二元一次方程组的解法代入法(2)ppt
合集下载
(完整版)二元一次方程组优秀课件PPT
矩阵法解二元一次方程组
总结词
利用矩阵的运算性质和逆矩阵的性质,将二元一次方程组转化为线性方程组进行求解。
详细描述
矩阵法的基本思路是将二元一次方程组转化为线性方程组,然后利用矩阵的运算性质和 逆矩阵的性质求解。具体步骤包括:将二元一次方程组写成矩阵形式,然后对矩阵进行 变换,将其化为行最简形式,得到线性方程组;然后利用逆矩阵的性质求解线性方程组
示例
x + y = 1, 2x - y = 3
二元一次方程组的解法概述
01
02
03
消元法
通过加减或代入法消去一 个未知数,将二元一次方 程组转化为一元一次方程 求解。
替换法
通过一个方程中的未知数 表示另一个未知数,然后 将其代入另一个方程求解 。
矩阵法
利用矩阵表示方程组,通 过矩阵运算求解。
二元一次方程组的应用场景
化学问题
在化学中,有些问题涉及到两种化学物质之间的反应,如反 应速率和反应物浓度等,这时也可以用二元一次方程组来表 示和解决。
04
二元一次方程组的扩展知识
二元一次方程组的几何意义
平面直角坐标系
二元一次方程组可以表示平面上的点集,通过坐标系将代数问题与几何问题相互 转换。
直线交点
二元一次方程组的解对应于直线交点,即两个方程的公共解。
二元一次方程组的解的个数与性质
解的个数
二元一次方程组可能有无数解、唯一 解或无解,取决于方程组中方程的系 数和常数项。
解的性质
解的个数与方程组系数矩阵的秩和增 广矩阵的秩有关,通过比较两者可以 判断解的情况。
二元一次方程组的解的判定定理
定理内容
如果二元一次方程组的系数矩阵的秩等于增广矩阵的秩,则该方程组有唯一解;如果秩不相等,则该 方程组无解或有无数解。
二元一次方程组的解法-代入消元法(课件)七年级数学下册(人教版)
解这个方程,得 y=20
把y=20代入③,得 x=28
所以这个方程组的解是
x 28
y 20
答:篮球队有28支、排球队有20支参赛.
=1−
1.用代入法解方程组
时,代入正确的是(
)
− 2 = 4
C
A.x-2-x=4
B.x-2-2x=4
2.用代入法解方程组
2
A.3x=2×
3
所以原方程组的解是
y 105
转化
x+(x+10)=200
x=95
y=105
求方程组解的过程叫做解方程组.
将未知数的个数由多化少、逐一解决的思想方法,叫做消元思想.
把二元一次方程组中一个方程的一个未知数用含另一未知数的式子表示出
来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.
这种方法叫做代入消元法,简称代入法.
代入消元法解二元一次方程组的一般步骤:
第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未
知数用含有另一个未知数的式子表示出来;
第二步:把此式子代入没有变形的另一个方程中,可得一个一元一次方程;
第三步:解这个一元一次方程,得到一个未知数的值;
第四步:回代求出另一个未知数的值;
y 3x 1 0
解:由② ,得 y=3x+1
①
②
③
把③代入①,得 2x+3x+1=0
解这个方程,得 x=1
把x=1代入③,得 y=4
x 1
所以这个方程组的解是
y 4
本题还有其它
做法吗?
例2.用代入法解方程组
把y=20代入③,得 x=28
所以这个方程组的解是
x 28
y 20
答:篮球队有28支、排球队有20支参赛.
=1−
1.用代入法解方程组
时,代入正确的是(
)
− 2 = 4
C
A.x-2-x=4
B.x-2-2x=4
2.用代入法解方程组
2
A.3x=2×
3
所以原方程组的解是
y 105
转化
x+(x+10)=200
x=95
y=105
求方程组解的过程叫做解方程组.
将未知数的个数由多化少、逐一解决的思想方法,叫做消元思想.
把二元一次方程组中一个方程的一个未知数用含另一未知数的式子表示出
来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.
这种方法叫做代入消元法,简称代入法.
代入消元法解二元一次方程组的一般步骤:
第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未
知数用含有另一个未知数的式子表示出来;
第二步:把此式子代入没有变形的另一个方程中,可得一个一元一次方程;
第三步:解这个一元一次方程,得到一个未知数的值;
第四步:回代求出另一个未知数的值;
y 3x 1 0
解:由② ,得 y=3x+1
①
②
③
把③代入①,得 2x+3x+1=0
解这个方程,得 x=1
把x=1代入③,得 y=4
x 1
所以这个方程组的解是
y 4
本题还有其它
做法吗?
例2.用代入法解方程组
人教初中数学七下 8.2 消元-解二元一次方程组课件 【经典初中数学课件 】
P
1 0 7
解:设有x支篮球队和y支排球队参赛.
{ 由题意,得 X+y=48
①
10x+12y=520 ②
由①, 得 y =48- x ③
把③代入②,得 10x+12(48-x)=520
解这个方程,得 x= 28.
把x= 28代入③ ,得 y=20.
{ X=28
所以这个方程组的解是 y=20
解:设骑车用x小时,步行用y小时.
求原方程组正确的解
x 5
y
4
x 3
y
1
ax by 1,
2①已知方程组 bx ay 3的解为
x y
1, 1, 2
求a,b
②求满足5x+3y=x+2y=7的x,y的值.
1.用代入法解方程组:
2s 3t, (1)3s 2t 5
s=3 t=2
⑵
2x y 7 3x 4y 5
提高巩固
1.解下列二元一次方程组
x+1=2(y-1) ⑴
3x+2y=13 ⑵
3(x+1)=5(y-1)+4 3x-2y=5
你认为怎样代入更简便? 请用你最简便的方法解出它的解。 你的思路能解另一题吗?
1.解下列二元一次方程组(分组练习)
⑴ x+1=2(y-1)
①
3(x+1)=5(y-1)+4 ②
8.2 代入消元法解方程
用代入法
解二元一次 方程组
用代入法解二元一次 方程组的一般步骤
1、将方程组里的一个方程变形, 用含有一个未知数的一次式表 示另一个未知数(变形)
2、用这个一次式代替另一个方程 中的相应未知数,得到一个一元一 次方程,求得一个未知数的值(代 入)
京改版数学七年级下册《用代入消元法解二元一次方程组》课件
作业
习题5-2,第1题.
由①,得 x 5 2 y ③. 3
把③代入②,得 4 5 2 y 3y 1. 3
解这个方程,得y= 1.
把y=1代入③,得x=1.
x 1,
所以原方程组的解是
yห้องสมุดไป่ตู้
1.
例题精讲
把求出的解代入原方程组,看是否保 证每一个方程左右两边的值都相等.
例题精讲
上面解二元一次方程组 的思路和步 骤是什么?
写出方程组的解—— 写解
随堂练习
1、解二元一次方程组
(1) xx
y y
5 1
① ②
(2) 2x
x 3y 40 y 5
① ②
2、已知(2x+3y-4)2+∣x+3y-7∣=0,则x= -3 ,
10
y= 3 .
课堂小结
1、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
一元
第五章 二元一次方程组
用代入消元法解二元一次方程组
目 Contents 录
01 学习目标 02 旧知回顾
03 新知探究
04 例题精讲
05 随堂练习
06 课堂小结
学习目标
1.会用代入消元法解二元一次方程组. 2.了解解二元一次方程组的“消元”思想, 初步体会数学研究中“化未知为已知”的化归 思想.
1.什么是二元一次方程组? 含有两个未知数的两个一次方程所组成的
一组方程,叫做二元一次方程组.
2.什么是二元一次方程组的解? 使二元一次方程组中的两个方程左右两边
的值都相等的两个未知数的值,叫做二元一次 方程组的解.
新知探究
考考你
怎样求出二元一次方程组
代入法解二元一次方程组ppt
代入法解二元一次方程组ppt
xx年xx月xx日
目录
• 引言 • 二元一次方程组基础知识 • 代入法解二元一次方程组 • 特殊情况处理 • 实际应用 • 代入法优缺点及改进方案
01
引言
课程背景
学生在学习代入法解二元一次方程组之前,已经掌握了一元 一次方程和等式的性质等基础知识。
目前,许多学校和培训机构已经将代入法解二元一次方程组 作为数学课程的一个重要内容。
01
02
03
消元过程繁琐
在消元过程中需要多次进 行代入操作,比较繁琐。
容易出错
消元过程中容易出现错误 ,如代入错误、计算错误 等。
不适合大规模计算
代入法计算量较大,不适 合进行大规模的计算。
改进方案
推广使用计算机代数系统
使用计算机代数系统可以自动完成代入消元过程,减少人工操作 ,提高准确性。
引入其他算法
05
实际应用
在数学中的应用
求解多元一次方程组
代入法可以将多元一次方程组简化为较少元数的方程组,从而更 容易求解。
求解非线性方程组
代入法可以将非线性方程组简化为线性方程组,从而更容易求解 。
求解偏微分方程
代入法可以将偏微分方程简化为常微分方程,从而更容易求解。
在物理中的应用
求解力学问题
代入法可以用来求解力学问题中的运动方程、振 动方程等。
二元一次方程组的性质
总结词
二元一次方程组具有一些基本性质,这些性质在解方 程组时非常有用。
详细描述
1)方程组的两个方程是等价的;2)如果一个方程中 的未知数系数为0,则该方程为恒等式,无需考虑;3 )如果两个方程的未知数系数成比例,则可以通过代 入消元法消去一个未知数;4)如果两个方程的未知数 的系数互为相反数,则可以通过相加消去一个未知数 ;5)如果两个方程的未知数的系数成比例且互为相反 数,则可以通过相减消去一个未知数。
xx年xx月xx日
目录
• 引言 • 二元一次方程组基础知识 • 代入法解二元一次方程组 • 特殊情况处理 • 实际应用 • 代入法优缺点及改进方案
01
引言
课程背景
学生在学习代入法解二元一次方程组之前,已经掌握了一元 一次方程和等式的性质等基础知识。
目前,许多学校和培训机构已经将代入法解二元一次方程组 作为数学课程的一个重要内容。
01
02
03
消元过程繁琐
在消元过程中需要多次进 行代入操作,比较繁琐。
容易出错
消元过程中容易出现错误 ,如代入错误、计算错误 等。
不适合大规模计算
代入法计算量较大,不适 合进行大规模的计算。
改进方案
推广使用计算机代数系统
使用计算机代数系统可以自动完成代入消元过程,减少人工操作 ,提高准确性。
引入其他算法
05
实际应用
在数学中的应用
求解多元一次方程组
代入法可以将多元一次方程组简化为较少元数的方程组,从而更 容易求解。
求解非线性方程组
代入法可以将非线性方程组简化为线性方程组,从而更容易求解 。
求解偏微分方程
代入法可以将偏微分方程简化为常微分方程,从而更容易求解。
在物理中的应用
求解力学问题
代入法可以用来求解力学问题中的运动方程、振 动方程等。
二元一次方程组的性质
总结词
二元一次方程组具有一些基本性质,这些性质在解方 程组时非常有用。
详细描述
1)方程组的两个方程是等价的;2)如果一个方程中 的未知数系数为0,则该方程为恒等式,无需考虑;3 )如果两个方程的未知数系数成比例,则可以通过代 入消元法消去一个未知数;4)如果两个方程的未知数 的系数互为相反数,则可以通过相加消去一个未知数 ;5)如果两个方程的未知数的系数成比例且互为相反 数,则可以通过相减消去一个未知数。
代入消元法解二元一次方程组图文课件
THANKS
感谢观看
熟练掌握代数运算,是正确代入消元法的扩大和 总结
代入消元法的扩大
扩大到三元一次方程组
代入消元法可以进一步扩大到三元一 次方程组,通过逐个消元,将三元一 次方程组转化为二元一次方程组或一 元一次方程进行求解。
扩大到高次方程
虽然代入消元法主要适用于二元一次 方程组,但理论上可以将其扩大到高 次方程,通过代入和消元逐步简化方 程,直至得到可解的一元一次方程。
课程背景
二元一次方程组是数学中的基 础知识点,广泛应用于日常生 活和科学研究中。
代入消元法是一种常用的解二 元一次方程组的方法,具有简 单易懂的优点。
通过本课程的学习,学生可以 更好地理解和掌握代入消元法 ,提高解决实际问题的能力。
02
二元一次方程组的基 本概念
二元一次方程组的定义
二元一次方程组:由两个或两个 以上的二元一次方程组成的方程
解出方程后,需要进行检验,确保解的公 道性。
技能
使用等式变形
在代入前,可以通过等式变形,使代 入后的方程更易于计算。
视察方程特点
在选择代入的方程时,可以视察方程 的特点,选择具有较大系数或易于计 算的方程进行代入。
利用已知条件简化计算
在解题过程中,可以利用已知条件简 化计算,减少计算量。
熟练掌握代数运算
实例三:解二元一次方程组
总结词
通过代入消元法解二元一次方程组,得到解集。
详细描述
再选取一个二元一次方程组,例如$4x + 3y = 10$和 $5x - y = 7$。第一,将其中一个方程中的变量代入 另一个方程中,以消去一个变量。在这个例子中,我 们将$4x + 3y = 10$代入$5x - y = 7$中,得到$5x (10/4) + (10/4) = 7 + (10/4)$,进一步化简得到$5x = frac{35}{4}$,解得$x = frac{7}{4}$。然后,将$x = frac{7}{4}$代入原方程$4x + 3y = 10$中,解得$y = frac{9}{4}$。因此,该二元一次方程组的解集为$(x = frac{7}{4}, y = frac{9}{4})$。
二元一次方程组的解法(共6张PPT)
{2x-7y=8
①
3x-8y-10=0 ②
解:由①得
x= 4+ 7y ③
2 将③代入②,得
3(4+ 7y )-8y-10=0 2
解得 y=-0.8
将y=-0.8代入③,得
x=4+ 7 ×(-0.8 ) 2
x=1.2
{x=1.2
所以
y=-0.8
思考:可以先消 去y吗?
1.将下列各方程变形为用一个未知数的代数
如的果形将 式①写成用一个未,知(数2来)表写示成另用一含y的代数式 3这x两-个8y方-程10中=0的未②知数的系数都不是1,
那么如何求解呢?消哪一个未知数呢? 的这形两式 个方程中的未知数,的(系2数)都写不成是用1含,y的代数式
23x-78y=-810=0 ②①
的如形果式 将①写成用一个未,知(数2来)表写示成另用一含y的代数式
如果将①写成用一个未知数来表示另一
如果将①写成用一个未知数来表示另一 式2x表-示7y另=8一个未知①数的形式:
那如么果如 将何①求写解成呢用?一消个哪未一知个数未来知表数示呢另?一
3式x表-示8y另-一10个=0未知②数的形式: 3x-8y-10=0 ②
个未知数,那么用x来表示y,还是用y来
表示x好呢?
①
的式形表式 示另一个未知数的,形(式2:)写成用含y的代数式 式解表得示另一y=个-未0.知数的形式: 那2x么-如7y何=8求解呢?①消哪一个未知数呢?
3x-8y-10=0 ②
思考 这两个方程中的未知数的系数都不是1, 如 这果两将个① 方写 程成 中用 的一 未个 知未 数知的数 系来 数表 都示 不另 是一1,
二元一次方程组的解法
二元一次方程组解法ppt课件
x 1
所以原方程组的解是
y
1
3x 5y 21 ① 2x 5y -11 ②
解:由①+②得:
5x=10
x=2
把x=2代入①,得: y=3
x 2
所以原方程组的解是
y
3
直接加减消元法
3x 5y 21 ① 2x 5y -11 ②
由①+②得: 5x=10
2x-5y=7
①
2x+3y=-1 ②
4、写出方程组的解
随堂练习: 你解对了吗?
1、用代入消元法解下列方程组
⑴
y=2x x=4 x+y=12 y=8
x=y—2-5
⑵
x=5 y=15
4x+3y=65
x+y=11
3x-2y=9
⑶
x=9 ⑷
x=3
y=2 x-y=7
y=0
x+2y=3
能 力 检 验 解二元一次方程组
(1)
2a b 18, a 3b 2.
(2) 2x y 5, 3x 4y 2.
SUCCESS
THANK YOU
2024/10/21
1
1
2、若方程5x 2m+n + 4y 3m-2n = 9是关于x、y
的二元一次方程,求m 、n 的值.
解: 根据已知条件可
列方程组:
2m + n = ①
13m – 2n = ②
由①得:1 n = 1 – ③
by ay
3 3
的解是
x 2
y
1
,则 a b 的值是
.
7.已知关于x,y方程组
2x 3x
3y 5y
二元一次方程组的解法(2) 加减消元法1课件2022-2023学年人教版七年级数学下册
是同类项,则
x y
1
= ___________.
深探·自学
如何得结论呢!
y
已知 x ,
x 2
已知
y 1
2 x y 4
满足方程组
x 2 y 5
mx y 3
是方程组
x ny 6
,则
x y
3
=___________.
4
的解,则 mn = ___________.
x 1
y 2
∴这个方程组的解为
x 1
y 2
总结:①某个未知数的系数互为
相反数,用加法消元.
初探·自学
习惯指标 ★积极参与课堂合作
学科指标 ★解二元一次方程组
联系上面的解法,想一想怎么解方程组
2 x y 4
x y 1
解:由①-②得, = 5 .
且 (2b a)
关于, 的二元一次方程组为
2a 6b 4
6a 2b 8
2022
(2 1) 2022 1 .
2.
Ax+By=2,
甲、乙两人同解方程组
甲正确解得
Cx-3y=-2.
x=1,
乙因抄错
y=-1.
x=2,
C,解得
求
y=-6.
习 惯 指 标 ★做好课前准备
第2课时
二元一次方程组的解法(2)
——加减消元法1
万物皆有裂痕,那是光进来的地方.
习惯指标 ★积极参与课堂合作
初探·自学
解二元一次方程组:
2 x y 4
x y 1
7.2.2二元一次方程组的解法(2)
解:由(1)得2x﹣3y=2 (3), 把(3)代入(2),得 y=4 把y=4代入(3)得: x=7
例4.
2x 7 x
6y 2 18 y 1
① ②
解: ①×3得 6x+18y=-6 ③
② - ③得: x=5 把x=5代入①得:
2×5+6y=-2
y=-2
∴
x
y
5 2
特点: 方程组中没有未知数的系数的 绝对值相等
办法:选一个未知数,用方程变形 的规则⑵,变其系数为绝对 值相等,从而为加减消元法 解方程组创造条件.
87y
3( 2 ) -8y= 10
把 y 4 代入(3)得:
5
x
8
7
4 5
8
28 5
12 5
6
2
2 25
24+21y-16y=20
5y=-4
y4 5
x6
∴
5
y4
5
选一个方程变形为y=?x或x=?y,代入另一个方程,实现消元,进而求得二 元一次方程组的解的方法叫代入消元法, 简称代入法
用加减法解方程组
(5)写解 写出方程组的解
解二元一次方程组的方法选择
x 2y 0 3x 4y 6
5x 3y 2 2x 3y 10
代入法还是加减法
选择的标准: 若有未知数的系数为±1, 用代入法. 否则用加减法.
⑴ 中x的系数为1
例1. 解方程组 x-y=3 3x-8y=14
解:将方程⑴变形,得
选择用代入法.
ቤተ መጻሕፍቲ ባይዱ
6
2
2 25
24+21y-16y=20
5y=-4
y4 5
人教初中数学七下 8.2.1 代入法解二元一次方程组课件 【经典初中数学课件】
1
02
一
元
知一
次
识不
等
点式
二
的 解
法
三、研读课文
(2) 2 x ≥ 2 x 1
2
3
解:去分母,得: 3(2+x)≥2(2x-1) .
去括号,得: 6+3x≥ 4x - 2 .
3x-4x≥ -2 - 6
移项,得:
.
-x≥ - 8
合并同类项,得:
.
系数化为1,得:
x≤ 8
.
这个不等式的解集在数轴上的表示:
三、研读课文
练一练 用加减法解下列方程组:
2x +5y = 8 ①
(2)
练
3x +2y=5 ②
一
练
三、研读课文
练一练 用加减法解下列方程组:
(2) 2x +5y = 8 ①
练
3x +2y=5 ②
一
解: ① ×3 得6X+15y=24 ③
练
② ×2 得6x+4y=10 ④ ③ —④ 得 11y=14
这个不等式的解集在数轴上的表示 :
-16 0
一
知
元 一
识
次 不
等
点式 的
三
解 法
及
练
习
三、研读课文
(2 2(x5)3 (x5)
解:)去括号,得:2x+10<3x-15 移项, 得:2x-3x<-15-10
合并同类项,得: -x < -25 系数化为1,得: x > 25
这个不等式的解集在数轴上的表示:
一
7
次
解得 y=
方
02
一
元
知一
次
识不
等
点式
二
的 解
法
三、研读课文
(2) 2 x ≥ 2 x 1
2
3
解:去分母,得: 3(2+x)≥2(2x-1) .
去括号,得: 6+3x≥ 4x - 2 .
3x-4x≥ -2 - 6
移项,得:
.
-x≥ - 8
合并同类项,得:
.
系数化为1,得:
x≤ 8
.
这个不等式的解集在数轴上的表示:
三、研读课文
练一练 用加减法解下列方程组:
2x +5y = 8 ①
(2)
练
3x +2y=5 ②
一
练
三、研读课文
练一练 用加减法解下列方程组:
(2) 2x +5y = 8 ①
练
3x +2y=5 ②
一
解: ① ×3 得6X+15y=24 ③
练
② ×2 得6x+4y=10 ④ ③ —④ 得 11y=14
这个不等式的解集在数轴上的表示 :
-16 0
一
知
元 一
识
次 不
等
点式 的
三
解 法
及
练
习
三、研读课文
(2 2(x5)3 (x5)
解:)去括号,得:2x+10<3x-15 移项, 得:2x-3x<-15-10
合并同类项,得: -x < -25 系数化为1,得: x > 25
这个不等式的解集在数轴上的表示:
一
7
次
解得 y=
方
消元-解二元一次方程组(共28张ppt)七年级下册数学人教版
组 500x+250y=22 500 000
2
消去 y
= 22 500 000
5 = 2 ,
500 + 250 = 22 500 000 .
解这个方程组时,可以先消去 x 吗?
解:设这些消毒液应该分装 x 大瓶、y 小瓶.
根据大、小瓶数的比,以及消毒液分装量与总产量的数
5 = 2,
①
x=16-3y
3(16-3y)+y=20
y=3.5
x=5.5
2x+2y=
18
x y
18元
x+3y=16
3x+y=20
2x+2y=?
2.如图,在长为 15,宽为 12 的长方形中,有形状、
大小完全相同的 5 个小长方形,则图中阴影部分的面
积为( B )
15×12-5xy=180-135=45
A.35
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
瓶装(250 g)两种产品的销售数量(按瓶计算)比为 2︰5.
某厂每天生产这种消毒液 22.5 t,这些消毒液应该分装
大、小瓶两种产品各多少瓶?
例题中有哪些未知量?
未知量有消毒液应该分装的大瓶数和小瓶数.
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
B.45
C.55
2 + = 15,
= 3.
D.65
y=9
2x+3x=15
x=3
x
2x+y=15
y
y=3x
3.篮球联赛中,每场比赛都要分出胜负,胜一场得 2
分.负一场得 1 分,某队为了争取较好的名次,想在全
2
消去 y
= 22 500 000
5 = 2 ,
500 + 250 = 22 500 000 .
解这个方程组时,可以先消去 x 吗?
解:设这些消毒液应该分装 x 大瓶、y 小瓶.
根据大、小瓶数的比,以及消毒液分装量与总产量的数
5 = 2,
①
x=16-3y
3(16-3y)+y=20
y=3.5
x=5.5
2x+2y=
18
x y
18元
x+3y=16
3x+y=20
2x+2y=?
2.如图,在长为 15,宽为 12 的长方形中,有形状、
大小完全相同的 5 个小长方形,则图中阴影部分的面
积为( B )
15×12-5xy=180-135=45
A.35
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
瓶装(250 g)两种产品的销售数量(按瓶计算)比为 2︰5.
某厂每天生产这种消毒液 22.5 t,这些消毒液应该分装
大、小瓶两种产品各多少瓶?
例题中有哪些未知量?
未知量有消毒液应该分装的大瓶数和小瓶数.
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
B.45
C.55
2 + = 15,
= 3.
D.65
y=9
2x+3x=15
x=3
x
2x+y=15
y
y=3x
3.篮球联赛中,每场比赛都要分出胜负,胜一场得 2
分.负一场得 1 分,某队为了争取较好的名次,想在全
4.3 二元一次方程组的解法(代入法) 课件2-
:设苹果的质量为 g,梨的质量为 解:设苹果的质量为x g,梨的质量为y g, 由题意可列得方程组: 由题意可列得方程组
x+y = 200 y = x+10
你知道怎样求出它的解吗? 你知道怎样求出它的解吗?
y x x
=
x y x
+ 10 = 200
+
+
+10 =200
x+(x+10)=200 ( )
哈哈,二元化一元了 哈哈,二元化一元了!
③
注意:代入时要加括号. 注意:代入时要加括号.
上面解方程组的基本思路是什么? 上面解方程组的基本思路是什么?
解二元一次方程组的基本思路是 消元” 二元化一元。 消元” “消元”:二元化一元。 “消元” 的方法是“代入” 的方法是“代入” .这种解方程组 的方法称为代入消元法 简称代入法 代入消元法, 代入法。 的方法称为代入消元法,简称代入,x=2-1=1 代入 X=1 ∴方程组的解为 y=2
{
例2: 解方程组
2x – 7y = 8 3x - 8y – 10 = 0 解: 由①,得 2x = 8+7y
8+ 7y 即 x= 2
③ 把③代入②,得 代入② 8+7y 3×( )-8y-10 = 0 2
4.3解二元一次方程组 4.3解二元一次方程组 (1)
1、用含x的代数式表示 : 、用含 的代数式表示 的代数式表示y: 2x+y=2 2、用含y的代数式表示 : 、用含 的代数式表示 的代数式表示x: 2x-7y=8
一个苹果和一个梨的质量合计200 , 一个苹果和一个梨的质量合计200g,这个 200 苹果的质量加上一个10 10g的砝码恰好与这个梨的 苹果的质量加上一个10 的砝码恰好与这个梨的 质量相等,问苹果和梨的质量各为多少g? 质量相等,问苹果和梨的质量各为多少 ?
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 由①得 x=3y-5. ③ 将③代入②,得 2( 3y-5 )+5y=23,
6y-10 +5y =23, 6y+5y =23+10,
把y=3代入③,得 即
11y=33, 即 y=3.
x=3× 3 -5, x=4.
x=4, 所以 y=3.
1、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
将③代入②,得 3 ( 4+ 3.5 y ) -8y-10=0,
12 + 10.5y - 8y - 10=0,
10.5y- 8y= 10-12,
2.5y=-2,
即 y=-0.8
将y=-0.8代入③,得 x=4+ 3.5×(-0.8)
即 x=1.2
所以
x=1.2 y=-0.8
代入 法
思考 解方程组 (1) 3x-5y = 6, ① x+4y = -15. ②
x+17-3x=7,
x-3x=7-17,
-2x=-10,
即 x=5. 把x=5代入③,得
y=17-3×5, 即 y=2. x=5,
所以 y=2.
或把x=5代入①,得 5+y=7, 即 y=2.
x-y= -5, ① 练习 解方程组:(1)
3x+2y= 10. ② 解: 由①,得 x=y-5. ③
将③代入②,得 3( y-5 ) +2y=10, 3y-15 +2y=10, 3y+2y =10+15
a=-3, b=6.
再见
华东师大版七年级下册
二元一次方程组的解法
代入法(2)
榜山中学 黄淮玉
把二元转 化为一元
解二元一次方程组的基本思路是_消_元_。 已学过用_代_入_法解二元一次方程组。
练一练 解方程组:
5x-y=17, ① y=3x-1. ②
解:把 ② 代入 ① ,得
5x-( 3x-1 )=17,
或 4x-y= -1, 4x= -1+y, x= -1+y 4
(用y表示x)
(2) 5x-10y+15=0
5x=10y-15 x=2y-3 (用y表示x)
或 -10y= -5x-15
y= -5x-15
-10
y x3. 2
(用x表示y)
例
解方程组
2x-7y=8, ① 3x-8y-10=0. ②
解 由①,得 2x=8+7y, x=4+ 3.5 y. ③
5y=25, 即 y=5. 把y=5代入③,得 x= 5 -5, 即 x=0. 所以 x=0, y=5.
练习 课本第30页第1题
1.把下列各方程变形为用一个未知数表示另一个未知数的形式:
(1) 4x-y= -1;
(2) 5x-10y+15=0.
解: (1) 4x-y= -1,
-y= -1-4x, (用x表示y) y=1+4x.
3x+y= 17. ②
解 由①,得 y=7-x. ③ 将③代入②,得 3x+( 7-x )=17,
3x+7-x=17,
3x-x=17-7, 2x=10,
即 x=5. 把x=5代入③,得 y=7-5,
即 y=2. x=5,
所以 y=2.
x+y=7, ① 例 解方程组:
3x+y= 17. ②
解 由②,得 y=17-3x. ③ 将③代入①,得 x+( 17-3x )=7,
解 由②得 x= -4y-15. ③
将③代入①,得 3( -4y-15 )-5y=6,
-12y-45 -5y =6,
-12y-5y =6+45,
-17y=51, 即 y=-3. 把y=-3代入③,得 x=-4× ( -3 )-15, x=12-15, 即 x=-3.
x=-3, 所以 y=-3.
思考 解方程组 (2) 3y=x+5, ① 2x+5y= 23. ②
一元
2、用代入法解方程组的主要步骤是什么?
1.变
用含有一个未知数的代数式
表示另一个未知数
2.代
消去一个元
3.解
分别求出两个未知数的值
4.写
写出方程组的解
作业 课本第36页习题7.2第1(1)(2)题
解方程组: (1) (2)
x-3y=2, 2x+y= 18. 2a+b=0 4a+3b=6
x=8, y=2.
5x -3x+1 =17,
5x-3x=17-1,
2x =16,
x=8.
所以
x =8, y=23.
把x=8代入 ② ,得 y=3×8-1, y=23.
课前热身:
练习1:已知x+y=7,用含x的代数式表示y,则 y=_7_-x____ ; 用含y的代数式表示x,则x=_7__-_y__ .
x+y=7, ① 例 解方程组: