新人教版八年级上学期半期考试试题及答案

合集下载

人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试卷一、单选题1.12月2日是全国交通安全日,你认为下列交通标识不是轴对称图形的是()A .B .C .D .2.若一个三角形的三边长分别为3,7,x ,则x 的值可能是()A .6B .3C .2D .113.点M (1,2)关于x 轴对称的点的坐标为()A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)4.如图,两个三角形全等,则∠α等于()A .50°B .58°C .60°D .72°5.在下列正多边形瓷砖中,若仅用一种正多边形瓷砖铺地面,则不能将地面密铺的是()A .正三角形B .正四边形C .正六边形D .正八边形6.如图,在ABC 中,AB AC =,D 是BC 的中点,下列结论不一定正确的是()A .BC ∠=∠B .2AB BD =C .12∠=∠D .AD BC ⊥7.如图,已知∠ABC =∠BAD ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是()A .AC =BDB .∠C =∠D C .AD =BC D .∠ABD =∠BAC8.如图,小明从点A 出发,沿直线前进8米后向左转60︒,再沿直线前进8米,又向左转60︒,…,照这样走下去,他第一次回到出发点A时,走过的总路程为()A.48米B.80米C.96米D.无限长9.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS10.如图,AB∥CD,AD∥BC,AE⊥BD,CF⊥BD垂足分别为E、F两点,则图中全等的三角形有()A.1对B.2对C.3对D.4对二、填空题11.八边形的内角和为________度.12.如图,点A、D、B、E在同一直线上,若△ABC≌△EDF,AB=5,BD=3,则AE=____.13.若等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为____.14.如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东15°方向行至点C,则∠ABC=_________度.15.如图,DE是∆ABC的边AB的垂直平分线,点D为垂足,DE交AC于点E,且AC=8,BC=5,则∆BEC的周长是_________.16.如图,把一张长方形的纸沿对角线折叠,若118∠=︒,则BACABC∠=___.三、解答题17.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC和∠DAE的度数.18.如图,在△ABC中,D是三角形内一点,连接DA、DB、DC,且∠1=∠2,∠3=∠4,求证:AB=AC.19.如图,在平面直角坐标系中,△ABC位于第二象限,请你按要求在该坐标系中在图中作出:(1)把△ABC向右平移4个单位长度得到的△A1B1C1;(2)再作与△A1B1C1关于x轴对称的△A2B2C2.20.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O.(1)求证:BD=CE;(2)若∠A=80°,求∠BOC的度数.21.如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E,(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.22.如图,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?证明你的结论;(2)求∠CAD的度数;(3)当以点C、A、E为顶点的三角形是等腰三角形,求OC的长.23.如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.24.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边且BE=CF,AD+EC =AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.25.(1)如图1,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA于D,PE⊥OB于E.F 是OC上的另一点,连接DF、EF.求证:OP垂直平分DE;(2)如图1,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA于D,PE⊥OB于E.F 是OC上的另一点,连接DF、EF.求证:DF=EF(3)如图2,若∠PDO+∠PEO=180°,PD=PE,求证:OP平分∠AOB.参考答案1.B【解析】【详解】由轴对称图形的定义:“把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合,这个图形叫做轴对称图形”分析可知,上述四个图形中,A、C、D都是轴对称图形,只有B不是轴对称图形.故选B.2.A【解析】【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.3.C【解析】【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2).故选C.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.D【解析】【分析】由全等三角形的对应角相等,即可得到答案.【详解】解:根据题意,如图:∵图中的两个三角形是全等三角形,∴第一个三角形中,边长为a的对角是72°,∴在第二个三角形中,边长为a的对角也是72°,∴∠α=72°;故选:D.【点睛】本题考查了全等三角形的性质,解题的关键是掌握全等三角形的对应角相等.5.D【解析】【分析】看哪个正多边形的一个内角的度数不是360°的约数,就不能密铺平面.【详解】解:A.正三角形的一个内角为60°,是360°的约数,能密铺平面,不符合题意;B.正四边形的一个内角度数为180﹣360÷4=90°,是360°的约数,能密铺平面,不符合题意;C.正六边形的一个内角度数为180﹣360÷6=60°,是360°的约数,能密铺平面,不符合题意;D.正八边形的一个内角度数为180﹣360÷8=135°,不是360°的约数,不能密铺平面,符合题意;故选:D.【点睛】本题主要考查平面密铺的问题,解答此题的关键是熟练掌握知识点:一种正多边形能镶嵌平面,这个正多边形的一个内角的度数是360°的约数;正多边形一个内角的度数=180°-360°÷边数.6.B【解析】【分析】根据等腰三角形“三线合一”的性质解答,即可得到A、C、D三项,但得不到B项.【详解】解:∵△ABC中,AB=AC,D是BC中点,∴∠B=∠C(故A正确)∠1=∠2(故C正确)AD⊥BC(故D正确)无法得到AB=2BD,(故B不正确).故选:B.【点睛】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.7.A【解析】【分析】根据已知可以得到∠ABC=∠BAD,AB=BA,然后再分别判断各个选项中的条件能否使得△ABC≌△BAD即可.【详解】解:∵∠ABC=∠BAD,AB=BA,∴若添加条件AC=BD,无法判定△ABC≌△BAD,故选项A符合题意;若添加∠C=∠D,则△ABC≌△BAD(AAS),故选项B不符合题意;若添加AD=BC,则△ABC≌△BAD(SAS),故选项C不符合题意;若添加∠ABD=∠BAC,则△ABC≌△BAD(ASA),故选项D不符合题意;故选:A .【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.8.A【解析】【分析】根据题意,小明走过的路程是正多边形,先用360︒除以60︒求出边数,然后再乘以8米即可.【详解】小明每次都是沿直线前景8米后向左转60度,∴他走过的图形是正多边形,∴边数360606n =︒÷︒=,∴他第一次回到出发点A 时,一共走了6848⨯=(米).故选:A【点睛】本题考查了正多边形的边数的求法,根据题意判断出小明走过的图形是正多边形是解题关键.9.D【解析】【分析】根据全等三角形的判定可作出选择.【详解】解:在△ADC 和△ABC 中,AD AB DC BC AC AC ⎧⎪⎨⎪⎩===,∴△ADC ≌△ABC (SSS ),∴∠DAC=∠BAC ,即∠QAE=∠PAE .∴AE 是∠PRQ 的平分线故选D .【点睛】本题考查全等三角形的判定与性质、角平分线的定义,熟练掌握全等三角形的判定与性质是10.C【解析】【分析】根据全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL(直角三角形).【详解】解:∵AB ∥CD ,AD ∥BC ,∴ABD CDF ∠=∠,ADB CBD ∠=∠,∴在△ABD 和△CDB 中,BD DB ABD CDB ADB CBD =⎧⎪∠=∠⎨⎪∠=∠⎩∴()ABD CDB ASA △≌△;∴AB CD =,AD BC =,∴在△ABE 和△CDF 中,AB CD ABD CDF AEB CFD =⎧⎪∠=∠⎨⎪∠=∠⎩,∴()ABE CDF AAS △≌△;∴在△ADE 和△CBF 中,AD BC ADB CBD AED CFB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴()AED CFB AAS △≌△,则图中全等的三角形有:△ABE ≌△CDF ,△ADE ≌△CBF ,△ABD ≌△CDB ,共3对.故选:C .【点睛】此题考查了三角形全等的判定,解题的关键是熟练掌握三角形全等的判定方法.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL(直角三角形).【解析】【详解】解:八边形的内角和=180(82)1080︒︒⨯-=,故答案为:1080.12.7【解析】【分析】根据△ABC ≌△EDF ,得到AB=ED ,然后求得AD=BE ,根据线段之间的关系即可求出AE 的长度.【详解】∵△ABC ≌△EDF∴AB=ED=5,∴AB-DB=ED-DB∴AD=EB=2∴AE=AB+BE=7.故答案为:7.【点睛】此题考查了三角形全等的性质,解题的关键是熟练掌握三角形全等的性质.全等三角形的性质:全等三角形对应边相等,对应角相等.13.3【解析】【分析】分边长为3的边为腰和边长为3的边为底边两种情况,再根据三角形的周长公式、三角形的三边关系定理即可得.【详解】由题意,分以下两种情况:(1)当边长为3的边为腰时,则这个等腰三角形的底边长为13337--=,337+<,即此时三边长不满足三角形的三边关系定理,∴这个等腰三角形的底边长不能为7;(2)当边长为3的边为底边时,则这个等腰三角形的腰长为1335 2-=,此时355+>,满足三角形的三边关系定理;综上,这个等腰三角形的底边长为3,故答案为:3.【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,熟练掌握等腰三角形的定义是解题关键.14.60【解析】【详解】如图,由题意可知∠EAB=45°,∠DBC=15°,AE∥BD,∴∠ABD=∠EAB=45°,∴∠ABC=∠ABD+∠DBC=45°+15°=60°.故答案为:60【点睛】解本题需注意两点:(1)东北方向是指北偏东45°方向;(2)在同一平面内,从一个点引出的表示正北方向的射线和从另一个点引出的表示正南方向的射线是互相平行的.15.13【解析】【分析】直接利用线段垂直平分线的性质得出AE=BE,进而得出答案.【详解】解:∵DE 是△ABC 的边AB 的垂直平分线,∴AE=BE ,∵AC=8,BC=5,∴△BEC 的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故答案为:13.【点睛】本题主要考查了线段垂直平分线的性质,正确掌握线段垂直平分线的性质是解题关键.16.31°【解析】【分析】根据折叠的性质可以判断出ABC 是等腰三角形,再根据三角形内角和为180°求解即可.【详解】解:将翻折后的图形如图所示:∵四边形ADCF 是长方形,∴CD AF ∥,∴FAC BCA ∠=∠,由折叠的性质得:FAC EAC ∠=∠,∴BAC BCA ∠=∠,∵118ABC ∠=︒∴31BAC BCA ∠=∠=︒故答案为:31︒【点睛】本题考查了等腰三角形的性质和三角形的内角和,正确理解知识点是解题的关键.17.∠DAE =14°,∠AEC =76°.【解析】【分析】由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC ﹣∠DAC ,∠AEC =90°﹣∠EAD .【详解】解:∵∠B =42°,∠C =70°,∴∠BAC =180°﹣∠B ﹣∠C =68°,∵AE 是角平分线,∴∠EAC =12∠BAC =34°.∵AD 是高,∠C =70°,∴∠DAC =90°﹣∠C =20°,∴∠EAD =∠EAC ﹣∠DAC =34°﹣20°=14°,∠AEC =90°﹣14°=76°.【点睛】本题考查了三角形内角和定理、角平分线的定义,属于简单题,熟悉三角形的内角和是180°是解题关键.18.见解析.【解析】【分析】根据等角对等边,可得DB =CD ,从而可利用SAS 证得△ABD ≌△ACD ,即可求证.【详解】证明:∵∠1=∠2,∴DB =CD ,在△ABD 和△ACD 中,34AD AD BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD (SAS ),∴AB=AC.【点睛】本题主要考查了等腰三角形的判定,全等三角形的判定和性质,熟练掌握等腰三角形的判定定理,全等三角形的判定定理和性质定理是解题的关键.19.(1)作图见解析;(2)作图见解析.【解析】【分析】(1)利用平移的性质可画出图形;(2)利用关于x轴对称的点的性质画出图形即可.【详解】(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求:【点睛】本题考查了平移的性质及轴对称的性质,解题的关键是掌握变换的规律.20.(1)见解析;(2)100°.【解析】【分析】(1)只要证明△ABD≌△ACE(AAS),即可证明BD=CE;(2)利用四边形内角和定理即可解决问题.【详解】(1)证明:∵BD、CE是高,∴∠ADB=∠AEC=90°,在△ABD和△ACE中,A A ADB AEC AB AC ∠∠⎧⎪∠∠⎨⎪⎩===∴△ABD△ACE(AAS),∴BD=CE.(2)∵∠A=80°,∠ADB=∠AEC=90°,∴∠BOC=360°-80°-90°-90°=100°.【点睛】本题考查全等三角形的判定和性质、四边形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题.21.(1)见解析(2)25°【解析】【分析】(1)因为这两个三角形是直角三角形,BC=BD ,因为AD ∥BC ,还能推出∠ADB=∠EBC ,从而能证明:△ABD ≌△ECB .(2)因为∠DBC=50°,BC=BD ,可求出∠BDC 的度数,进而求出∠DCE 的度数.【详解】(1)证明:∵AD ∥BC ,∴∠ADB=∠EBC .∵CE ⊥BD ,∠A=90°,∴∠A=∠CEB ,又∵BC=BD ,∴△ABD ≌△ECB ;(2)解:∵∠DBC=50°,BC=BD ,∴∠EDC=12(180°-50°)=65°,又∵CE ⊥BD ,∴∠CED=90°,∴∠DCE=90°-∠EDC=90°-65°=25°.22.(1)△OBC ≌△ABD ,证明见解析;(2)∠CAD=60°;(3)当OC 等于3时,以点C 、A 、E 为顶点的三角形AEC 是等腰三角形.【解析】(1)根据等边三角形的性质得到OB=AB ,BC=BD ,然后根据SAS 证明三角形全等的方法即可证明△OBC ≌△ABD ;(2)根据(1)中证明的△OBC ≌△ABD ,可得OCB ADB ∠=∠,然后根据三角形内角和即可求得60CAD CBD ∠=∠=︒;(3)根据(2)求得的60CAD ∠=︒可得60OAE ∠=︒,然后根据OA 的长度和30°角直角三角形的性质可求得AE=2,然后根据△AEC 是等腰三角形求出AC 的长度,即可求出OC 的长.【详解】(1)△OBC ≌△ABD理由如下:∵△OAB 与△CBD 是等边三角形∴OB =AB ,BC =BD ,∠OBA =∠CBD =60°∴∠OBA+∠ABC =∠CBD+∠ABC ,即∠OBC =∠ABD∴在△OBC 与△ABD 中,OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩∴△OBC ≌△ABD(SAS),(2)如图所示,设AD 交BC 于点F,解:∵△OBC ≌△ABD ,∴OCB ADB ∠=∠,又∵AFC BFD ∠=∠,∴∠CAD=∠CBD=60°;(3)解:∵60OAE CAD ∠=∠=︒∴∠EAC=120°,30OEA ∠=︒,∴22AE OA ==,∴以A ,E ,C 为顶点的三角形是等腰三角形时,只能是以AE 和AC 为腰∴AC=AE=2,∴OC=OA+AC=1+2=3,所以当OC 等于3时,三角形AEC 是等腰三角形.【点睛】此题考查了三角形全等的性质和判定,30°角直角三角形的性质和等腰三角形的性质等知识,解题的关键是根据题意证明出△OBC ≌△ABD .23.见解析【解析】【分析】由CD ∥BE ,可证得∠ACD=∠B ,然后由C 是线段AB 的中点,CD=BE ,利用SAS 即可证得△ACD ≌△CBE ,证得结论.【详解】∵C 是线段AB 的中点,∴AC=CB ,∵CD ∥BE ,∴∠ACD=∠B ,在△ACD 和△CBE 中,∵AC=CB ,∠ACD=∠B ,CD=BE ,∴△ACD ≌△CBE (SAS ),∴∠D=∠E .24.(1)见解析;(2)∠DEF =70°.【解析】【分析】(1)求出EC=DB ,∠B=∠C ,根据SAS 推出△BED ≌△CFE ,根据全等三角形的性质得出DE=EF 即可;(2)根据三角形内角和定理求出∠B=∠C=70°,根据全等得出∠BDE=∠FEC ,求出∠DEB+∠FEC=110°,即可得出答案;【详解】(1)证明:∵AB =AC ,∴∠B =∠C ,∵AB =AD+BD ,AB =AD+EC ,∴BD =EC ,在△DBE 和△ECF 中,BE CF B C BD EC =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△ECF (SAS )∴DE =EF ,∴△DEF 是等腰三角形;(2)∵∠A =40°,∴∠B =∠C =1(18040)2- =70°,∴∠BDE+∠DEB =110°,又∵△DBE ≌△ECF ,∴∠BDE =∠FEC ,∴∠FEC+∠DEB =110°,∴∠DEF =70°.25.(1)见解析;(2)见解析;(3)见解析.【解析】(1)根据HL 证明Rt △OPD ≌Rt △OPE ,得OD=OE 可得结论;(2)根据SAS 证明△ODF ≌△OEF 即可;(3)先过点P 作PM ⊥OA ,PN ⊥OE ,证明△PMD ≌△PNE ,根据全等三角形的性质即可解决问题.【详解】(1)证明:∵OC 是∠AOB 的平分线,PD ⊥OA ,PE ⊥OB ,∴PD =PE ,在Rt △OPD 和Rt △OPE 中,OP OP PD PE =⎧⎨=⎩,21∴Rt △OPD ≌Rt △OPE (HL ),∴OD=OE ,∴OP 垂直平分DE ,(2)由(1)知Rt △OPD ≌Rt △OPE ∴OD =OE ,在△ODF 和△OEF 中,PD PEDPF EPF PF PF=⎧⎪∠=∠⎨⎪=⎩,∴△ODF ≌△OEF (SAS ),∴DF =EF .(3)过点P 作PM ⊥OA ,PN ⊥OB,∵∠PDO+∠PEO=180°,∠PDO+∠PDM=180°∴∠PDM=∠PEN;在△PMD 和△PNE 中,PMD PNEPDM PEN PD PE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PMD ≌△PNE (AAS )∴PM=PN ;∵PM ⊥OA ,PN ⊥OB,∴OP 平分∠AOB。

新人教版八年级数学上册半期考试试卷

新人教版八年级数学上册半期考试试卷

八年级数学上期半期考试卷总分:100分钟时间:90分钟班级:_______学号:______姓名:________得分:_____一.选择题(共13小题,每题3分,共39分)1.计算(﹣x2)•x3的结果是()A.x3B.﹣x5C.x6D.﹣x62.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.P O B.MQ C.M O D.P Q3.你认为下列各式正确的是()A.a2=(﹣a)2B.a3=(﹣a)3C.﹣a2=|﹣a2| D.a3=|a3|4.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.B C∥EF D.∠A=∠EDF5.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.2B.1C.3D.46.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点7.在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,CD=2,则点D到AB的距离是()A.1B.3C.2D.48.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.59.计算(a2)3的结果是()A.a5B.a6C.a8D.3a210.等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边为( ) A . 7cm B . 8cm C . 7cm 或3cmD . 3cm11.下列计算正确的是( ) A . a 2•a 3=a 6 B . 5a ﹣2a=3 C . (ab 3)2=a 2b 6 D . (a+b )(a ﹣2b )=a 2﹣2b 212.计算(﹣ab 2)3的结果是( ) A .﹣a 3b 5B .﹣a 3b 5C .﹣a 3b 6D .﹣a 3b 613.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )二.填空题(共10小题,每题2分,共20分) 14.计算:(﹣3x 2y )•(xy 2)= _________ .15.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF=AC ,则∠ABC= _________ 度.16.已知:如图,△OAD ≌△OBC ,且∠O=70°,∠C=25°,则∠AEB= _________ 度.17.如图,∠BAC=∠ABD ,请你添加一个条件: _________ ,使OC=OD (只添一个即可).18.如图,已知CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 交于点O ,且AO 平分∠BAC ,那么图中全等三角形共有 _________ 对.19.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3= _________ 度.20.如图所示,已知AB=AC ,EB=EC ,AE 的延长线交BC 于D ,那么图中的全等三角形共有 _________ 对.21.如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n= _________ .22.如图,△ABC 中,∠C=90°,AC=BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB=10cm ,则△DEB 的周长是 _________ cm .A. 带①去B. 带②去C. 带③去D. 带①和②去18题图19题图 20题图23.如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A 时,一共走了_________m.三.解答题(共5小题,24小题3分,其余各题各5分,共23分)24.计算:(a﹣b)(a2+ab+b2)23题图25.先化简,再求值:5(3x2y﹣xy2)﹣4(﹣xy2+3x2y),其中x=﹣2,y=3.26.若(x﹣1)(x2+mx+n)=x3﹣6x2+11x﹣6,求m,n的值.27.你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?28.如图:在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34°.求∠DAE的度数.四.证明题(共3题,每题各6分,共18分)29.如图,已知AC平分∠BAD,∠1=∠2,求证:AB=AD.30.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.求证:AD是△ABC的角平分线.31.如图,点E,F分别在OA,OB上,DE=DF,∠OED+∠OFD=180°,求证:OD平分∠AOB.F。

八年级上期半期考试数学试卷(含答案)

八年级上期半期考试数学试卷(含答案)

八年级上期半期考试数 学 试 卷(时间120分钟 满分150分)亲爱的同学:当你走进考场,你就是这里的主人。

只要心境平静,细心、认真地阅读、思考,你就会感到成功离你并不远。

一切都在你掌握之中,请相信自己!一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中。

题号 12345678910答案1.下列各数是无理数的是( )A .722B .38C .32D .0.414414414···· 2.下列几个图形是国际通用的交通标志,其中不是..中心对称图形的是( )3. 下列计算正确的是( )A .235=- B .()ππ-=-332C .5315= D.1535=⨯4.下列运动属于旋转的是( )A .在公路上行驶的汽车B . 钟表的钟摆的摆动C.气球升空的运动 D . 一个图形沿某直线对折的过程 5.在二元一次方程x+3y=1的解中,当x=2时,对应的y 的值是( )A.31B.31-C.1D.4 6.如图,四边形ABCD 中,已知AB//CD ,要判断四边形ABCD 是平行四边形,还需要添加条件 ( ) A .0180=∠+∠D A B .AD=BC C .0180=∠+∠B AD .B A ∠=∠7.四边形ABCD 四个内角度数之比是7∶5∶5∶7 ,则四边形ABCD 是( ) A.平行四边形 B.梯形 C.等腰梯形 D.直角梯形 8.正三角形绕它的中心至少要旋转度( )后与自身重合!A B C D 第6题图AD H DCBAA .60°B . 120°C . 240°D . 360°9.下图是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.那么当边长为n 根火柴棍时,摆出的正方形所用的火柴棍的根数为( )A. n 4根B.()48-n 根C.)1(+n n 根D. )1(2+n n 根 10.已知:平行四边形ABCD 中,对角线AC 、BD 相交于点O ,BD =2AD ,E ,F ,G 分别是OC ,OD ,AB的中点. 下列结论: ①EG=EF ;②△EFG ≌△GBE ;③ FB 平分∠EFG ;④EA 平分∠GEF ;⑤四边形BEFG 是菱形.其中正确的是( )A .①②③B .②③④C .③④⑤D .①②④二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在表格中。

八年级上学期期中考试语文试卷及参考答案(最新人教版)

八年级上学期期中考试语文试卷及参考答案(最新人教版)

八年级上学期期中考试语文试卷及参考答案(最新人教版)一、积累运用1、下列划线字注音全部正确的一项是()2分A、溃退(kuì)绯红(fěi)仁慈(cí)惊心动魄(pò)B、窒息(zhì)荧光(yíng)畸形(jī)殚精竭虑(dàn)C、镌刻(XXXɡ)XXX(XXXɡ)侏儒(zhū)屏息敛声(liǎn)D、锃亮(zènɡ)凛冽(lǐn)酷似(sì)藏污纳垢(ɡòu)2、下列词语没有错别字的一项是()2分A、娴熟滞留鹤立鸡群催枯拉朽B、翘首胆怯油光可鉴和颜悦色C、轮廓泻气筋疲力尽抑扬顿挫D、劳碌教诲正巾危坐一丝不苟3、下列句子中划线词语使用错误的一项是()2分A、在西部,沙子一旦摆脱了水,它们就会纵横捭阖,所向披靡。

B、亚太地区各种自贸协定、倡议常常让非专业人士眼花缭乱。

C、目前,水资源紧缺的状况正以锐不可当之势影响着我们的生活,理应引起高度重视。

D、这张新歌宣传照中,他静坐颔首低眉显示出的不仅仅是深情更有一番游子思家的情谊。

4、下列句子中没有语病的一项是()2分A、政府工作报告提出,今年年内将全部取消手机国内长途和漫游费,降低国际长途电话费,引发现场热烈反响。

B、大剧《三生三世十里桃花》昨日已盛大收官。

截至目前,该剧全网播放量逼近大约300亿。

C、《中国诗词大会》的热播为中华优秀传统文化进校园积累了经验,探索了路子。

D、随着世界对中国的兴趣日益广泛,让中国出版“走出去”的路越走越宽,早已超越了传统文化、文学作品和汉语教材的“老三样”。

5、名著阅读。

4分红星照耀中国》曾易名为《西行漫记》,是XXX写的一部文笔优美的纪实作品。

作者真实记录了自1936年6月至10月在我国陕西、甘肃、宁夏、山西、河南等地进行实地采访的所见所闻,该书绝大部分素材来自作者采访和考察的第一手资料,客观地向全世界真实报道了中国革命的真实情况。

贵州遵义市桐梓达兴中学2018-学年八年级上学期期中(半期)考试语文试题及答案 部编人教版八年级上

贵州遵义市桐梓达兴中学2018-学年八年级上学期期中(半期)考试语文试题及答案  部编人教版八年级上

贵州遵义市桐梓达兴中学2018-学年八年级上学期期中(半期)考试语文试题及答案部编人教版八年级上册达兴中学2018-学年度秋季学期八年级语文半期试卷一、积累与运用(30分)1.汉字积累——下列字形和加点字注音全部正确的一项是(▲)(3分)A.澎湃(bài)镌刻屏息敛声(bǐng) 锐不可挡B.凛冽(lǐng) 蒙昧摧枯拉朽(xiǔ) 咆哮C.绯红(fēi) 劳禄眼花缭乱(liáo) 湛蓝D.脸颊(jiá) 教诲杳无消息(yǎo) 畸形2.词语积累——下列句子中加点的词语使用恰当的一项是(▲)(3分)A.他聪慧好学,多才多艺,阳光帅气,在我们年级鹤立鸡群,是学生会主席的热门人选。

B.他是一个喜欢随声附和的人,总是有很多独到的想法。

C.广告宣传本来是好事,可一些小广告如雨后春笋一般贴满大街小巷,严重影响了市容。

D.问题食品引发了不少危害健康的案例,但仍有非法商家不以为然,甚至顶风作案。

3.文化积累——下列对名著内容的表述,错误的一项是(▲)(3分)A.《西游记》充满奇特的想象及浪漫主义色彩,书中借助孙悟空的形象,反映了广大人民群众反抗专制压迫、战胜邪恶和征服自然的强烈愿望。

B.《红星照耀中国》向全世界宣告:中国共产党及其领导的红色革命犹如一颗闪亮的红星,不仅照耀着中国的西北,而且必将照耀全中国。

这一预言是非常有远见的。

C.《骆驼祥子》中的祥子最大的梦想是拥有一辆自己的车。

他风里来雨里去,省吃俭用攒了三年,终于买下了一辆车,但这车很快就被霸道的刘四抢走了。

D.《五猖会》记述“我”在儿时盼望观看迎神赛会的急切、兴奋的心情,以及被父亲强迫背诵《鉴略》的扫兴而痛苦的感受。

4.语言运用——下列句子的标点符号使用正确的一项是(▲)(3分)A.古语云:“舟必漏而后入水,土必湿而后生苔”。

几处渗漏,可使巨轮倾覆;一处管涌,能让长堤崩溃。

B.70年前,她从平山县的小山区驶来;70年后,她又将扬帆远航,开启更加波澜壮阔的航程。

人教版新版八年级上册数学半期考试试卷及答案教学教材

人教版新版八年级上册数学半期考试试卷及答案教学教材

学校 年学年度 人教版 新版第一学期八年级数学半期考试试卷 年级 班级姓名:_______________班级:_______________考号:_______________一、选择题(每题4分,共40分)1、如果三角形的两边分别为3和5,那么这个三角形的周长可能是( )A .15B .16C .8D .72、如图,已知△ABC 是等腰直角三角形,∠A=90°,BD 是∠ABC 的平分线,DE ⊥BC 于E ,若BC=10cm ,则△DEC 的周长为( )A .8cmB .10cmC .12cmD .14cm3、如图所示,AD 平分,,连结BD 、CD 并延长分别交AC 、AB 于F 、E 点,则此图中全等三角形的对数为( )A .2对B .3对C .4对D .5对4、下列命题不正确的是 ( )A.全等三角形的对应高、对应中线、对应角的平分线相等B.有两个角和其中一个角的平分线对应相等的两个三角形全等C.有两条边和其中一边上的中线对应相等的两个三角形全等D.有两条边和其中一边上的高对应相等的两个三角形全等5、如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为( )A.15° B.20° C.25°D.30°6、如图,在△ABC中,∠ACB=9O°,AC=BC,BE⊥CE于D,DE=4cm,AD=6 cm,则BE的长是 ( )A.2cm B.1.5 cm C.1 cm D.3 cm 7、如图,如果直线是多边形ABCDE的对称轴,其中∠A=120°,∠C=110°,那么∠CDE的度数等于( )A.40° B.60° C.70° D.80°8、如图,把图①中的经过一定的变换得到图②中的,如果图①中上点的坐标为,那么这个点在图②中的对应点的坐标为()A. B. C . D .9、下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形 B.菱形 C.直角梯形 D.正六边形10、如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点。

人教版八年级物理上册期中试题15 含答案

人教版八年级物理上册期中试题15 含答案

初二物理(上期)半期考试模拟试题注意事项:二、全卷分A 卷和B 卷,A 卷满分100分,B 卷满分20分;全卷共120分;三、考试时间90分钟。

A 卷(共100分)第Ⅰ卷(选择题,共32分)1. 单项选择题(每小题2分,共32分)1.测量紧密排绕在铅笔上的细铜丝的直径,如图所示,以下说法中正确的是( )A .所用刻度尺的分度值为1cmB .读取图中刻度尺的示数时,视线应与尺面平行C .测得图中线圈的总长度为15cmD .实验中需要数所绕线圈的圈数2.随着“神舟七号”载人飞船发射成功,我国已实现三次载人航天飞行.在火箭推动飞船上升 阶段,航天员是被固定在飞船座舱内的.此阶段航天员相对下列哪个参照物是静止的( )A .太阳B .地球C .月球D .飞船3.如图所示,小王同学正在弹奏吉他。

下列说法错误..的是( ) A .在不同位置按压吉他弦,可以改变音调 B .吉他声只能在空气中传播C .吉他音量大小与弹奏时所用的力度有关D .吉他声具有能量4. 当光从空气斜射向水面时,同时发生反射和折射,能正确表示其传播方向的是( )5.下列四个选项中,平均速度最大的是( )A.航模飞行器以11m/s 的速度飞行B.汽车以50km/h 的速度在公路上行驶C.百米赛跑中运动员用10s 跑完全程D.从30m 高处竖直下落的物体用了2.5sA B C D6.小明在课外按如图所示装置做小孔成像实验,如果易拉罐底部小孔是三角形,则他在半透明纸上看到的像是()A. 三角形光斑 B.圆形光斑C. 蜡烛的正立像 D.蜡烛的倒立像7.图所示的四种现象中,属于光的反射现象的是 ( )8.杯里放一枚硬币,眼睛刚好看不见(如图所示)保持眼睛和杯子的位置不变,注水,下列说法正确的是()A.随着水的增多,眼睛能看到硬币,但位置比实际位置高B.随着水的增多,眼睛能看到硬币,但位置比实际位置低C.随着水的增多,眼睛能看到硬币,且位置没有改变D.注入水后仍看不见硬币9.下列成语中涉及的光现象,可用光的直线传播解释的是( )A.海市蜃楼B.镜花水月C.立竿见影D.油光可鉴10.下列说法正确的是 ( )11.2011年11月3日,“神舟八号”飞船与“天宫一号”飞行器顺利完成首次对接,开启了中国航天事业发展的新阶段。

人教版八年级语文上册期中试题及答案

人教版八年级语文上册期中试题及答案

(上)半期考试语文试卷(全卷共四个大题,满分150分,考试时间120分钟)一、语文基础知识及运用(30分)1.下列加点字注音完全正确....的一项是()(3分)A.翘.首(qiáo)绯.红(fěi) 纤.维(qiān)屏.息敛声(bǐng)B.气氛.(fēn) 燥.热(zào)匀称.(chèn)锐不可当.(dāng)C.悄.然(qiāo)记载.(zǎi)畸.形(qí)惟妙惟肖.(xiào)D.遒.劲(qióu) 凛.冽(lǐn)诘.责(jié)筋.疲力尽(jīng)2.下列词语书写完全正确....的一项是()(3分)A.泄气不辍眼花缭乱沧海桑田B.喧器炽热为富不仁暗然失色C.雕镂默契油光可鉴粗制烂造D.防卸仲裁震聋发聩摧枯拉朽3.下列句中的加点词语使用不恰当...的一项是()(3分)A.中国女排精神,核心是为国争光的爱国主义精神,它将镌刻..进每个中国人的记忆里。

B.抗美援朝战争的胜利,打破了美帝国主义不可战胜的神话,使国际社会对白手起家....的新中国另眼相看。

C.育才中学2020年“智慧造物·美创佳品”创造节方案一出,孩子们因地制宜....,利用废旧纸板,开启了瓦楞车的创造之旅。

D.2020年国庆和中秋双节合体,各大景区游客络绎不绝....,又恢复了繁华的盛况。

4.将下面的句子组成一段连贯的话,排序合理..的一项是()(3分)①一次次地经历失去,又一次次地学着接受失去,是成长的必修课,成长是一辈子的事,因为生活就是不断地给我们抛来问题,一个接着一个。

②2020年,疫情肆虐,夺走了很多人的生命,永远的离开给活着的亲人、朋友留下了无尽的痛苦,很多人被迫提前上了“失去”这一课。

③有一些是“自然的失去”,有一些是“被迫的失去”,前者甚至我们自己都没有意识到,后者却是根本不想再回忆或提及——因为会被刺痛到,因为不能抑制地难过,因为一切的一切再也回不去。

人教版2022-2023年八年级上期中考试英语试题及答案

人教版2022-2023年八年级上期中考试英语试题及答案

人教版2022-2023年八年级上期中考试英语试题及答案第一部分:听力(20分)请听下面五段对话,选择最佳答案完成题目。

1. A: Can you help me with my math homework?B: Sorry, I'm not good at math.What does the girl mean?A. She is good at math.B. She can't help the boy.C. She needs help with her homework.D. She doesn't like math.2. A: Where is the library?B: It's next to the school cafeteria.Where is the library?A. Next to the school cafeteria.B. Inside the school.C. Opposite the school.D. Behind the school.3. A: Could you pass me the salt, please?B: Sure, here you go.What does the girl want?A. The sugar.B. The salt.C. The pepper.D. The pepper and salt.B: Congratulations! You really deserve it.What does the girl mean?A. She doesn't believe the boy.B. She is happy for the boy's achievement.C. She thinks the boy doesn't deserve the prize.5. A: Excuse me, can you tell me how to get to the train station? B: Sure, go straight and turn left at the second crossroads. What can we learn from the conversation?A. The train station is on the right.B. The train station is on the left.C. The train station is nearby.D. The train station is far away.请听下面一段对话,选择正确的答案。

人教版八年级上册数学期中考试试题及答案

人教版八年级上册数学期中考试试题及答案

人教版八年级上册数学期中考试试卷一、单选题1.以下面各组线段为边,不能构成三角形的是()A.5,6,7B.6,6,6C.8,4,4D.20,30,362.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短3.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形4.若点M(2,a)和点N(a+b,3)关于y轴对称,则a、b的值为()A.a=3,b=-5B.a=-3,b=5C.a=3,b=5D.a=-3,b=1 5.下列运算正确的是()A.-a4·a3=a7B.a4·a3=a12C.(a4)3=a12D.a4+a3=a7 6.如图,在△ABC中,AB=AC,AD=DE,∠BAD=20°,∠EDC=10°,则∠DAE的度数为()A.30°B.40°C.60°D.80°7.如图,在等边 ABC中,AD是它的角平分线,DE⊥AB于E,若AC=8,则BE=()A .1B .2C .3D .48.如图,用直尺和圆规作已知角的平分线,要证明CAD DAB ∠=∠成立的全等三角形的判定依据是()A .SSSB .SASC .ASAD .AAS9.如图,已知等边 ABC ,AB=2,点D 在AB 上,点F 在AC 的延长线上,BD=CF ,DE ⊥BC 于E ,FG ⊥BC 于G ,DF 交BC 于点P ,则下列结论:①BE=CG ;② EDP ≌ GFP ;③∠EDP=60°;④EP=1中,一定正确的个数是()个A .1B .2C .3D .410.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是()A .20°B .35°C .40°D .70°二、填空题11.若()2120a b -+-=,则以a 、b 为边长的等腰三角形的周长为_____.12.若am=3,则(a 3)m =.13.如图,锐角△ABC 的高AD 、BE 相交于F ,若BF=AC ,BC=7,CD=2,则AF 的长为____14.如图,在ABC 中,AB AC =,50A ∠=︒,AB 的垂直平分线MN 交AC 于D 点,连接BD ,则DBC ∠的度数是________.15.如图,撑伞时,把伞“两侧的伞骨”和支架分别看作AB 、AC 和DB 、DC ,始终有AB=AC ,DB=DC ,请大家考虑一下伞杆AD 所在的直线是B 、C 两点的连线BC 的____线.16.如图,是A 、B 、C 三个村庄的平面图,已知B 村在A 村的南偏西50°方向,C 村在A 村的南偏东15°方向,C 村在B 村的北偏东85°方向,求从C 村村观测A 、B 两村的视角∠ACB 的度数是__.三、解答题17.计算:(1)[(-a)3]4;(2)(-m 2)3·(-m 3)2.(3)[(m-n)2]5(n-m)3(4)(-x 2)5+(-x 5)218.已知在△ABC 中,AB =AC ,且线段BD 为△ABC 的中线,线段BD 将△ABC 的周长分成12和6两部分,求△ABC 三边的长.19.如图,在边长为1个单位长度的小正方形组成的网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与 ABC 关于直线l 成轴对称的A B C '''(2)四边形ABCA '的面积为_____;(3)在直线l 上找一点P ,使PA+PB 的长最短.20.如图,AD ⊥BC 于D ,AD=BD ,AC=BE .(1)请说明∠1=∠C ;(2)猜想并说明DE 和DC 有何特殊关系.21.如图在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,EF交BC于点FC.F,交AB于点E.求证:BF=1222.(1)若2x+5y﹣3=0,求4x•32y的值.(2)已知a3m=3,b3n=2.求(a2m)3+(bn)3-a2mbn·a4mb2n的值.23.如图,已知AB=CB,BE=BF,点A,B,C在同一条直线上,∠1=∠2.(1)证明:△ABE≌△CBF;(2)若∠FBE=40°,∠C=45°,求∠E的度数.24.已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=______;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当 PAB的周长最小时,求∠APB 的度数.25.如图1,点P 、Q 分别是等边△ABC 边AB 、BC 上的动点(端点除外),点P 从顶点A 、点Q 从顶点B 同时出发,且它们的运动速度相同,连接AQ 、CP 交于点M .(1)求证:ABQ CAP ≌△△:(2)当点P 、Q 分别在AB 、BC 边上运动时,∠QMC 的大小变化吗?若变化,请说明理由:若不变,求出它的度数.(3)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 相交于点M ,则∠QMC 的大小变化吗?若变化,请说明理由:若不变,则求出它的度数.参考答案1.C【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】+>,能构成三角形,该项不符合题意;A.567+>,能构成三角形,该项不符合题意;B.666+=,不能构成三角形,该项符合题意C.448+>,能构成三角形,该项不符合题意;D.203036故选C【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.2.A【解析】【分析】根据三角形的稳定性即可解决问题.【详解】解:根据三角形的稳定性可固定窗户.故选:A.【点睛】本题考查了三角形的稳定性,属于基础题型.3.D【解析】【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4.A【解析】【分析】关于y 轴对称的点的坐标特征是:横坐标变为原数的相反数,纵坐标不变,据此解出a,b 的值.【详解】解:根据题意,点M(2,a)和点N(a+b ,3)关于y 轴对称,则a+b=-2,a=3,解得b=-5,故选:A .【点睛】本题考查关于y 轴对称的点的坐标,是基础考点,掌握相关知识是解题关键.5.C【解析】【分析】由同底数幂相乘,幂的乘方,合并同类项,分别进行判断,即可得到答案.【详解】解:A 、437·a a a -=-,故A 错误;B 、437·a a a =,故B 错误;C 、4312()a a =,故C 正确;D 、43a a +不是同类项,不能合并,故D 错误;故选:C .【点睛】本题考查了幂的乘方,同底数幂相乘,合并同类项,解题的关键是熟练掌握运算法则进行判断.6.C【解析】【分析】先根据三角形外角性质,用∠C 表示出∠AED ,再根据等边对等角和三角形内角和定理,列出等式即可求出∠C 的度数,再求∠DAE .【详解】解:设∠C=x ,∵AB=AC ,∴∠B=∠C=x ,∴∠AED=x+10°∵AD=DE ,∴∠DAE=∠AED=x+10°根据三角形的内角和定理,得x+x+(20°+x+10°)=180°解得x=50°,∴∠DAE=50°+10°=60°故选C .【点睛】本题考查了等腰三角形的性质,三角形内角和定理,三角形的外角性质,求出∠C 的度数是解答本题的关键.7.B【解析】【分析】由等边△ABC 的“三线合一”的性质推知142BD BC ==,根据等边三角形三个内角都相等的性质、直角三角形的两个锐角互余推知∠BDE=30°,最后根据“30°角所对的直角边等于斜边的一半”来求BE 即可.【详解】∵ABC 是等边三角形,AD 是它的角平分线,∴118422BD BC ==⨯=,60B ∠=︒.∵DE AB ⊥于E ,∴30BDE ∠=︒,∴122BE BD ==.故选B 【点睛】本题考查了等边三角形的性质及含30°角的直角三角形,解题的关键是熟练掌握以上知识.8.A【解析】【分析】根据全等三角形的判定定理即可解答.【详解】解:∵AF=AE ,FD=ED ,在△AFD 与△AED 中AF AE FD ED AD AD =⎧⎪=⎨⎪=⎩∴△AFD ≌△AED (SSS )∴CAD DAB ∠=∠,因此全等三角形的判定依据是SSS ,故选:A .【点睛】本题考查了角平分线的尺规作图的依据,解题的关键是找到图中的全等三角形,并熟记全等三角形的判定定理.9.C【解析】【分析】由等边三角形的性质可以得出△DEB ≌△FGC ,就可以得出BE =CG ,DE =FG ,就可以得出△DEP ≌△FGP ,得出∠EDP =∠GFP ,EP =PG ,得出PC +BE =PE ,就可以得出PE =1,从而得出结论.【详解】解:∵△ABC 是等边三角形,∴AB =BC =AC ,∠A =∠B =∠ACB =60°.∵∠ACB =∠GCF ,∵DE ⊥BC ,FG ⊥BC ,∴∠DEB =∠FGC =∠DEP =90°.在△DEB 和△FGC 中,DEB FGC GCF B BD CF ∠∠⎧⎪∠∠⎨⎪⎩===,∴△DEB ≌△FGC (AAS ),∴BE =CG ,DE =FG ,故①正确;在△DEP 和△FGP 中,DEP FGP DPE FPG DE FG ∠∠⎧⎪∠∠⎨⎪⎩===,∴△DEP ≌△FGP (AAS ),故②正确;∴PE =PG ,∠EDP =∠GFP≠60°,故③错误;∵PG =PC +CG ,∴PE =PC +BE .∵PE +PC +BE =2,∴PE =1,故④正确.故答案为:C .【点睛】本题考查了等边三角形的性质,全等三角形的判定及性质,解题的关键是证明三角形全等.10.B【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【详解】∵AD 是△ABC 的中线,AB=AC ,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°.∵CE 是△ABC 的角平分线,∴∠ACE=12∠ACB=35°.故选B .【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.11.5【解析】【分析】根据偶次方和绝对值的非负性,可以得到a -1=0,b -2=0,得到a ,b 的值,根据三角形三边关系求解即可.【详解】解:∵()2120a b -+-=,∴a -1=0,b -2=0,解得a=1,b=2.①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴1、1、2不能组成三角形.②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,∴周长=2+2+1=5.故答案为:5【点睛】本题考查了偶次方和绝对值的非负性,等腰三角形的性质,三角形的三边关系,关键是求出a ,b 的值.12.27【解析】【分析】根据幂的乘方的逆运算可得结果.【详解】解:∵am=3,∴(a 3)m=()333327m m a a ====,故答案为:27.【点睛】本题考查了幂的乘方,熟练掌握幂的乘方以及其逆运算法则是解题的关键.13.3【解析】【详解】∴∠BDF=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠DAC+∠C=90°,∴∠DBF=∠DAC ,在△BDF 与△ADC 中,DBF DAC BDF ADC BF AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△ADC(ASA),∴AD=BD=BC−CD=7−2=5,DF=CD=2,∴AF=AD−DF=5−2=3;故答案为3.14.15°【解析】【分析】根据等腰三角形两底角相等,求出∠ABC 的度数,再根据线段垂直平分线上的点到线段两端点的距离相等,可得AD=BD ,根据等边对等角的性质,可得∠ABD=∠A ,然后求∠DBC 的度数即可.【详解】∵AB=AC ,∠A=50∘,∴∠ABC=12(180∘−∠A)=12(180∘−50∘)=65∘,∵MN 垂直平分线AB ,∴AD=BD ,∴∠ABD=∠A=50∘,∴∠DBC=∠ABC−∠ABD=65∘−50∘=15∘.故答案为:15∘.【点睛】考查等腰三角形的性质,线段垂直平分线的性质,掌握垂直平分线的性质是解题的关键.15.垂直平分【解析】【分析】根据线段的垂直平分线的性质定理的逆定理得出A 、D 都在线段BC 的垂直平分线上,根据两点确定一条直线得出直线AD 是线段BC 的垂直平分线.【详解】解:如图,连接BC 、AD ,∵,AB AC DB DC ==,∴点A 在线段BC 的垂直平分线上,点D 在线段BC 的垂直平分线上,∴根据两点确定一条直线得出直线AD 是线段BC 的垂直平分线,故答案为:垂直平分.【点睛】本题考查了线段的垂直平分线的判定,解题的关键是熟练掌握线段的垂直平分线的性质.16.80°【解析】【分析】根据三角形的内角和进行计算,即可得到结论.【详解】由题意得:∠BAE=∠ABD=50°,∠CAE=15°,∠DBC=85°,∴∠BAC =50°+15°=65°,∠ABC =85°﹣50°=35°,在△ABC 中,∠ACB =180°﹣∠BAC ﹣∠ABC =180°﹣65°﹣35°=80°.故答案为:80°.【点睛】本题考查的是方向角的概念及三角形内角和定理,解题的关键是熟练掌握三角形的内角和.17.(1)a 12;(2)-m 12;(3)(n-m )13;(4)0【解析】【分析】(1)由题意利用积的乘方和幂的乘方的运算法则进行计算即可;(2)由题意先利用积的乘方和幂的乘方的运算法则进行计算,继而利用同底数幂的乘法进行计算即可;(3)由题意先利用幂的乘方的运算法则进行计算,继而利用同底数幂的乘法进行计算即可;(4)由题意先利用积的乘方和幂的乘方的运算法则进行计算,继而利用合并同类项原则进行计算即可.【详解】解:(1)[(-a)3]412a =;(2)(-m 2)3·(-m 3)26612m m m =-⋅=-;(3)[(m-n)2]5(n-m)310310313()()()()()m n n m n m n m n m =-⋅-=-⋅-=-;(4)(-x 2)5+(-x 5)210100x x =-+=.【点睛】本题考查幂的运算,熟练掌握积的乘方和幂的乘方以及同底数幂的乘法运算法则是解题的关键.18.8,8,2【解析】【分析】设腰长为x ,底边长为y ,分两种情况进行讨论,12为腰长加腰长的一半和6为腰长加腰长的一半,求解即可.解:设腰长为x ,底边长为y ,当12为腰长加腰长的一半时,则:1122162x x y x ⎧+=⎪⎪⎨⎪+=⎪⎩,解得82x y =⎧⎨=⎩此时三角形的三边长为8,8,2,能组成三角形当6为腰长加腰长的一半时,则1621122x x y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得410x y =⎧⎨=⎩,此时三角形的三边长为4,4,10,不能组成三角形故三角形的三边长为8,8,2【点睛】本题考查了等腰三角形和三角形三边关系的求解,解题的关键是注意分情况讨论,并判断是否组成三角形.19.(1)见解析;(2)172;(3)见解析【解析】【分析】(1)根据题意作出点A ,点B 关于L 的对称点A′、B′,连结CA′,A′B′,B′C 即可;(2)用割补法利用矩形面积减去3个直角三角形面积求解即可得到结论;(3)作出图形,根据勾股定理求得结果即可.【详解】解:(1)作出点A ,点B 关于l 的对称点A′、B′,连结CA′,A′B′,B′C ,如图所示,△A'B'C'即为所求;(2)四边形ABCA'的面积=4×412-⨯2×112-⨯1×412-⨯3×3=16-1-2-92=172;故答案为:172;(3)∵点B 与点B′关于l 对称,连接AB'交直线l 与点P ,∴PA+PB=PA+PB′,则PA+PB长的最短值=AB',∴AB'==;.【点睛】本题考查了轴对称﹣最短路线问题,勾股定理,作图﹣轴对称变换,正确的理解题意是解题的关键.20.(1)证明见解析;(2)DE=DC,证明见解析.【解析】【分析】(1)欲证∠1=∠C,只需证明△DBE≌△DAC即可;(2)由△DBE≌△DAC,得到DE=DC.【详解】(1)∵AD⊥BC于D,∴∠BDE=∠ADC=90°.∵AD=BD,AC=BE,∴Rt△BDE≌Rt△ADC(HL),∴∠1=∠C.(2)DE=DC.理由如下:由(1)知△BDE≌△ADC,∴DE=DC.本题考查了直角三角形全等的判定及性质;三角形全等的判定和性质是中考的热点,斜边与直角边对应相等的两个直角三角形全等.21.见解析【解析】【详解】试题分析:连接AF,根据等腰三角形性质和三角形内角和定理求出∠B=∠C=30°,根据线段的垂直平分线的性质得出BF=AF,推出∠BAF=∠B=30°,求出∠FAC=90°,根据含30度角的直角三角形性质求出即可.试题解析:连接AF,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵EF为AB的垂直平分线,∴BF=AF,∴∠BAF=∠B=30°,∴∠FAC=120°-30°=90°,∵∠C=30°,∴AF=12 CF,∵BF=AF,∴BF=12 FC.22.(1)8;(2)-7【解析】【分析】(1)先化为以2为底的幂的形式,再利用同底数幂相乘,底数不变,指数相加,最后采用整体代入思想解题;(2)先利用幂的乘方公式将所要求的式子化简,再代入解题.【详解】解:(1)若2x+5y ﹣3=0,则2x+5y=32525343222228x y x y x y +⋅=⋅===;(2)(a 2m )3+(bn )3-a 2mbn·a 4mb 2n=(a 3m )2+(b 3n )-a 6mb 3n=(a 3m )2+(b 3n )-(a 3m )2b 3n=32+2-32×2=9+2-18=-7.【点睛】本题考查幂的运算,涉及同底数幂的乘法、幂的乘方、整体思想等知识,是重要考点,掌握相关知识是解题关键.23.(1)证明见解析;(2)25°【解析】【分析】(1)根据SAS 即可证明;(2)在△ABE 中,求出∠A ,∠ABE 即可解决问题.【详解】(1)证明:∵∠1=∠2,∴∠1+∠EBF =∠2+∠EBF ,即∠ABE =∠CBF .在△ABE 和△CBF 中,∵AB BC ABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CBF .(2)∵∠1=∠2,∠FBE =40°,∴∠1=∠2=70°.∵△ABE ≌△CBF ,∴∠A =∠C =45°,∵∠ABE =∠1+∠FBE =70°+40°=110°,∴∠E =180°-∠A -∠ABE =180°-45°-110°=25°.【点睛】本题考查全等三角形的判定和性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常见题.24.(1)①100°;②当90MON ∠=︒时,10GH =;(2)60APB ∠=︒【解析】【分析】(1)①根据对称性可得OG OP OM GP =⊥,,即可得到OM 平分POG ∠,ON 平分∠POH ,进而得出∠GOH 的值;②当90MON ∠=︒时,180GOH ∠=︒,此时G O H ,,在同一直线上,可得=10GH GO HO +=;(2)设点P 关于OM 、ON 对称点分别为P P ''',,当点A 、B 在P P '''上时, PAB 周长的最小,根据轴对称的性质,可求出APB ∠的度数.【详解】解:(1)①P 关于射线OM 的对称点是G ,点P 关于射线ON 的对称点是H ,OG OP OM GP ∴=⊥,,OM ∴平分POG ∠,同理得,ON 平分∠POH ,=2250100GOH MON ∴∠∠=⨯︒=︒,故答案为:100°;②P O=5,5GO HO ∴==当90MON ∠=︒时,180GOH ∠=︒G O H ∴,,在同一直线上,=10GH GO HO ∴+=;(2)如图,分别作点P 关于OM 、ON 的对称点P P ''',,连接OP OP P P P P '''''''''、、,交OM ON 、于点A 、B ,连接PA ,PB ,则AP=AP BP BP '''=,,此时 PAB 周长的最小值等于P P '''的长,由对称性可得,==,OP OP OP P OA POA P OB POB ''''''∠=∠∠=∠,,2260120P OP MON '''∴∠=∠=⨯︒=︒(180120)230OP P OP P ''''''∴∠=∠=︒-︒÷=︒30OPA OP A '∴∠=∠=︒同理可得30BPO OP B ''∠=∠=︒303060APB ∴∠=︒+︒=︒.【点睛】本题考查轴对称——最短路线问题,涉及角平分线性质等知识,是重要考点,掌握相关知识是解题关键.25.(1)证明见解析(2)∠QMC 的大小不变,∠QMC=60°(3)∠QMC 的大小不变,∠QMC =120°【解析】【分析】(1)根据等边三角形的性质,利用SAS 证明△ABQ ≌△CAP ;(2)由△ABQ ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP ,从而得到∠QMC=60°;(3)由△ABQ ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP ,从而得到∠QMC=120°.(1)证明:∵△ABC 是等边三角形∴∠ABQ =∠CAP =60°,AB =CA ,又∵点P 、Q 运动速度相同,∴AP =BQ ,在△ABQ 与△CAP 中,∵AB CA ABQ CAP BQ AP =⎧⎪∠=∠⎨⎪=⎩,∴ABQ CAP ≌△△(SAS );(2)解:点P 、Q 分别在AB 、BC 边上运动时,∠QMC 的大小不变,∠QMC =60°.理由:∵ABQ CAP ≌△△,∴∠BAQ =∠ACP ,∵∠QMC =∠ACP +∠MAC ,∴∠QMC =∠BAQ +∠MAC =∠BAC =60°(3)解:点P 、Q 在运动到终点后继续在射线AB 、BC 上运动时,∠QMC 的大小不变.理由:同理可得ABQ CAP ≌△△,∴∠BAQ =∠ACP ,∵∠QMC =∠BAQ +∠APM ,∴∠QMC =∠ACP +∠APM =180°-∠PAC =180°-60°=120°.。

人教版八年级上册数学期中考试试卷含答案

人教版八年级上册数学期中考试试卷含答案

人教版八年级上册数学期中考试试题一、单选题1.下列四幅图片上呈现的是垃圾类型及标识图案,其中标识图案不是轴对称图形的是()A .B .C .D .2.已知三角形的两边长分别为2、10,则第三边长可能是()A .6B .8C .10D .123.如图,在△ABC 中,AC 边上的高是()A .ADB .BEC .BFD .CF4.如图,已知DAB CAB ∠=∠,添加下列条件不能判定DAB CAB ≌△△的是()A .DBE CBE ∠=∠B .DC ∠=∠C .DA CA =D .DB CB=5.如图,OP 平分AOB ∠,PC OA ⊥,点D 是OB 上的动点,若3cm PC =,则PD 的长为()A .大于等于3cmB .大于3cmC .小于等于3cmD .小于3cm6.如图,在ABC 中,AB AC =,D 是AB 垂直平分线上一点,80ADC ∠=︒,则C ∠的度数是()A .60°B .50°C .40°D .30°7.如图,在ABC 中,AC BC =,16AB =,CG 4=,观察图中尺规作图的痕迹ACG 的面积为()A .64B .32C .16D .88.如图,在平面直角坐标系中,△ABC 三个顶点的坐标分别是点A (-3,0)、点B (-1,2)、点C (3,2).则到△ABC 三个顶点距离相等的点的坐标是()A .(0,-1)B .(0,0)C .(1,-1)D .(1,-2)9.如图,在△ABC 和△DCB 中,∠A=∠D=90°,AB=CD ,∠ACB=40°,则∠ACD 的度数为()A .10°B .20°C .30°D .40°10.如图所示,有三条道路围成Rt △ABC ,其中BC=1000m ,一个人从B 处出发沿着BC 行走了800m ,到达D 处,AD 恰为∠CAB 的平分线,则此时这个人到AB 的最短距离为A .1000mB .800mC .200mD .1800m二、填空题11.五边形ABCDE 的内角和是______度.12.若ABC ABD △≌△,4BC =,5AC =,2AB =,则AD 的长为__________.13.等腰三角形底边为2,腰长为5,则它的周长为__________.14.一副三角板如图所示叠放在一起,则图中α∠的度数是_______.15.如图,在ABC 中,90ACB ∠=︒,30ABC ∠=︒,CD AB ⊥于点D ,如果1AD =,那么BD=__________.16.在平面直角坐标系中,点(,2)A a -,点(5,)B b -关于x 轴对称,则a b +的值为__________.17.如图,等腰直角ABC ,90ACB ∠=︒,CD AB ⊥,E 为边AC 上一点(不与A 、C 重合),DF DE ⊥交BC 于点F ,连接EF 交CD 于点O ,当EOD △为等腰三角形时,EOD ∠的度数为__________.18.如图,在Rt ABC △中,90ACB ∠=︒,AC BC =,以BC 为边在BC 的右侧作等边BCD △,点E 为BD 的中点,点P 为CE 上一动点,连结AP ,BP .当AP BP +的值最小时,CBP ∠的度数为__________.三、解答题19.尺规作图:已知在Rt ABC △中,90ACB ∠=︒.(1)过点C 作直线CD AB ⊥,垂足为D ;(要求:保留作图痕迹,不写作法)(2)直接写出与ACD ∠相等的角为__________.20.如图,在ABC 中,AD 是角平分线,AE 是高,10DAE ∠=︒,42B ∠=︒,求C ∠的度数.21.如图,点D 在AB 上,点E 在AC 上,AD=AE ,∠B=∠C ,求证:AB=AC .22.如图,AD=BC ,AC=BD ,求证:△EAB 是等腰三角形.23.如图,在Rt ABC △和Rt DEF △中,90ACB DFE ∠=∠=︒,A 、E 、B 、D 在一条直线上,BC EF =,CE AD ⊥,FB AD ⊥,垂足分别是E 、B .求证:AC DF =.24.如图,在ABC 中,D 为边BC 上一点,DE AB ⊥,DF AC ⊥,垂足分别为E ,F ,DE DF =,DA AC =,21B ∠=︒,求FDC ∠的度数.25.如图,点C 为线段AB 上一动点,//AD EB ,AC BE =,AD BC =,过点C 作CF DE ⊥于点F ,CF 所在直线交DA 延长线于点G .(1)求证:CF 平分DCE ∠;(2)若6AB =,求DG 长度.26.如图,在等腰ABC 中,AB AC =,点D 为直线BC 上一点,连接AD ,以AD 为腰在AD 的右侧作等腰ADE ,AD AE =,BAC DAE α∠=∠=,连接CE .(1)如图1,当点D 在线段BC 上时,求证:ABD ACE △≌△;(2)当60α∠=︒,①如图2,求证://CE AB ;②探究线段CE 、AB 、CD 之间的数量关系,请直接写出结论.参考答案1.B2.C3.B4.D5.A6.C7.C8.D9.A10.C11.540【分析】利用多边形内角和公式计算即可.【详解】五边形ABCDE 的内角和=()52180540-⨯︒=︒.故答案为:540°.【点睛】本题考查多边形内角和问题,掌握多边形内角和公式是解题关键.12.5【分析】根据全等三角形的对应边相等解答即可.【详解】解:∵△ABC ≌△ABD ,AC=5,∴AD=AC=5,故答案为:5.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.13.12【解析】【分析】根据等腰三角形的性质可得到另一个腰长,从而不难求得周长.【详解】解:∵等腰三角形的腰长是5,则底边长2,∴周长=5+5+2=12.故答案为:12.【点睛】此题主要考查等腰三角形的性质:等腰三角形的两腰相等.14.75°【分析】根据三角形内角和定理求出∠ECF 、∠D 的度数,再求出∠a 的度数即可得到结果.【详解】解:如图所示,根据三角形内角和定理,∠A=30°,∠E=45°,∴∠D=180°-90°-∠A=60°,∠ECF=180°-90°-∠E=45°∴∠a=180°-∠ECF-∠D=75°15.3【分析】根据直角三角形的两锐角互余求得∠A=60°,∠ACD=30°,再根据直角三角形中30°角所对的直角边等于斜边的一半求得AC 、AB 即可解答.【详解】解:∵在ABC 中,90ACB ∠=︒,30ABC ∠=︒,∴∠A=90°﹣30°=60°,∵CD ⊥AB ,∴∠ACD=90°﹣60°=30°,又AD=1,∴AC=2AD=2,∴AB=2AC=4,∴BD=AB ﹣AD=4﹣1=3,故答案为:3.【点睛】本题考查含30°角的直角三角形的性质,熟练掌握直角三角形中30°角所对的直角边等于斜边的一半是解答的关键.16.3【解析】【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点(,2)A a -与点(5,)B b -关于x 轴对称,5a ∴=,2b =-,则a b +的值是:3,故答案为:3.【点睛】本题考查了关于x 轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.17.67.5°或90°【解析】【分析】根据等腰直角三角形的性质可得∠A=∠DCF=45°,CD=AD ,根据DF DE ⊥,利用同角的余角相等可得∠ADE=∠CDF ,利用ASA 可证明△ADE ≌△CDF ,可得DE=DF ,即可证明△EDF 是等腰直角三角形,可得∠DEF=45°,分DE=OE 、OE=OD 、DE=OD 三种情况,根据等腰三角形的性质即可得答案.【详解】∵等腰直角ABC ,90ACB ∠=︒,CD AB ⊥,∴∠A=∠DCF=45°,CD=AD ,∠ADE+∠CDE=90°,∵DF DE ⊥,∴∠CDF+∠CDE=90°,∴∠ADE=∠CDF ,在△ADE 和△CDF 中,A DCF AD CD ADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF ,∴DE=DF ,∴△EDF 是等腰直角三角形,∴∠DEF=45°,如图,当DE=OE 时,EOD ∠=1(180)2DEF ︒-∠=67.5°.如图,当OE=OD 时,∠EDO=∠DEF=45°,∴∠EOD=180°-2∠DEF=90°.当DE=OD 时,点E 与点A 或点B 重合,不符合题意,综上所述:EOD ∠的度数为67.5°或90°,故答案为:67.5°或90°【点睛】本题考查等腰直角三角形的判定与性质及全等三角形的判定与性质,熟练掌握全等三角形的判定定理,正确得出△EDF 是等腰直角三角形是解题关键.18.15°【解析】【分析】连接PD 、AD ,设AD 与CE 交于点P 1,利用等边三角形的性质证得∠CBD=∠BCD=∠BDC=60°,PD=BP ,根据两点之间线段最短得出当点A 、P 、D 共线时即点P 运动到P 1时,AP+BP 有最小值,连接BP 1,根据等边对等角证得∠CBP 1=∠CDP 1=∠CAD ,再根据三角形的外角性质即可求解.【详解】解:连接PD、AD,设AD与CE交于点P1,∵△BCD是等边三角形,点E为BC的中点,∴∠CBD=∠BCD=∠BDC=60°,BC=CD,CE⊥BD,BE=DE,∴CE为线段BD的垂直平分线,∴PD=BP,∴当点P运动时,AP+BP=AP+PD,而AP+PD≥AD,∴当点A、P、D共线时即点P运动到P1时,AP+BP有最小值,连接BP1,则BP1=DP1,∴∠P1BD=∠P1DB,又∠CBD=∠BDC,∴∠CBP1=∠CDP1,∵AC=BC=CD,∴∠CDP1=∠CAD,即延长AC至Q,∵∠ACB=90°,∠BCD=60°,∴∠DCQ=90°﹣60°=30°,又∠DCQ=∠CDP1+∠CAD=2∠CDP1,∴∠CDP1=15°,即∠CBP1=15°,∠=15°,∴当AP BP+的值最小时,CBP故答案为:15°.【点睛】本题考查等边三角形的性质、线段垂直平分线的性质、最短路径问题、等腰三角形的性质、三角形的外角性质,熟练掌握相关性质的联系与运用,会利用两点之间线段最短解决最值问题是解答的关键.19.(1)图见解析;(2)B Ð.【解析】【分析】(1)先以点A 为圆心、AC 长为半径画弧,再以点B 为圆心、BC 长为半径画弧,两弧相交于点E ,然后过点,C E 画直线,交AB 于点D 即可得;(2)先根据角的和差可得90ACD BCD ∠+∠=︒,再根据三角形的内角和定理可得90B BCD ∠+∠=︒,由此即可得出答案.【详解】解:(1)如图,CD 即为所作.(2)90ACB ∠=︒ ,90ACD BCD ∴∠+∠=︒,CD AB ⊥ ,90BDC ∴∠=︒,18090B BCD BDC ∠+∠=︒-∠=∴︒,ACD B ∴∠=∠,故答案为:B Ð.【点睛】本题考查了画垂线、三角形的内角和定理等知识点,熟练掌握垂线的画法是解题关键.20.62︒【解析】【分析】由AD 是角平分线,AE 是高,通过角平分线性质,及直角三角形锐角互余,再利用三角形内角和公式,等量关系列以C ∠为变量的方程,解方程即可.【详解】∵ABC 中,AD 是角平分线,AE 是高,∴BAD CAD ∠=∠,AEC △是直角三角形()1090100BAD CAD DAE CAE C C∠=∠=∠+∠=︒+︒-∠=︒-∠又∵2180B BAD C ∠+∠+∠=︒,42B ∠=︒即()422100180C C ︒+︒-∠+∠=︒解得62C ∠=︒.【点睛】本题旨在考查如何利用三角形的高及角平分线的性质,以及三角形内角和来求角度,熟练掌握三角形相关性质是解题的关键.21.见解析【解析】【分析】根据“AAS”证明△ABE ≌△ACD ,然后根据全等三角形的对应边相等即可得到结论.【详解】在△ABE 和△ACD 中,∵∠A=∠A,∠B=∠C,AE=AD ,△ABE ≌△ACD ,∴AB=AC .【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.22.证明见解析【解析】【分析】先用SSS 证△ADB ≌△BCA ,得到∠DBA=∠CAB ,利用等角对等边知AE=BE ,从而证得△EAB 是等腰三角形.【详解】证明:在△ADB 和△BCA 中,AD=BC ,AC=BD ,AB=BA ,∴△ADB ≌△BCA (SSS ).∴∠DBA=∠CAB .∴AE=BE .∴△EAB 是等腰三角形.23.见解析【解析】【分析】先利用HL 证明Rt △EBC ≌Rt △BEF ,得出CBE FEB ∠=∠,再利用ASA 证明△ABC ≌△DEF 可证明结论.【详解】证明:∵CE AD ⊥,FB AD ⊥,∴90∠=∠=︒CEB FBE ,在Rt △CBE 和Rt △FBE 中,BC EF BE EB=⎧⎨=⎩∴Rt △CBE ≌Rt △FBE (HL ),∴CBE FEB ∠=∠,在△ABC 和△DEF 中,CBE FEB BC EF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA ),∴AC=DF .【点睛】本题主要考查全等三角形的判定与性质,判定两个直角三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .24.23°【解析】【分析】先根据角平分线的判定定理证得∠BAD=∠DAC=12∠BAC ,再根据等边对等角得出∠ADC=∠C ,然后根据三角形的内角和为180°求得∠BAC 的度数,再由同角的余角相等得出∠FDC=14∠BAC 求解即可.【详解】解:∵DE AB ⊥,DF AC ⊥,垂足分别为E 、F ,DE=DF ,∴AD 为∠BAC 的平分线,∠DFC=90°,∴∠BAD=∠DAC=12∠BAC ,∵DA=AC ,∴∠ADC=∠C ,∴∠C=12(180°﹣∠DAC)=90°﹣12∠DAC=90°﹣14∠BAC ,∵∠B+∠BAC+∠C=180°,∠B=21°,∴∠BAC =92°,∵∠C=90°﹣14∠BAC=90°﹣∠FDC ,∴∠FDC=14∠BAC=14×92°=23°.【点睛】本题考查角平分线的判定定理、等腰三角形的性质、三角形的内角和定理、同角的余角相等,熟练掌握相关知识的联系与运用是解答的关键.25.(1)见解析;(2)6【解析】【分析】(1)先根据平行线的性质得出∠DAC=∠B ,再根据SAS 得出△ADC ≌△BCE ,然后再根据等腰三角形的性质即可得出结论;(2)先根据△ADC ≌△BCE ,得出∠ADC=∠BCE ,再根据三角形的外角的性质结合(1)中得结论得出AG=AC ,继而得出DG=AB 即可;【详解】解:(1)∵//AD EB ,∴∠DAC=∠B ,在△ADC 和△BCE 中,AC BE DAC B AD BC =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△BCE ,∴CD=CE ;∵CF DE⊥∴∠DCF=∠ECF ,∴CF 平分DCE ∠;(2)∵△ADC ≌△BCE ,∴∠ADC=∠BCE ,∵∠DCF=∠ADC+∠AGC ,∠ECF=∠BCE+∠BCF ,∵∠DCF=∠ECF ,∴∠AGC=∠BCF ,∵∠BCF=∠ACG ,∴∠AGC=∠ACG ,∴AG=AC ,∵AD BC =,∴AG AB=∵6AB =,∴6AG =【点睛】本题考查的是全等三角形的判定和性质、等腰三角形的判定,三角形的外角的性质,掌握全等三角形的判定定理和性质定理、等腰三角形的三线合一是解题的关键.26.(1)见解析;(2)见解析;(3)AB CD CE +=【解析】【分析】(1)根据BAC DAE α∠=∠=,推出BAD CAE ∠=∠,由已给条件可得,ABD ACE SAS △≌△();(2)①由题可得ABC 是等边三角形,由ABD ACE △≌△得,60ACE ABC ∠=∠=︒,从而得出60ECD ∠=︒,故ABC ECD ∠=∠,同位角相等,两直线平行,即可得出答案;②由ABD ACE △≌△得,BD CE =,由ABC 是等边三角形得AB BC =,等量代换即可得出答案.【详解】(1)BAC DAE α∠=∠= ,BAD CAE ∴∠=∠,在ABD △与ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴ ≌;(2)①AB AC = ,60α∠=︒,ABC ∴ 是等边三角形,ABD ACE ≌,60ACE ABC ∴∠=∠=︒,180606060ECD ∴∠=︒-︒-︒=︒,ABC ECD ∴∠=∠,//EC AB ∴;②AB CD CE +=,理由如下:ABD ACE ≌,BD CE ∴=,ABC 是等边三角形,AB BC ∴=,BD BC CD AB CD CE ∴=+=+=.。

人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试题一、单选题1.下列图标是节水、绿色食品、回收、节能的标志,其中是轴对称图形的是()A .B .C .D .2.正多边形的一个内角为144°,那么该正多边形的边数为()A .8B .9C .10D .113.下列命题:①全等三角形的周长相等;②全等三角形的对应角相等;③全等三角形的面积相等;④面积相等的两个三角形全等。

其中真命题的个数是()A .4个B .3个C .2个D .1个4.如图,ΔABC 与ΔA’B’C’关于直线l 对称,则∠B 的度数为()A .30°B .50°C .90°D .100°5.如图,ABC ADE △≌△,点D 在边BC 上,则下列结论中一定成立的是()A .AC DE =B .AB BD =C .ABD ADB ∠=∠D .EDC AED ∠=∠6.已知:如图,AD 与BC 交于点O ,AB =CD ,不能判断△AOB 与△DOC 全等的是()A .∠A =∠DB .∠B =∠C C .OA =OD D .AB ∥DC7.如图,AD ,CE 是△ABC 的两条高,已知AD=10,CE=9,AB=12,则BC 的长是()A .10B .10.8C .12D .158.在 ABC 中,AD 是它的角平分线,AB =8cm ,AC =6cm ,则:ABD ACD S S △△=()A .3:4B .4:3C .16:9D .9:169.如图,△ABC 中,∠A =46°,∠C =74°,BD 平分∠ABC ,交AC 于点D ,那么∠BDC 的度数是()A .76°B .81°C .92°D .104°10.如图,五边形ABCDE 中有一正三角形ACD ,若AB=DE ,BC=AE ,∠E=115°,则∠BAE 的度数为何?()A .115B .120C .125D .130二、填空题11.在 ABC 中,∠A ﹣∠B =30°,∠C =4∠B .则∠B 的度数是______.12.若点P 关于x 轴的对称点为P 1(2a+b ,-a+1),关于y 轴对称点的点为P 2(4-b ,b+2),则点P的坐标为_______________.13.如图所示,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB于E,量得△BDC 的周长为17m,请你计算BC的长是__________.14.如图, ABE≌ DCE,AE=2cm,BE=1.2cm,∠A=25°,∠B=48°,那么DE=_____cm,∠C=_________°.15.如图,在 AOC与 BOC中,若∠1=∠2,加上条件__________则有 AOC≌ BOC.16.在Rt ABC中,∠C=90°,若BC=6,AD平分∠BAC交BC于点D,BD=2CD,则点D到线段AB的距离为_____.17.如图,D 为等边三角形ABC 内一点,AD=BD ,BP=AB ,∠DBP=∠DBC ,则∠BPD=_______度.三、解答题18.请画出 ABC 关于直线l 对称的A B C '''V (其中,,A B C '''分别是A ,B ,C 的对应点,不写画法,保留作图痕迹).19.如图,在 ABC 中,AC =6,BC =8,AD ⊥BC 于D ,AD =5,BE ⊥AC 于E ,求BE 的长.20.已知:如图,点A ,D ,C 在同一直线上,//AB CE ,AC CE =,B CDE ∠=∠.求证:BC DE =.21.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.22.已知:如图,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC23.已知:如图,Rt△ABC中,∠BAC=90°(1)按要求作图:(保留作图痕迹)①延长BC到点D,使CD=BC;②延长CA到点E,使AE=2CA;③连接AD ,BE 并猜想线段AD 与BE 的大小关系;(2)证明(1)中你对线段AD 与BE 大小关系的猜想.24.如图甲,在△ABC 中,∠ACB 为锐角.点D 为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作等腰直角三角形ADE ,AD=AE ,∠DAE=90º.解答下列问题:(1)如果AB=AC ,∠BAC=90º.①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CE 、BD 之间的位置关系为,数量关系为.(不用证明)②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC ,∠BAC≠90º,点D 在线段BC 上运动.试探究:当△ABC 满足一个什么条件时,CE ⊥BD (点C 、E 重合除外)?画出相应的图形,并说明理由.25.如图,在ABC ∆中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:ABE DBE ∆≅∆;(2)若100A ∠=︒,50C ∠=︒,求AEB ∠的度数.参考答案1.B【解析】【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项A、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项B能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【解析】【分析】根据正多边形的一个内角是144︒,则知该正多边形的一个外角为36︒,再根据多边形的外角之和为360︒,即可求出正多边形的边数.【详解】解: 正多边形的一个内角是144︒,∴该正多边形的一个外角为36︒,多边形的外角之和为360︒,∴边数36010 36︒==︒,∴这个正多边形的边数是10.故选:C.【点睛】本题主要考查多边形内角与外角的知识点,解题的关键是知道多边形的外角之和为360︒,此题难度不大.3.B【解析】【分析】根据全等三角形的性质对①②③进行判断,根据全等三角形的判定方法对④进行判断.【详解】解:全等三角形的周长相等,故①正确;全等三角形的对应角相等,故②正确;全等三角形的面积相等,故③正确;面积相等的两个三角形不一定全等,故④错误,故选:B.【点睛】本题考查命题与定理:判断一件事情的语句,叫做命题,许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯,那么⋯”的形式,有些命题的正确性用推理证实的,这样的真命题叫做定理.4.D【解析】【详解】∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°,∴∠B=180°﹣80°=100°.故选D.5.C【解析】【分析】根据全等三角形的性质可直接进行排除选项.【详解】△≌△,解:∵ABC ADE∴AB=AD,BC=DE,AC=AE,∠B=∠ADE,∠C=∠E,∴∠ABD=∠ADB,故A、B、D都是错误的,C选项正确;故选C.【点睛】本题主要考查全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.6.C【解析】【分析】利用∠AOB=∠DOC,AB=CD,然后根据全等三角形的判定方法对各选项进行判断.【详解】解:∵∠AOB=∠DOC,AB=CD,∴当添加∠A=∠D时,根据“AAS”判断△AOB与△DOC全等;当添加∠B=∠C时,根据“AAS”判断△AOB与△DOC全等;当添加OA=OD时,“SSA”不能判断△AOB与△DOC全等;当添加AB∥DC时,得到∠A=∠D,根据“AAS”判断△AOB与△DOC全等.故选:C.【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用哪一种方法,取决于题目中的已知条件.7.B【解析】【详解】∵AD,CE是△ABC的两条高,AD=10,CE=9,AB=12,∴△ABC的面积=12×12×9=12BC⋅AD=54,即12BC⋅10=54,解得BC=10.8.故选B.8.B【解析】【分析】过点D分别作DE⊥AB于E,DF⊥AC于点F,根据角平分线的性质定理及三角形的面积即可求得.【详解】过点D分别作DE⊥AB于E,DF⊥AC于点F,如图∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC∴DE=DF∴以AB 和AC 为底的△ABD 和△ACD 的高相等∴::8:64:3ABD ACD S S AB AC === 故选:B【点睛】本题考查了角平分线的性质定理,三角形的面积,关键是作垂线便于使用角平分线的性质定理.9.A【解析】【分析】根据三角形的内角和为180°,可得∠A+∠C+∠ABC=180°,然后根据△ABC 中,∠A =46°,∠C =74°,求得∠ABC=60°,然后根据角平分线的性质,可得∠ABD=30°,再根据三角形的外角性质,可得∠BDC=∠A+∠ABD=76°.【详解】解:∵△ABC 中,∠A=46°,∠C=74°,∴∠ABC=60°,∵BD 为∠ABC 平分线,∴∠ABD=∠CBD=30°,∵∠BDC 为△ABD 外角,∴∠BDC=∠A+∠ABD=76°,故选A【点睛】此题主要考查了三角形的内角和外角的性质,解题关键是构造合适的角的和差关系,然后根据角平分线的性质求解即可.10.C【解析】【详解】分析:根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.详解:∵三角形ACD为正三角形,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△DEA,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选C.点睛:此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC 与△AED全等.11.25°【解析】【分析】根据三角形内角和定理及已知,可得关于∠B的方程,解方程即可求得∠B的度数.【详解】解:∵∠A+∠B+∠C=180°,∠C=4∠B,∴∠A+5∠B=180°,∵∠A﹣∠B=30°,∴∠A=∠B+30°,∴∠B+30°+5∠B=180°,解得:∠B=25°,故答案为:25°.【点睛】本题考查了三角形内角和定理,解一元一次方程方程,关键是掌握三角形内角和定理,应用方程思想求解.12.(-9,-3)【解析】【详解】解:∵若P关于x轴的对称点为P1(2a+b,-a+1),∴P点的坐标为(2a+b,a-1),∵关于y轴对称的点为P2(4-b,b+2),∴P点的坐标为(b-4,b+2),则2a b b4 {a1b2+=--=+,解得a2 {b5=-=-.代入P点的坐标,可得P点的坐标为(-9,-3).故答案为:(-9,-3)13.7m【解析】【分析】根据垂直平分线的性质得出DA=DB,再结合△BDC的周长推出BC+AC=17,即可求解.【详解】解:∵DE垂直平分AB,∴DA=DB,而△BDC的周长为17m,即BC+DC+BD=17m,∴BC+DC+AD=17,∴BC+AC=17,而AC=10m,∴BC=7m,故答案为:7m.【点睛】本题主要考查垂直平分线的性质,理解并熟练掌握垂直平分线的性质是解题关键.14.248【解析】【分析】根据全等三角形的性质即可求得结果.【详解】∵ ABE≌ DCE∴DE=AE=2cm,∠C=∠B=48°故答案为:2,4815.OA=OB【详解】解:可添加OA=OB∵OA=OB,∠1=∠2,OC=OC,∴△AOC≌△BOC,故答案为:OA=OB.16.2【分析】过点D作DE⊥AB于E,根据题意求出CD,根据角平分线的性质求出DE,得到答案.【详解】解:过点D作DE⊥AB于E,∵BC=6,BD=2CD,∴CD=2,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=CD=2,即点D到线段AB的距离为2,故答案为:2.17.30【解析】作AB的垂直平分线,再根据等边三角形的性质及全等三角形的判定和性质解答即可.【详解】解:作AB的垂直平分线,∵AD=BD ,∴△ABD 为等腰三角形,∵△ABC 为等边三角形,∴AB 的垂直平分线必过C 、D 两点,∠BCE=30°,∵AB=BP=BC ,∠DBP=∠DBC ,BD=BD ,∴△BDC ≌△BDP ,∴∠BPD=∠BCE=30°.故答案为30.18.见解析【解析】根据轴对称图形的性质即可完成.【详解】如图所示,所画的A B C '''V 即为所求19.203BE =.【解析】【分析】根据三角形面积公式计算即可.【详解】解:11=,=22ABC ABC S AC BE S BC AD ⋅⋅ AC BE BC AD∴⋅=⋅402063BE ∴==.【点睛】本题考查三角形面积的计算,利用等积法是解题关键.20.见解析【解析】根据平行线的性质,得到内错角相等,即A DCE ∠=∠,再用AAS 证明ABC ≌CDE △,再根据全等三角形的对应边相等即可证明结论.【详解】证明: //AB CE ,∴A DCE ∠=∠,在ABC 和CDE △中,B CDE A DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC ≌CDE △()AAS ,∴BC DE =.【点睛】本题考查了平行线的性质,全等三角形的判定和性质,解题的关键是掌握平行线的性质.21.90°;65°【解析】【分析】由E ABC AD ≅∆∆,可得1()2DAE BAC EAB CAD ∠=∠=∠-∠,根据三角形外角性质可得DFB FAB B ∠=∠+∠,因为FAB FAC CAB ∠=∠+∠,即可求得DFB ∠的度数;根据三角形内角和定理可得DGB DFB D ∠=∠-∠,即可得DGB ∠的度数.【详解】解:ABC ADE ∆≅∆ ,11()(12010)5522DAE BAC EAB CAD ∴∠=∠=∠-∠=︒-︒=︒.10552590DFB FAB B FAC CAB B ∴∠=∠+∠=∠+∠+∠=︒+︒+︒=︒902565DGB DFB D ∠=∠-∠=︒-︒=︒.综上所述:90DFB ∠=︒,65DGB ∠=︒.【点睛】本题主要考查三角形全等的性质,解题的关键是找到相应等量关系的角,做题时要结合图形进行思考.22.见解析【解析】【分析】连接CD ,利用HL 定理得出Rt △ADC ≌Rt △BCD 进而得出答案.【详解】证明:如图,连接CD ,∵AD ⊥AC ,BC ⊥BD ,∴∠A=∠B=90°,在Rt △ADC 和Rt △BCD 中CD CD AC BD =⎧⎨=⎩,∴Rt △ADC ≌Rt △BCD (HL ),∴AD=BC .【点睛】本题主要考查全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.23.(1)见解析;(2)见解析【解析】【分析】(1)根据基本作图,作一条线段等于已知线段的作图方法就可以作出图形;(2)延长AC 到点F ,使CF=AC ,连接BF ,证明△ACD ≌△FCB ,就有AD=FB ,进而得出AE=AF,就可以得出BE=BF,从而结论AD=BE.【详解】解:(1)由题意,得作图如下:(2)延长AC到点F,使CF=AC,连接BF,在△ACD和△FCB中,CD=CB,∠ACD=∠FCB,AC=FC,∴△ACD≌△FCB(SAS)∴AD=FB.∵CF=AC,∴AF=2AC.∵AE=2CA,∴AF=AE,∵∠BAC=90°,∴AB⊥EF,∴AB是EF的垂直平分线,∴BE=BF,∴AD=BE.24.(1)①位置关系是CE⊥BD,数量关系是CE=BD;②结论仍成立,理由见解析;(2)当∠BCA=45°时,CE⊥BD,理由见解析【解析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.【详解】解:(1)①CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图乙,∵∠BAD=90°−∠DAC,∠CAE=90°−∠DAC,∴∠BAD=∠CAE.又BA=CA,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=∠B=45°且CE=BD.∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即CE⊥BD.故答案为CE⊥BD;CE=BD.②当点D在BC的延长线上时,①的结论仍成立.如图丙,∵∠DAE=90°,∠BAC=90°,∴∠DAE=∠BAC,∴∠DAB=∠EAC,又AB=AC,AD=AE,∴△DAB≌△EAC,∴CE=BD,且∠ACE=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,即CE⊥BD;(2)如图丁所示,当∠BCA=45°时,CE⊥BD.理由:过点A作AG⊥AC交BC于点G,∴AC=AG,∠AGC=45°,即△ACG是等腰直角三角形,∵∠GAD+∠DAC=90°=∠CAE+∠DAC,∴∠GAD=∠CAE,又∵DA=EA ,∴△GAD ≌△CAE ,∴∠ACE=∠AGD=45°,∴∠BCE=∠ACB+∠ACE=90°,即CE ⊥BD .【点睛】本题为三角形综合题,考查了全等三角形的判定与性质以及等腰直角三角形的性质,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解.25.(1)见解析;(2)65︒【解析】(1)由角平分线定义得出ABE DBE ∠∠=,由SAS 证明ABE DBE ∆≅∆即可;(2)由三角形内角和定理得出30ABC ∠=︒,由角平分线定义得出1152ABE DBE ABC ∠∠∠︒===,在ABE ∆中,由三角形内角和定理即可得出答案.【详解】(1)证明:BE 平分ABC ∠,∴ABE DBE ∠∠=,在ABE ∆和DBE ∆中,AB DB ABE DBE BE BE =⎧⎪∠=∠⎨⎪=⎩,∴()ABE DBE SAS ∆≅∆;(2) 100A ∠=︒,50C ∠=︒,∴30ABC ∠=︒,BE 平分ABC ∠,∴1152ABE DBE ABC ∠∠∠︒===,在ABE ∆中,1801801001565AEB A ABE ∠=︒∠∠=︒︒︒=︒----.。

人教版八年级上学期期中考试数学试卷及详细答案解析(共6套)

人教版八年级上学期期中考试数学试卷及详细答案解析(共6套)

人教版八年级上学期期中考试数学试卷(一)一、选择题1、如图,下列图案是我国几家银行的标志,其中轴对称图形有()A、4个B、3个C、2个D、1个2、一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是()A、3cmB、4 cmC、7 cmD、11cm3、在平面直角坐标系中,点P(3,﹣2)关于y轴的对称点在()A、第一象限B、第二象限C、第三象限D、第四象限4、如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A、360°B、250°C、180°D、140°5、等腰三角形一边等于5,另一边等于8,则其周长是()A、18B、21C、18或21D、不能确定6、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A、带①去B、带②去C、带③去D、带①和②去7、如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A、2cmB、3cmC、4cmD、5cm8、把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A、B、C、D、9、如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD 的周长为()A、16 cmB、28 cmC、26 cmD、18 cm10、如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB 上A′处,折痕为CD,则∠A′DB=()A、40°B、30°C、20°D、10°11、如图,∠AOB内一点P,P1, P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A、3cmB、4cmC、5cmD、6cm12、若等腰三角形的底边长为6cm,一腰上的中线把它的周长分成差为2cm的两部分,则腰长为()A、4cmB、8cmC、4cm或8cmD、以上都不对二、填空题13、角是轴对称图形,________是它的对称轴.14、在直角三角形中,最小的角是30度,最短边长是5厘米,则斜边长为________.15、每个内角都为144°的多边形为________边形.16、如图,已知AC=BD,∠A=∠D,请你添一个直接条件,________,使△AFC≌△DEB.17、如图,是从镜中看到的一串数字,这串数字应为________.18、如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于________.三、作图题19、“西气东输”是造福子孙后代的创世工程,现有两条高速公路L1、L2和两个城镇A,B,准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇等距离,请你画出中心站的位置.(保留画图痕迹,不写画法)20、如图,某住宅小区拟在休闲场地的三条道路m,n,l上修建三个凉亭A、B、C且凉亭与长廊两两连通.如果凉亭A、B的位置己经选定,那么凉亭C建在道路l上的什么位置,才能使工程造价最低?请用尺规作出图形(不写作法,但保留作图痕迹)21、如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3)(1)请画出△ABC关于y轴对称的图形;(2)写出点A,点B,点C分别关于y轴对称点的坐标;(3)计算△ABC的面积.四、解答题22、一个多边形的外角和是内角和的,求这个多边形的边数.23、如图,△ABC中,AB=AC,∠A=50°,P为△ABC内一点,∠PBC=∠PCA,求∠BPC的值.24、如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.25、已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,求证:BP=2PQ.答案解析部分一、<b >选择题</b>1、【答案】B【考点】轴对称图形【解析】【解答】解:(1)是轴对称图形;(2)不是轴对称图形;(3)是轴对称图形;(4)是轴对称图形;所以,是轴对称图形的共3个.故选:B.【分析】根据轴对称图形的概念对各图形分析判断后即可得解.【答案】C【考点】三角形三边关系【解析】【解答】解:设第三边长为xcm,根据三角形的三边关系可得:7﹣3<x<7+3,解得:4<x<10,故选:C【分析】首先设第三边长为xcm,根据三角形的三边关系可得7﹣3<x<7+3,再解不等式即可.3、【答案】C【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:∵点P(3,﹣2)关于y轴的对称点是(﹣3,﹣2),∴点P(3,﹣2)关于y轴的对称点在第三象限.故选C.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数求出对称点的坐标,再根据各象限内点的坐标特点解答.4、【答案】B【考点】三角形内角和定理,多边形内角与外角【解析】【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【答案】C【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:当5为底时,其它两边都为8,5、8、8可以构成三角形,周长为21;当5为腰时,其它两边为5和8,5、5、8可以构成三角形,周长为18,所以周长是18或21.故选C.【分析】因为等腰三角形的两边分别为5和8,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.6、【答案】C【考点】全等三角形的应用【解析】【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.【分析】此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.7、【答案】B【考点】角平分线的性质【解析】【解答】解:∵∠ACB=90°,BE平分∠ABC,DE⊥AB,∴DE=EC,∴AE+DE=AE+EC=AC=3cm,故选B.【分析】由角平分线的性质可得DE=EC,则AE+DE=AC,可求得答案.8、【答案】C【考点】剪纸问题【解析】【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.【分析】把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.9、【答案】B【考点】线段垂直平分线的性质【解析】【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵BC=18cm,AB=10cm,∴△ABD的周长=18+10=28cm.故选B.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,代入数据进行计算即可得解.10、【答案】D【考点】三角形内角和定理,三角形的外角性质,翻折变换(折叠问题)【解析】【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.11、【答案】C【考点】轴对称的性质【解析】【解答】解:∵P点关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵△PMN的周长是5cm,∴P1P2=5cm.故选:C.【分析】根据轴对称的性质可得PM=P1M,PN=P2N,然后求出△PMN的周长=P1P2.12、【答案】C【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:如图,AB=AC,BD是中点,根据题意得:(AB+AD)﹣(BC+CD)=2cm或(BC+CD)﹣(AB+AD)=2cm,则AB﹣BC=2cm或BC﹣AB=2cm,∵BC=6cm,∴AB=8cm或4cm.∴腰长为:4cm或8cm.故选C.【分析】首先根据题意画出图形,由题意可得:(AB+AD)﹣(BC+CD)=2cm或(BC+CD)﹣(AB+AD)=2cm,即可得AB﹣BC=2cm或BC﹣AB=2cm,又由等腰三角形的底边长为6cm,即可求得答案.二、<b >填空题</b>13、【答案】角平分线所在的直线【考点】轴对称图形【解析】【解答】解:角的对称轴是“角平分线所在的直线”.故答案为:角平分线所在的直线.【分析】根据角的对称性解答.14、【答案】10cm【考点】含30度角的直角三角形【解析】【解答】解:∵直角三角形中30°角所对的直角边长是5cm,∴斜边的长=2×5=10cm.故答案为:10cm.【分析】根据直角三角形30°角所对的直角边等于斜边的一半解答.15、【答案】十【考点】多边形内角与外角【解析】【解答】解:设这个多边形的边数是n,由题意得,=144°,解得,n=10,故答案为:十.【分析】根据n边形的内角和等于(n﹣2)×180°解答.16、【答案】∠ACF=∠DBE【考点】全等三角形的判定【解析】【解答】解:在△AFC和△DEB中,,∴△AFC≌△DEB(ASA).故答案为:∠ACF=∠DBE.【分析】证明△AFC≌△DEB,已知AC=BD,∠A=∠D,一边一角对应相等,故添加一组角∠ACF=∠DBE可利用ASA证明全等.17、【答案】810076【考点】轴对称的性质,轴对称图形【解析】【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵镜子中数字的顺序与实际数字顺序相反,∴这串数字应为 810076,故答案为:810076.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.18、【答案】2:3:4【考点】三角形的面积,角平分线的性质【解析】【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵O是三角形三条角平分线的交点,∴OD=OE=OF,∵AB=20,BC=30,AC=40,∴S△ABO :S△BCO:S△CAO=2:3:4.故答案为:2:3:4.【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.三、<b >作图题</b>19、【答案】解:①连接AB,②先作∠EOF的平分线OH,再作线段AB的垂直平分线ED,ED与OH相交于点D,则D点即为所求点.【考点】角平分线的性质【解析】【分析】连接AB,作出∠EOF的平分线OH及线段AB的垂直平分线ED,两线的交点即为所求.20、【答案】解:三个凉亭间的距离实际相当于A'B的距离,两点之间,线段最短,所以符合题意.【考点】作图—尺规作图的定义【解析】【分析】工程造价最低,那么三个凉亭间的距离最短,又在直线l上,那么应作出点A关于直线l的对称点A′,连接A′B交直线l于点C,点C就是所求的点.21、【答案】(1)解:如图,△A′B′C′即为所求(2)解:由图可知,A′(1,5),B′(1,0),C′(4,5)= ×5×3=(3)解:S△ABC【考点】作图-轴对称变换【解析】【分析】(1)作出各点关于y轴的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)根据三角形的面积公式进行计算即可.四、<b >解答题</b>22、【答案】解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9【考点】多边形内角与外角【解析】【分析】一个多边形的外角和是内角和的,任何多边形的外角和是360°,因而多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.23、【答案】解:∵在△ABC中,AB=AC,∠A=50°,∴∠ACB=∠ABC=65°.又∵∠PBC=∠PCA,∴∠PBC+∠PCB=65°,∴∠BPC=115°【考点】等腰三角形的性质【解析】【分析】根据等腰三角形的两个底角相等,即可求得∠ACB=∠ABC,则∠PBC+∠PCB即可求得,根据三角形的内角和定理即可求解.24、【答案】证明:∵∠1=∠2,∴∠CAE=∠BAD,∵AB=AC,AD=AE,∴△ABD≌△ACE【考点】全等三角形的判定【解析】【分析】由∠1=∠2,可得∠CAE=∠BAD,进而利用两边夹一角,证明全等.25、【答案】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∵BQ⊥AD,∴∠PBQ=90°﹣∠BPQ=90°﹣60°=30°,∴BP=2PQ.【考点】全等三角形的判定与性质,等边三角形的性质,含30度角的直角三角形【解析】【分析】根据等边三角形的性质可得AB=AC,∠BAE=∠C=60°,再利用“边角边”证明△ABE和△CAD全等,根据全等三角形对应角相等可得∠1=∠2,然后求出∠BPQ=60°,再根据直角三角形两锐角互余求出∠PBQ=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半证明即可.人教版八年级上学期期中考试数学试卷(二)一、选择题1、下列图形中,不是轴对称图形的是()A、B、C、D、2、若等腰三角形的两边长分别是3和6,则这个三角形的周长是()A、12B、15C、12或15D、93、下列命题中,正确的是()A、形状相同的两个三角形是全等形B、面积相等的两个三角形全等C、周长相等的两个三角形全等D、周长相等的两个等边三角形全等4、如图,△ABO关于x轴对称,点A的坐标为(1,﹣2),则点B的坐标为()A、(﹣1,2)B、(﹣1,﹣2)C、(1,2)D、(﹣2,1)5、如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是()A、45°B、60°C、50°D、55°6、工人师傅常用角尺平分一个任意角.作法如下:如图所示,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是∠AOB的平分线.这种作法的道理是()A、HLB、SSSC、SASD、ASA7、如图,AB∥DE,AF=DC,若要证明△ABC≌△DEF,还需补充的条件是()A、AC=DFB、AB=DEC、∠A=∠DD、BC=EF8、如图,△ABC中,已知∠B和∠C的平分线相交于点F,经过点F作DE∥BC,交AB于D,交AC于点E,若BD+CE=9,则线段DE的长为()A、9B、8C、7D、6二、精心填一填9、若正n边形的每个内角都等于150°,则n=________,其内角和为________.10、如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是________.11、将一副三角板按如图摆放,图中∠α的度数是________12、已知P点是等边△ABC两边垂直平分线的交点,等边△ABC的面积为15,则△ABP的面积为________.13、如下图,在△ABC中,AB=8,BC=6,AC的垂直平分线MN交AB,AC于点M,N.则△BCM的周长为________.14、如图,在△ABC中,∠C=90°,AD平分∠BAC,且CD=5,则点D到AB的距离为________三、解答题15、如图,点F,C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.16、如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.17、△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△ABl Cl ;(2)点P在x轴上,且点P到点B与点C的距离之和最小,直接写出点P的坐标为________.18、如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,求∠DAE的度数.19、如图,在Rt△ABC中,∠ABC=90°,点F在CB的延长线上且AB=BF,过F 作EF⊥AC交AB于D,求证:DB=BC.20、如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.21、如图,四边形ABCD中,∠A=∠B=90°,E是AB上一点,且AE=BC,∠1=∠2.(1)证明:AB=AD+BC;(2)判断△CDE的形状?并说明理由.22、如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.23、如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P 在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C 向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?答案解析部分一、<b >选择题</b>1、【答案】B【考点】轴对称图形【解析】【解答】解:A、是轴对称图形,A不合题意;B、不是轴对称图形,B符合题意;C、是轴对称图形,C不合题意;D、是轴对称图形,D不合题意;故选:B.【分析】根据轴对称图形的概念对各个选项进行判断即可.2、【答案】B【考点】等腰三角形的性质【解析】【解答】解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.【分析】根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.3、【答案】D【考点】命题与定理【解析】【解答】A.形状和大小完全相同的两个三角形才是全等三角形,故原命题错误,B.面积相等的两个三角形不一定全等,故原命题错误,C.周长相等的两个三角形不一定全等,故原命题错误,D.周长相等的两个等边三角形全等,正确;故选D.【分析】分析是否正确,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.4、【答案】C【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:由题意,可知点B与点A关于x轴对称,又∵点A的坐标为(1,﹣2),∴点B的坐标为(1,2).故选C.【分析】由于△ABO关于x轴对称,所以点B与点A关于x轴对称.根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x轴对称的点,横坐标相同,纵坐标互为相反数,得出结果.5、【答案】C【考点】线段垂直平分线的性质【解析】【解答】解:∵MN是AE的垂直平分线,∴CA=CE,∴∠CAE=∠E,∴∠ACB=2∠E,∵AB=CE,∴AB=AC,∴∠B=∠ACB=2∠E,∵∠A=105°,∴∠B+∠E=75°,∴∠B=50°,故选:C.【分析】根据线段的垂直平分线的性质得到CA=CE,根据等腰三角形的性质得到∠CAE=∠E,根据三角形的外角的性质得到∠ACB=2∠E,根据三角形内角和定理计算即可.6、【答案】B【考点】全等三角形的判定与性质【解析】【解答】解:由图可知,CM=CN,又OM=ON,OC为公共边,∴△COM≌△CON,∴∠AOC=∠BOC,即OC即是∠AOB的平分线.故选B.【分析】由三边相等得△COM≌△CON,即由SSS判定三角全等.做题时要根据已知条件结合判定方法逐个验证.7、【答案】B【考点】全等三角形的判定【解析】【解答】解:AB=DE,理由是:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AF+FC=DC+FC,∴AC=DF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),即选项B正确,选项A、C、D都不能推出△ABC≌△DEF,即选项A、C、D都错误,故选B.【分析】根据平行线的性质得出∠A=∠D,求出AC=DF,根据全等三角形的判定定理逐个判断即可.8、【答案】A【考点】角平分线的定义,平行线的性质,等腰三角形的性质【解析】【解答】解:∵∠B和∠C的平分线相交于点F,∴∠DBF=∠FBC,∠BCF=∠ECF;∵DE∥BC,∴∠DFB=∠FBC=∠FBD,∠EFC=∠FCB=∠ECF,∴DF=DB,EF=EC,即DE=DF+FE=DB+EC=9.故选A.【分析】本题主要利用两直线平行,内错角相等,角平分线的定义以及三角形中等角对等边的性质进行做题.二、<b >精心填一填</b>9、【答案】12①1800°【考点】多边形内角与外角【解析】【解答】解:∵正n边形的每个内角都等于150°,∴ =150°,解得,n=12,其内角和为(12﹣2)×180°=1800°.故答案为:12;1800°.【分析】先根据多边形的内角和定理求出n,再根据多边形的内角和求出多边形的内角和即可.10、【答案】5【考点】角平分线的性质【解析】【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.【分析】要求△ABD的面积,有AB=5,可为三角形的底,只求出底边上的高即可,利用角的平分线上的点到角的两边的距离相等可知△ABD的高就是CD的长度,所以高是2,则可求得面积.11、【答案】105°【考点】三角形的外角性质【解析】【解答】解:根据题意得∠1=60°,∠2=45°,∠2+∠3=90°,∴∠3=90°﹣45°=45°,∴∠α=∠1+∠3=60°+45°=105°.故答案为105°.【分析】由于一副三角板按如图摆放,则∠1=60°,∠2=45°,∠2+∠3=90°,根据互余得到∠3=45°,然后根据三角形外角性质得∠α=∠1+∠3=105°.12、【答案】5【考点】线段垂直平分线的性质,等边三角形的性质【解析】【解答】解:如图:过P作PF⊥BC于F,连接PC,∵P点是等边△ABC两边垂直平分线的交点,∴AB=BC=AC,PD=PE=PF,∴ AB×PD= BC×PF= AC×PE,∴S△ABP =S△BCP=S△ACP= S△ABC,∵等边△ABC的面积为15,∴△ABP的面积为5,故答案为:5.【分析】过P作PF⊥BC于F,连接PC,根据等边三角形性质得出AB=BC=AC,根据线段垂直平分线性质得出PD=PE=PF,根据三角形面积公式求出S△ABP =S△BCP=S△ACP=S△ABC,即可得出答案.13、【答案】14【考点】线段垂直平分线的性质【解析】【解答】解:∵AC的垂直平分线MN交AB、AC于点M、N,∴AM=CM.∴△BCM的周长=BC+BM+CM=BC+AB=14.【分析】根据线段垂直平分线的性质,得AM=CM,则△BCM的周长即为AB+BC的值.14、【答案】5【考点】角平分线的性质【解析】【解答】解:过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=5,∴DE=5.故答案为:5.【分析】直接根据角平分线的性质定理即可得出结论.三、<b >解答题</b>15、【答案】证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D【考点】全等三角形的判定与性质【解析】【分析】易证BC=EF,即可证明△ABC≌△DEF,可得∠A=∠D.即可解题.16、【答案】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.∴∠C=∠ABC=2∠A=72°.∵BD⊥AC,∴∠DBC=90°﹣∠C=18°【考点】三角形内角和定理【解析】【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC 三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.17、【答案】(1)解:△ABC关于y轴对称的△ABl Cl如图所示(2)(﹣,0)【考点】作图-轴对称变换,轴对称-最短路线问题【解析】【解答】解:(2)如图,点P即为所求作的到点B与点C的距离之和最小,点C′的坐标为(﹣1,﹣1),∵点B(﹣2,2),∴点P到CC′的距离为= ,∴OP=1+ = ,点P(﹣,0).故答案为:(﹣,0).【分析】(1)根据网格结构找出点B、C关于y轴的对称点Bl 、Cl的位置,然后顺次连接即可;(2)找出点C关于x轴的对称点C′,连接BC′与x轴的交点即为所求的点P,根据对称性写出点C′的坐标,再根据点B、C′的坐标求出点P到CC′的距离,然后求出OP的长度,即可得解.18、【答案】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC= ∠BAC=34°.∵AD是高,∠C=76°,∴∠DAC=90°﹣∠C=14°,∴∠DAE=∠EAC﹣∠DAC=34°﹣14°=20°【考点】三角形的角平分线、中线和高,三角形内角和定理【解析】【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC= ∠BAC,故∠DAE=∠EAC﹣∠DAC.19、【答案】证明:∵∠ABC=90°,∴∠DBF=90°,∴∠DBF=∠ABC,∵EF⊥AC,∴∠AED=∠DBF=90°,∵∠ADE=∠BDF∴∠A=∠F,在△FDB和△ACB中,,∴△ABC≌△FBD(ASA),∴DB=BC【考点】全等三角形的判定与性质【解析】【分析】根据余角的定义得出∠A=∠F,再根据ASA证明△FDB和△BAC 全等,最后根据全等三角形的性质证明即可.20、【答案】证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD,∵在△ABC和△AED中,,∴△ABC≌△AED(AAS)【考点】全等三角形的判定【解析】【分析】首先根据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.21、【答案】(1)证明:∵∠1=∠2,∴DE=CE,∵在RT△ADE和RT△BEC中,,∴RT△ADE≌RT△BEC,(HL)∴AD=BE,∵AB=AE+BE,∴AB=AD+BC(2)解:∵RT△ADE≌RT△BEC,∴∠AED=∠BCE,∵∠BCE+∠CEB=90°,∴∠CEB+∠AED=90°,∴∠DEC=90°,∴△CDE为等腰直角三角形【考点】全等三角形的判定与性质,等腰直角三角形【解析】【分析】(1)易证DE=CE,即可证明RT△ADE≌RT△BEC,可得AD=BE,即可解题;(2)由RT△ADE≌RT△BEC可得∠AED=∠BCE,即可求得∠DEC=90°,即可解题.22、【答案】证明:∵AE平分∠DAC,∴∠1=∠2,∵AE∥BC,∴∠1=∠B,∠2=∠C,∴∠B=∠C,∴AB=AC【考点】平行线的性质,等腰三角形的判定,等腰三角形的判定与性质【解析】【分析】根据角平分线的定义可得∠1=∠2,再根据两直线平行,同位角相等可得∠1=∠B,两直线平行,内错角相等可得∠2=∠C,从而得到∠B=∠C,然后根据等角对等边即可得证.23、【答案】(1)解:经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS)(2)解:设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x= ;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s 时,能够使△BPD与△CQP全等【考点】全等三角形的判定【解析】【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.人教版八年级上学期期中考试数学试卷(三)一、选择题1、下列图形中,是轴对称图形的是()A、B、C、D、2、已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A、13cmB、6cmC、5cmD、4cm3、已知点A(2,﹣3)关于y轴对称的点的坐标为点B,则点B的坐标()A、(2,﹣3)B、(﹣2,﹣3)C、(2,3)D、(﹣2,3)4、下列运算中,正确的是()A、(x2)3=x5B、x2+x3=x5C、(x﹣y)2(y﹣x)3=(x﹣y)5D、x2•x3=x55、如图,△ABC≌△CDA,∠BAC=85°,∠B=65°,则∠CAD度数为()A、85°B、65°C、40°D、30°6、如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()A、68°B、32°C、22°D、16°7、如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是()A、45°B、60°C、50°D、55°8、如图,∠MON=60°,且OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=4,则PQ的最小值为()A、1B、2C、3D、49、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A、16B、12C、8D、410、如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点当PC+PD 最小时,∠PCD=()°.A、60°B、45°C、30°D、15°二、填空题11、一个多边形的每个外角都是45°,则这个多边形的边数为________.12、若3x=4,3y=5,则3x+2y的值为________13、如图,在等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点,AB=8cm,AD=4 cm,则图中阴影部分的面积是________ cm.14、等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的一个底角的度数为________.15、如图,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论正确的是________①P在∠A的平分线上;②QP∥AR;③△BRP≌△QSP.16、如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC 上,则AP的长是________.三、解答题17、a3•a4•a+(a2)4+(﹣2a4)2.18、如图,点B,E,F,C在一条直线上,AB=DC,BE=CF,∠B=∠C.求证:∠A=∠D.19、电信部门要修建一个电视信号发射塔.如图所示,按照要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.20、如图,△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,EF交BC 于F,交AB于E,BF=5cm,求CF的长.21、如图,已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.求证:OE垂直平分CD.22、如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.23、如图,在等边三角形ABC中,D是BC边的中点,E是AB延长线上的一点,且BE=BD,过点D作DH⊥AB于H.(1)求∠BAD和∠BDE的度数;(2)求证:点H是AE的中点.24、如图,已知E为等腰△ABC的底边BC上一动点,过E作EF⊥BC交AB于D,交CA的延长线于F,问:(1)∠F与∠ADF的关系怎样?说明理由;(2)若E在BC延长线上,其余条件不变,上题的结论是否成立?若不成立,说明理由;若成立,画出图形并给予证明.答案解析部分一、<b >选择题</b>1、【答案】B【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【分析】根据轴对称图形的概念对各选项分析判断即可得解.2、【答案】B【考点】三角形三边关系【解析】【解答】解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.【分析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.3、【答案】B【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:∵点A(2,﹣3)关于y轴对称的点的坐标为点B,∴点B的坐标是(﹣2,﹣3).故选B.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.4、【答案】D【考点】同底数幂的乘法,幂的乘方与积的乘方【解析】【解答】解:A、(x2)3=x6≠x5,本选项错误;B、x2+x3≠x5,本选项错误;C、(x﹣y)2(y﹣x)3=﹣(x﹣y)5≠(x﹣y)5,本选项错误;D、x2•x3=x5,本选项正确.故选D.【分析】结合幂的乘方与积的乘方、同底数幂的乘法的概念和运算法则进行求解即可.5、【答案】D【考点】全等三角形的性质【解析】【解答】解:∵∠BAC=85°,∠B=65°,∴∠ACB=180°﹣∠BAC﹣∠B,=180°﹣85°﹣65°,=180°﹣150°,=30°.故选D.【分析】先根据三角形的内角和定理求出∠ACB,再根据全等三角形对应角相等解答即可.6、【答案】B【考点】平行线的性质,等腰三角形的性质【解析】【解答】解:∵CD=CE,∴∠D=∠DEC,。

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。

人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案,每小题3分)1.等腰三角形的一边长等于4,一边长等于9,则它的周长是()A.17B.22C.17或22D.132.已知一个正多边形的每个外角都等于72°,则这个正多边形是()A.正五边形B.正六边形C.正七边形D.正八边形3.如图,在ABC中,AB=AC,点D,E在BC上,连接AD,AE,如果只添加一个条件△≌△,则添加的条件不能为()使ABE ACD∠=∠A.BD=CE B.AD=AE C.BE=CD D.B C4.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°∠=︒,CD⊥AB于点D,5.如右图,在△ABC中,ACB90∠=︒,AD=2,则BD=()A60A.2B.4C.6D.86.小军在网格纸上将图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形,如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有A.3个B.4个C.5个D.无数个7.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①AG+EC=GE ;②GDE 45∠=︒;③BGE△的周长是一个定值;④连结FC ,BFC △的面积等于12BF FC .在以上4个结论中,正确的是()A .1B .2C .3D .48.如图,在△ABC 中,AD 是角平分线,DE ⊥AB 于点E ,△ABC 的面积为7,AB=4,DE=2,则AC 的长是()A .4B .3C .6D .59.如图所示,若DE ⊥AB ,DF ⊥AC ,则对于∠1和∠2的大小关系下列说法正确的是()A .一定相等B .一定不相等C .当BD=CD 时相等D .当DE=DF 时相等10.如图,△ABC 中,D ,E 分别是BC 上两点,且BD=DE=EC ,则图中面积相等的三角形有()A .4对B .5对C .6对D .7对二、填空题11.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则∠BDC =_____.12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______度.13.如图,在△ABC中,AC垂直平分线DE分别与BC、AC交于D、E,△ABD的周长是13,AE=5,△ABC的周长是_________.14.如图,在△ABC中,∠BAC的平分线AD与边BC的垂直平分线ED相交于点D,过点D作DF⊥AC交AC延长线于点F,若AB=8,AC=4,则CF的长为_________.15.已知AB=AC,AD为∠BAC的角平分线,D、E、F…为∠BAC的角平分线上的若干点.如图1,连接BD、CD,图中有1对全等三角形;如图2,连接BD、CD、BE、CE,图中有3对全等三角形;如图3,连接BD、CD、BE、CE、BF、CF,图中有6对全等三角形;依此规律,第n个图形中有_____对全等三角形.16.如图,∠1=∠2,要利用“SAS”说明△ABD≌△ACD,需添加的条件是_________.三、解答题17.一个多边形的内角和比它的外角和的3倍少180 ,这个多边形的边数是多少?18.如图,在平面直角坐标系中,点O 为坐标原点,已知ABC ∆三个定点坐标分别为()4,1A -,()3,3B -,()1,2C -.(1)画出ABC ∆关于x 轴对称的111A B C ∆,点,,A B C 的对称点分别是点111A B C 、、,则111A B C 、、的坐标:1A (_________,_________),1B (_________,_________),1C (_________,_________);(2)画出点C 关于y 轴的对称点2C ,连接12C C ,2CC ,1C C ,则12CC C ∆的面积是___________.19.如图,点A ,B ,C ,D 在一条直线上,AB=DC ,AF//DE ,AF=DE ,求证:EB=FC .20.如图,在四边形ABCD 中,AD//BC ,AE 平分DAB ∠,BE 平分CBA ∠.(1)AE ⊥BE .(2)若AE=4,BE=6,求四边形ABCD 的面积.21.如图,△ABC和△CDE都是等边三角形,点E在BC上,AE的延长线交BD于点F.(1)求证:△ACE≌△BCD;的度数;(2)探究CFD(3)探究EF、DF、CF之间的关系.22.如图(1),AB=7cm,AC⊥AB,BD⊥AB,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上由点B向点D运动.它们运动的时间为t (s),当点P到达点B时,点Q也停止运动.(1)若点Q的运动速度与点P的运动速度相等,当t=1s时,△ACP与△BPQ全等,此时PC⊥PQ吗?请说明理由.(2)将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”后得到如图(2),其他条件不变.设点Q的运动速度为xcm/s.当点P、Q运动到某处时,有△ACP与△BPQ全等,求出相应的x、t的值.(3)在(2)成立的条件下且P、Q两点的运动速度相同时,∠CPQ=__________.(直接写出结果)23.如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是_____;(2)点D 为BC 延长线上一点,过点D 作DE ∥AC ,交BA 的延长线于点E ,若∠E =55°,∠ACD =125°,求∠B 的度数.24.把一个多边形沿着几条直线剪开,分割成若干个多边形.分割后的多边形的边数总和比原多边形的边数多13条,内角和是原多边形内角和的1.3倍.求:(多边形的内角和公式:(n-2)·180º)(1)原来的多边形是几边形?(2)把原来的多边形分割成了多少个多边形?25.如图,已知在ABC 中,B C ∠>∠,AD 是BC 边上的高,AE 是BAC ∠的平分线,求证:1()2DAE B C ∠=∠-∠.参考答案1.B【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为4时,4+4<9,不能构成三角形;当腰为9时,4+9>9,所以能构成三角形,周长是:9+9+4=22.故选B .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.2.A【分析】正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【详解】这个正多边形的边数:360°÷72°=5.故选A .【点睛】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.3.D【分析】由AB AC =,可得B C ∠=∠,补充BD CE =,可得BE CD =,利用SAS 可判断A ,补充,AD AE =可得:,AED ADE ∠=∠利用AAS 可判断B ,补充BE CD =,利用SAS 可判断C ,补充B C ∠=∠,条件不足,从而可判断D .【详解】解:在ABE △与ACD △中,AB AC = ,B C ∴∠=∠,所以补充:BD CE =,则BE CD =,所以利用SAS 可得:ABE ACD △≌△,故A 正确;补充:,AD AE =,AED ADE ∴∠=∠所以利用AAS 可得:ABE ACD △≌△,故B 正确;补充:BE CD =,所以利用SAS 可得:ABE ACD △≌△,故C 正确;补充:B C ∠=∠,ABE △与ACD △不一定全等,故D 错误,故选.D 【点睛】本题考查的是三角形全等的判定,等腰三角形的性质,掌握等腰三角形的性质与三角形全等的判定方法并应用是解题的关键.4.A【分析】首先根据AD ∥BC ,求出∠FED 的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠FED=∠FED′,最后求得∠AED′的大小.【详解】解:∵AD ∥BC ,∴∠EFB=∠FED=65°,由折叠的性质知,∠FED=∠FED′=65°,∴∠AED′=180°-2∠FED=50°.故∠AED′等于50°.故选A .【点睛】本题主要考查平行线的性质及折叠的性质,掌握两直线平行内错角相等是解题的关键.5.C【分析】根据已知条件,先求出AC ,再根据30°角所对直角边是斜边的一半计算即可;【详解】∵ACB 90∠=︒,CD ⊥AB ,A 60∠=︒,∴30ACD ∠=︒,∵AD=2,∴4AC =,又30B ∠=︒,∴248AB =⨯=,∴826BD AB AD =-=-=;故答案选C .【点睛】本题主要考查了直角三角形中30°角所对的直角边是斜边的一半,准确计算是解题的关键.6.C【分析】结合正方形的特征,可知平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.【详解】因为正方形是轴对称图形,有四条对称轴,因此只要沿着正方形的对称轴进行平移,平移前后的两个图形组成的图形一定是轴对称图形,观察图形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移时,平移前后的两个图形组成的图形都是轴对称图形,故选C.【点睛】本题考查了图形的平移、轴对称图形等知识,熟练掌握正方形的结构特征是解本题的关键.7.D【分析】根据正方形的性质和折叠的性质可得AD=DF ,∠A=∠GFD=90°,于是根据“HL”判定Rt ADG Rt FDG ≌,再由GE GF EF AG CE =+=+,从而判断①,由对折可得:,CDE FDE ∠=∠由Rt ADG Rt FDG ≌,可得:,ADG FDG ∠=∠从而可判断②,设,,AG a CE b ==则12,12,,,BG a BE b GF a EF b =-=-==利用三角形的周长公式可判断③,如图,连接CF ,证明BCF △是直角三角形,从而可判断④,从而可得本题的结论.【详解】解:由正方形ABCD 与折叠可知,DF=DC=DA ,∠DFE=∠C=90°,,EC EF =∴∠DFG=∠A=90°,,DG DG = ∴()Rt ADG Rt FDG HL ≌,,AG GF ∴=,AG EC GF FE GE ∴+=+=故①正确;由对折可得:,CDE FDE ∠=∠Rt ADG Rt FDG ≌,,ADG FDG ∴∠=∠1452ADG CDE GDF EDF ADC ∴∠+∠=∠+∠=∠=︒,45GDE ∴∠=︒,故②正确;设,,AG a CE b ==则12,12,,,BG a BE b GF a EF b =-=-==121224,BGE C BG BE GE a b a b ∴=++=-+-++= 所以:BGE △的周长是一个定值,故③正确,如图,连接CF ,由对折可得:,EF EC =,EFC ECF ∴∠=∠,BE CE = BE EF ∴=,,EBF EFB ∴∠=∠1180902BFC EFB EFC ∴∠=∠+∠=⨯︒=︒,1.2BFC S BF FC ∴= 故④正确.综上:①②③④都正确.故选.D 【点睛】本题考查的是正方形的性质,三角形全等的判定与性质,轴对称的性质,直角三角形的判定,掌握以上知识是解题的关键.8.B【解析】过点D 作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DE=DF=2,∴S △ABC =×4×2+AC×2=7,解得AC=3.故选B.9.D已知有点到∠BAC的两边的距离,根据角平分线性质的逆定理:到角的两边距离相等的点在角的平分线上,要满足∠1=∠2,须有DE=DF,于是答案可得.【详解】根据到角的两边距离相等的点在角的平分线上,故选D.【点睛】此题主要考查角平分线性质的逆定理:到角的两边距离相等的点在角的平分线上;做题时要明确题目中有什么条件,要达到什么目的.10.A【分析】根据三角形的面积公式,知:只要同底等高,则两个三角形的面积相等,据此可得面积相等的三角形.【详解】由已知条件,得△ABD,△ADE,△ACE,3个三角形的面积都相等,组成了3对,还有△ABE和△ACD的面积相等,共4对.故选A.【点睛】本题考查了三角形的相关知识,解题的关键是熟练的掌握三角形面积公式与运用. 11.75°.【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.【点睛】本题考查了三角板的性质,三角形内角和定理等知识,熟练掌握相关的知识是解题的关键. 12.120根基三角形全等的性质得到∠C=∠C′=24°,再根据三角形的内角和定理求出答案.【详解】∵ABC A B C ''' ≌,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案为:120.【点睛】此题考查三角形全等的性质定理:全等三角形的对应角相等,三角形的内角和定理.13.23【分析】根据垂直平分线的性质得到AD=CD ,AE=CE ,再由ABD △的周长及AE 的长即可计算出结果.【详解】∵DE 垂直平分AC ,∴AD=DC ,AE=CE ,∵ABD △的周长是13,即AB+BD+AD=13,∴AB+BD+DC=13,即AB+BC=13,又∵AE=5,∴AC=2AE=10,∴AB+BC+AC=13+10=23,即ABC 的周长是23.故答案为:23.【点睛】本题考查了垂直平分线的性质,熟练掌握性质是解题的关键.14.2【分析】连接CD ,DB ,过点D 作DM ⊥AB 于点M ,证明△AFD ≌△AMD ,得到AF=AM ,FD=DM ,证明Rt △CDF ≌Rt △BDM ,得到BM=CF ,结合图形计算,得到答案.【详解】如图,连接CD ,DB ,过点D 作DM ⊥AB 于点M,∵AD 平分∠FAB ,∴∠FAD=∠DAM ,在△AFD 和△AMD 中,FAD MAD AFD AMD AD AD ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AFD ≌△AMD (AAS )∴AF=AM ,FD=DM ,∵DE 垂直平分BC∴CD=BD ,在Rt △CDF 和Rt △BDM 中,DC DB DF DM ⎧⎨⎩==,∴Rt △CDF ≌Rt △BDM (HL )∴BM=CF ,∵AB=AM+BM=AF+MB=AC+CF+MB=AC+2CF ,∴8=4+2CF ,解得,CF=2,故答案为:2.【点睛】本题考查的是全等三角形的判定和性质、线段垂直平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.15.(1)2n n +【分析】根据图形得出当有1点D 时,有1对全等三角形;当有2点D 、E 时,有3对全等三角形;当有3点D 、E 、F 时,有6对全等三角形;根据以上结果得出当有n 个点时,图中有(1)2n n +个全等三角形即可.【详解】解:当有1点D 时,有1对全等三角形;当有2点D 、E 时,有3对全等三角形;当有3点D 、E 、F 时,有6对全等三角形;当有4点时,有10个全等三角形;…当有n 个点时,图中有(1)2n n +个全等三角形.故答案为(1)2n n +.【点睛】本题考查全等三角形的判定和数字规律,解题的关键是由题意得到数字规律.16.BD=CD【详解】BD=CD ,理由是:12∠=∠ ,ADC ADB∴∠=∠∵在△ABD 和△ACD 中DA DA ADB ADC DB DC =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACD (SAS ),故答案为BD=CD .17.这个多边形边数为7【分析】设这个多边形的边数为n ,由多边形的内角和公式(n-2)•180°与外角和定理得出方程,解方程即可.【详解】设这个多边形的边数为n ,根据题意,得(n-2)×180°=3×360°-180°,解得n=7.故答案为:7.【点睛】考查了多边形的内角和与外角和定理,解题关键熟记多边形内角和定理与任意多边形的外角和都是360°,与边数无关.18.(1)画图见解析;-4,-1;-3,-3;-1,-2;(2)画图见解析,4.【分析】(1)分别作出点A 、B 、C 关于x 轴的对称点,再顺次连接可得;(2)作出点C 关于y 轴的对称点,然后连接得到三角形,根据面积公式计算可得.【详解】(1)如图所示,111A B C ∆即为所求,()()()1114,1,3,3,1,2A B C ------;(2)如图所示,12CC C ∆的面积是12442⨯⨯=【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.19.证明过程见解析【分析】由平行线的性质证得∠A=∠D ,根据“SAS”证明△ACF ≌△DBE ,即可得出结论.【详解】证明:∵AB=DC ,∴AB+BC=DC+BC ,∴AC=DB ,∵AF//DE ,∴∠A=∠D ,在△ACF 和△DBE 中,AC DB A D AF DE =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△DBE (SAS )∴EB=FC .【点睛】本题考查了全等三角形的判定与性质及平行线的性质.解题的关键是证明三角形全等.20.(1)详见解析;(2)24【分析】(1)根据AD ∥BC ,求出∠DAB+∠ABC=180°,利用角平分线的性质得到∠BAE+∠ABE=90°,即可求出∠AEB=180°-(∠BAE+∠ABE)=90°,由此得到结论;(2)延长AE 、BC 交于点F ,根据平行线的性质推出∠BAE=∠F ,得到AB=FB ,根据等腰三角形的性质得到EF=AE=4,再证明△ADE ≌△FCE ,即可根据四边形ABCD 的面积=S △ABF 求出答案.【详解】(1)∵AD ∥BC ,∴∠DAB+∠ABC=180°,∵AE 平分DAB ∠,BE 平分CBA ∠,∴DAB ∠=2∠BAE ,CBA ∠=2∠ABE ,∴2∠BAE+2∠ABE=180°,∴∠BAE+∠ABE=90°,∴∠AEB=180°-(∠BAE+∠ABE)=90°,∴AE ⊥BE ;(2)延长AE、BC交于点F,∵AD∥BC,∴∠DAE=∠F,∵∠BAE=∠DAE,∴∠BAE=∠F,∴AB=FB,∵BE平分CBA∠,∴EF=AE=4,∴AF=8,∵∠AED=∠FEC,∴△ADE≌△FCE,∴四边形ABCD的面积=S△ABF =118624 22AF BE⋅=⨯⨯=.【点睛】此题考查平行线的性质定理,垂直的定义,角平分线的性质定理,等腰三角形的三线合一的性质,三角形全等的判定及性质,熟练掌握各知识点是解题的关键.21.(1)见解析;(2)60°;(3)CF=EF+DF,理由见解析【分析】(1)根据等边三角形的性质和“SAS”即可证明△ACE≌△BCD;(2)延长AF到Q,使FQ=DF,连接DQ,先证明△DFQ是等边三角形,再根据“SAS”证明△CDF≌△EDQ,即可求出∠CFD的度数;(3)由△CDF≌△EDQ,可得CF=EQ,进而可得到EF、DF、CF之间的关系.【详解】解:(1)∵△ABC和△CDE都为等边三角形,∴∠ACE=∠BCD=60°,AC=BC,CE=CD,在△ACE和△BCD中AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD ;(2)延长AF 到Q ,使FQ=DF ,连接DQ ,∵△ACE ≌△BCD ,∴∠CAE=∠CBD ,又∵∠AEC=∠BEF ,∴∠AFB=∠ACB=60°.∴∠DFQ=60°,∴△DFQ 是等边三角形,∴∠FDQ=∠FQD=60°,DF=DQ ,∴∠CDF=∠EDQ ,在△CDF 和△EDQ 中CD DE CDF EDQ DF DQ =⎧⎪∠=∠⎨⎪=⎩,∴△CDF ≌△EDQ ,∴∠CFD=∠DQF=60°;(3)∵△CDF ≌△EDQ ,∴CF=EQ ,∵EQ=DF+FQ=EF+DF ,∴CF=EF+DF .【点睛】本题考查了等边三角形的判定与性质,全等三角形的判定与性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.22.(1)PC ⊥PQ ,理由见解析;(2)t=1,x=2或t=74,x=207;(3)60°【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可;(3)根据题意得P 、Q 两点的运动速度为2,得到BP=AC ,根据全等三角形的性质得到∠C=∠BPQ ,于是得到结论.【详解】解:(1)当t=1时,AP=BQ=2,BP=AC=5又∵AC ⊥AB ,BD ⊥AB,∴∠A=∠B=90°在△ACP 和△BPQ 中AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩∴△ACP ≌△BPQ (SAS ),∴ACP BPQ ∠=∠,∴90APC BPQ APC ACP ∠+∠=∠+∠=∴∠CPQ=90°,即线段PC 与线段PQ 垂直;(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ,7-2t=5,2t=xt ,解得t=1,x=2,∴存在t=1,x=2,使得△ACP 与△BPQ 全等,②若△ACP ≌△BQP,则AC=BQ ,AP=BP ,5=xt ,2t=72解得t=74,x=207,∴存在t=74,x=207,使得△ACP与△BPQ全等,综上所述,存在t=1,x=2或t=74,x=207使得△ACP与△BPQ全等(3)∵∠A=∠B=60°∵P、Q两点的运动速度相同,∴P、Q两点的运动速度为2,∴t=1,∴AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中AP BQ A B AC BP=⎧⎪∠=∠⎨⎪=⎩∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=120°,∴∠APC+∠BPQ=120°,∴∠CPQ=60°.故答案为:60°.【点睛】本题考查了三角形的综合题,全等三角形的判定和性质,余角的性质,正确的识别图形是解题的关键.23.(1)1<BC<9;(2)70°【分析】(1)根据三角形三边关系即可得;(2)由∠ACD=125°,求得∠ACB=55°,再由DE∥AC,求得∠BDE=55°,再根据三角形的内角和即可求得.【详解】(1)由已知得:5-4<BC<5+4,即1<BC<9;(2)∵∠ACD=125°,∴∠ACB=180°﹣∠ACD=55°,∵DE∥AC,∴∠BDE=∠ACB=55°,∵∠E=55°,∴∠B=180°﹣∠E﹣∠BDE=180°﹣55°﹣55°=70°.24.(1)12边形(2)分割成了6个小多边形【详解】试题分析:设原多边形的边数是n,分割成边数为a1,a2,…,a m的m个多边形,则m个多边形的总边数为a1+a2+…+a m;由题意,可得方程a1+a2+…+a m=n+13,180(a1-2)+180(a2-2)+…+180(a m-2)=1.3×180(n-2),再整理可得3n+20m=156,再讨论出二元一次方程的整数解即可.试题解析:设原多边形的边数是n,分割成边数为a1,a2,…,a m的m个多边形,则m个多边形的总边数为a1+a2+…+a m,由题意有a1+a2+…+a m=n+13,180(a1-2)+180(a2-2)+…+180(a m-2)=1.3×180(n-2),则3n+20m=156,即1563nm20-=,要使m为整数,则n的个位数一定是2,所以n可能是12,22,32,42,52,代入可解得n=12时,m=6;n=32时,m=3(不符合题意舍去).综上:m=6,n=12.点睛:此题主要考查了多边形,关键是掌握多边形内角和公式180°(n-2).25.证明见解析.【详解】试题分析:根据三角形内角和定理以及AD是BC边上的高,求得∠BAD=90°-∠B,再根据AE平分∠BAC,求得∠BAE=12∠BAC=12(180°-∠B-∠C)=90°-12∠B-12∠C,最后根据∠DAE=∠BAE-∠BAD即可求解.试题解析:∵AD是BC边上的高,∴∠BAD=90°-∠B.∵AE平分∠BAC,∴∠BAE=12∠BAC=12(180°-∠B-∠C)=90°-12∠B-12∠C.∵∠DAE=∠BAE-∠BAD,1 2∠B-12∠C)-(90°-∠B)=12∠B-12∠C=12(∠B-∠C).∴∠DAE=(90°-。

人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试题一、单选题1.“国士无双”是人民对“杂交水稻之父”袁隆平院士的赞誉.下列四个汉字中是轴对称图形的是()A .B .C .D .2.以下列各组线段为边,能组成三角形的是()A .2cm,5cm,8cmB .25cm,24cm,7cmC .3cm,3cm,6cmD .1cm,2cm,3cm3.若一个多边形的内角和是900°,则这个多边形的边数是()A .5B .6C .7D .84.如图,△ABC 中,DE 是AC 的垂直平分线,AE=5cm ,△ABD 的周长为16cm ,则△ABC 的周长为()A .21cmB .26cmC .28cmD .31cm5.如图,将一副三角板摆放在直线AB 上,90ECD FDG ∠=∠=︒,45EDC ∠=︒,设EDF x ∠=,则用x 的代数式表示GDB ∠的度数为()A .xB .15x -︒C .45x ︒-D .60x︒-6.如图A 、F 、C 、D 在一条直线上,ABC DEF ≅ ,B Ð和E ∠是对应角,BC 和EF 是对应边,1,3AF FD ==.则线段FC 的长为()A .1B .1.5C .2D .2.57.如图,在Rt △ABC 中,∠A=90°,BD 是△ABC 的角平分线,若AC=10,CD=6,则点D 到BC 的距离是()A .10B .8C .6D .48.根据下列已知条件,能唯一画出△ABC 的是()A .∠C =90°,AB =6B .AB =4,BC =3,∠A =30°C .AB =5,BC =3D .∠A =60°,∠B =45°,BC =49.如图,点A 在直线l 上,ABC ∆与AB C ''∆关于直线l 对称,连接BB '分别交AC ,AC '于点D ,D ¢,连接CC '.下列结论不一定正确的是()A .BACB AC ''∠=∠B .BD B D ''=C .AD DD '=D .CC BB '' 10.如图,已知AB AC =,点D 、E 分别在AC 、AB 上且AE AD =,连接,,EC BD EC 交BD 于点M ,连接AM ,过点A 分别作,AF CE AG BD ⊥⊥,垂足分别为F 、G ,下列结论:①EBM DCM ≌;②EMB FAG ∠=∠;③MA 平分EMD ∠;④如果BEMADM S S = ,则E 是AB 的中点;其中正确结论的个数为()A .1个B .2个C .3个D .4个二、填空题11.点(5,9)P -关于y 轴的对称点Q 的坐标为________.12.一个正多边形的每个外角都等于45°,那么这个正多边形的内角和为______度.13.在镜子中看到时钟显示的时间是,则实际时间是__________14.如图△ABC 中,∠A :∠B=1:2,DE ⊥AB 于E ,且∠FCD=75°,则∠D=________.15.已知射线OM .以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB=________(度)16.如图,∠1=∠2,由AAS 来判定△ABD ≌△ACD ,则需添加的条件是________________.17.如图,在ABC 中,70A ∠=︒,ABC ∠的角平分线与ABC 的外角角平分线交于点E ,则E ∠=__________度.18.△ABC 中,AB=AC=12厘米,∠B=∠C ,BC=8厘米,点D 为AB 的中点.如果点P在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v 厘米/秒,则当△BPD 与△CQP 全等时,v 的值为___________.三、解答题19.一个多边形的内角和是它的外角和的6倍,求这个多边形的边数.20.如图,点E ,C 在线段BF 上,A D ∠=∠,//AB DE ,BC EF =,求证:AC DF =.21.已知△ABC 中,∠B =50°,∠C =70°,AD 是△ABC 的角平分线,DE ⊥AB 于E 点.(1)求∠EDA 的度数;(2)AB =10,AC =8,DE =3,求S △ABC .22.如图,在平面直角坐标系中,ABC 的各顶点坐标分别为(4,4),(1,1),(3,1)A B C ---.(1)画出ABC 关于x 轴对称的111A B C △;(2)直接写出点111,,A B C 的坐标;(3)在111A B C △中,已知127A ∠=︒,请直接写出11B C 边上的高与11A C 所夹锐角的度数.23.如图,已知B (-1,0),C (1,0),A 为y 轴正半轴上一点,点D 为第二象限一动点,E 在BD 的延长线上,CD 交AB 于F ,且∠BDC=∠BAC .(1)求证:∠ABD=∠ACD ;(2)求证:AD 平分∠CDE ;(3)若在点D 运动的过程中,始终有DC=DA+DB ,在此过程中,∠BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC 的度数.参考答案1.B【解析】【分析】根据轴对称图形的概念逐项判断即可.【详解】解:A 选项中的汉字不是轴对称图形,不符合题意;B 选项中的汉字是轴对称图形,符合题意;C 选项中的汉字不是轴对称图形,不符合题意;D选项中的汉字不是轴对称图形,不符合题意,故选:B.【点睛】本题考查轴对称图形的概念,掌握轴对称图形的概念是解答的关键.2.B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、2+5<8,不能组成三角形;B、7+24>25,能够组成三角形;C、3+3=6,不能组成三角形;D、1+2=3,不能组成三角形.故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【解析】【分析】根据多边形的内角和公式(n﹣2)•180°,列式求解即可.【详解】设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:C.【点睛】本题考查多边形内角和,掌握多边形内角和公式是解答本题的关键.4.B【分析】根据垂直平分线的性质得到AD CD =,将ABC 的周长表示成ABD △的周长加上AC 长求解.【详解】解:∵DE 是AC 的垂直平分线,∴AD CD =,5AE CE ==,∴10AC =,∵ABD △的周长是16,∴16AB BD AD ++=,ABC 的周长161026AB BD CD AC AB BD AD AC =+++=+++=+=.故选:B .【点睛】本题考查垂直平分线的性质,解题的关键是掌握垂直平分线的性质.5.C【解析】【分析】根据EDC EDF FDG GDB ∠+∠+∠+∠构成一个平角,结合题意和三角板各内角的大小即可求解.【详解】解:如图,45,90EDC FDG ∠=︒∠=︒,EDF x ∠=︒ 180EDC EDF FDG GDB ADB ∠+∠+∠+∠=∠=︒,4590180x GDB ∴︒++︒+∠=︒,1804590GDB x ∴∠=︒-︒-︒-,45GDB x∴∠=︒-故选:C .【点睛】本题考查了平角定义,求角的大小,掌据三角板上各内角的大小是解本题的关键.6.C【解析】根据ABC DEF ≅ ,得到3AC DF ==,然后根据1AF =即可求出线段FC 的长度.【详解】解:∵ABC DEF ≅ ,∴3AC DF ==,∵1AF =,∴312FC AC AF =-=-=.故选:C .【点睛】此题考查了全等三角形的性质,解题的关键是熟练掌握全等三角形的性质:全等三角形对应边相等,对应角相等.7.D【解析】【分析】根据题意作辅助线,然后根据角平分线的性质得出DE=AD ,根据已知可得AD=4,所以DE=4,即D 点到BC 的距离是4.【详解】过点D 作DE ⊥BC 于点E .∵∠A=90°,BD 是∠ABC 的平分线,DE ⊥BC ,∴∠A=∠DEB=90°,根据角平分线的性质可得:DE=AD .∵AC=10,CD=6,∴DA=4,∴DE=4,即D 点到BC 的距离是4.故选D .【点睛】本题主要考查角平分线的性质,作出辅助线是解决本题的关键,难度适中.8.D【解析】根据全等三角形的判定方法对各选项进行判断.【详解】解:A 、当∠C=90°,AB=6,可根据全等三角形的判定方法判断三角形不唯一,所以A 选项不符合题意;B 、当AB=6,BC=3,∠A=30°,可根据全等三角形的判定方法判断三角形不唯一,所以B 选项不符合题意;C 、当AB=6,BC=3,可根据全等三角形的判定方法,判断三角形不唯一,所以C 选项不符合题意;D 、当∠A=60°,∠B=45°,BC=4,可根据全等三角形的判定方法判断三角形唯一,所以D 选项符合题意.故选:D .9.C【解析】根据轴对称的性质、平行线的判定、垂直平分线的性质逐个判断即可得.【详解】如图,由轴对称的性质可知,BAC B AC ''∠=∠,直线l 是,,DD BB CC '''的垂直平分线,,,,OB OB OD OD AD AD BB l CC l'''''∴===⊥⊥,//OB OD OB OD CC BB ''''∴-=-即BD B D ''=综上,,,A B D 选项一定正确,C 选项不一定正确故选:C .【点睛】本题考查了轴对称的性质、平行线的判定、垂直平分线的性质等知识点,掌握理解轴对称的性质是解题关键.10.D【解析】【分析】根据三角形全等的判定定理和性质,角平分线的性质定理的逆定理,三角形的面积公式,四边形的内角和定理,补角的定义等逐一判断即可.【详解】∵AB=AC ,∠BAD=∠CAE ,AD=AE ,∴△BAD ≌△CAE ,BE=CD ,∴∠EBM=∠DCM ,∵∠BME=∠CMD ,∴△BME ≌△CMD ,∴结论①正确;∵,AF CE AG BD ⊥⊥,∴∠FAG+∠FMG=180°,∵∠EMB+∠FMG=180°,∴∠FAG=∠EMB ,∴结论②正确;∵△BME ≌△CMD ,∴∠BEM=∠CDM ,∴∠AEF=∠ADG ,∵,AF CE AG BD ⊥⊥,AE=AD ,∴△AEF ≌△ADG ,∴AF=AG ,∴MA 平分∠EMD ,∴结论③正确;∵△BME ≌△CMD ,∴∠BEM=∠CDM ,EM=DM ,∴∠AEM=∠ADM ,∵AE=AD ,∴△AEM ≌△ADM ,∴AEMADM S S = ,∵BEMADM S S = ,∴AEM BEM S S = ,∴E 是AB 的中点,∴结论④正确;故选D .【点睛】本题考查了全等三角形的判定和性质,角的平分线的性质定理的逆定理,邻角,四边形的内角和定理,三角形的面积,熟练掌握三角形全等的判定和性质是解题的关键.11.(5,9)【解析】【分析】根据平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(-x ,y )即求关于y 轴的对称点时:纵坐标不变,横坐标变成相反数,据此即可解答.【详解】解:点P (-5,9)关于y 轴的对称点Q 的坐标为(5,9).故答案为:(5,9).【点睛】本题考查了关于x 轴、y 轴的对称点的坐标.解题的关键是掌握关于x 轴、y 轴的对称点的坐标的特征,关于y 轴对称的两个点纵坐标不变,横坐标变成相反数.12.1080【解析】【分析】利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】解:∵正多边形的每一个外角都等于45︒,∴正多边形的边数为360°÷45°=8,所有这个正多边形的内角和为(8-2)×180°=1080°.故答案为:1080.【点睛】本题考查了多边形内角与外角等知识,熟知多边形内角和定理(n ﹣2)•180°(n≥3)和多边形的外角和等于360°是解题关键.13.16:25:08【解析】【详解】∵实际时间和镜子中的时间关于竖直的线成轴对称,∴实际时间是16:25:08,故答案为16:25:08.14.40°##40度【解析】【分析】先根据75FCD ∠=︒及三角形内角与外角的性质及:1:2A B ∠∠=可求出A ∠的度数,再由DE AB ⊥及三角形内角和定理解答可求出AFE ∠的度数,再根据三角形内角和定理即可求出答案.【详解】解:75FCD ∠=︒ ,75A B ∴∠+∠=︒,:1:2A B ∠∠= ,175253A ∴∠=⨯︒=︒,DE AB ∵⊥于E ,90902565AFE A ∴∠=︒-∠=︒-︒=︒,65CFD AFE ∴∠=∠=︒,75FCD ∠=︒ ,180180657540D CFD FCD ∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:40︒【点睛】本题考查了直角三角形的性质,垂直定义,三角形内角和定理,三角形外角性质的应用,解∠的度数.题的关键是求出DFC15.60【解析】【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB 的度数.【详解】解:连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为60【点睛】本题考查了等边三角形的判定与性质.此题难度不大,解题的关键是能根据题意得到OB=OA=AB.16.∠B=∠C【解析】【分析】本题要判定△ABD≌△ACD,已经有一角一边相等,根据题目要求由AAS来判定即可得出答案.【详解】由题可知,题目已经有∠1=∠2,AD=AD,只能是∠B=∠C,才能组成“AAS”.故答案为:∠B=∠C.【点睛】本题考查了三角形的判定,明确题目已知有一边一角对应相等,注意由AAS来判定是解决本题的关键.17.35【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠EBC表示出∠ECD,再利用∠E与∠EBC表示出∠ECD,然后整理即可得到∠A与∠E的关系,进而可求出∠E.【详解】解:∵BE和CE分别是∠ABC和∠ACD的角平分线,∴∠EBC=12∠ABC,∠ECD=12∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠ECD=12(∠A+∠ABC)=12∠A+∠ECD,∵∠ECD是△BEC的一外角,∴∠ECD=∠EBC+∠E,∴∠E=∠ECD-∠EBC=12∠A+∠EBC-∠EBC=12∠A=12×70°=35°,故答案为:35.【点睛】本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.18.2或3【解析】【分析】此题要分两种情况:①若△DBP≌△PCQ,则BD=PC,BP=CQ,计算出BP的长,进而可得运动时间,然后再求v;②若△BDP≌△CQP,则BD=CQ,PB=PC,计算出BP的长,进而可得运动时间,然后再求v.【详解】解:分两种情况:①若△DBP ≌△PCQ ,则BD =PC ,BP =CQ ,∵点D 为AB 的中点,∴BD =12AB =6cm ,∵BD =PC ,∴BP =8﹣6=2(cm ),∵点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,∴运动时间时1s ,∴BP =CQ =2cm ,∴v =2÷1=2;②若△BDP ≌△CQP ,则BD =CQ ,PB =PC ,∵BD =6cm ,PB =PC ,∴QC =6cm ,∵BC =8cm ,∴BP =4cm ,∴运动时间为4÷2=2(s ),∴v =6÷2=3(cm/s ).故答案为:2或3.【点睛】本题以运动的视角考查了全等三角形的性质,正确分类、注意对应、准确计算是解题的关键.19.14【解析】【详解】解:设多边形边是n ,由题意得,解得n=14.∴这个多边形的边数为14.20.见解析【解析】【分析】由//AB DE 可得,ABC DEF ∠=∠,进而根据AAS 证明ABC DEF △≌△,即可证明AC DF =.【详解】//AB DE ,ABC DEF ∴∠=∠,在ABC 与DEF 中,A D ABC DEF BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩ABC DEF ∴ ≌(AAS ),∴AC DF =.【点睛】本题考查了三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.21.(1)60°;(2)27.【解析】【分析】(1)先求出∠BAC =60°,再用AD 是△ABC 的角平分线求出∠BAD ,再根据垂直,即可求解;(2)过D 作DF ⊥AC 于F ,三角形ABC 的面积为三角形ABD 和三角形ACD 的和即可求解.【详解】解:(1)∵∠B =50°,∠C =70°,∴∠BAC =180°﹣∠B ﹣∠C =180°﹣50°﹣70°=60°,∵AD 是△ABC 的角平分线,∴∠BAD =12∠BAC =12×60°=30°,∵DE ⊥AB ,∴∠DEA =90°,∴∠EDA =180°﹣∠BAD ﹣∠DEA =180°﹣30°﹣90°=60°;(2)如图,过D 作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DF =DE =3,又∵AB =10,AC =8,∴S △ABC =12×AB×DE +12×AC×DF =12×10×3+12×8×3=27.【点睛】本题考查的是三角形,熟练掌握三角形的性质是解题的关键.22.(1)答案见解析;(2)()()()1114,4,1,13,1A B C ;(3)11B C 边上的高与11A C 所夹锐角的度数为18 .【解析】【分析】(1)分别作A 、B 、C 点关于x 轴的对称点,然后连线即可;(2)根据平面直角坐标中,对称点的坐标特征,即可知道答案;(3)由等腰三角形的性质,求得11B A H ∠的度数,结合条件,即可得到答案.【详解】解:(1)作图如下:如图:111A B C △即为所求.(2)∵ABC 与111A B C △关于x 轴对称,且(4,4),(1,1),(3,1)A B C ---∴()()()1114,4,1,1,3,1A B C (3)据题意,过点1A 作111A H B C ⊥,交11B C 的延长线于点H ,如下图:∵11=A H B H ,1190A HB ∠=∴1145B A H ∠= 又∵11127C B A ∠=︒∴11452718C A H ∠=-= ∴11B C 边上的高与11A C 所夹锐角的度数为18【点睛】本题考查作图——轴对称变化,以及等腰三角形的性质,解题的关键是掌握直角坐标系中点的坐标变换规律,牢记相关知识点是解题关键.23.(1)见解析;(2)见解析;(3)不变,60°【解析】【分析】(1)根据∠BDC =∠BAC ,∠DFB =∠AFC ,再结合∠ABD +∠BDC +∠DFB =∠BAC +∠ACD +∠AFC =180°,即可得出结论;(2)过点A 作AM ⊥CD 于点M ,作AN ⊥BE 于点N .运用“AAS”证明△ACM ≌△ABN 得AM =AN .根据“到角的两边距离相等的点在角的平分线上”得证;(3)运用截长法在CD 上截取CP =BD ,连接AP .证明△ACP ≌ABD 得△ADP 为等边三角形,从而求∠BAC 的度数.【详解】(1)证明:∵∠BDC =∠BAC ,∠DFB =∠AFC ,又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,∴∠ABD=∠ACD;(2)过点A作AM⊥CD于点M,作AN⊥BE于点N.则∠AMC=∠ANB=90°,∵OB=OC,OA⊥BC,∴AB=AC,∵∠ABD=∠ACD,∴△ACM≌△ABN(AAS),∴AM=AN,∴AD平分∠CDE(到角的两边距离相等的点在角的平分线上);(3)∠BAC的度数不变化.在CD上截取CP=BD,连接AP.∵CD=AD+BD,∴AD=PD,∵AB=AC,∠ABD=∠ACD,BD=CP,∴△ABD≌△ACP,∴AD=AP,∠BAD=∠CAP,∴AD=AP=PD,即△ADP是等边三角形,∴∠DAP=60°,∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二上学期半期考试语 文 试 卷一、语言积累与运用(40分)1. 请将下面的字写在田字格里。

(要求:书写正确、端正、整洁)(3分)采菊东篱下,悠然见南山。

2.下列词语中加横线的字注音完全正确的一项是( )(3分)A.舀水(y ǎo ) 拂晓 (f ó) 迫击炮(p ǎi)B.荻港(d í) 地窖 (ji ào) 阌乡(w én)C.芜湖(w ú) 制裁 (c ái) 悼念(di ào)D.赃物(z āng) 血腥(xu ě) 瞥见(pi ē) 3.改正下面词语中的错别字。

(4分) 陈词烂调 荡然无存 轶序井然 转弯抹角4.下列句子中加横线的成语使用正确的一项是( )(3分)A .这行云流水....般的歌声使所有在场的听众获得了极大的艺术享受。

B .计算机是一种工具,尽管是高科技工具,但拥有它并不意味着一切工作都可以事倍功半,一蹴而就。

C .这么好的天气去郊游,同学们可以在大自然中尽情地享受天伦之乐。

D .凡是优秀的演员,总能把剧中人物的内心世界表演得惟妙惟肖。

5.依次填入句中横线处最恰当的一组词语是( )(3分)① 若使后子学者都墨守前人的旧说,那就没有新问题,没有新发明,一切学术也就_________,人类的文化也就不会进步了。

②同学们在考场上只有保持一颗平常心,_________能够正常发挥,取得理想的考试成绩。

③水和矿物质盐类,虽然也是生物体所_________的,而且也参与躯体的组成,但是它们不能供应能量,跟一般食物不同。

A.停滞才必需 B.停滞就必须C.停止才必须 D.停止就必需6.根据语境,仿照画线句子,接写两句,构成语意连贯的一段话。

(4分)世间的事情往往是一分为二的。

失败虽然是人人不愿得到的结果,但有时却能激发人们坚韧的毅力;_________________________________________,__________________________________;________________________________,__________________________________。

因为,我们看问题需要用辨证的观点。

7.下面这段文字有三句话,各有一处语病,请加以修改。

(3分)(1)出于保护文化遗址的考虑,余杭良渚文化的大部分遗址区域均处于未发掘。

(2)根据《文物保护法》的规定,大型基建工程施工,必须经过文物部门批准,但有些基建单位却擅自动工,导致破坏性挖掘而感到担忧。

(3)目前,余杭区的文物保护规划已经正在制定中,以后文物保护就有了更为有力的措施。

(1)__________________________________________________________ (2)__________________________________________________________ (3)__________________________________________________________ 8.请为下面这则新闻拟一个标题。

(20字以内)(3分)本报讯昨日,全国眼病流行病调查,在位于永川市的市第二人民医院启动。

我市是西部地区唯一参加此次全国眼病流行病调查的城市。

据负责此项工作的中华医学会眼科学分会主任委员、北京协和医院眼科赵家良院士称,目前我国有700万盲人,平均约每分钟就会出现一个盲人、三个低视力患者,但其中80%都可以预防或治愈。

据悉,此次调查将按照国际防盲组织设计的方案,采用整群随机抽样,多种现代眼科仪器综合运用的方法,对永川市5000余居民进行调查,以了解我市眼9.阅读下面文字,回答问题。

(2分)美国莱特兄弟于1903年12月17日,驾驶动力飞机成功地遨游蓝天。

人们为此举行盛大酒会,主持人要莱特兄弟发表演说,兄弟俩再三推辞,主持人执意邀请,哥哥便发表了言短意深的一句话演说:“据我所知,鸟中最会说话的是鹦鹉,而鹦鹉是永远飞不高的。

”哥哥这句话的意思是________________________________________________10.有这样一则公益广告,读后请用四字以内的语言概括广告反映了人类社会的一个什么问题。

(2分)一个鱼缸里有两条金鱼在自由自在地游玩,过了一阵子,这个鱼缸里添了十来条金鱼,它们只能摆摆尾巴,又过了一段时间,鱼缸里又添了四五条金鱼,这时金鱼只能呆立不动了。

_________________________________________________11、古诗文积累。

(10分,1—3小题每题1分,4、5两小题各2分,6小题3分)(1)_____________________,猎马带禽归。

(王绩《野望》)(2)晴川历历汉阳树,________________________。

(崔颢《黄鹤楼》)(3)_____________________,北风江上寒。

(孟浩然《早寒江上有怀》)(4)《陋室铭》中,作者写“交往之雅”的句子是:__________________________,___________________________。

(5)《春望》一诗中诗人移情于物,表达感时伤世之情的语句是:__________________________,___________________________。

(6)描写桃花源美好自然环境的句子:_____________________,_____________________,_______________________。

得分评卷人二、文言文阅读(15分)阅读下面选文,回答文后12—16题。

爱莲说周敦颐水陆草木之花,可爱者甚蕃。

晋陶渊明独爱菊。

自李唐来,世人甚爱牡丹。

予独爱莲之出淤泥而不染,濯清涟而不妖,中通外直,不蔓不枝,香远益清,亭亭净植,可远观而不可亵玩焉。

予谓菊,花之隐逸者也;牡丹,花之富贵者也;莲,花之君子者也。

噫!菊之爱,陶后鲜有闻。

莲之爱,同予者何人?牡丹之爱,宜乎众矣。

12、解释下面加横线的词。

(3分)(1)濯.清涟而不妖 ___ (2)亭亭净植.(3)陶后鲜.有闻13、用现代汉语翻译下面的句子。

(4分)(1)可远观而不可亵玩焉。

(2)牡丹之爱,宜乎众矣。

14、下面句子节奏划分正确的一项是()(2分)A、水陆/草木之/花,可爱者/甚蕃B、自/李唐/来,世人/甚爱/牡丹C、予/独爱莲/之出/淤泥/而不染D、牡丹,花/之富贵/者也15、下面对选文内容和写法的分析理解不正确...的一项是()(3分)A、选文以爱莲之情来表达作者不慕名利、洁身自好的生活态度,以及对追名逐利、趋炎附势的恶浊世风的鄙弃。

B、在文中作者从莲的生长环境、形态香气、风度气质等方面描写了莲花的超凡脱俗。

C、文中以“中通外直,不蔓不枝,香远益清”来比喻君子通达事理,行为端正,因而美名远扬。

D、“牡丹,花之富贵者也”,表达了作者对雍容华贵的牡丹的赞美之情。

16、作者认为,菊是“花之隐逸者”,你是否同意这种看法?为什么?(3分)三、现代文阅读(40分)(一)阅读下面选文,完成文后17—20题。

(18分)说竹青山不可无绿水,古木不可无藤萝,野花不可无蜂蝶,江南不可无竹。

若说梅令人洁,兰令人幽,菊令人淡,莲令人清;若说松令人傲,柳令人柔,枫令人豪爽,梧桐令人高远;那么,竹,便是集山川岩骨精英秀气于一身。

雪压冬云之际,竹挺拔如常,冻土之下,新笋已待破土而出,只说春花秋月是良辰美景,殊不知新笋破新泥更可谓赏心悦目。

一夜春雨,千竿新竹。

桃红李白,柳影婆娑,怎抵得住十里竹林勃勃生机,一片青翠无限风光!逢夏,老竹新篁,绿阴可人,疏枝密叶,清风翠微;日光月影,浮动其间;可以立石旁,可以依水湄。

待到秋至,群芳落尽,而竹青碧依然。

摇风弄雨,铿然有声。

无论低矮数寸,高直数丈,或零落数枝,或赫然巨簇,皆不媚不俗,不卑不亢,浑身劲节,凛凛然有君子之风。

再淡雅的花,终究是花。

便是有九分素洁,也还有一分的妖媚。

再灵性的树,也还是树,不然,汉字的“朴”何以用“木”表意?并非贬低。

草自有草的优势。

只是品位再高的草,也无法走出草的局限。

竹,非花非草非木,实在是造物主的一件绝活儿。

可如天然去雕饰的素妆少女婀娜娉婷;可如浩浩然有英雄气的须眉男子枝横云梦,叶拍苍天。

月下听箫,城头闻笛,都是竹的境界。

竹,实在是渗透了我们民族的精神情韵。

难怪高唱出“大江东去,浪淘尽千古风流人物”的苏东坡,同样也吟出了“宁可食无肉,不可居无竹”的另一番向往。

中国画中的写意墨竹,相传就是这位大学士大文豪首创。

没有什么比写意墨竹更能体现竹的情韵了。

在这里,竹已摈弃了一切外在的形式和颜色,惟留人间风骨。

将墨竹画绝的“扬州八怪”郑板桥,干脆以竹为友:茅屋一间,新篁数竿,雪白窗纸,微浸绿色,此时独坐其中,一盏雨前茶,一方端砚石,一张宣州纸,几笔折枝花。

朋友来至,风声竹响,愈喧愈静;家僮扫地,侍女焚香,往来竹阴中,清光映于画上,绝可怜爱。

话虽这么说,这位想为百姓做点好事的士大夫,并不想真隐逸山林。

他还有一番大的抱负:画根竹枝插过石,石比竹枝高一尺。

虽然一尺让他高,来年看我掀天力。

这便可知郑板桥的墨竹,何以幅幅为精品,枝枝见精神。

“穷则独善其身,达则兼济天下”,中国古代知识分子崇尚的立身立世之道,岂非是受了竹的品性渲染?竹,确实和我们民族有着不解的因缘。

竹简、毛笔,成就了中国古文化源远流长的功果。

而百姓们的日常生活,又何曾须臾离开过竹?竹箫、竹笛,是竹之灵性的吟唱。

竹筏、竹帘、竹席、竹床、竹椅、竹筷、竹帚……卑微的用途中,有着质朴无华的贡献。

非淡泊无以明志,非宁静无以致远。

此乃竹。

东方的竹。

(选自《灵性散文》有删改) 17.作者认为“月下听箫,城头闻笛,都是竹的境界”。

请根据文中相关内容回答:a:竹达到了怎样的境界?(2分)_________________________________________________________________b:“听箫”“闻笛”与“竹的境界”有什么联系?(4分)_________________________________________________________________ 18.文中谈及郑板桥时说“他还有一番大的抱负”。

试根据上下文内容,说说郑板桥的“抱负”是什么?(3分)__________________________________________________________________ 19.作者说“竹,实在是渗透了我们民族的精神情韵”。

联系全文,分三条列出竹渗透的我们民族的“精神情韵”。

(6分)(1)____________________________________________________(2)____________________________________________________(3)____________________________________________________20.对这篇文章理解分析不正确的一项是()(3分)A.文章既写出了竹的神“枝横云梦,叶拍苍天”,又写出了竹的形“婀娜娉婷”,真可谓形神兼备。

相关文档
最新文档