,0,-1,-(-3),…}; 负数集合:{-3.1,-13,-227,-1,…};负分数集合:{-3.1,-13,-227,…}.18.图略 -5<-52<0<2.5<31219.(1)13 (2)-37 (3)-8 (4)101220.解:(1)2☆5=2×5-2-52+1=-16.(2)(-2)☆(-5)=(-2)×(-5)-(-2)-(-5)2+1=-12.21.解:(1)[(-5)×1+(-2)×4+0×3+1×4+3×5+6×3]÷20=1.2(克). 答:样品的平均质量比标准质量多,多1.2克.(2)20×450+[(-5)×1+(-2)×4+0×3+1×4+3×5+6×3]=9024(克). 答:若标准质量为每袋450克,则抽检的总质量是9024克. 22.(1)-1 (2)0.5 (3)-323或-923.解:(1)因为(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0, 所以守门员最后回到了球门线的位置. (2)因为5+(-3)=2, 2+10=12,12+(-8)=4,4+(-6)=-2,-2+12=10,10+(-10)=0, 所以守门员离开球门线的最远距离为12米.(3)|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=54(米). 答:他共跑了54米.24.解:(1)由题意可知a +2=0,c -7=0, 解得a =-2,c =7.因为b 是最小的正整数,所以b =1. 故答案为-2,1,7.(2)画出数轴如图所示:(3)因为PA +PB +PC =10,所以|x +2|+|x -1|+|x -7|=10. 当x ≤-2时,-x -2+1-x +7-x =10, 解得x =-43(舍去).当-2<x ≤1时,x +2+1-x +7-x =10, 解得x =0.当1<x ≤7时,x +2+x -1+7-x =10, 解得x =2.当x >7时,x +2+x -1+x -7=10, 解得x =163(舍去).综上所述,当PA +PB +PC =10时,x 的值是0或2.。

第二章 有理数及其运算(单元测试)(考试版)

第二章 有理数及其运算(单元测试)(考试版)

第2章有理数及其运算(单元重点综合测试)时间:120分分数:120分一、单项选择题(每题3分,共12题,共计36分)1.(2022•怀化)﹣的相反数是( )A.B.2C.﹣2D.﹣2.(2022秋•礼县月考)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心,据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( )A.5×109千克B.50×109千克C.5×1010千克D.0.5×1011千克3.(2022秋•江都区校级月考)如果|a|=﹣a,下列成立的是( )A.a>0B.a<0C.a≥0D.a≤04.(2022秋•思明区校级月考)若x的相反数是3,|y|=5,则x+y的值为( )A.﹣8B.2C.8或﹣2D.﹣8或25.(2022秋•忠县校级月考)有理数a、b在数轴上的对应的位置如图所示,则( )A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>06.(2022秋•港闸区校级月考)下列各组数中,互为相反数的是( )A.2与B.﹣1与(﹣1)2C.(﹣1)2与1D.2与|﹣2|7.(2022秋•景县校级月考)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差( )A.0.8kg B.0.6kg C.0.5kg D.0.4kg8.(2021秋•砚山县期末)若|m﹣3|+(n+2)2=0,则m+2n的值为( )A.﹣4B.﹣1C.0D.49.(2022秋•临沭县校级月考)把﹣6﹣(+7)+(﹣2)﹣(﹣9)写成省略加号和括号的形式后的式子是( )A.﹣6﹣7+2﹣9B.﹣6+7﹣2﹣9C.﹣6﹣7﹣2+9D.﹣6+7﹣2+910.(2022秋•平潭县校级期中)若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为( )A.B.99!C.9900D.2!11.(2021秋•荔城区期末)若a<0,则2a+5|a|等于( )A.3a B.﹣3a C.7a D.﹣7a12.(2022秋•启东市校级月考)把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是( )A.﹣7B.﹣1C.5D.11二、填空题(每题2分,共6题,共计12分)13.(2021秋•丹棱县期末)用“>”或“<”符号填空:﹣7 ﹣9.14.(2022秋•临沭县校级月考)若0<a<1,则a,a2,的大小关系是 .15.(2022秋•沭阳县校级月考)在数轴上与﹣3的距离等于4的点表示的数是 .16.(2022秋•九龙坡区校级月考)定义a※b=a2﹣b,则(1※2)※3= .17.(2022秋•北仑区期中)喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如图所示,这样捏合到第 次后可拉出128根面条.18.(2022秋•肥东县校级月考)若三个非零有理数a,b,c满足++=1,则= .三、综合题(共8题,共计72分)19.(8分)(2022秋•紫金县期中)把下列各数分类,并填在表示相应集合的大括号内:﹣11,,﹣9,0,+12,﹣6.4,﹣π,﹣4%.(1)整数集合:{ …};(2)分数集合:{ …};(3)非负整数集合:{ …};(4)负有理数集合:{ …}.20.(8分)(2022秋•常宁市期末)计算:(1)﹣21+17﹣(﹣13)(2)﹣14﹣6÷(﹣2)×(﹣)221.(8分)(2022秋•临沭县校级月考)把下列各数表示在数轴上,然后把这些数按从大到小的顺序用“>”连接起来.0,1,﹣3,﹣(﹣0.5),﹣|﹣|,+(﹣4).22.(8分)(2022秋•岳阳楼区月考)宜宾叙州区水泥厂仓库6天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库):+50、﹣45、﹣33、+48、﹣49、﹣36.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付多少元装卸费.23.(10分)(2022秋•麒麟区校级期末)以48.0千克为标准体重测量7名学生的体重,把超过标准体重的千克数记为正数,不足的千克数记为负数,将其体重记录如下表:学生1234567与标准体重之差(千克)﹣2.8+1.7+0.8﹣0.5﹣0.2+1.2+0.5(1)最接近标准体重的是 学生(填序号).(2)最大体重与最小体重相差 千克.(3)求7名学生的平均体重.24.(10分)(2022秋•旌阳区校级月考)观察下列三行数并按规律填空:﹣1,2,﹣3,4,﹣5, , ,…;1,4,9,16,25, , ,…;0,3,8,15,24, , ,…(1)第一行数按什么规律排列?(2)第二行数、第三行数分别与第一行数有什么关系?(3)取每行数的第10个数,计算这三个数的和.25.(10分)(2022秋•德城区校级月考)如图,某快递员要从公司点A出发,前往B、C、D 等地派发包裹,规定:向上向右走为正,向下向左走为负,并且行走方向顺序为先左右再上下.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,请根据如图完成如下问题:(1)A→C( , ),B→D( , ),C→D(+1, );(2)若快递员的行走路线为A→B→C→D,请计算该快递员走过的路程;(3)若快递员从A处去某P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.26.(10分)(2022秋•南海区校级月考)(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离= ;B,C两点间距离= ;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离= ;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问:①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?。

有理数及其运算单元测试题(含答案)

有理数及其运算单元测试题(含答案)

有理数及其运算单元测试题一、判断题:1.x+5一定比x -5大。

( )2.+(—3)既是正数,又是负数. ( )3.a 是有理数,—a 一定是负数. ( )4.任何正数都大于它的倒数. ( )二、填空题:1. 、 统称有理数.2.倒数与它本身相等的数是 .3.若1=a a ,则a 0;若1-=a a ,则a 0. 4.43-的相反数的倒数是 ,-(-5)的倒数的绝对值是 . 5.若=->a b b a 2,2则 .6.已知a <2,则|a -2|=4,则a 的值是 .三、选择题:1.下列说法错误的是( )(A ) 整数的相反数一定是整数 (B ) 所有的整数都有倒数(C ) 相反数与本身相等的数只有0 (D ) 绝对值大于1而不大于2 的整数有±22.若两个有理数的和为负,那么这两个有理数( )(A )都为负 (B )一个为零,另一个为负 (C )至少有一个为负 (D ) 异号3.计算)34()43(43-⨯-÷-,其结果是( ) (A )43- (B )43 (C )34- (D )341. )6.2(2.4)5.3()3(0-----+- 2. 32432131+--3. )6(363528-⨯ 4.)2(8325.0-÷÷-5.911)325.0(321÷-⨯-七、求值:.1. 已知|a |=3,|b|=5,|a -b|=b -a ,且ab <0,求a +b 与a -b 的值.2. 已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2 .试求代数式x 2-(a +b +cd )x +(a +b )2004+(-cd )2003的值.3※.三个有理数0,0,,,>++<c b a abc c b a .当c cb ba ax ++=时,求x 19-92x +2的值.。

有理数及其运算测试题含答案

有理数及其运算测试题含答案

有理数及其运算 单元检测试题 一、试试你的身手(每小题3分,共30分) 1.离太阳最远的冥王星和海王星是非常寒冷的世界。

冥王星的背阴面温度低至-2530C ,向阳面也只有-2230C.冥王星背阴面的温度比向阳面的温度低 。

2. 一种零件,标明直径的要求是φ04.003.050+-,这种零件的合格品最大的直径是 ,最小的直径是 。

3. 点A 在数轴上距原点3个单位长度,且位于原点左侧,若将A 点向右移动4个单位长度,再向左移动2个单位长度,此时A 点表示的数是 。

4. 有理数512-,436+,548-的代数和比这三个数的绝对值的和小_____。

5. 已知|a -3|+24)(+b =0,则2003)(b a += 。

6. 计算(-2)2004+(-2)2003的结果是 。

7. 规定一种运算:a *b=ba ab +,计算2*(-3)的值 。

8.在你使用的计算器上,开机时应该按键 ,当计算按键为 时,虽然出现了错误,但不需要清除,补充按键 就可以了。

9. 100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 ____ 个。

10. 将下面的四张扑克牌凑成24,结果是 =24。

二、相信你的选择(每小题3分,共30分)1.在下列各数:)2(+-,23-,315231200124------,)(,,)(中,负数的个数是( )个; A.2 B.3 C.4 D.52. 关于―(―a )2的相反数,有下列说法:①等于a 2;②等于(―a )2;③值可能为0;④值一定是正数。

其中正确的有( )A.1个B.2个C.3个D.4个3. 北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如下:如果将两地国际标准时间的差简称为时差,那么( )A.汉城与纽约的时差为13小时B.汉城与多伦多的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时4.正整数中各位数字的立方和与其本身相等的数称为自恋数.例如153,13+53+33=153,因此,153被称为自恋数,下列各数中为自恋数的是( )①370 ②407 ③371 ④546A.①②③B.①②④C.②③④D.①②③④5. 已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1, p 是数轴到原点距离为1的数,那么122000++++-m abcdb a cd p 的值是 ( ) A.3 B.2 C.1 D.06. 学校为了改善办学条件,从银行贷款100万元,盖起了实验大楼,贷款年息为12%,房屋折旧每年2%,学校约1400名学生,仅贷款付息和房屋折旧两项,每个学生每年承受的实验费用为( )A.约104元B.1000元C.100元D.约21.4元7. 有理数a 在数轴上的位置如图所示,化简|a +1|的结果是( )A .a +1B .―a +1C .a ―1D .―a ―18.下列各对数中,数值相等的是( )A.-32与-23B.(-3)2与-32C.-23与(-2)3D.(-3×2)3与-3×239.计算 -0.32÷0.5×2÷(-2)3的结果是( )A.1009B. -1009C.2009D. -200910. 某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是( )A.30吨B.31吨C.32吨 D.33吨三、挑战你的技能(本大题共28分)1.(7分)()223453416522315-⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-+-÷ 2.(7分)议一议,观察下面一列数,探求其规律: -1,21,-31,41,-51,61…… (1)填出第7,8,9三个数; , , .(2)第2004个数是什么?如果这一列数无限排列下去,与哪个数越来越接近?3.(7分)将1000元钱连续转存3次3年期,9年后,再将本利和转存1年期,10年后可得本利共多少钱?(已知1年期年利率7.47﹪,3年期年利率8.28﹪,并假定10年内年利率不变,不考率利息税)4.(7分)某检修小组乘汽车检修供电线路。

北师大版七年级数学上册《第二章有理数及其运算》单元测试卷-附答案

北师大版七年级数学上册《第二章有理数及其运算》单元测试卷-附答案

北师大版七年级数学上册《第二章有理数及其运算》单元测试卷-附答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.若海平面以上500米,记作+500米,则海平面以下100米可记作( )A .100米B .-100米C .500米D .-500米2.已知x y ,为有理数,如果规定一种运算“*”,*1x y xy =+则()()2*5*3-的值是( )A .30-B .29-C .33-D .32-3.下列各组数中,互为相反数的是( )A .3与13-B .()2--与2C .25-与()25-D .7与7-4.据有关部门统计,2018 年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A .1.442 × 107B .0.1442 × 107C .1.442 × 108D .1442 × 1045.下列说法:①若a b =﹣1,则a 、b 互为相反数;①若a+b <0,且b a>0,则|a+2b|=﹣a ﹣2b ;①一个数的立方是它本身,则这个数为0或1;①若﹣1<a <0,则a 2>﹣1a;①若a+b+c <0,ab >0,c >0,则|﹣a|=﹣a ,其中正确的个数是( )A .2个B .3个C .4个D .5个 6.平面展开图按虚线折叠成正方体后,相对两个面上的数互为相反数,则x 、y 的值为( )A .2,3B .-2,-3C .-1,-3D .-1,-27.下列各组数中,运算结果相等的是( )A .22()3与223 B .﹣22与(﹣2)2C .﹣(﹣5)3与(﹣5)3D .﹣(﹣1)2015与(﹣1)2016 8.下列说法中正确的是( )A .两个有理数,绝对值大的反而小B .两个有理数的和为正数,则至少有一个加数为正数C .三个负数相乘,积为正数D .1的倒数是1,0的倒数是09.第十四届中国(合肥)国际园林博览会在合肥骆岗中央公园举办,该公园占地面积12.7平方公里,是世界最大的城市中央公园.2023年中秋、国庆八天假期,接待总游客突破225万人,创造了历史记录.其中225万用科学记数法表示为( )A .62.2510⨯B .72.2510⨯C .52.2510⨯D .422510⨯10.下列说法正确的是( )A .如果0x =,那么x 一定是0B .如果3x =,那么x 一定是3C .3和8之间有4个正数D .1-和0之间没有负数了11.用四舍五入法按要求把2.05446取近似值,其中错误的是 ( )A .2.1(精确到0.1)B .2.05(精确到百分位)C .2.05(保留2个有效数字)D .2.054(精确到0.001)12.比1小2的数是( )A .2B .﹣2C .﹣1D .﹣2二、填空题13.2023年全国普通高校毕业生规模预计达到1158万人,数11580000用科学记数法表示为 . 14.79-的绝对值是 .15.已知|x+2|=1,则x=16.在247⎛⎫- ⎪⎝⎭中,底数是 ,指数是 ,乘方的结果为 . 17.下列7个数:47-,1.01001001与4333,0,-π,-6.9,0.12,其中分数有 个.三、解答题18.已知算式“()1825--⨯-”.(1)聪聪将数字“5”抄错了,所得结果为24-,则聪聪把“5”错写成了______;(2)慧慧不小心把运算符号“×”错看成了“+”,求慧慧的计算结果比原题的正确结果大多少?19.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣22,2,﹣1.5,0,|﹣3|和132.20.科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小王把自家种的苹果放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周苹果的销售情况: 星期一 二 三 四 五 六 日 苹果销售超过或不足计划量情况(单位:千克) 4+ 6- 4- 10+ 8- 12+ 6+(1)小王第一周实际销售苹果超过或不足多少千克?实际销售苹果的总量是多少千克?(2)若小王按7元/千克进行苹果销售,成本为3元/千克,且平均运费为1元/千克,则小王第一周销售苹果的利润一共多少元?21.出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午的行程记录如下:(单位:千米)+15,-3,+14,-11,+10,-18,+14(1)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(2)若汽车的耗油量为0.06升/千米,油价为7.5元/升,这天下午共需支付多少油钱?22.小车司机李师傅某天下午的营运全是在东西走向的振兴路上进行的,如果规定向东为正,向西为负,+-+-+--++-+他这天下午行车里程(单位:千米)如下:14,3,7,3,11,4,3,11,6,7,9(1)李师傅这天最后到达目的地时,在下午出车点的什么位置?(2)李师傅这天下午共行车多少千米?(3)若李师傅的车平均行驶每千米耗油0.1升,则这天下午李师傅用了多少升油?23.如图,在平面直角坐标系中,点A 、B 的坐标分别为(),0A a ,(),0B b 且a 、b 满足240a b +-=,现同时将点A 、B 分别向右平移2个单位,再向上平移3个单位,得到点A 、B 的对应点C 、D ,连接AC 、BD 、CD .(1)请直接写出以下各点的坐标:A (____,____);B (____,____);C (____,____);D (____,____);(2)若点M 在x 轴上,且三角形ACM 的面积是平行四边形ABDC 面积的13,求M 点的坐标; (3)点Q 在线段CD 上,点P 是线段BD 上的一个动点,连接PQ 、PQ ,当点P 在线段BD 上移动时(不与点D 、B 重合),请找出AOP ∠、OPQ ∠和PQC ∠的数量关系,并证明你的结论.24.两百年前,德国数学家哥德巴赫发现:任何一个不小于6的偶数都可以写成两个奇素数(既是奇数又是素数)之和,简称:“1+1 ”.如633=+,1257=+等等.众多数学家用很多偶数进行检验,都说明是正确的,但至今仍无法从理论上加以证明,也没找到一个反例.这就是世界上著名的哥德巴赫猜想.你能检验一下这个伟大的猜想吗?请把偶数42写成两个奇素数之和.42= + ,或者42= + . 你是否有更大的发现:把42写成4个奇素数之和?42= + + + .参考答案1.B2.D3.C4.A5.B6.C7.D8.B9.A10.A11.C12.C13.71.15810⨯14.7915.-1或-316. - 472 1649 17.5/五18.(1)6(2)慧慧的计算结果比原题的正确结果大1119.212 1.502332-<-<<<-< 20.(1)超过14千克,实际销售苹果的总量为714千克;(2)利润一共为2142元.21.(1)将最后一名乘客送到目的地时,小张在下午出车点东边,距出发点的距离是21千米(2)这天下午共需支付油费38.25元22.(1)在下午出车点的东边38千米(2)78千米;(3)7.8升23.(1)2- ;0 ;4;0;0;3;6;3(2)()6,0-或()2,0(3)360PQC AOP OPQ +∠+∠=︒∠24.5,37;11,31;5,5,13,19。

北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)

北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)

北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)一、选择题1.−3的绝对值是()A.3B.13C.−13D.−32.2022年春季开学后,济南市的天气突然降温,2月16日的最高气温是2℃,最低气温是−4℃,那么这天的温差是()A.6℃B.−6℃C.2℃D.−2℃3.−|−2021|的相反数为()A.−2021B.2021C.−12021D.1 20214.党的十八大以来,以习近平同志为核心的党中央重视技能人才的培育与发展.据报道,截至2021年底,我国高技能人才超过65000000人,将数据65000000用科学记数法表示为()A.6.5×106B.65×106C.0.65×108D.6.5×1075.下列说法中,错误的是()A.数轴上表示−3的点距离原点3个单位长度B.规定了原点、正方向和单位长度的直线叫做数轴C.有理数0在数轴上表示的点是原点D.表示十万分之一的点在数轴上不存在6.下列各式:①−(−2);②−|−2|;③−22;④(−2)2,计算结果为负数的个数有()A.4个B.3个C.2个D.1个7.小明在写作业时不慎将两滴墨水滴在数轴上,如图所示,此时墨迹盖住的整数共有()个.A.3B.4C.5D.68.计算:1−(+2)+3−(+4)+5−(+6)+⋯−(+2022)=()A.2022B.−2022C.−1011D.10119.若|x|=7,|y|=9,则x−y为()A.±2和±16B.±16C.−2和−16D.±210.有理数a,b在数轴上对应的位置如图所示,则()A.|a|<|b|B.ab>0C.a+b<0D.a−b>0 11.如图,a,b,c,d,e,f均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则a−b+c−d+e−f的值为()A.1B.−3C.7D.812.一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4……若按以上规律跳了100次时,它落在数轴上的点P100所表示的数恰好是2022,则这只小球的初始位置点P0所表示的数是()A.−1971B.1971C.−1972D.197213.已知|x|=6,y2=4,且xy<0.则x+y的值为()A.4B.−4C.4或−4D.2或−214.某路公交车从起点经过A,B,C,D站到达终点,各站上、下乘客人数如下表所示(用正数表示上车的人数,负数表示下车的人数)站点起点A B C D终点上车人数x1512750下车人数0−3−4−10−11−29若此公交车采用一票制,即每位上车乘客无论哪站下车,车票都是2元,问该车这次出车共收入()A.114元B.228元C.78元D.56元二、填空题15.A、B为同一数轴上两点,且A、B两点间的距离为3个单位长度,若点A所表示的数是-1,则点B所表示的数是.16.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a−b+c的值为 .17.体育课上规定时间内仰卧起坐的满分标准为46个,高于标准的个数记为正数.如某同学做了50个记作“+4”,那么“-5”表示这位同学作了 个.18.有理数 a 、 b 在数轴上的位置如图所示,则下列各式:①a +b >0 ;②a −b >0 ;③b >a ;④ab <0 ;⑤|b −a|=a −b 正确的有 .(填式子前面的序号即可)19.《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2m 记作 +2 m ,则下降1m 记作 m .三、计算题20.计算题(1)−20+(−14)−(−18);(2)(−38−16+34)×(−24);(3)−8÷2×(−12)×0.25;(4)−14−8÷(−4)×|−6+4|.21.计算:(1)9+5×(−3)−(−2)2÷4; (2)(−5)3×[2−(−6)]−300÷5(3)(−13)×3÷3×(−13);(4)(−14−56+89)÷(−16)2+(−2)2×(−14)22.(1)12+(−5)−7−(−24)(2)(−36)×(13−12)+16÷(−2)3四、解答题23.阅读下面文字:对于(−556)+(−923)+1734+(−312)可以按如下方法进行计算:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)]=0+(−5 4)=−54.上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:(−202156)+(−202023)+404223+(−112)24.在数轴上表示下列各数:5,3.5,−212,−1,并把它们用“<”连接起来.25.如图,数轴上点A表示的有理数为﹣4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度点运动至点A停止运动,设运动时间为t(单位:秒).(1)当t=2时,点P表示的有理数为.(2)当点P与点B重合时t的值为.(3)①在点P由A到点B的运动过程中,点P与点A的距离为.(用含t的代数式表示)②在点P由点A到点B的运动过程中,点P表示的有理数为.(用含t的代数式表示)(4)当点P表示的有理数与原点距离是2的单位长度时,t的值为.26.某公路检修队乘车从A地出发,在南北走向的公路上检修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):+3,-8,+4,+7,-6,+8,-7,+10.(1)问收工时,检修队在A地哪边?据A地多远?(2)问从出发到收工时,汽车共行驶多少千米?(3)在汽车行驶过程中,若每行驶1千米耗油0.2升,则汽车共耗油多少升?27.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,−9,+7,−15,−3,+11,−6,−8,+5(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?五、综合题28.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“−”表示出库)+21,−32,−16,+35,−38(1)经过这6天,仓库里的货品是(填“增多了”还是“减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?29.已知数轴上三点M,O,N对应的数分别为−1,0,3,点P为数轴上任意一点,其对应的数为x(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t分钟时点P到点M、点N的距离相等,求t 的值30.李强靠勤工俭学的收入维持上大学的费用.下面是他某一周的收支情况表(收入为正,支出为负,单位为元)周一周二三四五六日+15+100+20+15+10+14-8-12-19-10-9-11-8(1)到这个周末,李强有多少节余?(2)照这样,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?31.已知a 是最大的负整数,b 是15的倒数,c 比a 小1,且a 、b 、c 分别是A 、B 、C 在数轴上对应的数.若动点P 从点A 出发沿数轴正方向运动,动点Q 同时从点B 出发也沿数轴负方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒1个单位长度.(1)在数轴上标出点A 、B 、C 的位置;(2)运动前P 、Q 两点间的距离为 ;运动t 秒后,点P ,点Q 运动的路程分别为 和 ;(3)求运动几秒后,点P 与点Q 相遇?(4)在数轴上找一点M ,使点M 到A 、B 、C 三点的距离之和等于11,直接写出所有点M 对应的数.32.有理数a ,b ,c 在数轴上的位置如图所示(1)a 0;b 0;c 0. (2)化简|a|+|a +b|−|c −b|.33.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).星期 一 二 三 四 五 六 日 增减+100−200+400−100−100+350+150(1)根据记录可知前三天共生产多少个口罩;(2)产量最多的一天比产量最少的一天多生产多少个;(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?34.出租车司机小主某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”,他这天下午行车情况如下:(单位:千米) ﹣2,+5,﹣8,﹣3,+6,﹣2(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若出租车每公里耗油0.3升,求小王回到出发地共耗油多少升?(3)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米(不足1千米按1千米计算)还需收4元钱,小王今天是收入是多少元?答案解析部分1.【答案】A2.【答案】A3.【答案】B4.【答案】D5.【答案】D6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C11.【答案】C12.【答案】D13.【答案】C14.【答案】A15.【答案】2或-416.【答案】217.【答案】4118.【答案】②④⑤19.【答案】-120.【答案】(1)解:原式=−20−14+18=−34+18 =−16;(2)解:原式=−38×(−24)−16×(−24)+34×(−24)=9+4−18=−5;(3)解:原式=−4×(−12)×14=4×12×14=12;(4)解:原式=−1−(−2)×2=−1−(−4) =−1+4=3.21.【答案】(1)解:9+5×(−3)−(−2)2÷4=9−15−4÷4 =9−15−1=−7(2)解:(−5)3×[2−(−6)]−300÷5=−125×8−60 =−1000−60 =−1060(3)解:(−13)×3÷3×(−13)=−1×13×(−13) =19(4)解:(−14−56+89)÷(−16)2+(−2)2×(−14)=(−14−56+89)×36+4×(−14) =−14×36−56×36+89×36−56=−9−30+32−56=−6322.【答案】(1)解:12+(−5)−7−(−24)=12−5−7+24 =12−12+24=24;(2)解:(−36)×(13−12)+16÷(−2)3=(−36)×13−(−36)×12+16÷(−8)=−12+18+(−2) =4.23.【答案】解:原式=[(−2021)+(−56)]+[(−2020)+(−23)]+(4042+23)+[−1+(−12)]=(−2021−2020+4042−1)+(−56−23+23−12)=0+(−4 3)=−43.24.【答案】解:数轴如图所示:用“<”连接起来:−212<−1<3.5<5.25.【答案】(1)0(2)5(3)2t;2t﹣4(4)1,3,7,926.【答案】(1)解:+3-8+4+7-6+8-7+10=11(千米).故收工时,检修队在A地南边,距A地11千米远.(2)解:|+3|+|-8|+|+4|+|+7|+|-6|+|+8|+|-7|+|+10|=53(千米).故汽车共行驶53千米.(3)解:53+11=64(千米),64×0.2=12.8(升).故汽车共耗油12.8升.27.【答案】(1)解:+17-9+7-15-3+11-6-8+5+16=+15(千米)答:养护小组最后到达的地方在出发点的东边,距出发点15千米远;(2)解:(17+|-9|+7+|-15|+|-3|+11+|-6|+|-8|+5+16)×0.5=48.5(升)答:这次养护共耗油48.5升.28.【答案】(1)减少了(2)解:460+50=510(吨)答:6天前仓库里有货品510吨.(3)解:21+32+16+35+38+20=162(吨)则装卸费为:162×5=810(元).答:这6天要付810元装卸费.29.【答案】(1)4(2)1(3)解:①当点P 在点M 的左侧时根据题意得:−1−x +3−x =8解得:x =−3②P 在点M 和点N 之间时,则x −(−1)+3−x =8,方程无解,即点P 不可能在点M 和点N 之间③点P 在点N 的右侧时解得:x =5∴x 的值是−3或5;(4)解:设运动t 分钟时,点P 到点M ,点N 的距离相等,即PM =PN点P 对应的数是−t ,点M 对应的数是−1−2t ,点N 对应的数是3−3t①当点M 和点N 在点P 同侧时,点M 和点N 重合所以−1−2t =3−3t ,解得t =4,符合题意②当点M 和点N 在点P 异侧时,点M 位于点P 的左侧,点N 位于点P 的右侧(因为三个点都向左运动,出发时点M 在点P 左侧,且点M 运动的速度大于点P 的速度,所以点M 永远位于点P 的左侧)故PM =−t −(−1−2t )=t +1,PN =(3−3t )−(−t )=3−2t所以t +1=3−2t ,解得t =23,符合题意综上所述,t 的值为23或430.【答案】(1)解:根据题意列得:(+15)+(-8)+(+10)+(-12)+0+(-19)+(+20)+(-10)+(+15)+(-9)+(+10)+(-11)+(+14)+(-8)=7则李强有7元的节余;(2)解:30×(7÷7)=30则李强一个月能有30元的节余;(3)解:根据题意列得:(-8)+(-12)+(-19)+(-10)+(-9)+(-11)+(-8)=-77 ∴至少支出77元,即每天至少支出11元则一个月至少有330元的收入才能维持正常开支.31.【答案】(1)解:∵a 是最大的负整数∴a=-1∵b 是15的倒数∴b=5∵c 比a 小1∴c=-2如图所示:(2)6;3t ;t(3)解:依题意有3t+t=6解得t=1.5.故运动1.5秒后,点P 与点Q 相遇;(4)解:设点M 表示的数为x ,使P 到A 、B 、C 的距离和等于11①当M 在C 点左侧,(-1)-x+5-x+(-2)-x=11.解得x=-3,即M 对应的数是-3.②当M 在线段AC 上,x-(-2)-1-x+5-x=11解得:x=-5(舍);③当M 在线段AB 上(不含点A ),x-(-1)+5-x+x-(-2)=11解得x=3,即M 对应的数是3.④当M 在点B 的右侧,x-(-1)+x-5+x-(-2)=11解得:x=133(舍)综上所述,点M 表示的数是3或-3.32.【答案】(1)<;<;>(2)解:由题意得,a<b<0<c∴a<0,a+b<0,c−b>0∴|a|+|a+b|−|c−b|=−a−a−b−c+b=−2a−c.33.【答案】(1)解:(+100−200+400)+3×5000=15300(个).故前三天共生产15300个口罩;(2)解:+400−(−200)=600(个).故产量最多的一天比产量最少的一天多生产600个;(3)解:5000×7+(100−200+400−100−100+350+150)=35600(个)0.2×35600=7120(元).故本周口罩加工厂应支付工人的工资总额是7120元.34.【答案】(1)解:-2+5-8-3+6-2=-4(千米)∴小王将最后一名乘客送到目的地时,小王在下午出车的出发地的北方,距下午出车的出发地4千米.(2)解:|-2|+|5|+|-8|+|-3|+|6|+|-2|=26(千米)26×0.3=7.8(升)∴小王回到出发地共耗油7.8升.(3)解:根据出租车收费标准,可知小王今天是收入是10+[10+(5-3)×4]+[10+(8-3)×4]+10+[10+(6-3)×4]+10=100(元)∴小王今天是收入是100元.。

有理数及其运算单元测试题

有理数及其运算单元测试题

有理数及其运算单元测试题一、选择题(每小题 3 分,共 30 分)1、下列各数中,是正有理数的是()A -2B 0C 03D π2、下列说法正确的是()A 整数就是正整数和负整数B 分数包括正分数、负分数C 正有理数和负有理数组成全体有理数D 一个数不是正数就是负数3、下列各数中,互为相反数的是()A -(-2)和 2B +(-5)和-(+5)C -(-3)和-3D -|-4|和|4|4、在数轴上,与表示-3 的点的距离为 5 个单位长度的点表示的数是()A 2B -8C 2 或-8D -2 或 85、下列计算正确的是()A -2-2 = 0B (-2)÷(-)= 1C 3×(-3)=-9D (-1)×(-2)×(-3)= 66、计算(-2)×3×(-4)的结果是()A 24B -24C 12D -127、若|a| = 3,|b| = 4,且 a>b,则 a + b 的值为()A +1 或-7B -1 或-7C +1 或+7D -1 或 78、有理数 a,b 在数轴上的位置如图所示,则下列式子中成立的是()A a + b>0B a-b>0C ab>0D >09、计算 1-2 + 3-4 + 5-6 +… + 2017-2018 + 2019 的结果是()A 1010B 1009C 1005D 101110、观察下列算式: 21 = 2,22 = 4,23 = 8,24 = 16,25 =32,26 = 64,27 = 128,28 = 256,…通过观察,用你所发现的规律确定 22019 的个位数字是()A 2B 4C 6D 8二、填空题(每小题 3 分,共 24 分)11、-的相反数是______,绝对值是______,倒数是______。

12、比较大小:-______ -。

13、计算:(-3)2 =______,-32 =______。

有理数及其运算单元测试题

有理数及其运算单元测试题

《有理数及其运算》同步练习题一、选择题(共10小题)1.(2020•菏泽模拟)有下列各数:0.01,10, 6.67-,13-,0,(3)--,|2|--,2(4)--,其中属于非负整数的共有()A .1个B .2个C .3个D .4个2.(2019秋•玉田县期中)下列各数中,与5互为相反数的是()A .15B .5-C .|5|-D .15-3.(2019秋•郾城区期中)以下说法正确的是()A .不是正数的数一定是负数B .符号相反的数互为相反数C .一个数的绝对值越大,表示它的点在数轴上越靠右D .当0a ≠,||a 总是大于04.(2019秋•香坊区校级期中)下列计算正确的是()A .335525⨯=B .33242÷=C .392483÷=D .7171052⨯=5.(2019秋•乐清市期中)数4是4.3的近似值,其中4.3叫做真值,若一个数经四舍五入得到的近似数是12,则下列各数中不可能是12的真值的是()A .12.38B .12.66C .11.99D .12.426.(2019秋•垦利区期末)下列各组数中,相等的是()A .1-与(2)(3)-+-B .|5|-与(5)--C .234与916D .2(2)-与4-7.(2019春•天心区校级期末)在“幻方拓展课程”探索中,小明在如图的33⨯方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则2(x y -=)x2y2-y60A .2B .4C .6D .88.(2019•西山区一模)已知资阳市某天的最高气温为19C ︒,最低气温为15C ︒,那么这天的最低气温比最高气温低()A .4C︒B .4C︒-C .4C ︒或者4C ︒-D .34C︒9.(2019•武汉模拟)用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每登高1km 气温的变化量为6C ︒-,攀登3km 后,气温()A .上升6C︒B .下降6C︒C .上升18C︒D .下降18C︒10.(2019•鄂温克族自治旗二模)小敏打算在某外卖网站点如下表所示的菜品和米饭.已知每份订单的配送费为3元,商家为促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元.如果小敏在购买下表的所有菜品和米饭时,采取适当的下单方式,那么他点餐的总费用最低可为()菜品单价(含包装费)数量水煮牛肉(小)30元1醋溜土豆丝(小)12元1豉汁排骨(小)30元1手撕包菜(小)12元1米饭3元2A .48元B .51元C .54元D .59元二、填空题(共5小题)11.(2019秋•昭平县期中)比较大小3||4-2()3--(填“>“、“<”或“-“).12.(2019秋•市南区期中)已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.13.(2019春•杨浦区期中)如果存款600元记作600+元,那么取款400元记作元.14.(2018秋•成都期末)在有理数 4.2-、6、0、11-、13-中,分数有个.15.(2018秋•潮阳区期末)如图,在33⨯的幻方的九个空格中,填入9个数字,使得处于同一横行,同一竖行,同一斜对角线上的三个数的和都相等,按以上规则的幻方中,则同一竖行的三个数的和为.三、解答题(共6小题)16.(2020秋•合浦县期中)某台自动存取款机在某时间段内处理了以下6项现款储蓄业务:存入2000元、支出1200元、存入1000元、存入2500元、支出500元、支出800元.问该台自动存取款机在这一时间段内现款的变化结果如何?17.(2020秋•海淀区期末)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为1-,则A的幸福点C所表示的数应该是;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为2-,点C就是M、N的幸福中心,则C所表示的数可以是(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为1-,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?18.(2019秋•睢宁县期中)【观察与归纳】(1)观察下列各式的大小关系:-+>-+|2||3||23|-+>-+|8||3||83|-+-=--|2||3||23|+-=-|0||6||06|归纳:||||a b +||a b +(用“>”或“<”或“=”或“ ”或“ ”填空)【理解与应用】(2)根据上题中得出的结论,若||||9m n +=,||1m n +=,求m 的值.19.(2019秋•南浔区期中)平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是A .(3)(2)5+++=+;B .(3)(2)1++-=+;C .(3)(2)5--+=-;D .(3)(2)1-++=-②一机器人从原点O 开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,⋯⋯,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示1-的点与表示3的点重合,则表示2019的点与表示的点重合;②若数轴上A 、B 两点之间的距离为2019(A 在B 的左侧,且折痕与①折痕相同),且A 、B 两点经折叠后重合,则A 点表示B 点表示.③若数轴上折叠重合的两点的数分别为a ,b ,折叠中间点表示的数为.(用含有a ,b的式子表示)20.(2019秋•嘉祥县期中)请你把(3)+-,(1)--,2(3)-,22-,|2|--这五个数按从小到大的顺序,从左到右依次填入下面糖葫芦中的“〇”内.21.(2019秋•海州区校级期中)把下列各数填入相应的集合中:10,2π-,3.14,227+,0.6-,0,75%-,(5)--,0.41正数集合:{}⋯;负数集合:{}⋯;整数集合:{}⋯;有理数集合:{}⋯.参考答案一、选择题(共10小题)1.【解答】解:非负整数包括0与正整数,化简后可得,属于非负整数的有10,0,(3)--,2(4)4--个.故选:D .2.【解答】解:A 、15与5互为倒数,故错误;B 、5-与5互为相反数,故正确;C 、|5|5-=;故错误;D 、15-与5-互为倒数,故错误.故选:B .3.【解答】解:A 、0不是正数,也不是负数,故选项错误;B 、符号相反的两个数互为相反数,例如,3与5-不是相反数,故选项错误;C 、一个数的绝对值越大,表示它的点在数轴上离原点越远,不一定越靠右,故选项错误;D 、0a ≠,不论a 为正数还是负数,||a 都大于0,故选项正确.故选:D .4.【解答】解: 3535⨯=,∴选项A 不符合题意;33248÷=,∴选项B 不符合题意;392483÷=,∴选项C 符合题意;71710550⨯=,∴选项D 不符合题意.故选:C .5.【解答】解:12.3812≈ ,12.6613≈,11.9912≈,12.4212≈,∴下列各数中不可能是12的真值的是选项B .故选:B .6.【解答】解:A 、(2)(3)5-+-=-,15-≠-,故本选项错误;B 、|5|5-=,(5)5--=,55=,故本选项正确;C 、23944=,99416≠,故本选项错误;D 、2(2)-与4=,44≠-,故本选项错误.故选:B .7.【解答】解: 各行、各列及对角线上的三个数之和都相等,206(2)y y y ∴++=++-,20(2)0y y x ++=+-+,34y y ∴=+,32y x =-,解得2y =,8x =,2x y ∴-822=-⨯84=-4=故选:B .8.【解答】解:19154(C)︒-=答:这天的最低气温比最高气温低4C ︒.故选:A .9.【解答】解:(6)318(C)︒-⨯=- 上升为正,下降为负,∴攀登3km 后,气温下降18C ︒.故选:D .10.【解答】解:小敏应采取的订单方式是60一份,30一份,所以点餐总费用最低可为603033012354-++-+=(元).答:他点餐总费用最低可为54元.故选:C .二、填空题(共5小题)11.【解答】解:339||4412-== ,228(3312--==,32||()43∴->--,故答案为:>.12.【解答】解:由数轴可知0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a a b c b ∴++--()()a a b c b =--+--a a b c b =----+2a c =--.故答案为:2a c --.13.【解答】解: 存款600元记作600+元,∴取款400元记作400-元.故答案为:400-.14.【解答】解:在有理数 4.2-、6、0、11-、13-中,分数有 4.2-,13-,共2个,故答案为:2.15.【解答】解:由题意得,2141x x x x ++=+++,解得5x =将5x =代入41x x +++得455115+++=故同一竖行的三个数的和为15故答案为15.三、解答题(共6小题)16.【解答】解:设存入为正,则支出为负,(2000)(1200)(1000)(2500)(500)(800)++-+++++-+-2000120010002500500800=-++--3000=(元)答:该台自动存取款机在这一时间段内现款增加3000元.17.【解答】解:(1)A 的幸福点C 所表示的数应该是134--=-或132-+=;(2)4(2)6--= ,M ∴,N 之间的所有数都是M ,N 的幸福中心.故C 所表示的数可以是2-或1-或0或1或2或3或4(答案不唯一);(3)设经过x 秒时,电子蚂蚁是A 和B 的幸福中心,依题意有①824(821)6x x --+-+=,解得 1.75x =;②4(82)[1(82)]6x x --+---=,解得 4.75x =.故当经过1.75秒或4.75秒时,电子蚂蚁是A 和B 的幸福中心.18.【解答】解:(1)根据题意得:||||||a b a b ++ ,故答案为: ;(2)由上题结论可知,因为||||9m n +=,||1m n +=,||||||m n m n +≠+,所以m 、n 异号.当m 为正数,n 为负数时,9m n -=,则9n m =-,|9|1m m +-=,5m =或4;当m 为负数,n 为正数时,9m n -+=,则9n m =+,|9|1m m ++=,4m =-或5-;综上所述,m 为4±或5±.19.【解答】解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(3)(2)1-++=-.故选:D .②一机器人从数轴原点处O 开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,⋯,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是1010-.故答案为:1010-.(2)① 对称中心是1,∴表示2019的点与表示2017-的点重合;② 对称中心是1,2019AB =,∴则A 点表示1008.5-,B 点表示1010.5;③若数轴上折叠重合的两点的数分别为a ,b ,折叠中间点表示的数为1()2a b +.故答案为:D ;1010-;2017-;1008.5-,1010.5;1()2a b +.20.【解答】解:(3)3+-=-,(1)1--=,2(3)9-=,224-=-,|2|2--=-,它们的大小关系为:222(3)|2|(1)(3)-<+-<--<--<-,填在“〇”内为:21.【解答】解:正数集合:{10,3.14,227+,(5)--,0.41}⋯ ;负数集合:{2π-,0.6-,75%-}⋯;整数集合:{10,0,(5)}--⋯;有理数集合:{10,3.14,227+,0.6-,0,75%-,(5)--,0.41}⋯ .故答案为:10,3.14,227+,(5)--,0.41 ;2π-,0.6-,75%-;10,0,(5)--;10,3.14,227+,0.6-,0,75%-,(5)--,0.41 .。

第二章 有理数及其运算单元测试卷(原卷版)

第二章 有理数及其运算单元测试卷(原卷版)

第二章 有理数及其运算单元测试卷一.选择题(共10小题)1.(2023•路桥区二模)2023年第一季度,浙江省全省创造了约1900000000000元的生产总值,排名哲时排名全国第四位.数据1900000000000用科学记数法表示为( )A .111.910´B .121.910´C .111910´D .130.1910´2.(2023•抚松县模拟)下列各数中,最小的数是( )A .3-B .1-C .0D .33.(2023•滨城区二模)2(2)3--的结果是( )A .7-B .1C .2-D .64.(2023•新昌县模拟)|2023|(-= )A .2023B .2023-C .12023-D .120235.(2023•乾县三模)如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为( )A .6B .6-C .0D .166.(2023•兰溪市模拟)一条数轴上有点A 、B ,点C 在线段AB 上,其中点A 、B 表示的数分别是8-,6,现以点C 为折点,将数轴向右对折,若点A ¢落在射线CB 上,并且4A B ¢=,则C 点表示的数是( )A .1B .1-C .1或2-D .1或3-7.(2023•河北模拟)将122135222555´´´´´´´{{L L 个个的计算结果用科学记数法可表示为( )A .12510´B .13110´C .12210´D .13210´8.(2023•南关区校级四模)中国是最早采用正负数来表示相反意义的量的国家,如果盈利50元,记作“50+元”,那么亏损30元,记作( )A .30+元B .20-元C .30-元D .20+元9.(2023•河东区二模)如图,数轴上A ,C 位于B 的两侧,且2AB BC =,若点B 表示的数是1,点C 表示的数是3,则点A 表示的数是( )A .0B .2-C .3-D .1-10.(2023春•武昌区期末)将1,2,3,4,5,6,7,8,9,10这个10个自然数填到图中的10个格子里,每个格子中只填一个数,使得田字形的4个格子中所填数字之和都等于m .则m 的最大值是( )A .23B .24C .25D .26二.填空题(共6小题)11.(2023春•芝罘区期中)如图,数轴上有A 、B 、C 三点,A 、B 两点表示的有理数是分别是2-和8,若将该数轴从点C 处折叠后,点A 和点B 恰好重合,那么点C 表示的有理数是 .12.(2023春•秦淮区期中)若44222a +=,5553333b ++=,则a b -的值为 .13.(2023春•平谷区期末)某校要举办秋季运动会,初一(2)班有四名同学分别想参与100m ,200m ,400m ,和800m 的比赛,其中甲同学擅长跑100m 和200m ,乙同学擅长跑400m 和800m ,丙同学擅长跑100m 、200m 和400m ,丁同学最擅长跑100m .为了让班级取得好成绩,也让他们每个人都可以参加比赛,并且每人只能参加一项比赛,那么只能派 参加400m 比赛.14.(2023•甘州区校级模拟)ABC D 的三边长a ,b ,c 满足2|4|(2)0a b c +-+-=,则ABC D 的周长为 .15.(2023春•浦东新区期末)若|1|1a a -=-,则a 的取值范围是 .16.(2023•随州)计算:2(2)(2)2-+-´= .三.解答题(共8小题)17.(2022秋•宝山区校级期末)计算:212.75136++.18.(2022秋•和平区校级期末)计算①111()24386-+´; ②42211(2)(2)5()0.25326-¸-+´--.19.(2023春•明水县期末)计算下面各题,能简便运算的要用简便方法算(1); (2); (3).20.(2023春•海沧区期末)对有序数对(,)x y 定义“f 运算”: 11(,)(,)22f x y x a y b =-+,其中a ,b 为常数.(1)若(2f ,4)(1-=-,3),求a ,b 的值;(2)当4a =,3b =-时,有序数对(,)m n 经过“f 运算”后结果是(,)n c .若4m n …,求c 的最大值.21.(2022秋•寻乌县期末)卓越中学为提高中学生身体素质,积极倡导“阳光体育”运动,开展一分钟跳绳比赛.七年级某班10名参赛代表成绩以160次为标准,超过的次数记为正数,不足的次数记为负数,成绩记录如下(单位:次):18+,1-,22+,2-,5-,12+,8-,1,8+,15+.(1)求该班参赛代表最好成绩与最差成绩相差多少?(2)求该班参赛代表一分钟平均每人跳绳多少次?(3)规定:每分钟跳绳次数为标准数量,不加分;超过标准数量,每多跳1个加1分;未达到标准数量,每少跳1个,扣0.5分,若班级跳绳总积分超过60分,便可得到学校的奖励,请通过计算说明该班能否得到学校奖励?22.(2022秋•徐闻县期末)为体现社会对老师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):5+,4-,3+,10-,3+,9-.(1)最后一名老师送到目的时,小王距出租车出发点的距离是多少千米;(2)若汽车耗油量为0.4升/千米,则这天上午小王的汽车共耗油多少升?23.(2023春•长宁区期末)小明表演魔术,从一副除去大小王的扑克中请观众随机选择了4张牌,并让观众每次取其中三张牌,将牌面数字相加,牌面数字之和分别为18,24,25,26.小明立刻说出了观众随机选择的4张扑克牌面的数字.这4张牌牌面的数字都是几呢?你能尝试用数学原理去揭秘这个魔术吗?(A 表示1,J 表示11,Q 表示12,K 表示13)24.(2023春•南岗区期中)阅读下面材料,然后回答问题.计算12112 ()() 3031065 -¸-+-解法一:原式12111112 ()()()(3033010306305 =-¸--¸+-¸--¸1111203512 =-+-+16=.解法二:原式12112 ()[()()]3036105 =-¸-+-113()()30210 =-¸-1530=-´16=-.解法三:原式的倒数为21121 ()() 3106530-+-¸-2112()(30)31065=-+-´-2112(30)(30(30)(30) 31065=´--´-+´--´-203512=-+-+10=-故原式110=-.(1)上述得出的结果各不同,肯定有错误的解法,但是三种解法中有一种解法是正确的,请问:正确的解法是解法 ;(2)根据材料所给的正确方法,计算:11322 ((4261437-¸-+-.。

有理数单元测试题(3套)

有理数单元测试题(3套)

有理数及其运算测试一一、境空题(每空2分,共20分) 1、31-的倒数是__________;321的相反数是_________. 2、比–3小9的数是________;最小的正整数是_________. 3、计算:31_________;95________.22-+=--= 4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是____________.5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是________.6、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是_______. C7、计算:.______)1()1(101100=-+-8、平方得412的数是_______;立方得–64的数是________. 9、计算:._________95=10、观察下面一列数的规律并填空:0,3,8,15,24,_______.二、选择题(每小题3分,共24分)11、–5的绝对值是………………………………………………………( ) A 、5 B 、–5 C 、51 D 、51- 12、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………( ) A 、l 个 B 、2个 C 、3个 D 、4个13、下列算式中,积为负数的是………………………………………………( ) A 、)5(0-⨯ B 、)10()5.0(4-⨯⨯ C 、)2()5.1(-⨯ D 、)32()51()2(-⨯-⨯-14、下列各组数中,相等的是…………………………………………………( ) A 、–1与(–4)+(–3) B 、3-与–(–3)C 、432与169 D 、2)4(-与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………( )A 、90分B 、75分C 、91分D 、81分16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………( )A 、121 B 、321 C 、641 D 、128117、不超过3)23(-的最大整数是………………………………………( )A 、–4B –3C 、3D 、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28%三、解答题(共48分) 19、(4分)请画出一条数轴,然后在数轴上标出下列各数: –3,+l ,212,-l.5,6. 20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分? 21、(8分)比较下列各对数的大小. (1)54-与43- (2)54+-与54+- (3)25与52 (4)232⨯与2)32(⨯22、(8分)计算.(1)15783--+- (2))6141(21-- (3))4(2)3(623-⨯+-⨯- (4)61)3161(1⨯-÷23、(12分)计算.(l )51)2(423⨯-÷- (2)75.04.34353.075.053.1⨯-⨯+⨯- (3)[]2)4(231)5.01(-+⨯÷-- (4))411()2(32)53()5(23-⨯-÷+-⨯-24、(4分)已知水结成冰的温度是 0C ,酒精冻结的温度是–117℃。

有理数及其运算单元测试题(含答案)

有理数及其运算单元测试题(含答案)

有理数及其运算单元测试题姓名一、判断题:1.若a 、b 互为倒数,则02121=+-ab ( ) 2.x+5一定比x -5大。

( )3.31)21()21(31÷-=-÷ ( ) 4.+(—3)既是正数,又是负数. ( )5.数轴上原点两旁的数是相反数. ( )6.任意两个有理数都可以相减. ( )7.有绝对值最小的数,没有绝对值最大的数. ( )8.a 是有理数,—a 一定是负数. ( )9.任何正数都大于它的倒数. ( )10.大于0的数一定是正数,a 2一定是大于0的数. ( )二、填空题:1. 、 统称有理数.2.白天的温度是零上10°C 记作 ,午夜的温度比白天低15°,那么午夜的温度记作 °C .3.平方得9的有理数是 ,立方得271-的有理数是 . 4.比23-的倒数小2的数是 . 5.5与—12的和的绝对值是 ,它们绝对值的差是 .6.倒数与它本身相等的数是 .7.若1=a a,则a 0;若1-=a a,则a 0.8.在数轴上,从1.5的点向左移动2个单位得到点A ,再从A 点向右平移4个单位得到点B ,则点A 表示的数为 ,点B 表示的数为 .9.大于-5的负整数是 ,绝对值小于5而大于2的非负整数是 .10.43-的相反数的倒数是 ,-(-5)的倒数的绝对值是 . 11.如果x <0,那么-|x |= ,如果|-x |=|-3|,那么x= .12.如果a 2+|b -1|=0,则3a -4b = .13.若=->a b b a 2,2则 .14.112(2-+)a 的最小值是 .15.已知a <2,则|a -2|=4,则a 的值是 .三、选择题:1.下列说法错误的是( )(A ) 整数的相反数一定是整数 (B ) 所有的整数都有倒数(C ) 相反数与本身相等的数只有0 (D ) 绝对值大于1而不大于2 的整数有±22.如图所示,数轴上两点分别表示数m 、n ,则|m -n|为( )(A )m -n (B )n -m (C )±(m -n ) (D ) m +n3.计算(-3)2-(-2)3-22+(-2)2,其结果是( )(A )17 (B )-18 (C )-36 (D )184.若两个有理数的和为负,那么这两个有理数( )(A )都为负 (B )一个为零,另一个为负 (C )至少有一个为负 (D ) 异号5..若22b a =,则( )(A )b a = (B )33b a = . (C )0==b a (D )b a -= . 6.计算34()43(43-⨯-÷-,其结果是( ) (A )43- (B )43 (C )34- (D )34 7.下列结论正确的是( )(A )一个有理数的平方不可能为负数 (B ) 一个有理数的平方必为正数(C ) 一个数的平方与它的绝对值相等 (D ) 一个数的平方一定大于这个数8.若a为有理数,则下列各式的值一定为正数的是( )(A)a3+1 (B)a3 (C)a2+1 (D)(a+1)29.计算(-2)2004+(-2)2005所得的结果是( )(A )22004 (B )-22004 (C )(-2)2004 (D )-210.如果0<x <1,那么下列各式正确的是( )(A )21x x x >> (B )x x x 12>> (C )x x x >>12 (D )21x xx >> 四、把下列各数填入它相应所属的集合内:-1, (-2)2,0,-[+(-3.4)],-32, ∙-3.0,0.1010010001…,-(-5),—32,-(-2)3正整数集合{ …}; 分数集合 { …}负数集合 { …};有理数集合{ …} 五、把下列各数在数轴上表示出来,并用“<”号将各数从小到大排列起来:.4,—1+,0,—(—3.5),—211-.六、计算:1. )6.2(2.4)5.3()3(0-----+- 2.32432131+--3. )6(363528-⨯ 4.)2(8325.0-÷÷-5.911)325.0(321÷-⨯- 6.])2()6.0511(41[222-÷⨯-+---7.8)211(125.0)412(2311)32(3)211(4222⨯-⨯-⨯-÷-⨯+-⨯-七、求值:.1. 已知x =-2,y =1,z =-3,求x 4-(x 2y 2-y 2)-z 3-7的值.2. 已知|a |=3,|b|=5,|a -b|=b -a ,且ab <0,求a +b 与a -b 的值.3. 已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2 .试求代数式x 2-(a +b +cd )x +(a +b )2004+(-cd )2003的值.4. 已知a =222)31()6()3(27-÷-+-⨯+-;221223163-÷⨯-=b ; c =2)5.0()751()72(436818-+-÷--⨯;d =342)21(41])1()32(3[211-÷+---⨯-, 试确定ab —cd 的符号.5※.三个有理数0,0,,,>++<c b a abc c b a .当c cb ba ax ++=时,求x 19-92x +2的值.答案一. 判断题:1. [ √ ] 2. [ √ ] 3. [ × ] 4. [ × ] 5. [ × ] 6. [ √ ] 7. [ √ ]8. [× ] 9. [ × ] 10. [ × ]二、填空题1.[整数、分数] 2. [+10°C] 3. [±3,31-] 4. [322-] 5. [7,-7] 6. [±1] 7. [>,<=] 8. [-0.5,3.5] 9.[-4、-3、-2、-1,3、4] 10.[51,34] 11.[x ,±3] 12. [-4] 13. [a-2a] 14. [-1] 15. [-2]三、选择题:1.[B] 2.[B] 3.[A] 4.[C] 5.[A] 6.[C] 7.[A] 8.[C] 9.[B] 10.[A] 四、把下列各数填入它相应所属的集合内:[(-2)2、,-(-5),-(-2)3],[-[+(-3.4)],-32,∙-3.0],[-1,-32,—32,],[-1, (-2)2,0,-[+(-3.4)],-32, ∙-3.0,0.1010010001…,-(-5),—32,-(-2)3 ]五、把下列各数在数轴上表示出来,并用“<”号将各数从小到大排列起来:. [4)5.3(01211<--<<+-<--] 六、计算: 1. [-1.1] 2. []41- 3.[65173-] 4.[31] 5.[41] 6.[100397-] 7.[-914] 七、求值:. 5. [33]6. [2,-8]7. [当x=2时,原式=1;当x=-2时,原式=5]8. [a=-85,b=4,c=43,d=67-,原式=-81339] 5. [a 、b 、c 三数只能是二正一负,所以x=1,原式=-89]。

有理数及其运算单元测试题

有理数及其运算单元测试题

有理数及其运算单元测试题有理数及其运算单元测试题1.填空题:1.︱-1︱倒数是1,︱-2︱相反数是2.若a与2互为相反数,则︱a+3︱=1.2.温度3℃比-7℃高10℃;温度-8℃比-2℃低6℃。

海拔-200m比300m高500m;从海拔250m下降到100m,下降了150m。

3.实数a在数轴上位置如图所示,则︱a+1︱的结果是10.4.绝对值等于5的有理数是-5和5.绝对值最小的数是0.绝对值大于2小于5的所有整数和为12.5.有理数的减法法则是:减去一个数等于加上这个数的相反数,用字母表示成:a-b=a+(-b)。

6.计算:(-2)-(-5)=(-2)+(3);0-(-4)=0+(4);(-6)-3=(-9);1-(+37)=(-36)。

7.-1的绝对值的相反数是-1/2.8.若a与b的绝对值分别为2和5,且数轴上a在b左侧,则a+b的值为-3.9.若用A、B、C分别表示有理数a、b、c,0为原点如图所示。

已知a0.化简c+│a+b│+│c-b│-│c-a│=2c-b-a。

10.数轴上与-2这个点的距离等于6个单位长度的点所表示的数是4或-10.11.-(-1)的相反数是1.-|(-1)|的相反数是-1.12.计算:(1)-1-1=-2;(2)-|(-2)|-(-1)=-1.13.绝对值小于2008的所有整数的和为0.14.|(-3)|的意义是3.|(-3)|=3.15.哥哥今年12岁,弟弟今年9岁,用算式表示弟弟比哥哥大多少岁,应为:12-9,计算结果为3岁。

16.若三个有理数的乘积为负数,则在这三个有理数中,有两个是负数。

17.用算式表示:温度由-4℃上升7℃,达到的温度是3℃。

18.规定a b=5a+2b-1,则(-4)6的值为8.19.已知|a|=3,|b|=2,且ab<0,则a-b=-1或5.20.如果一个数与另一个数的和是-50,其中一个数比6的相反数小5,则另一个数是-29.21.求绝对值大于2且小于5的所有整数的和。

2024年七年级数学上册《有理数及其运算》单元测试及答案解析

2024年七年级数学上册《有理数及其运算》单元测试及答案解析

第2章 有理数及其运算(单元培优卷 北师大版)考试时间:120分钟,满分:120分一、选择题:共10题,每题3分,共30分。

1.有理数2−的相反数是( ) A .2B .12C .2−D .12−2.13与14的和的倒数是( )A .7B .517C .17D .1433.32−的绝对值是( )A .23−B .32−C .23D .324.下列说法正确的个数为( ) ①有理数与无理数的差都是有理数; ②无限小数都是无理数; ③无理数都是无限小数;④两个无理数的和不一定是无理数; ⑤无理数分为正无理数、零、负无理数. A .2个B .3个C .4个D .5个5.亚洲、欧洲、非洲和南美洲的最低海拔如下表:大洲 亚洲欧洲 非洲南美洲最低海拔/m415− 28−156− 40−其中最低海拔最小的大洲是( ) A .亚洲B .欧洲C .非洲D .南美洲6.数轴上的点M 和点N 分别表示3−与4,如果把点N 向左移动6个单位长度,那么点N 现在表示的数比点M 表示的数( ) A .大2B .大1C .小2D .小17.如果把一个人先向东走5m 记作5m +,那么接下来这个人又走了6m −,此时他距离出发点有多远?下面选项中正确的是( ) A .6m −B .1m −C .1mD .6m8.在0.65,58,35,916这四个数中,最大的是()A .0.65B .58C .35D .9169.物理是上帝的游戏,而数学是上帝的游戏规则.不管多大或多小的数,都得靠数学来表示呢!来自2024年综合运输春运工作专班的数据显示,2月10日~17日(农历正月初一至初八),全社会跨区域人员流动量累计22.93亿人次.客流量大已成为2024年春运的最显著特征,铁路、公路、民航等客运频频刷新纪录.用科学记数法表示22.93亿,正确的是( ). A .822.9310×B .922.9310×C .82.29310×D .92.29310×10.一个天平配有重量分别为1,5,25,125,625克的砝码各5个,则为了准确称出重量为2024克的某物品(砝码只能放一侧),所需砝码数量的值为( )A .11B .12C .13D .14二、填空题:共6题,每题3分,共18分。

有理数及其运算单元测试题

有理数及其运算单元测试题

有理数及其运算单元测试题一、选择题(每题2分,共10分)1. 有理数包括以下哪些类型?A. 整数B. 分数C. 小数D. 所有以上2. 下列哪个不是有理数?A. -3B. 0.5C. πD. 1/23. 两个负数相加的结果是什么?A. 正数B. 负数C. 零D. 无法确定4. 哪个表达式的结果不是有理数?A. √4B. √9C. √(-1)D. √165. 有理数的乘法运算法则是什么?A. 正数乘以正数得正数B. 负数乘以负数得负数C. 正数乘以负数得负数D. 所有以上二、填空题(每题1分,共5分)6. 有理数可以表示为两个整数的________。

7. 如果a是一个有理数,那么-a是________数。

8. 两个有理数相除,如果除数为负数,则结果的符号与________相同。

9. 有理数的加法运算法则是________。

10. 有理数的减法运算法则是减去一个数等于加上这个数的________。

三、计算题(每题5分,共20分)11. 计算下列表达式的值:(1) 3 + (-5)(2) -7 - 2(3) 4 × (-3)(4) -2 ÷ 612. 简化下列有理数的混合运算:(1) (-3) × 2 + 5 × (-1)(2) 4 - 3 × 2(3) (-6) ÷ 2 + 3 × 4四、简答题(每题5分,共10分)13. 解释有理数的四则运算法则,并给出一个例子。

14. 描述如何判断两个有理数相加的结果的符号。

五、应用题(每题10分,共20分)15. 一个水果店在一天内卖出了苹果和橙子,苹果每斤5元,共卖出了30斤;橙子每斤3元,共卖出了20斤。

请计算水果店一天的总收入。

16. 一个班级有40名学生,其中20名学生的数学成绩是85分,另外20名学生的数学成绩是75分。

请计算这个班级数学成绩的平均分。

六、开放性问题(每题15分,共15分)17. 假设你是一名数学老师,你需要设计一个教学活动来帮助学生更好地理解有理数的运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章《有理数及其运算》单元测试题
时间45分钟,满分100分 学号 姓名
一、填空题(每小题4分,共32分) 1.如果a,b 都是有理数(a ·b ≠0),那么
b
b
a a
=________. 2.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,……
用你所发现的规律写出32004的末位数字是_______.
3.如果|x|=|y|,那么x 与y 的关系是________;如果-|x|=|-x|那么x=_______.
4.有一种"二十四点"的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.
例如1,2,3,4可作运算:(1+2+3)×4=24.(注意上述运算与4×(1+2+3)应视作相同方法的运算)
现有四个有理数3,4,-6,10.运用上述规则写出三种不同方法的运算式,使其结果等于24,运算式如下:(1),(2),(3)___________.
另有四个数3,-5,7,-13,可通过运算式(4)使其结果等于24. 5.在太阳系九大行星中,离太阳最近的水星由于没有大气,白天在
阳光的直接照射下,表面温度高达4270C ,夜晚则低至-1700C ,则水星表面昼夜的温差为____________.
6.要比较两个数a,b 的大小,有时可以通过比较a-b 与0的大小来解决.
请你探索解决:(1)如果a-b >0,则a__b;(2)如果a-b=0,则a__b;(3)如果a-b <0,则a__b.
7.若a >0,b <0,则a-b_____0. 8.观察下列各等式,并回答问题:
211211-=⨯;3
1
21321-=⨯;4131431-=⨯;5
141541-=⨯;… ⑴填空:)
1(1
+n n =(n 是正整数) ⑵计算:
211⨯+321⨯+431⨯+541⨯+…+2005
20041⨯=. 二、选择题(每小题5分,共30分)
1.离太阳最远的冥王星和海王星是非常寒冷的世界。

冥王星的背阴面温度低至-2530C ,向阳面也只有-2230C.冥王星背阴面的温度比向阳面的温度低().
(A )-300C (B )300C (C )-4760C (D )4760C 2.下列等式成立的是().
(A )|a|+|-a|= 0 (B )-a-a=0(C )|a|-|-a|=0 (D )-a-|a|=0 3.下面说法正确的有( ).
(1)正整数和负整数统称有理数;(2)0既不是正数,又不是负数;(3)0表示没有;(4)正数和负数统称有理数.
(A)4个 (B)3个 (C)2个 (D)1个 4.如果|a|-b=0,则a 、b 的关系是( )
(A )互为相反数;(B ) a=±b,且b ≥0;(C )相等且都不小于0;(D )a 是b 的绝对值. 5.a-|a|的值是()
(A )0 (B ) 2a (C );2a 或 0 (D )不能确定 6.若两个有理数的差是正数,那么()
(A )被减数是正数,减数是负数;(B )被减数和减数都是正数; (C )被减数大于减数; (D )被减数和减数不能同为负数. 五、解答题(1~4和6~7每小题5分,第5小题8分,共38分) 1. 议一议,观察下面一列数,探求其规律: -1,2
1,-3
1,4
1,-5
1,6
1…… (1)填出第7,8,9三个数;,,.
(2)第2004个数是什么?如果这一列数无限排列下去,与哪个数越来越接近? 2.规定一种运算:a *b=
b
a ab
;计算2*(-3)的值 3.什么样的小数可以化成分数?
4.甲、乙、丙三人进行百米赛跑,当甲到达终点时,乙离终点还有1米,丙离终点还有2米,则当乙到达终点时,丙离终点还有多少米?(假设三人的速度保持不变)
5.(1)已知n为自然数,借助计算器填下表:
5米,又向左走了2米,如果把超市看做原点,此时,这个人处于什么位置? 7.测量一个圆柱形饮料罐的底面半径和高,用计算器计算出这个饮料罐的容积(π取3.14),再估算一下一箱(24瓶)的体积,并将你的结果与商标上的数据进行比较.
参考答案
一、填空题
1.(2或0或-
2.[全解]当a>0,b>0时,│a│=a,│b│=b,此时原式=2;当a>0,b<0或
a<0,b>0时,原式=0;a<0,b<0时,原式=-2.)
2. 1
3.(相等或互为相反数, 0)
4.(1)3×[4+10+(-6)];(2)(10-4)-3×(-6);(3)4-(-6)÷3×
10;(4)[(-13)×(-5)+7]÷3. 5.(5970
C)
6.(1)>;(2)=;(3)<
7.(>)
8.(1)n
1-
1 n n ;(2)2005
2004 二、选择题
1. B ;
2. C ;
3. D ;
4. B ;
5. C ;
6. C 三、解答题
1. (1)(-71,81,-91);(2)(2004
1
,0). 2. 解:原式=…=6 3.略 4.
10099
米 5. (1)略;(2)任何自然数n 次方的个位数字都有规律地循环. 6. 这个人在0或6的位置. 7. 自己动手去做吧。

相关文档
最新文档