人教版九年级数学上册第23章图形的相似23.2相似图形教案新版人教版
图形的相似 初中九年级初三数学教案教学设计教学反思 人教版
图形的相似【教学目标】1.通过对生活中的事物或图形的观察,获得理性认识,从而加以识别相似的图形。
2.通过观察。
归纳等数学活动,与他人交流思维的过程和结果,能用所学的知识去解决问题。
3.在获得知识的过程中培养学习的自信心。
【教学重点】引导学生观察图形,并从中获取信息,培养他们的观察、分析及归纳能力。
【教学难点】应用获得的数学知识解决生活中的实际问题。
【教学过程】一、师生互动,探索新知。
1.观察下列几组几何图形,你能发现它们之间有什么关系?从而得出:具有相同形状的图形叫相似图形。
(出示课题——图形的相似)2.对上图中的3组图形,通过图形的缩小或放大,再利用图形的平移或旋转等变换,使它与另一个图形能够重合,从而加以验证它们是相似的图形。
3.你还见过哪些相似的图形,请举出一些例子与同学们交流。
二、探究。
1.思考教科书的问题,哈哈镜里看到的不同镜像它们相似吗?2.观察下图中的3组图形,它们是不是相似形?为什么?(激发学生的求知欲,为下一节课做好准备。
)三、课堂小结。
这节课你有哪些收获?四、课时作业。
根据今天所学的内容,请你收集或设计一些相似的图案。
五、配套课时练习。
1.我们把形状的图形叫做相似图形。
2.下列图形相似的是()。
A.两个圆B.两个矩形C.两个等腰梯形D.两个菱形3.下列是图形相似的有()。
两辆轿车两个五角星两只足球建筑物的设计图纸与建筑物A.1个B.2个C.3个D.4个4.下列每组图中的两个图形是相似图形的是()。
A B C D5.举出相似图形的例子。
(至少两个)6.在方格纸中平移图形,使A平移到A 处。
画出放大一倍的图形。
7.下列说法正确的是()A.人们从平面镜及哈哈镜里看到的不同镜像相似。
B.人们从平面镜里看到的像与人的关系是相似图形,但不是全等图形。
C.拍照时,镜头的取景与照片上的画面是相似的。
D.放幻灯片时投在屏幕上的画面与幻灯片上的图形是全等的。
8.选出与下面左图相似的图()。
9.请将右面的直角三角形放大三倍。
第23章:图形的相似全章教案
第23章图形的相似23.1 相似的图形教学目标:知识与技能:理解相似形的概念,了解相似形是两个图形之间的关系。
过程与方法:根据不同需要,能作出大小不一定相同的图形情感态度价值观:培养学生的观察能力。
教学重点:让学生理解相似图形概念,会判断两个图形是否相似。
教学难点:正确理解“形状相同”的含义并画出相似图形。
教学准备:白卡纸、大小不同的同底照片、图片、电子白板课型:新授课教学时间:2012年下期第周星期教学班级:2013级班教学过程:一、导入新课挂上大小不一样的中国地图两张及两张大小不同的内容相同的图片,供同学观察,并看课本第42页的图,提出问题:这几组图片有什么相同的地方呢?这些图片大小虽然不一样,但形状是相同。
二、讲解新课由于不同的需要,我们用同一底片冲洗、放大得到的相片有1寸的,也有2寸的,也有更大的,这些大小不一样的相片,其形状是相同。
同学们想一想,在毕业证书贴的相片与学籍卡片上的相片、学习证的相片大小不一定一样,但形状相同,如果不相同会有什么后果呢?大小不相同的中国地图或世界地图,其形状也是相同的,只是由于需要的不同,印制成大小不一的图片。
对于某一地区,也经常会绘制成各种大小不同的建筑物、山岗等所处的位置都是相同,同学们想一想,如果两张地图(同一地区)的形状不一样,那就会给我们许多错觉,就会产生许多麻烦的事情。
在日常生活中我们会看到许多这样形状相同,而大小不一定相同的图形。
在数学上,我们把具有相同形状的图形称为相似形。
同学们你还能说出哪些相似的图形吗?(同学们思考、讨论、交换意见)国旗、国旗上的五角星。
画一个图形放在投影机上映射到屏幕上的图形与原图、平面镜上看到你自己的像等。
如图所示的是一些相似的图形。
想一想:放大镜下的图形和原图形相似吗?你看过哈哈镜吗?哈哈镜中的形像与你本人相似吗?还有一些图形,看起来有点相像,但它们不是相似的图形。
为什么有一部分图形看起来相像,但不相似呢?这就是数学上说的相似图形还有其特征,就是这章要探索的内容。
九年级数学上册第23章图形的相似23.2相似图形教案新版华东师大版
23.2 相似图形知道相似图形的两个特征:对应边成比例,对应角相等,识别两个多边形是否相似的方法.重点相似图形的定义和性质.难点相似图形的性质.一、情境引入回顾1.若线段a=6 cm,b=4 cm,c=3.6 cm,d=2.4 cm,那么线段a,b,c,d会成比例吗?2.两张相似的地图中的对应线段有什么关系?(都成比例)二、探究新知教师多媒体展示问题,提出问题,引导学生分析.相似的两张地图中的对应线段都会成比例,对于一般的相似多边形,这个结论是否成立呢?同学们动手量一量,算一算,用刻度尺和量角器量一量课本第58页两个相似四边形的边长,量一量它们的内角,由一位同学把量得的结果写在黑板上,其他同学把量得的结果与同伴交流.同学们会发现有什么关系呢?经过观察、计算得出这两个相似四边形的对应边会成比例,对应角会相等,再观察课本中两个相似的五边形,是否也具有一样的结果?反映它们的边之间、角之间的关系是什么关系?同学们用格点图画相似的两个三角形,观察、度量,它们是否也具有这种关系(对应边成比例,对应角相等)?由此可以得到两个相似多边形的特征:(由同学回答,教师板书)对应边成比例,对应角相等.实际上这两个特征,也是我们识别两个多边形是否相似的方法,即如果两个多边形的对应边成比例,对应角相等,那么这两个多边形相似.识别两个多边形是否相似的标准有:(数相同),对应边要(成比例),对应角要(都相等).(括号内要求同学填)填一填:(1)两个三角形一定是相似图形吗?两个等腰三角形呢?两个等边三角形呢?两个等腰直角三角形呢?(2)所有的菱形都相似吗?所有的矩形呢?正方形呢?学生小组内交流,代表发言,教师点评.教师课件展示例1,例2,学生可自主完成,小组内交流,点名展示,教师点评.例1 矩形ABCD与矩形A′B′C′D′中,AB=1.5 cm,BC=4.5 cm,A′B′=0.8 cm,B′C′=2.4 cm,这两个矩形相似吗?为什么?解:相似,∵AB A′B′=BC B′C′=AD A′D′=DC D′C′=158. 例2 如图,四边形ABCD 与四边形A′B′C′D′相似,求∠A 的度数与x 的值.解:由相似图形的性质知∠A =∠A′=107°,4x =52, ∴x =85. 三、练习巩固教师多媒体展示,学生独立完成,点名展示,并讲解,师生共同点评.1.在矩形ABCD 与矩形A′B′C′D′中,已知AB =16 cm ,AD =10 cm ,A ′D ′=6 cm ,矩形A′B′C′D′的面积为54 cm 2,这两个矩形相似吗?为什么?2.如图,四边形ABCD 与四边形A′B′C′D′是相似的,且C′D′⊥B′C′,根据图中的条件,求出未知的边x 、y 及角α.四、小结与作业小结1.相似多边形的性质:对应边成比例,对应角相等.2.相似多边形的判定.布置作业从教材相应练习和“习题23.2”中选取.本节课学生通过动手测量,探究相似图形的有关性质,经历观察、实验归纳等思维过程,从中获得数学知识与技能,体验数学活动的方法,同时升华学生的情感、态度和价值观.。
初中数学九年级上册《23.2相似图形》PPT课件 (4)
(9)
(10)
相似图形有:(1)和(8);(2)和(6);(3)和(7) 。
2.如图所示的相似四边形中,求边x的长
度和角α 的大小
分析 利用相似多边形的性质和多边形的内角和
公式就可以得到所需结果,再利用相似多边形的
性质时,必须分清对应边和对应角。 解 ∵两个四边形相似,
18 x
1812 18源自原来的图形相似吗?放大镜下的角与原图 形中角是什么关系?
画一画
... ... ... ... ...
如下图的左边格点图中有一个四边形,请 在右边的格点图中画出一个与该四边形相 似的图形。和你的伙伴交流一下,看看谁
. . 的方法又快又好。 . . . . .
..
.....
..
.....
..
.....
77°
83°
x 27
x
根据对应角相等,可得
12 117° α 77° 18
=360- 77+83+117
=83
课堂小结
1.经过这节课的学习,你有哪些收获? 2.你想进一步探究的问题是什么?
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
为了成功地生活,少年人必须学习自 立,铲除埋伏各处的障碍,在家庭要教养 他,使他具有为人所认可的独立人格。
第23章
1.相似图形
情景导入
推进新课
想一想:我们刚才所见到的图形有什 么相同点和不同点?
相同点:形状相同.
不同点:大小不一定相同.
问题:在现实生活中,同学们还见过哪些形状相 同但大小不一定相等的图形?
(请讨论)
生活中我们会碰到许多这样形状相同的.大
九年级数学上册 第23章 图形的相似 23.3 相似三角形 23.3.2 相似三角形的判定教案 华东
课题名称
相似三角形的判定
三维目标
1.知识目标:
(1)近一步理解相似三角形的概念,了解相似三角形的对应元素及相似比;
(2)巩固判定三角形相似的预备定理及应用
(3) 掌握判定三角形相似的其他三个方法
2.能力目标:
培养学生探究新知识,提高分析问题和解决问题的能力。增进发散思维能力和现有知识区向最近发展区迁延的能力。
学做思二:
利用刻度尺和量角器画△ABC和△,使∠A=∠,,
量BC、的长度,量∠B、∠C、∠、∠的度数
①你发现BC、的长度有什么关系?
②你发现∠B、∠C、∠、∠的度数有什么关系?
③由①、②能得△ABC和△有什么关系?
结论:如果两个三角形的两组对应边的比相等,且夹角相等,那么这两个三角形相似
④改变∠A和K的大小,是否有同样的结论?
3.情感目标:
加强学生对新知识探究的兴趣,渗透几何中理性思维的思想。
重点目标
判定三角形相似的其他三个方法
难点目标
判定三角形相似的其他三个方法及应用
导入示标
1.近一步理解相似三角形的概念,了解相似三角形的对应元素及相似比;
2.巩固判定三角形相似的预备定理及应用
3. 掌握判定三角形相似的其他三个方法
目标三导
⑤请同学们自己证明这个结论
⑥△ABห้องสมุดไป่ตู้和△,使∠B=∠, ,这两个三角形相似吗?
作△ABC和△,使∠A=∠、∠B=∠,分别度量两个三角形的边长
①你发现∠C与∠有什么关系?
②你发现、 、 有什么关系?
③由①、②能得△ABC和△有什么关系?
结论:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似
九年级数学上册 第23章 图形的相似23.3 相似三角形23.3.3 相似三角形的性质教案 (新版)
23.3.3 相似三角形的性质会说出相似三角形的性质:对应角相等,对应边成比例,对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.重点1.相似三角形中的对应线段比值的推导.2.相似多边形的周长比、面积比与相似比关系的推导.3.运用相似三角形的性质解决实际问题.难点相似三角形性质的灵活运用,相似三角形周长比、面积比与相似比关系的推导及运用.一、情境引入复习:1.判定两个三角形相似的简便方法有哪些?2.在△ABC与△A′B′C′中,AB=10 cm,AC=6 cm,BC=8 cm,A′B′=5 cm,A′C′=3 cm,B′C′=4 cm,这两个三角形相似吗?说明理由.如果相似,它们的相似比是多少?二、探究新知教师结合上述第2题,引导学生探究:上述两个三角形是相似的,它们对应边的比就是相似比,△ABC∽△A′B′C′,相似比为ACA′C′=2.相似的两个三角形,它们的对应角相等,对应边会成比例,除此之处,还会得出什么结果呢?一个三角形内有三条主要线段——高线、中线、角平分线,如果两个三角形相似,那么这些对应的线段有什么关系呢?我们先探索一下它们的对应高之间的关系.同学们画出上述的两个三角形,作对应边BC 和B ′C ′边上的高,用刻度尺量一量AD与A′D′的长,AD A′D′等于多少呢?与它们的相似比相等吗?得出结论:相似三角形对应高的比等于相似比.我们能否用推理的方法来说明这个结论呢?△ABD 和△A′B′D′都是直角三角形,且∠B=∠B′.∴△ABD ∽△A ′B ′D ′,∴AD A′D′=AB A′B′=k. 接下来,教师再提出问题让学生归纳,并引导学生通过演绎推理来证明.思考:相似三角形面积的比与相似比有什么关系?S △ABC S △A ′B ′C ′=12AD·BC 12A′D′·B′C′=AD A′D′·BC B′C′=k 2 归纳:相似三角形面积的比等于相似比的平方.同学们用上面类似的方法得出:相似三角形对应边上的中线的比等于相似比;相似三角形对应角平分线的比等于相似比;相似三角形的周长之比等于相似比.教师展示例1,引导学生分析,学生独立完成,小组内交流.例1 如图,梯形ABCD 的对角线交于点O ,DC AB =23,已知S △DOC =4,求S △AOB ,S △AOD . 三、练习巩固教师展示课件,可由学生自由完成,教师点名上台展示,教师点评.1.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(图形)的示意图.已知桌面的直径为1.2 m ,桌面距离地面为1 m ,若灯泡距离地面3 m ,则地面上阴影部分的面积为________.【教学说明】运用相似三角形对应高的比等于相似比是解决本题的关键.2.如图,在△ABC中,BC=24 cm,高AD=12 cm,矩形EFGH的两个顶点E,F在BC 上,另两个顶点G,H分别在AC,AB上,且EF∶EH=4∶3,求EF,EH的长.四、小结与作业小结1.相似三角形对应角相等,对应边成比例.2.相似三角形对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.布置作业从教材相应练习和“习题23.3”中选取.本课时从复习已经学习过的相似三角形的性质入手,提出问题继续探究相似三角形的有关性质,通过动手测量,猜想出结论,并加以证明,加深对知识的理解,提高学生分析、归纳、表达、逻辑推理等能力,并通过对知识方法的总结,培养反思问题的习惯,形成理性思维.。
人教版九年级数学《图形的相似》教学设计
人教版九年级数学图形的相似教学设计执教教师:新疆阿克苏市第十三中学赵婷婷设计理念:新课标指出,数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,根据九年级课程内容设置,为了让学生能从代数到几何进行快速的思维转换,在义务教育阶段,让学生接触相对完整的图形变换,是义务教育的性质所决定的. 本章是继“图形全等、轴对称、平移、旋转”之后集中研究图形形状的内容,不仅是对图形全等内容的进一步深化和发展,而且是对图形研究方法的综合运用.教材分析:本节课是本章的第一课时,力图通过观察现实生活中的各种相似图形,归纳抽象出数学概念,呈现出有关内容,体现了数学与现实之间的必然联系.教材从生活中形状相同的图形出发,引出相似图形的概念,进而研究相似多边形的特征并进行运用,另外,学习了本节内容,可以使学生更好地认识、描述物体的形状,同时也为下一步《相似三角形》以及高中段“图形与空间”的学习起着铺垫作用.学情分析:九年级学生虽已具备了一定的逻辑思维能力,但学生的知识结构还不完善,数学思想方法的掌握和运用还不熟练,所以类比全等图形知识的学习,通过具体实例认识图形的相似,引导归纳得出相似图形的概念 .教学目标1.知识与技能通过对事物的图形的观察、思考与分析,认识理解相似的图形.2.过程与方法经历动手操作的活动过程,增强学生的观察、动手能力.3.情感、态度与价值观体会图形的相似在现实世界中的存在与运用,进一步提高学生数学应用意识.教学重点认识图形的相似、形成图形相似的概念.教学难点在方格图中画相似图形 .课型:新授课课时安排:1课时教学手段:多媒体教法与学法分析:教学策略:1、情境教学法:创设问题情境,以学生感兴趣的并容易回答的问题为开端。
2、启发性教学法:启发性原则是永恒的,学生在教师的启发下自然而然的成为课堂的主体。
学习策略:本节主要采用小组合作学习方式,围绕“观察猜想,探究验证,归纳总结”的主线开展学习。
辅助策略:利用多媒体直观演示以突破难点。
2020九年级数学上册 第23章 图形的相似 23.2 相似图形导学案
23.2 相似图形【学习目标】1、探索并掌握相似多边形的性质。
2、解两个多边形相似的判定方法。
【学习重难点】相似多边形的性质【学习过程】一、课前准备1、怎样的图形是相似图形?2、什么是成比例线段?3、两个相似的平面图形之间有什么关系呢?为什么有些图形是相似的,而有些不是呢?相似图形有什么主要性质呢?二、学习新知自主学习:图中两个四边形是相似形,仔细观察这两个图形,它们的对应边之间是否为比例线段的关系呢?对应角之间又有什么关系?(提示:为了验证你的猜测是否正确,可以用刻度尺和量角器量量看。
)再看看图中两个相似的五边形,是否与你观察图18.2.2所得到的结果一样?3、交流合作,大胆猜想在独立动手的基础上,进行交流与合作,并大胆地猜想结果。
4、概括总结,确认猜想概括:由此可以得到两个相似多边形的特征:对应边成比例,对应角相等。
实际上这也是我们识别两个多边形是否相似的方法,即如果_____________________________________,那么这两个多边形相似。
提醒:这就是我们判定两个多边形是否相似的判定方法。
想一想:如果两个多边形的边数不同呢?实例分析:例1、如图所示的相似四边形中,求未知边x 、 y 的长度和角度a 的大小。
图18.2.4解:由于两个四边形相似,它们的对应边成比例,对应角相等,所以 1847y == 解得 x = , y = 。
a = 360°-( )= 。
【随堂练习】1、两个相似多边形的最长边分别为10cm 和20cm ,其中一个多边形的最短边长5 cm ,另一个多边形的最短边长为__________________.2、在相同时刻的物高与影长成比例,如果一古塔在地面上的影长为50m ,同时,高为1.5m 的竿的影长为2.5m ,则古塔的高为____________m .3、□ABCD 与□''''A B C D 中,AB =3,BC=5,∠B=40°,A′B ′=6,要使□A BCD 与□''''A B C D 相似,则B′C′=_______,∠B ′=_______.4、如图,等腰梯形ABCD 与等腰梯形A′B′C′D′相似,∠A′=65°,A′B ′=6 cm ,,AB =8 cm ,AD =5 cm ,试求梯形ABCD 的各角的度数与A′D′、B′C′的长.D 'C 'B 'A 'B AD C【中考连线】如图,梯形ABCD 中,AD ∥B C ,E 是AB 上的一点,EF ∥BC ,并且EF 将梯形ABCD 分成的两个梯形AEFD 、EBCF 相似,若AD =4,BC =9,求AE ∶EB .【参考答案】随堂练习1、10cm 或25cm 2、x=30 3、B ’C ’=10 4、B ’C ’=A ’D ’=415cm 中考连线32EB AE。
九年级数学上册 第23章 图形的相似 23.3 相似三角形 23.3.2 相似三角形的判定导学案2(
23.3.3 相似三角形的判定【学习目标】1、两个三角形相似的判定方法2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
2、两个三角形相似的判定方法3:如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.【学习重难点】相似三角形的判定定理2和3【学习过程】一、课前准备判断两个三角形相似有哪几种方法?有两种方法(1) ,(2) 。
二、学习新知自主学习:1、观察课本67页图23-3-10,完成填空。
然后通过量角或量线段计算之后,得出△ADE ∽△ABC 。
分析题目条件:(1)有一个公共角∠A,(2)AD=31AB, AE=31AC, 结论:△ADE ∽△ABC探 索: 如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似吗?2、总结另一个判断相似的方法:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.符号语言: ∵,AB AC A A A B A C '=∠=∠'''', ∴△ABC ∽△A B C '''. 3、探 索:如果两个三角形的三条边对应成比例,那么这两个三角形相似吗?完成下面的做一做,再讨论总结判断另一个相似的方法。
4、课本69页做一做我们可以发现这两个三角形相似.即:如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.实例分析:例1、例3 判断图中△AEB 和△FEC 是否相似?证明:例4、在△ABC 和△A ′B ′C ′中,已知:AB =6 cm , BC =8 cm ,A C =10 cm ,A ′B ′=18 cm ,B ′C ′=24 cm , A ′C ′=30 cm .试判定△ABC 与△A ′B ′C ′是否相似,并说明理由.(小组讨论完成)证明:【随堂练习】1、在△ABC 和△'''A B C 中,∠C =∠'C =90°,AC =12,BC =15,''A C =8,则当 ''B C =____________时,△ABC ∽△'''A B C .2、在△ABC 中,AB:BC:CA=2:3:4,在△A 1B 1C 1中,A 1B 1=1,C 1A 1=2,当B 1C 1=______时,△AB C ∽△A 1B 1C 1。
九年级数学上册 第23章 图形的相似 23.3 相似三角形 23.3.1 相似三角形导学案
——————————新学期新成绩新目标新方向——————————23.3.1 相似三角形【学习目标】1、掌握相似三角形的有关概念及表示方法;2、能够熟练地找出相似三角形的对应角和对应边;3、了解相似三角形与全等三角形的关系。
【学习重难点】1、掌握相似三角形的有关概念及表示方法;2、能够熟练地找出相似三角形的对应角和对应边【学习过程】一、课前准备1.填空(1)相等,成比例的两个多边形叫做相似多边形.相似多边形的比叫做相似比.(2)四边形ABCD相似与四边形A′B′C′D′,AB=6,BC=8,∠B=50°,A′B′=9,则B′C′=___________∠B′=___(3)和都相同的两个三角形是全等三角形.2.选择⑴两个多边形相似的条件是:()A: 对应边相等 B: 对应角相等或对应边相等 C: 对应角相等 D: 对应角相等且对应边成比例⑵下列结论正确的是()A: 任意的两个等腰直角三角形都相似 B: 有一个角对应相等的等腰梯形都相似C: 任意的两个长方形都相似 D:任意的两个菱形都相似。
二、学习新知自主学习:⒈相似三角形相关概念:(1)定义:相似三角形是相似多边形中的一类,因此,相似三角形的定义可仿照相似多边形的定义来归纳:相等,成比例的两个三角形叫做相似三角形.(2)表示:如△ABC与△A DE相似,记作△ABC △A DE其中对应顶点要写在。
数学语言:∵∠A= ,∠B= ,∠C== =∴△ABC∽△ADE(3)相似比:叫做相似比.想一想:已知:⊿ABC∽⊿DEF, 你能得到哪些结论?结论:相似三角形对应边,对应角。
实例分析:例1、在△ABC中,点D是边AB的三等分点,DE//BC,DE=5.求BC的长.【随堂练习】1、有一块呈三角形形状的草坪,其中一边的长是20m,在这个草坪的图纸上,这条边长5cm,其他两边的长都是3.5cm,求该草坪其他两边的实际长度。
2、如果两个三角形的相似比为1,那么这两个三角形_____3、若△ABC的三条边长的比为3cm、5cm、6cm,与其相似的另一个△A′B′C′的最小边长为12 cm,那么△A′B′C′的最大边长是_____4、(★)若△ABC∽△DEF,它们的周长分别为6 cm和8 cm,那么下式中一定成立的是()A.3AB=4DEB.4AC=3DEC.3∠A=4∠DD.4(AB+BC+AC)=3(DE+EF+DF)5、若△ABC与△A′B′C′相似,∠A=55°,∠B=100°,那么∠C’的度数是()A.55°B.100°C.25°D.不能确定【中考连线】如图,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m、与旗杆相距22m,则旗杆的高为()A.12m B.10m C.8m D.7m【参考答案】随堂练习1、其他两边都是14米;2、全等;3、24;4、D;5、C中考连线由题意可知两个三角形相似,可得8 3.2,12.. 822x cm Ax=∴=+所以选。
23.2 相似图形(数学华师大版九年级上册)
相似多边形的对应边成比例,对应角相等。
两个边数相同的多边形,如果各边对应成比例, 各角对应相等,那么这两个多边形相似。
这个定义是我们判断两个多边 形是否相似的准确方法。
(1)两个三角形一定相似吗?(
)
(2)两个等腰三角形一定相似吗?(
)
(3)两个等边三角形一定相似吗?(
)
(4)两个正方形一定相似吗?(
18
解:∵两个四边形相似
∴18 x 12 18
∴ x 27
根据对应角相等,可得
例 2 如图,把矩形ABCD中的AB边向上翻折到AD边上,当点B与点F
重合时,折痕与BC边交于点E,连结EF,若四边形EFDC与矩形ABCD 恰好相似,若AB=1,求AD的长。
A
FD
A
F
D
B
EC
B
E
C
拓展:如图,把矩形ABCD对折,折痕为FE,矩形DFEC与矩形ABCD相 似,已知AB=1,求AD的长。
形状相同,大小不一定相同的图形叫做相似图形。 (简称相似形)
(1)相似图形只与图形的形状有关,与图形的大小、位置无关; (2)全等图形是相似图形的特例; (3)两个图形相似,其中一个图形可以看作是由另一个图形放大或
缩小得到。
下列图形是相似形吗?
(1)
(2)
(3)
下列各组图形相似吗?
(1)
(2)
A' B' =__2_,B' C' =_1___,C' D' =__2__,A' D' =__5__.
AB BC CD AD A'B' B'C' C'D' A'D'
九年级相似图形教案
九年级相似图形教案教案标题:探索九年级相似图形教学目标:1. 理解相似图形的定义和特征;2. 能够识别和分类相似图形;3. 掌握相似图形的比例关系和性质;4. 能够应用相似图形的概念解决实际问题。
教学准备:1. 教学投影仪或白板;2. 相似图形的实物或图片;3. 九年级数学教材;4. 相关练习题和活动。
教学过程:一、导入(5分钟)1. 利用投影仪或白板展示一些相似图形的实物或图片,引起学生对相似图形的兴趣。
2. 提问学生:你们认为什么是相似图形?相似图形有哪些特征?二、概念讲解(15分钟)1. 通过示例和图示,讲解相似图形的定义和特征,强调相似图形的形状相似、对应角相等、对应边成比例等性质。
2. 引导学生观察和比较相似图形的例子,让他们找出相似图形的共同点和规律。
三、相似图形的比例关系(20分钟)1. 通过练习题和实例,让学生运用相似图形的定义和性质,探索相似图形的比例关系。
2. 引导学生发现相似图形的对应边之间的比例关系,并引导他们应用这一关系解决实际问题。
四、应用活动(15分钟)1. 分发一些实际问题,要求学生利用相似图形的概念解决问题,如计算建筑物的高度、测量无法直接测量的物体等。
2. 学生分组合作解决问题,并展示他们的解决过程和答案。
五、巩固练习(15分钟)1. 分发一些练习题,让学生巩固相似图形的概念和技巧。
2. 在学生独立完成练习后,进行答案讲解和讨论。
六、总结与拓展(10分钟)1. 总结相似图形的定义、特征和性质。
2. 引导学生思考相似图形与比例的关系,并提出拓展问题,激发学生的思维。
教学反思:本节课通过引导学生观察和比较实物和图片,让他们主动发现相似图形的特征和性质。
通过练习题和实际问题的应用活动,培养学生运用相似图形概念解决问题的能力。
同时,通过总结和拓展,加深学生对相似图形的理解。
在教学过程中,教师应注重启发性的提问和引导,激发学生的思维和兴趣,培养他们的自主学习能力。
23.2相似图形教学设计-2024-2025学年华东师大版数学九年级上册
- 《相似图形的判定方法解析》:这篇文章详细解析了相似图形的判定方法,通过阅读,学生可以巩固和加深对相似图形判定方法的理解。
2. 鼓励学生进行课后自主学习和探究:
- 相似图形的性质和判定方法:学生可以进一步研究相似图形的性质和判定方法,通过查阅资料或进行实验,探索更多的性质和判定方法。
此外,我也会根据学生的兴趣和需求,调整教学内容和教学方式。如果我发现学生对某个相关的话题或问题感兴趣,我会增加相关的教学内容,提供更多的学习资源和学习机会,让学生可以更深入地学习和探索。如果学生对某个教学方式有更好的建议或意见,我也会积极地考虑和尝试,以提高教学的效果和学生的学习积极性。
5.数据分析:通过观察和分析相似图形,学生能够培养数据分析能力,理解和处理图形信息。
学情分析
九年级的学生在数学学习方面已经具备了一定的基础,对一些基本的数学概念和运算规则有一定的了解。然而,他们在相似图形的理解和应用方面可能还存在一些困难。首先,学生可能对相似图形的定义和性质不够清晰,需要通过具体的示例和操作来加深理解。其次,学生在解决与相似图形相关的实际问题时,可能缺乏有效的解题策略和方法,需要通过练习和指导来提高解决问题的能力。此外,学生的逻辑推理和数学建模能力也需要进一步培养和提高。
2.新课讲解(15分钟):
- 使用多媒体课件,讲解相似图形的定义和性质。
- 通过示例和练习题,让学生理解和掌握相似图形的判定方法。
3.课堂练习(10分钟):
- 分发练习题,让学生独立完成,巩固对相似图形知识的理解和应用。
4.应用拓展(10分钟):
- 提供一些实际问题,让学生运用相似图形的知识解决。
初中相似图形的教学教案
教案:初中相似图形教学教学目标:1. 让学生理解相似图形的概念,掌握相似图形的性质和判定方法。
2. 培养学生运用相似图形解决实际问题的能力。
教学内容:1. 相似图形的定义和性质2. 相似图形的判定方法3. 相似图形在实际问题中的应用教学过程:一、导入(5分钟)1. 引导学生回顾小学学过的图形变换知识,如平移、旋转等。
2. 提问:你们认为什么是相似图形?二、新课讲解(15分钟)1. 讲解相似图形的定义:在平面内,如果两个图形的形状相同,但大小不一定相同,那么这两个图形叫做相似图形。
2. 讲解相似图形的性质:a. 相似图形的对应边成比例。
b. 相似图形的对应角相等。
c. 相似图形的大小可以通过比例关系来计算。
3. 讲解相似图形的判定方法:a. 如果两个图形的对应角相等,对应边成比例,那么这两个图形相似。
b. 如果两个图形互相旋转或翻转后能够重合,那么这两个图形相似。
三、例题讲解(15分钟)1. 讲解例题:判断两个图形是否相似。
2. 引导学生通过对应角和对应边的关系来判断图形是否相似。
四、课堂练习(10分钟)1. 布置练习题,让学生独立完成。
2. 引导学生通过相似图形的性质和判定方法来解决问题。
五、总结与拓展(5分钟)1. 总结本节课所学内容,让学生明确相似图形的概念和性质。
2. 提问:相似图形在实际生活中有哪些应用?3. 拓展知识:介绍相似图形在几何学中的重要性,如相似三角形的性质和应用。
教学评价:1. 课后作业:布置相关习题,巩固所学知识。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的掌握程度。
3. 单元测试:进行单元测试,评估学生对相似图形的理解和应用能力。
九年级数学上册23.2 相似图形课件 (共24张PPT)
且沿着直线 l 剪开后得到的矩形 EFCD 与原
矩形 ABCD 相似,试求 AD 的长;
AD AB 解: . 1 矩形EFCD∽矩形CBAD, CD CF 设AD 2CF 2 x , 又 CD AB 2. 2x 2 .解得:x 2, AD 2 2. 2 x
F l E
D
DC 2 4 ED 5 1, B AD 5 1 AE AD ED 2. AE 2 5 1 ED,
C
依据对称性考虑,必定存在当AE 5 1时, 使矩形EFBA与矩形ABCD相似的情形. 综上所述:当AE 5 1或2时,在剪开所 得到的小矩形纸片中必存在与原矩形相似. 这两种情形中,E点刚好是边AD的两个黄金 分割点.
解: 四边形ABCD与四边形A BC D相似, x 18 , 从而可得:x 27. 18 12 四边形ABCD与四边形A BC D相似, C C 83 , 360 77 116 83 84 .
讨论
两个三角形一定是相似图形吗? 不一定 两个等腰三角形呢? 不一定
两个等边三角形呢?
一定
思维变式
两个长方形相似吗?两个正方形呢? 两个长方形不一定相似. 两个正方形一定相似.
小结
相似多边形的判定方法:对于两个边 数相同的多边形,如果它们的对应边成比 例并且对应角也分别相等,那么这两个多 边形相似.
例2.矩形 ABCD 纸片的边 AB长为 2cm,
动直线 l 分别交 AD、BC 于E、F 两点,
(2)若使 AD ( 5 1)cm ,试探究,在 AD 边上是否存在点 E ,使剪刀沿着直线 l 剪开 后,所得到的小矩形纸片中存在与原矩形 ABCD 相似的情况.若存在,请求出 AE 的值,并判 断 E 点在边 AD 上位置的特殊性;若不存在, 请说明理由.
九年级数学上册 第23章 图形的相似 23.3 相似三角形 23.3.4 相似三角形的应用导学案
——————————新学期新成绩新目标新方向——————————23.3.5 相似三角形的应用【学习目标】能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题.【学习重难点】1、相似三角形的实际运用2、测量无法到达物体的宽度和高度【学习过程】一、课前准备测量旗杆的高度操作:在旗杆影子的顶部立一根标杆,借助太阳光线构造相似三角形,旗杆AB的影长=米,求AB:=米,其影长DE b=米,标杆高FD mBD a分析:∵太阳光线是平行的∴∠____________=∠____________又∵∠____________=∠____________=90°∴△____________∽△____________∴__________________,即AB=__________二、学习新知自主学习:探究一:据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两个相似三角形来测量金字塔的高度.如图,如果木杆EF长2 m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO.探究二:.如图,我们想要测量河两岸相对应两点A、B之间的距离(即河宽) ,你有什么方法?方案一:先从B点出发与AB成90°角方向走50m到O处立一标杆,然后方向不变,继续向前走10m到C处,在C处转90°,沿CD方向再走17m到达D处,使得A、O、D在同一条直线上.那么A、B之间的距离是多少?实例分析:例6 为了测量金字塔的高度OB,先竖一根已知高度的竹竿DE,比较竹竿的影长CD 与金字塔的影长AB,却可近似地算出金字塔的高度OB,如果DE=1米,CD=2米,AB =274米,求金字塔的高度OB。
M B例7 、如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选定点B和点C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE 的交点D,些时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB。
人教版九年级数学相似教案资料
相似形图形的相似教学目标通过一些相似的实例,让生观察相似图形的特点,感受形状相同的意义,理解相似图形的概念.能通过观察识别出相似的图形.能根据直觉在格点图中画出已知图形的相似图形.在获得知识的过程中培养学习的自信心.教学重点引导学生通过观察识别相似的图形,培养学生的观察分析及归纳能力.教学难点理解相似图形的概念.教学过程一、观察课本第42页图24.1.1、图24.1.2,每组图形中的两图之间有什么关系?二、归纳:每组图形中的两个图形形状相同,大小不同.具有相同形状的图形叫相似图形.师可结合实例说明:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关.⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况.⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.三、你还见过哪些相似的图形?请举出一些例子与同学们交流.四、观察课本第43页图24.1.3中的三组图形,它们是否相似形?为什么?五、想一想:放大镜下的图形与原来的图形相似吗?放大镜下的角与原来图形中的角是什么关系?可让学生动手实验,然后讨论得出结论.六、观察课本第43页图24.1.4中的三组图形,它们是否相似形?为什么?让学生通过比较图24.1.3与图24.1.4,体会相似图形与不相似图形的“形状”特点.七、课本第43页“试一试”.让生各自独立完成作图,再展示评析.八、巩固:⒈课本第43页练习.⒉课本第44页习题24.1.对于第2题,学生的判断是对相似图形的一种直观认识,最好让学生充分交流彼此的看法.九、小结:你通过这节课的学习,有哪些收获?十、作业:略.相似三角形教学目标:使学生掌握相似三角形的判定与性质教学重点:相似三角形的判定与性质 教学过程: 一 知识要点:1、相似形、成比例线段、黄金分割相似形:形状相同、大小不一定相同的图形。
九年级数学上册23.2 相似图形说课稿
编号:54158543442893744576892562学校:观音市阳沅镇普贤学校*教师:黑白双雄*班级:白云伍班*课题:相似多边形各位老师:大家好!我说课的内容是:北师版九年义务教育课程九年级上册第四章《相似多边形》。
我将从教学设计、教学过程,两个方面予以说明:一、教学设计:(一)教材分析在义务教育阶段,让学生接触相对完整的图形变换,是义务教育的性质所决定的。
本章是继“图形全等、轴对称、平移、旋转”之后集中研究图形形状的内容,不仅是对图形全等内容的进一步深化和发展,而且是对图形研究方法的综合运用。
本节课是本章的第一课时,力图通过观察现实生活中的各种相似图形,归纳抽象出数学概念,呈现出有关内容,体现了数学与现实之间的必然联系。
教材从生活中形状相同的图形出发,引出相似图形的概念,进而研究相似多边形的特征并进行运用,另外,学习了本节内容,可以使学生更好地认识、描述物体的形状,同时也为下一步《相似三角形》以及高中段“图形与空间”的学习起着铺垫作用。
(二)学习目标根据新课标的要求及九年级学生的认知水平,我确定了本节课的学习目标:1、能从生活中形状相同的图形的实例中认识图形的相似,记住相似图形概念。
2、记住成比例线段的概念,会确定线段的比。
3、记住相似多边形的性质,会辨别两个多边形是否相似。
(三)学习重点和难点新课标强调要重视知识的发生过程,培养学生的探究习惯,所以相似图形的概念和性质的探索是本节的学习重点。
九年级学生虽已具备了一定的逻辑思维能力,但学生的知识结构还不完善,数学思想方法的掌握和运用还不熟练,所以类比全等图形性质的运用,相似多边形性质的初步应用是本节课的教学难点。
二、教学过程:根据课标要求,结合学生实际,学生的学习过程分五个环节:复习旧知,引入新课;尝试学习,探索新知;巩固运用,拓展提高;回顾小结,整体感知;当堂测试,自我评价。
(一)复习旧知,引入新课新课标指出,数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,根据九年级课程内容设置,为了让学生能从代数到几何进行快速的思维转换,首先我特意展示了全等图形,让学生回顾全等图形的相关内容,明确图形之间的的关系。
人教版九年级数学上册 第23章 图形的相似 23.2 相似图形教案 (全国通用版)人教版
教版
课题名称相似图形
三维目标 1.理解相似图形和相似多边形的概念,了解相似形是两个图形之间的关系。
2.由于需要的不同,要制定出大小不一定相同的图形,培养学生的观察
能力。
难点目标
重点目标理解相似图形和相似多
边形的概念,了解相似形
是两个图形之间的关系
导入示标理解相似图形和相似多边形的概念,了解相似形是两个图形之间的关系目标三导学做思一:
挂上大小不一样的中国地图两张及两张大小不同的长城图片,供同学观
察,提出问题:这几组图片有什么相同的地方呢?
学做思二:
在日常生活中我们会看到许多这样形状相同,而大小不一定相同的图
形。
在数学上,我们把具有相同形状的图形称为相似形。
同学们你还能
说出哪些相似的图形吗?
想一想:放大镜下的图形和原来的图形相似吗?你看过哈哈镜吗?哈哈镜
中的形像与你本人相似吗?
学做思三:
如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形相似。
1.在下面的两组图形中,各有两个相似三角形,试确定x,y,m,n的
值.
教版
【感
谢您的阅览
,
下载后可自由复制
2.如图,△ADE∽△ABC,AD =3cm ,AE =2cm ,CE =4cm ,BC =9cm ,求:
(1)BD 、DE 的长;
(2)求△ADE 与△ABC 的周长比.
E D
C
B
A
达标检测
反思总结
1.知识建构
2.能力提高
3.课堂体验
课后练习
教版或修改编辑,敬请您的关注】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题名称相似图形
三维目标 1.理解相似图形和相似多边形的概念,了解相似形是两个图形之间的关系。
2.由于需要的不同,要制定出大小不一定相同的图形,培养学生的观察
能力。
难点目标
重点目标理解相似图形和相似多
边形的概念,了解相似形
是两个图形之间的关系
导入示标理解相似图形和相似多边形的概念,了解相似形是两个图形之间的关系目标三导学做思一:
挂上大小不一样的中国地图两张及两张大小不同的长城图片,供同学观
察,提出问题:这几组图片有什么相同的地方呢?
学做思二:
在日常生活中我们会看到许多这样形状相同,而大小不一定相同的图
形。
在数学上,我们把具有相同形状的图形称为相似形。
同学们你还能
说出哪些相似的图形吗?
想一想:放大镜下的图形和原来的图形相似吗?你看过哈哈镜吗?哈哈镜
中的形像与你本人相似吗?
学做思三:
如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形相似。
1.在下面的两组图形中,各有两个相似三角形,试确定x,y,m,n的
值.
【感
谢您的阅览
,
下载后可自由复制
或修改编辑,敬请您的关注】
2.如图,△ADE∽△ABC,AD =3cm ,AE =2cm ,CE =4cm ,BC =9cm ,求:
(1)BD 、DE 的长;
(2)求△ADE 与△ABC 的周长比.
E D
C
B
A
达标检测
反思总结
1.知识建构
2.能力提高
3.课堂体验
课后练习。