大学物理 圆周运动的角量描述 角量与线量的关系

合集下载

大学物理课件-圆周运动的角量描述 角量与线量的关系

大学物理课件-圆周运动的角量描述  角量与线量的关系

解 由题意得 v 32 m/s ω 4t2
k ω v 4 s3 t 2 Rt 2
v Rω 4Rt2
当t =0.5 s 时
v 4Rt2 2.0 m/s
an
v 2 2.0 m/s2
R θ
arctan(an
)

dv dt
8Rt
a an2 a 2
13.6
8.0 m/s2 8.25 m/s2
dt
d
dt
k
d 2
dt 2
k
k 和初始条件
求 ω, (t)
(t)
t
d dt
0
t1
(t)
t
d dt
0
t1
若为 β 常量,则
(t) 0 t
(t)
0
0t
1 2
t
2
例 一质点作半径为0.1 m 的圆周运动,已知运动学方程为

(1) 当t =2s
2 4t3
时,质点运动的an
解: 本题涉及:
岸、水、船、船上人
岸、水、船,以船为动点: V船对岸 V船对水 V水对岸
岸、船、船上人,以人 为动点:
V人对岸 V人对船 V船对岸
V人对船 V船对水 V水对岸
结果:
0
V3
V1
V2
V1 V2 V3 0
例2 某人骑自行车以速率V 向正西方行驶,遇到由 北向南刮的风设风速大小也为V),则他感到风 是从何方向吹来?
天花板松落,天花板与升降机的底板相距 2.74 m 。
求 螺母自天花板落到底板所需的时间. O 解 取螺母刚松落为计时零点.
a
O'
动点为螺母,取二个坐标系如图

刚体力学

刚体力学
物体运动问题的影响因素(物体的性质) (1)大小(2)形状(3)质量 (4)占有空间位置(5)变形
理想化的模型: 刚体性质(1)具有质量 (2)占有空间位置 (3)大小、形状 不具有性质: 则力变形
突出主要因素 主要因素
忽略次要因素 次要因素
2.2 刚体转动定律与转动惯量
一、转轴 定轴转动
当刚体上所有的点都绕一条固定直线矩圆周运动时, 这种运动就叫定轴转动,这条固定直线就叫转轴。
东北农业大学 Northeast Agricultural University
刚体力学
物理教研室
2.1 变速圆周运动和角量描述 一、匀速圆周运动
圆周运动 质点曲线运动 圆周运动:质点运动的轨迹是一对圆。 圆周运动:质点运动的轨迹是一对圆。 质点的匀速圆周运动:质点在任何相同的时间 质点的匀速圆周运动: 匀速圆周运动 间隔所行经的弧长相等 弧长相等。 间隔所行经的弧长相等。
0
mg − T = ma LL( 1 ) TR = Iβ 2 LLL( 2 )
mgR β2 = mR 2 + m0 R 2 / 2 mg mg a = β2R = = I m + 2 m + m0 / 2 R
T
mg
例题
两对匀质圆盘,同轴地粘结在一起,构成一对组合轮。
小圆盘的半径为r,质量为 ;大圆盘的半径r’=2r,质量 = 2m。 小圆盘的半径为 ,质量为m;大圆盘的半径 ,质量m’ 。 组合轮可以绕通过其中心且垂直对盘面的光滑水平固定轴o转动 转动, 组合轮可以绕通过其中心且垂直对盘面的光滑水平固定轴 转动, 轴的转动惯量J=9mr2/2 。两圆盘边缘上分别绕有轻质细绳, 两圆盘边缘上分别绕有轻质细绳, 对o轴的转动惯量 轴的转动惯量 细绳下端各悬挂质量为m的物体 的物体A和 ,这一系统从静止开始运动, 细绳下端各悬挂质量为 的物体 和B,这一系统从静止开始运动 绳与盘无相对滑动且长度不变。已知r =10cm 。 求:(1)组合轮 绳与盘无相对滑动且长度不变。已知 的角加速度; 当物体上升h=0.4m时,组合轮的角速度。 的角加速度;(2)当物体上升 时 组合轮的角速度。

济南大学大学物理大作业完整答案

济南大学大学物理大作业完整答案

济南大学大学物理大作业答案完整版第1章 质点运动学§1.3 用直角坐标表示位移、速度和加速度一.选择题和填空题1. (B)2. (B)3. 8 m10 m4. ()[]t t A t ωβωωωββsin 2cos e 22 +--()ωπ/1221+n (n = 0, 1, 2,…) 5. h 1v /(h 1-h 2)二.计算题1解: (1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m2解: =a d v /d t 4=t ,d v 4=t d t⎰⎰=vv 00d 4d tt tv=2t 2v=dx/dt=2t 2t t x txx d 2d 020⎰⎰=x 2=t 3 /3+x 0 (SI)§1.5 圆周运动的角量描述 角量与线量的关系一.选择题和填空题 1. (D) 2. (C)3. 16R t 24rad /s 24. -c(b -ct )2/R二.计算题1. 解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cbc R t -=§1.6 不同参考系中的速度和加速度变换定理简介一.选择题和填空题1. (C)2. (B)3. (A)4.0321=++v v v二.计算题1.解:选取如图所示的坐标系,以V表示质点的对地速度,其x 、y 方向投影为:u gy u V x x +=+=αcos 2v ,αsin 2gy V y y ==v当y =h 时,V的大小为: ()2cos 222222αgh u gh uy x ++=+=V V V V 的方向与x 轴夹角为γ,ugh gh xy +==--ααγcos 2sin 2tg tg 11V V第2章 牛顿定律§2.3 牛顿运动定律的应用一.选择题和填空题 1. (C) 2. (C) 3. (E)4. l/cos 2θ5. θcos /mgθθcos sin gl二.计算题1. 解:质量为M 的物块作圆周运动的向心力,由它与平台间的摩擦力f和质量为m 的物块对它的拉力F的合力提供.当M 物块有离心趋势时,f 和F 的方向相同,而当M 物块有向心运动趋势时,二者的方向相反.因M 物块相对于转台静止,故有F + f max =M r max ω2 2分 F - f max =M r min ω2 2分m 物块是静止的,因而F = m g 1分 又 f max =μs M g 1分 故2.372max =+=ωμM Mgmg r s mm 2分 4.122min=-=ωμM Mg mg r s mm 2分γ v2. 解:球A 只受法向力N 和重力g m,根据牛顿第二定律法向: R m mg N /cos 2v =-θ ① 1分 切向: t ma mg =θsin ② 1分由①式可得 )/c o s (2R g m N v +=θ 1分 根据牛顿第三定律,球对槽压力大小同上,方向沿半径向外. 1分 由②式得 θsin g a t = 1分三.理论推导与证明题 证:小球受力如图,根据牛顿第二定律tm ma F k mg d d vv ==--t mF k mg d /)(d =--v v初始条件: t = 0, v = 0.⎰⎰=-tt F)/m k mg 00d (d v -v v∴ k F mg mkt /)e1)((/---=v第3章 功和能§3.3 动能定理一.选择题和填空题 1. (B) 2. (C)3. 1.28×104 J4. 18 J 6 m/s二.计算题1. 解:用动能定理,对物体⎰⎰+==-402402d 610d 021x x x F m )(v 3分3210x x +==168解出 v =13 m/s 2分§3.4(1)势能一.选择题和填空题1.(C)2. 20kx2021kx -2021kx3. R GmM 32RG m M 3-4. 保守力的功与路径无关W = -ΔE P二.计算题1. 解:(1) 外力做的功=31 J 1分(2) 设弹力为F ′= 5.34 m/s 1分(3) 此力为保守力,因为其功的值仅与弹簧的始末态有关. 2分§3.4(2)机械能守恒定律一.选择题和填空题1. (C)2.)(mr k )2(r k -二.计算题1. (1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g lymf μ= 1分 摩擦力的功 ⎰⎰--==00d d a l a l f y gy lmy f W μ 2分=022a l y l mg -μ =2)(2a l lmg--μ 2分 (2)以链条为对象,应用质点的动能定理 ∑W =222121v v m m-其中 ∑W = W P +W f ,v 0 = 0 1分W P =⎰la x P d =la l mg x x l mg la 2)(d 22-=⎰ 2分al -a⎰⎰⋅+==21d )4.388.52(d 2x x xx x xF W ⎰⎰⋅=-==1212d d 21'2x x x x Wx F x F m v 3分3分由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv 2分 2. 解:把卸料车视为质点.设弹簧被压缩的最大长度为l ,劲度系数为k .在卸料车由最高点下滑到弹簧压缩最大这一过程中,应用功能原理有h G kl h G 12121sin 2.0-=-α ① 2分对卸料车卸料后回升过程应用功能原理,可得:22221sin 2.0kl h G h G -=-α ② 2分由式①和②联立解得: 372.030sin 2.030sin 21=-︒+︒=G G 1分第4章 冲量和动量§4.2 质点系的动量定理一.选择题和填空题 1. (D) 2. (C)3. 18 N ²s二.计算题1. 解:设在某极短的时间t ∆内落在传送带B 上矿砂的质量为m ,即m=q mt ∆,这时矿砂动量的增量为(参看附图)图1分12v v vm m m -=∆)( 1212221s m kg 98.375cos 2)(-⋅⋅∆=︒-+=∆t q m m m v v v v v 2分设传送带作用在矿砂上的力为F,根据动量定理)(v m t F ∆=∆ 于是 N 2.213.98/)(==∆∆=m q t m F v2分 方向: ︒==︒∆2975θ,sin sin )(θm m 2v v 2分由牛顿第三定律,矿砂作用在传送带B 上的(撞击)力与F大小相等方向相反,即等于2.21 N ,偏离竖直方向1︒,指向前下方. 1分§4.3 质点系动量守恒定律一.选择题和填空题 1. (C)2. 4.33 m/s ;与A 原先运动方向成 -30° 3.二.计算题1. 解:这个问题有两个物理过程:第一过程为木块M 沿光滑的固定斜面下滑,到达B 点时速度的大小为θsin gl 21=v 1分方向:沿斜面向下第二个过程:子弹与木块作完全非弹性碰撞.在斜面方向上,内力的分量远远大于外力,动量近似守恒,以斜面向上为正,则有V v v )(cos M m M m +=-1θ 3分Mm gl M m +-=θθsin cos 2v V 1分2. 解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分负号表示冲量方向与0v方向相反. 2分第5章 刚体力学基础 动量矩§5.2 力矩 刚体绕定轴转动微分方程量一.选择题和填空题 1. (C) 2. (B) 3.(B)4. 6.54 rad / s 24.8 s5. 62.51.67s6. 0.25 kg ²m 2二.计算题1. 解:(1) ∵ mg -T =ma 1分TR =J β 2分 a =R β 1分 ∴ β = mgR / (mR 2+J )()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2 1分 方向垂直纸面向外. 1分211m m t F +∆22211m t F m m t F ∆∆++(2) ∵βθωω2202-=当ω=0 时, rad 612.0220==βωθ物体上升的高度h = R θ = 6.12³10-2 m 2分(3)==βθω210.0 rad/s方向垂直纸面向外. 2分2. 解:(1) 0=ω 0+β tβ=-ω 0 / t =-0.50 rad ²s -2 2分 (2) M r =ml 2β / 12=-0.25 N ²m 2分 (3) θ10=ω 0t +21β t 2=75 rad 1分§5.3 绕定轴转动刚体的动能 动能定理一.选择题和填空题 1. (D) 2. (A) 3.(D)4. 6π rad/s 237 J5. 角动量gl mM 334二.计算题1.解:选泥团和杆为系统,在打击过程中,系统所受外力对O 轴的合力矩为零,对定轴O 的角动量守恒,设刚打击后两者一起摆起的角速度为ω,则有 1分ωJ lm lm +=v v 110 ① 2分其中 2/l ⋅=ωv ② 1分在泥团、杆上摆过程中,选杆、泥团、地球为系统,有机械能守恒.当杆摆到最大角度θ 时有()()222121cos 121ωθJ m l g m M +=-+v ③ 3分联立解以上三式可得()()⎥⎦⎤⎢⎣⎡++-=-gl M m m M m 4331cos 221v θ 3分2.解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量: W =∆E k =212210222204)21(214)21(21n ml J n ml J π+-π+2 4分 这里的J 0是没有砝码时系统的转动惯量.(2) 过程中无外力矩作用,系统的动量矩守恒:2π(J 0+2121ml ) n 1 = 2π (J 0+2221ml ) n 2 ∴ ()()1222212102n n n l n l m J --= 4分(3) 将J 0代入W 式,得 ()2221212l l n mn W -π= 2分a§5.4 动量矩和动量矩守恒定律一.选择题和填空题 1. (C) 2. (B) 3.(C) 4.(D)5. 031ω6. ()212m R J m r J ++ω 7. ()l m M /3460+v二.计算题1. 解:将杆与两小球视为一刚体,水平飞来小球与刚体视为一系统.由角动量守恒得 1分ωJ l m lm +-=3223200v v (逆时针为正向) ① 2分 又 22)3(2)32(l m l m J += ② 1分将②代入①得 l230v =ω 1分2. 解:(1) 设当人以速率v 沿相对圆盘转动相反的方向走动时,圆盘对地的绕轴角速度为ω,则人对与地固联的转轴的角速度为R R v v221-=-='ωωω ① 2分 人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒. 1分设盘的质量为M ,则人的质量为M / 10,有:ωωω'⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+22022211021211021R M MR R M MR ② 2分 将①式代入②式得:R2120v+=ωω ③ 1分(2) 欲使盘对地静止,则式③必为零.即ω0 +2v / (21R )=0 2分 得: v =-21R ω0 / 2 1分式中负号表示人的走动方向与上一问中人走动的方向相反,即与盘的初始转动方向一致.1分3. 解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v 2分∴l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ²s -1 2分(2) -M r =(231ml +2l m ')β 2分0-ω 2=2βθ 2分∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad 2分答案 第六章 振动§6.1-1简谐振动 振幅 周期和频率 相位1-2.BB3. 1.2 s 1分; -20.9 cm/s 2分.4. 0.05 m 2分; -0.205π(或-36.9°)2分.5. )212cos(π-πT t A 2分; )312cos(π+πT t A 2分.二计算题1. 解: (1) v m = ωA ∴ω = v m / A =1.5 s -1∴ T = 2π/ω = 4.19 s 3分(2) a m = ω2A = v m ω = 4.5³10-2m/s 2 2分(3) π=21φ x = 0.02)215.1cos(π+t (SI) 3分 2. 解:(1) 1s 10/-==m k ω 1分, 63.0/2=π=ωT s 1分(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0 由 2020)/(ωv +=x A 得 3.12020-=--=x A ωv m/s 2分π=-=-31)/(tg 001x ωφv 或 4π/3 2分;∵ x 0 > 0 ,∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI) 2分§6.1-2简谐运动的能量1-3:DBD4. b ,f 2分; a ,e 2分.5. 9.90³102 J 3分§9-3旋转矢量1-6:BBBBCA7. π 1分; - π /2 2分; π/3. 2分.8. 10 cm 1分; (π/6) rad/s 1分; π/3 1分. 二.计算题1. 解:旋转矢量如图所示. 图3分由振动方程可得 π21=ω,π=∆31φ 1分667.0/=∆=∆ωφt s 1分2. 解:(1) 设振动方程为 )cos(φω+=t A x-由曲线可知 A = 10 cm , t = 0,φcos 1050=-=x ,0sin 100<-=φωv 解上面两式,可得 φ = 2π/3 2分由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得 )3/22c o s (100π+=ω(SI) 则有2/33/22π=π+ω,∴ ω = 5 π/12 2分 故所求振动方程为:)3/212/5cos(1.0π+π=t x (SI) 1分 3. 解:依题意画出旋转矢量图3分。

第3讲 圆周运动的角量描述

第3讲 圆周运动的角量描述

第四节圆周运动及其描述上一节学习了一般的平面曲线运动,本节学习一种特殊且常见的曲线运动――圆周运动。

1 圆周运动的线量描述回顾上一节,我们在自然坐标系下使用了位置、速度、加速度等量来描述曲线运动。

这些量称为线量,所以上一节对于曲线运动的描述称为线量描述。

由于圆周运动是一种特殊的曲线运动,因而上一节关于曲线运动的描述完全适用于圆周运动的描述。

所以可以把上一节的结论直接用于圆周运动的线量描述。

位置:s=s(t)速度:dsdt v=τ加速度:22d sdtτ=aτ(1a)2nvR=a n(1b)(1b)式中的R就是圆的半径,而v则是质点做圆周运动的速率。

质点作圆周运动时,如果切向加速度为0,就是所谓的匀速圆周运动......。

2 圆周运动的角量描述极坐标系2.1 角位移除了线量描述形式外,对于圆周运动还有一种常用的描述形式――角量描述。

如图1所示,以圆心为极点,沿着任意方向引出一条线作为极轴,就建立了一个坐标系,称为极坐标系。

在极坐标系中,质点的位置所对应的矢径r与极轴的夹角θ称为质点的角位置,而dθ称为dt时间内的角位移。

注意:1,角位移...d.θ.既有大小,又有方向.........(.但未必是矢量......1)。

其方向由右手定则确定,即:伸出右手,使四指沿着质点旋转的方向弯曲,与四指垂直的拇指所指的方向1矢量的严格定义是:矢量是在空间中有一定的方向和数值,并遵从平行四边形加法法则的量。

即为d θ的正方向。

2,有限大小的角位移不是矢量(因为角位移的合成不符合交换律,比如翻一本书:先x->90,再y ->90,最后z ->90得到的结果,与先x->90,再z ->90,最后y ->90得到的结果不一样),只有..当△..t . .0.时,角位移.....d .θ.才是矢量....。

3,质点作圆周运动时,其角位移只有两种可能的方向,因此可以在标量前...............................加正号或者是负号来指明角位移的方向.................。

2第二讲自然坐标系圆周运动的角量描述

2第二讲自然坐标系圆周运动的角量描述
dx
vx
u
dt
dy
gt
vy
dt
v u2 g 2 t 2
2
g
t
dv d
2
2 2

u g t
a
dt dt
u2 g 2 t 2
an a a
2
ug
2
u g t
2
2 2
相对运动





运动具有相对性
球作曲线运动
如何变换?
描述运动三参量合成的约定
绝对量
建立自然坐标系:(P的切向)(P的法向)
p
o
ˆ

规定:切向单位矢量 ˆ , 指向运动方向
法向单位矢量 n̂
指向轨道的凹侧
用这样一对正交的切向、法向单位矢量构成坐
标系统称为自然坐标系。
在自然坐标系中,切向、法向单位矢量并不固
定,它们随质点的位置而变。
p
ˆ
o
ˆ


直角坐标系是静坐标系
教学基本要求:
能计算质点在平面内运动时的速度和加速度;
能计算质点作圆周运动时的角速度、角加速度
、切向加速度和法向加速度。
本节内容提纲
一,自然坐标系
1,运动方程
2,速度
3,加速度
二,圆周运动的角量描述
1,角位置
2,角速度
3,角加速度
三,角量与线量的关系
四,一般曲线运动
一、自然坐标系中的运动方程,速度及加速度表示:

=

‫ ׬‬tgα


=




tgα

圆周运动的角量表示

圆周运动的角量表示

四、牛顿定律应用举例
两类力学问题:
•已知力求运动 •已知运动求力
桥梁是加速度
G a
解题步骤:十六字诀
隔离物体——明确研究对象
具体分析——研究对象的运动情况和受力情
况,作出受力图
选定坐标——参考系、坐标系、正方向
建立方程——分量式
Fx
= max
= m d vx dt
=
d2 x m
dt2
Fy
= may
பைடு நூலகம்
= m dvy dt
Fn
= man
G
=
m
v2
ρG
F = ma = maτ eτ + manen
三、牛顿第三定律
对于每一个作用,总有一
个相等的反作用与之相反;或 者说,两个物体对各自的对方
F21
2
的作用总是相等的,而且指向
相反的方向。
F12 1
第三定律的数学表达式: GG F12 = −F21
注意:1.作用力与反作用力同生同灭。
1.2.2圆周运动中的 切向加速度和法向加速度
一、圆周运动的角量表示
1、角位置
θ = θ (t)
2、角位移
K
K
v2 B v1
R Δs A
Δθ
θ
O
X
Δθ
3、角速度
ω = dθ dt
单位:rad/s
4、角加速度
α = dω = d 2θ dt dt 2
单位:rad/s2
ds = rdθ

ωG vvG==ωRGω× RG
=
m
d2 dt
y
2
Fz
= maz
= m d vz dt

大学物理 力学习题课汇总

大学物理 力学习题课汇总

d2 z j dt2 k
2、运动学中的两类问题 : 1) 已知:质点 运动 学方程 r r (t
求: v , a , r 及轨迹方程。
)。2)求已:知:av及及初值r条(t)件。
解法:求导。
解法:积分
3、圆周运动:
角量描述: (t) 2 1
切向与法向加速度:
at
dv dt
an
v2 r
间隔内质点走过的路程为( )。
8m、10m
力F
时间积累:冲量 空间积累:功 空间转动效应:力矩
动量定理
动能定理
角动量定理
质点 质点系 质点 质点系 质点 质点系 刚体
动量守恒定律
质点
质点系
保守力 势能
角动量守恒定律 定轴转动定律
动力学知 识点回顾
机械能守恒定律
刚体动能定理
能量守恒定律 刚体机械能守恒定律
d d
dt
dt
a atet anen
角量与线量的关系:
v r an r2 at r v r
4、相对运动:
vA对B vA对C vC对B
aA对B aA对C aC对B
5、注意区分:
1 ) r与r
2) a与at
a
d
v
dt
| r | 与r
a
与at
at
dv dt
例:质点在运动过程中:
m
D
2
1
r1
r2
心角动量守恒。
判断:
O
①作用于质点系的外力的矢量和为零,则外力矩之和也为零。
②质点的角动量不为零,作用于该质点上的力一定不为零。
③质点系的动量为零,则质点系的角动量为零,质点系的角

力学1-4复习和习题讲解

力学1-4复习和习题讲解

坐标原点,则该质点任意时刻的位矢是____.
解: 依题意,有 a F t i 4ti dv
m 0.25
dt
分离积
分变量

v
dv
2j
t
4t i
dt
v 2t 2 i 2 j
0
再由 v dr dr vdt dt
量大小为_m__v_d____。
分析: L r mv L rmv sin(r ,v )
mvr sin
mθ v
d θ•
r
o
mvd
11. (学习指导p27. 35 ) 质点P的质量为2kg,位移矢量为r ,
速度为v ,它受到力 F 的作用,这三个矢量均在Oxy面内,
且r =3.0m , v=4.0m/s , F=2N , 则该质点对原点O的角动
1
v5 m
5
5m(5
2t )dt
(25 5t 2)5

0
0
0
5.(学习指导p24. 16) 如图所示,光滑平面上有一个运动物体P,在P的 正前方有一个连有弹簧和挡板M的静止物体Q, 弹簧和挡板的质量不计, P与Q质量相同。物体P 与Q碰撞后P停止, Q以碰前P的速度运动。在此 碰撞过程中,弹簧压缩量最大的时刻是( )
(1)串联后总的劲度系数k满足: (2)并联后总的劲度系数k满足:
11 1
k k1 k2 k k1 k2
k1
k2
F
(1)
k1

k2
F
(2)
解(1) 串联时,两弹簧受力相等,均为F;伸长分 别为x1、x2.则总伸长x=x1+x2.
∴有 F=k1x1=k2x2

2运动学2四个物理量的应用

2运动学2四个物理量的应用
2
例如:圆的曲率半径 就是其半径R。 圆周运动的法向加速 度就是向心加速度。
av R
2
a n v 反映速度速度方向的变化
5
小结: v dr dt
直角坐标系中:
dx dy v i j dt dt
r ( t ) x( t )i y( t ) j
1 2 4 c t R
16
7、在xy平面内有一运动质点,其运动学方程为:
r 10 cos5 t i 10 sin 5 t j
50( sin 5t i cos5t ) (SI)。则t时刻其速度 v j ______________;
其切向加速度的大小
m/s
at
18
4、
加速度
dr v dt
1) 平均加速度 v a t
y
.
O
vA
A
B
vB
a
与 v 同方向
2)(瞬时)加速度
2 v dv d r a lim 2 t 0 t dt dt
x
vA
v
vB
19
直角坐标系中:
2 dv d r 2 加速度 a dt dt
at an

a
aa
a t 2 a n 2
2
tg a t / a n
2
dv dt
v
2


a t dv / dt
当 当
表示速度大小的变化
v2 an
反映速度 方向的变化
21
at at
与 与
v 同号时速度加快 v 反号时速度减慢

角速度与线速度的关系

角速度与线速度的关系

P
4n 1 g (n 0,1,2, )
2
2h
h
A
Q
A
BA
BA
B
主动轮通过齿轮、链条、皮带等带动从动轮的过 程中,皮带(链条)上各点以及两轮边缘上各点的线 速度大小相等 。
2、分析下列情况下,轮上各点的角速度有什么关系?
B A
C
同一轮上各点的角速度相同
LOGO
例1:机械表的秒针和分针的针尖都在作匀速直线 运动,它们的角速度之比为 ,如果两针的长度 之比为6:5,则两针尖的线速度之比为 。
60:1 72:1
LOGO
例2:如图所示两皮带轮,转动时皮带不打滑, 且
rA=2rB=2rC 求:(1)A、B、C三点的线速度之比vA:vB:vC,
(2)A、B、C三点的角速度之比ωA:ωB:ωC 。
A . .R 1
1 C
.B R2 2
vA vB , v ωr, vA 2vC , vA : vB : vC 2 : 2 :1
AC , ω v , r
1 ω A 2 ωB ,
ω A: ωB : ωC 1: 2 :1
例3:如图所示,A轮通过皮带带动B轮,C轮与BLO轮GO同 轴,已知RA:RB:RC=2:1:2,皮带传动时不打滑, 试求:
(1)三轮边缘的线速度之比 1:1: 2 (2)三轮的旋转周期之比 2 :1:1
A
B
分析:子弹从A盘至B盘,盘转过的角度
2n (n=0,1,2,3…)
3
子弹在A、B间运动的时间等于圆盘转
过角所用的时间t
t
2n
3
所以,子弹的速度为
v
s t
L
2n
L 2n

大学物理第一章习题解析

大学物理第一章习题解析

3. 推广至一般平面曲线运动
r v2 r dv r a = n+ t ρ dt
2011学年秋季学期
ρ:曲率半径。
大学物理(1)
15
2. 掌握质点圆周运动的角量描述。 角位移: Δθ Δ θ dθ 角速度: ω = lim = Δt → 0 Δ t dt Δω dω d 2θ = = 2 α 角加速度: = lim
r r r r = r ′ + r0 r r r rPS = rP S ′ + rS ′S r r r v PS = v P S ′ + v S ′S r r r a PS = a P S ′ + a S ′S
2011学年秋季学期
参考系S′
r r r P ( r ′, v ′, a ′, t )
选择参考系,确定变换关系
解:
建立如图所示坐标系, 由题意可知
r v船水
r v风地
大学物理(1)
30o
r v水地
x 东
24
O
2011学年秋季学期
r v 船水
北 y
30 o
r v 风地
r v 水地
x 东
O
r r r r 根据相对速度公式,v PS = v P S ′ + v S ′S ′′ + v S ′′S r r r r r v烟船 = v风船 = v风地 + v地水 + v水船 r r r ( ) = v风地 − v船水 + v水地 r r r r o o = (−10)i − (−20 sin 30 i + 20 cos 30 j ) − 10i r r −1 = −10i − 17.3 j (km ⋅ h )

圆周运动的角量描述 角量与线量的关系

圆周运动的角量描述  角量与线量的关系

A
反映 反映 的方向变化 因素
的大小变化 因素
无限趋近法向
无限趋近切向
法向加速度
切向加速度
要点归纳法向加速度Fra bibliotek切向加速度
线量描述
切向加速度
0, , v 增大 at dv 0, , v 常量 dt 0, , v 减小
一般曲线运动(自然坐标)
y
a
o a x a
et
en
第三节
圆周运动
线量描述
1、自然坐标系:
切向:质点前进的方向 法向:与切向垂直,指向曲线 凹的一面。
et
en
2、圆周运动的切向加速度和法向加速度(自然
坐标系分析) S =S (t )
v v(t ),a a (t ) ds v et vet dt
线量描述
加速度问题
C
D B
截取 AD = AB 作矢量 和
v et
v ds et vet dt 2 d v d v v a et en dt dt
ds 其中 d 为曲率半径 .
en

角位置
角位移
角速度
角加速度
匀变速圆周运动
角线量关系
物理量小结
物理量小结2
角线简例

《大学物理》圆周运动

《大学物理》圆周运动

得切向加速度与角加速度的关系为a r
dt
而法向加速度an
v2 r
dt r 2
质点作匀变速圆周运动时的角速度、角位移与角加速度的关系式
为:
ω ω0 t
θ θ0 ω0t t 2 / 2
ω2 ω02 2 (θ θ0 )
v v0 at
x
x0
v0t
at2 / 2
v2
v02
2a( x
(R
sin
ti
R
c
ostj )
a(t)
dv(dtt)
2 (R
costi
R 2
sin tj)
dt
速度、加速度也可以用其在x、y方向上的分量来表示
二、自然坐标系下的描述
自然坐标系:以动点为坐标原点,以动点所在轨道处的切线和 法线为坐标轴(切向指向前进方向,法向指向曲率中心),、n 为切、法向的单位矢量。
1-16.飞轮作匀减速转动 , 在 5 秒内角速度由 40πrad/s 减到 10πrad/s , 则飞轮在这 5秒内总共转过了多少圈?飞轮再经过多 少时间才能停止转动?
课后习题 1-8 1-9 1-10
(2)如
匀变速直线运动
(3)如 a 0,a;则0 质点作
n
t
匀速直线运动
(4)如
a n
0,
a t
0;, 质 点 c作
一般曲线运动
(5)如 a 0, a 0;, 质点c作
n
t
变速圆周运动
(6)如
a n
0,
a t
c;, 质点c作
匀变速圆周运动
(7)如 a 0, a 0;, 质点c作
dt dt
dt dt

《大学物理》上册复习资料

《大学物理》上册复习资料

胤熙说明:本资料纯属个人总结,只是提供给大家一些复习方面,题目均来自课件如有不足望谅解。

(若要打印,打印时请删去此行)第一章质点运动学1.描述运动的主要物理量位置矢量:位移矢量:速度矢量:加速度矢量:速度的大小:加速度的大小:2.平面曲线运动的描述切向加速度:法相加速度:(圆周运动半径为R,则a n= )3.圆周运动的角量描述角位置:角速度:角加速度:圆周运动的运动方程:4.匀角加速运动角量间的关系ω= θ=5.角量与线量间的关系ΔS= V= a t= a n=6.运动的相对性速度相加原理: 加速度相加关系:7. 以初速度v0由地面竖直向上抛出一个质量为m 的小球,若上抛小球受到与其瞬时速率成正比的空气阻力,求小球能升达的最大高度是多大?8.一飞轮以n=1500r/min的转速转动,受到制动而均匀地减速,经t=50s后静止。

(1)求角加速度β和从制动开始到静止时飞轮的转数N为多少?(2)求制动开始t=25s时飞轮的角速度ω(3)设飞轮的半径R=1m时,求t=25s时,飞轮边缘上一点的速度、切向加速度和法向加速度9.一带蓬卡车高h=2m,它停在马路上时雨点可落在车内到达蓬后沿前方d=1m处,当它以15 km/h 速率沿平直马路行驶时,雨滴恰好不能落入车内,求雨滴相对地面的速度及雨滴相对车的速度。

x x 'yy 'z z 'O O 'S S 'u∙P ),,(),,(z y x z y x '''第二章 牛顿运动定律 1.经典力学的时空观(1) (2) (3) 2.伽利略变换 (Galilean transformation ) (1)伽利略坐标变换X ’= Y ’= Z ’= t ’=(2)伽利略速度变换V ’= (3)加速度变换关系 a ’=3.光滑桌面上放置一固定圆环,半径为R ,一物体贴着环带内侧运动,如图所示。

物体与环带间的滑动摩擦系数为μ。

圆周运动角速度与线速度

圆周运动角速度与线速度

圆周运动和向心加速度目标1、理解匀速圆周运动的特点,掌握描述匀速圆周运动快慢的几个物理量:线速度、角速度、周期、转速的定义,理解它们的物理意义并能灵活的运用它们解决问题。

2、理解并掌握描写圆周运动的各个物理量之间的关系。

3、理解匀速圆周运动的周期性的确切含义。

4、理解向心加速度产生的原因和计算方法。

重点描述匀速圆周运动快慢的几个物理量:线速度、角速度、周期、转速、向心加速度的定义以及它们的相互关系,是学习的重点。

学习难点弄清描写匀速圆周运动的各个物理量之间的关系,理解匀速圆周运动是变速运动且是变加速运动是学习的难点。

知识点一:圆周运动的线速度要点诠释:1、线速度的定义:圆周运动中,物体通过的弧长与所用时间的比值,称为圆周运动的线速度。

公式:(比值越大,说明线速度越大)方向:沿着圆周上各点的切线方向单位:m/s2、说明1)线速度是指物体做圆周运动时的瞬时速度。

2)线速度的方向就是圆周上某点的切线方向。

线速度的大小是的比值。

所以是矢量。

3)匀速圆周运动是一个线速度大小不变的圆周运动。

4)线速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时线速度。

注:匀速圆周运动中的“匀速”二字的含义:仅指速率不变,但速度的方向(曲线上某点的切线方向)时刻在变化。

知识点二:描写圆周运动的角速度要点诠释:1、角速度的定义:圆周运动物体与圆心的连线扫过的角度与所用时间的比值叫做角速度。

公式:单位:(弧度每秒)2、说明:1)这里的必须是弧度制的角。

2)对于匀速圆周运动来说,这个比值是恒定的,即匀速圆周运动是角速度保持不变的圆周运动。

3)角速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时角速度。

4)关于的方向:中学阶段不研究。

5)同一个转动的物体上,各点的角速度相等。

例如. 木棒OA以它上面的一点O为轴匀速转动时,它上面的各点与圆心O的连线在相等时间内扫过的角度相等。

物理-圆周运动的角量描述 相对运动

物理-圆周运动的角量描述 相对运动

二、相对运动
1、绝对时空观
B
时间间隔 空间间隔
地面参考系
υ
A 车厢参考系
时间间隔、空间间隔与质量的测量与观测者所在的参考系无
关,是绝对的。
——绝对时空观
二、相对运动
2、速度变换与加速度变换
设S′系相对于S系以速度 作直线运动。
并以两坐标原点重合瞬间作为共同的计时起点。
(牵连速度)
S
S
二、相对运动
B(t+Δt 时刻)
A(t 时刻)
s(t )
0
R (t 0) x
(2) 国际单位制中角坐标与角位移的单位:弧度
一、圆周运动的角量描述
3、角速度
3、角加速度
d
dt
d 2
dt 2
(单位:rad/s 2)
讨论
(1) 线量与角量之间的关系
(单位:rad/s)
0
B(t+Δt 时刻) s A(t 时刻)
t时刻
运动质点P在S系中的位置矢量为: 质点P在S′系中的位置矢量为: S′的坐标原点O′在S系中的位矢为:
S r r0
S
r
x
(牵连速度)
r
r0
r
二、相对运动
由:
质点相对于S系 的运动速度
S′系相对于S系 的运动速度
质点相对于S′系 的运动速度
运动质点在两个作相对运动的参考系中的速度变换式。
二、相对运动
由:
质点相对于S系的 S′系相对于S 质点相对于S′
加速度
系的加速度 系的加速度
运动质点在两个作相对运动的参考系中的加速 度变换式。
二、相对运动
讨论
(1) 相对速度公式

大学物理 第一章 第二节圆周运动与一般平面曲线运动

大学物理 第一章  第二节圆周运动与一般平面曲线运动

2、角加速度
lim
t 0 t
d
dt
d 2
dt 2
方向?
四、 圆周运动中线量和角量的关系 1、线速度与角速度 v R
角速度 的方向:
按“右旋规则”确定 角加速度 的方向: 加速时与方向相同 减速时与方向相反
y
R
o
x
2、切向加速度与角加速度 3、 法向加速度与角速度
a R
an
v2 R
v
R 2
4、速度分量式
(1)可将抛体运动分解为 沿x和y 两个方向的独立运动。
立进行的运动迭加而成。

抛体运动方程的矢量形式
v
(v0cos )i
(v0
sin
gt)
j
v0t
r
1
gt
2
2
v dr dt
r
t vdt
0
t 0
(vxi
vy
j )dt
(v0t
cos
)i
(v0t
sin
1 2
gt2 )
j
(2)也可将抛体运动分解为沿初速度方向的匀速直线运动和
t
a a
ax2
a
2 y
R 2
7
五、匀变速率圆周运动
常量, 故 at r,an r 2
dω 常量,
dt

dω dt d dt,
如 t 0 时, 0 , 0
可得:
0 t θ θ0 0t
1 2
t
2
2
2 0
2 (
0)
匀变速率圆周运动
0 t
θ
θ0
0t
1 2
t

03运动学圆周运动 (自然坐标系、角速度、角加速度、切向加速度、法向加速度)

03运动学圆周运动 (自然坐标系、角速度、角加速度、切向加速度、法向加速度)

这时加速度可以表示为 a aτ t an n
6
由于τ与n相互垂直,加速度a的大小与aτ 、an的 关系为 2 2
a a an
例1、半径R=0.5米的飞轮绕中心轴转动, 其运动函数 为θ=t3+3t(SI)求t=2秒时,轮缘上一点的角速度角加速 度以及切向加速度、法向加速度。 解:ω=3t2+3
dr d d v R sin i R cos j R d ( sin i cos j ) dt dt dt dt
Y
V
r
d R [cos( )i sin( ) j ] dt 2 2

X
括号中的项是与r垂直的单位矢量
d lim t 0 t dt
2
平均角加速度 t
t 0
瞬时角加速度 lim d
t dt
(SI)单位:rad/s2 角速度与角加速度都是矢量,角速度的方向由右手定 则确定。(规定用右手螺旋定则来判定:四指方向为 绕向,大拇指方向为角速度方向!! ) α与ω同向。质点作加速圆周运动。
an=gcos γ =gV x/V=9.13m/s2
aτ=gcosβ=gVy/V=3.53m/s2
ρ=V2/an=25.03m
11
5 质点运动学小结: 1、描述运动的物理量 :t、Δt、r、Δr、v、a 、 s dv dr 加速度: a 2、定义:速度 v dt dt 对一维的情况:v=dx/dt a=dv/dt 3、质点运动学的两类问题: 1)已知运动方程,求速度、加速度。 解法:用求导数的方法解决。 2)已知速度(或加速度)及初始条件求运动方程。
△τ=1× △ θ 当△t→0时, dτ=1× d θ、方向指向曲率中 心(即法向)。 d d n dt dt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、 角量与线量的关系
速度
Q
s

P
s v lim lim r r t 0 t t 0 t
o

x
v r
加速度
dv d(r ) a dt dt
v 2 (r )2 an r r
a r
an 2r
例 一质点作半径为0.1 m 的圆周运动,已知运动学方程为
求 (1) 当t =2 s 时,质点运动的 a 的大小
(2) 当 =? 时,质点的加速度与半径成45 角? 分析 (1) a
o
2 4t
3
an aτ
2
2
a o (2) a 与 n 成 45 角,即 aτ an
d 2 aτ rβ r 2 24tr dt
1.5 圆周运动的角量描述 角量与线量关系
一、 角位置与角位移
角坐标
Q
s


P
经过 t 时间,角位移
o

x
二、 角速度
平均角速度 ω t
d 角速度 ω lim t 0 t dt
三、角加速度
经过 t 时间,角速度由 +
ω dω d 2 2 角加速度 lim 平均角加速度 t 0 t t dt dt 说明 角加速度是角速度对时间的一阶导数
例 一质点在水平面内以顺时针方向沿半径为2m 的圆形轨道运 动。此质点的角速度与运动时间的平方成正比,即ω=4t 2。 求 t =0. 5s 时质点 (1) 路程 (2) 加速度 分析 路程 s = r ,先求出角位移 解 (1) 角位移
θ dt 0
0
0.5
0.5
1 4t dt 6
d 2 2 4 a r ω r ( ) 144 t r 解 (1) n dt
2 2
a an aτ 230.5(m/s 2 )
o (2) a与 an 成 45 角,即 aτ an
则 144t 4 24t
t 0.55
2 4t 3 2.67(rad)
2
路r 16t r 2.0
aτ r
d 8rt 8.0 dt
2 2 an a a a 与切向夹角 arctan ( ) 13.6 n 8.25 a
相关文档
最新文档