湖北省教学合作2015届高三上学期10月联考数学(理)试题Word版
湖北省部分重点中学2015届高三上学期十月联考数学(理)试卷
湖北省部分重点中学2015届高三上学期十月联考数学(理)试卷考试时间:2014年10月16日上午8:00-10:00 试卷满分:150分一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.若集合{}1,A x x x R =≤∈,{}2,B y y x x R ==∈,则AB =( )A. {}|11x x -≤≤B. {}|01x x ≤≤C. {}|0x x ≥D. ∅A .第四象限B .第三象限C .第二象限D .第一象限3.已知二项式2(2nx +(*n N ∈)展开式中,前三项的二项式系数和是56,则展开式中的常数项为( ) A .180 B .360 C .1152 D .23044.三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形,其正视图(如图所示)的面积为8,则侧视图的面积为( )A. 8B. 4C.5.两个正数,a b 的等差中项是92,一个等比中项是且a b >,则抛物线2b x y a=-的焦点坐标是( )A .2(0,)5- B .2(,0)5-C .1(0,)5-D .1(,0)5-6.函数25()2sin log 8f x x x π⎛⎫=-⎪⎝⎭的零点个数为( ) A.1 B. 2 C.3 D.4 7.十一黄金周期间,5位同学各自随机从“三峡明珠,山水宜昌”、“千古帝乡,智慧襄阳”、“养生山水,长寿钟祥”三个城市中选择一个旅游,则三个城市都有人选的概率是( )A.5081B. 2081C. 81125D. 271258.已知直线0x y k --=(0)k >与圆224x y +=交于不同的两点A 、B ,O 是坐标原点,且有正视图||3||OA OB AB +≥,那么k 的取值范围是( )A. )+∞B.C. )+∞ D.9.对于函数3()3f x x x a =++,在曲线221xy x =+上存在点(,)s t ,使得(())f f t t =,则a 的取值范围是( )A.(3,0)-B.[]3,0-C.(3,3)-D.[]3,3-10.记{}max ,a b 为两数,a b 的最大值,当正数,x y 变化时,2212max ,,4t x y x y ⎧⎫=+⎨⎬⎩⎭的最小值为( ) A.1 B.2 C.3 D.4二、填空题: 本大题共5小题,每小题5分,共25分.请将答案填在答题卡相应题号后的横线上.答错位置、书写不清、模棱两可均不得分.11.执行如右图所示的程序框图,若输出的b 的值为127,则图中判断框内①处应填的整数为 .12.ABC ∆中sin :sin :sin 6A B C =,则ABC ∆最大角与最小角的和是____.13.已知曲线1()()n f x xn N +*=∈与直线1x =交于点P ,若设曲线()y f x =在点P 处的切线与x 轴交点的横坐标为n x ,则201512015220152014log log log x x x +++的值为_______.14.在平面直角坐标系xOy 中,若动点(,)P a b 到两直线1:l y x =和2:2l y x =-+,则22a b +的最大值为__________.15.已知正方体1111ABCD A BC D -的棱长为1,在正方体的表面上与点A 曲线,则该曲线的长度为___________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分12分)设函数2()cos cos f x x x x a =++. (I) 求函数()f x 的最小正周期及单调递减区间;(II) 当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最大值与最小值的和为32,求()f x 的解析式;(III) 将满足(Ⅱ)的函数()f x 的图像向右平移12π个单位,纵坐标不变,横坐标伸长为原来的2倍,再向下平移12个单位,得到函数()g x ,求()g x 图像与x 轴的正半轴、直线x π=所围成图形的面积.17.(本题满分12分)已知公比不为1的等比数列{}n a 的首项112a =,前n 项和为n S ,且445566,,a S a S a S +++成等差数列. (I)求等比数列{}n a 的通项公式;(II)对*n N ∈,在n a 与1n a +之间插入3n 个数,使这32n +个数成等差数列,记插入的这3n个数的和为n b ,求数列{}n b 的前n 项和n T .18.(本题满分12分)低碳生活,从“衣食住行”开始.在国内一些网站中出现了“碳足迹”的应用,人们可以由此计算出自己每天的碳排放量,如家居用电的二氧化碳排放量(千克)=耗电度数0.785⨯,家用天然气的二氧化碳排放量(千克)=天然气使用立方数0.19⨯等.某校开展“节能减排,保护环境,从我做起!”的活动,该校高一、六班同学利用假期在东城、西城两个小区进行了逐户的关于“生活习惯是否符(I 的概率;(II )该班同学在东城小区经过大力宣传节能减排的重要意义,每周“非低碳家庭”中有20%的家庭能加入到“低碳家庭”的行列中.宣传两周..后随机地从东城小区中任选5个家庭,记ξ表示5个家庭中“低碳家庭”的个数,求E ξ和D ξ.19.(本题满分12分)如图,已知长方形ABCD 中,1,2==AD AB ,M 为DC 的中点. 将ADM ∆ 沿AM 折起,使得平面ADM ⊥平面ABCM . (I )求证:BM AD ⊥ ;(II )若点E 是线段DB 上的一动点,问点E 在何位置时,二面角D AM E --的余弦值为20.(本题满分13分)如图,椭圆22221x y a b+=(0)a b >>的左焦点为F ,过点F 的直线交椭圆于,A B 两点. AF 的最大值是M ,BF 的最小值是m ,满足234M m a ⋅=.(I) 求该椭圆的离心率;(II) 设线段AB 的中点为G ,AB 的垂直平分线与x 轴和y 轴分别交于,D E 两点,O 是坐标原点. 记GFD ∆的面积为1S ,OED ∆的面积为2S ,求1222122S S S S +的取值范围.若对任意正整数p ,.试判断)(x S n 是否是湖北省部分重点中学2014-2015学年度第一学期十月联考A高三数学(理科)参考答案一、选择题:本大题共10小题,每小题5分,共50分. 1.B;2.D;3.A;4.C;5.C;6.C;7.A;8.B;9.D;10.B二、填空题: 本大题共5小题,每小题5分,共25分.11.8; 12.23π; 13. 1-; 14.8; 15. 6三、解答题:本大题共6小题,共75分.16. 解:(Ⅰ)cos 211()2sin(2)2262x f x x a x a π+=++=+++,…………2分 ∴()f x 的最小正周期为π……………………………………………………………………3分由3222262k x k πππππ+≤+≤+,得263k x k ππππ+≤≤+()k Z ∈ 故函数()f x 的单调递减区间是2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦……………………………4分注:上面函数()f x 的单调递减区间写成开区间或半开半闭区间也正确.. (II) ,63x ππ⎡⎤∈-⎢⎥⎣⎦,512,,sin(2),166662x x ππππ⎡⎤⎡⎤∴+∈-∴+∈-⎢⎥⎢⎥⎣⎦⎣⎦∴当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最大值与最小值的和为322a +……………………6分由题意,33222a +=,0a ∴=………………………………………………………………7分故1()sin(2)62f x x π=++……………………………………………………………………8分(III) 函数1()sin(2)62f x x π=++的图像向右平移12π个单位,纵坐标不变,横坐标伸长为原来的2倍,再向下平移12个单位,得到函数()sin g x x =……………………………10分∴()g x 图像与x 轴的正半轴、直线x π=所围成图形的面积为22002sin 2cos 2xdx x ππ=-=⎰…………………………………………………………………………………………………12分 17.解:(I )因为445566,,a S a S a S +++成等差数列,所以55446655a S a S a S a S +--=+--,…………………………………………………2分 即654230a a a -+=,所以22210q q -+=,因为1q ≠,所以12q =,………………4分 所以等比数列{}n a 的通项公式为12n n a =…………………………………………………6分 (II )1333()242n nn n n a a b ++=⋅=,……………………………………………… 9分133()39322[()1]44212n n n T +-==--…………………………………………………… 12分18.解(I )设事件“4个家庭中恰好有两个家庭是‘低碳家庭’”为A , ………1分则有以下三种情况:“低碳家庭”均来自东城小区,“低碳家庭”分别来自东城、西城两个小区,“低碳家庭”均来自西城小区.6分 的比例如下:………8分由题意,两周后东城小区5个家庭中的“低碳家庭”的个数ξ服从二项分布,即17~(5,)B ξ………………………………………………………………………10分 11分12分 平面ABCM ,1,2==AD AB ,M 为DC 的中点,AD DM ∴=,取AM 的中点O ,连结OD ,则DO ⊥平面ABCM ,取AB 的中点N ,连结ON ,则ON AM⊥,以O 为原点,,,OA ON OD的正方向分别为x 轴、y 轴、z 轴的正方向建立如图空间直角坐标系…………………………………………………………2分((((0,0,)2222A B M D --,则22(,0,),(0,2,0)22AD BM =-=,所以0,AD BM AD BM =∴⊥……………6分 (Ⅱ)设DE DB λ=,的一个法向量=010n (,,)2(ME MD DB λ=+=,(AM =-的一个法向量为(,,m x y =⎩1,1y z ==-所以(0,1,m =5,5m n m n m n⋅==⋅20.解:(I) 设(,0)(0)F c c ->,则根据椭圆性质得,,M a c m a c =+=-而234M m a ⋅=,所以有22234a c a -=,即224a c =,2a c =,因此椭圆的离心率为12c e a ==…………………………4分.(II) 由(I)可知2a c =,b =,椭圆的方程为2222143x y c c+=.根据条件直线AB 的斜率一定存在且不为零,设直线AB 的方程为()y k x c =+,并设1122(,),(,)A x y B x y 则由2222()143y k x c x y c c=+⎧⎪⎨+=⎪⎩消去y 并整理得 222222(43)84120k x ck xk c c +++-=…………………………………………5分从而有21212122286,(2)4343ck ckx x y y k x x c k k +=-+=++=++,………………6分所以22243(,)4343ck ck G k k -++.因为DG AB ⊥,所以2223431443D ckk k ckx k +⋅=---+,2243D ck x k =-+.由Rt FGD ∆与Rt EOD ∆相似,所以2222222212222243()()943434399()43ck ck ck S GD k k k ck S OD k k -+++++===+>-+. …………………10分 令12S t S =,则9t >,从而1222122229114199S S S S t t =<=+++,即1222122S S S S +的取值范围是9(0,)41.………………………………………………………………………………………13分21.解:(I )函数ln ()x f x x =的定义域为(0,)+∞,21ln '()xf x x -=…………………1分 设切点为00(,)x y ,则切线的斜率为021ln x x -,所以切线方程为00021ln ()x y y x x x --=-……………………………………………………………………2分,又因为原点在切线上,所以000201ln x y x x -=,即000200ln 1ln x x x x x -=,解得0x 3分故所求的直线方程为2xy e=………………………………………………………………4分 (II )令()0g x =,得()l n m f xx =,令()()l n x f x x ϕ=,则222l n l n '()x xx x ϕ-=,由'()0x ϕ=,得1x =或2x e =………………………………………………………………5分又因为在区间1(,1)e上'()0x ϕ<,在区间2(1,)e 上'()0x ϕ>,在区间2(,)e +∞上'()0x ϕ<……………………………………………………………………………………6分所以函数()x ϕ在区间1(,1)e上递减,在区间2(1,)e 上递增,在区间2(,)e +∞上递减且2214(1)0,()()e e ee ϕϕϕ==>=…………………………………………………………7分 故当0m <或m e >时,函数()g x 没有零点;当0m =或24m e e<≤时,函数()g x 有一个零点;当240m e<≤时,函数()g x 有两个零点.………………………………………9分(III )由(II )知当1x >时,22ln 4x x e≤恒成立,即224ln x x e ≤对任意1x >恒成立,又*,n p N ∈,所以当1x >时,[]224ln ()()n p x n p x e+≤+成立…………………………10分又当2,x e e ⎡⎤∈⎣⎦时,24()4()n p x n p e+≤+故当2,x e e ⎡⎤∈⎣⎦时,[]2ln ()4()n p x n p +≤+…11分 而对[]23ln (1)()()(1)n p n n x S x S x n ++-=++[]23ln (2)(2)n x n ++++[]23ln ()()n p x n p ++ 34(1)(1)n n +≤+34(2)(2)n n ++++34()()n p n p +++3331114(1)(2)()n n n p ⎡⎤=++⎢⎥+++⎣⎦11111444()(1)(1)(2)(1)()n n n n n p n p n n p n ⎡⎤<+++=-<⎢⎥++++-++⎣⎦…………13分综上,()n S x 在区间2,e e ⎡⎤⎣⎦上是“高效”的.……………………………………………14分。
湖北省部分重点中学2015届高三上学期起点考试数学理试
湖北省部分重点中学2014-2015学年度上学期高三起点考试数 学 试 卷(理 科)【试卷综评】全面考查了考试说明中要求的内容,明确了中学数学的教学方向和考生的学习方向,适度综合考查,提高试题的区分度.通过考查知识的交汇点,对考生的数学能力提出了较高的要求.突出考查数学主干知识 ,侧重于中学数学学科的基础知识和基本技能的考查。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1 . i 为虚数单位,512iz i=+, 则z 的共轭复数为 ( ) A. 2-i B. 2+i C. -2-i D. -2+i2i =+,故z 的共轭复数为2i -,故选A.【思路点拨】先把原式化简,再利用共轭复数的概念即可求得结果.2.若二项式82a x x骣琪+琪桫的展开式中的常数项为70,则实数a 可以为( ) DA .2B .12C .【知识点】二项式定理;二项式系数的性质.【答案解析】B 解析 :解:二项式定理的通项公式可得:()888218822rrr r r r r r a T C x C x a x ---+骣琪==琪桫,令820,4r r -==,所以常数项为4448270C a =,解得1a =. (第3题图)【知识点】程序框图,等差数列的前n 项和公式.【答案解析】C 解析 :解:框图首先给循环变量n 赋值1,给累加变量p 赋值1, 执行n=1+1=2,p=1+(2×2-1)=1+3=4; 判断4>20不成立,执行n=2+1=3,p=1+3+(2×3-1)=1+3+5=9; 判断9>20不成立,执行n=3+1=4,p=1+3+5+(2×4-1)=1+3+5+7=16; …由上可知,程序运行的是求首项为1,公差为2的等差数列的前n 项和,由()2121202n n p n +-==>,且n ∈N *,得n=5.故选C .【思路点拨】框图首先给循环变量n 赋值1,给累加变量p 赋值1,然后执行运算n=n+1,p=p+2n-1,然后判断p >20是否成立,不成立循环执行n=n+1,p=p+2n-1,成立时算法结束,输出n 的值.且由框图可知,程序执行的是求等差数列的前n 项和问题.当前n 项和大于20时,输出n 的值.4.直线:1l y k x =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“△ABO 的面积为12”的( ) .A 充分而不必要条件 .B 必要而不充分条件 .C 充分必要条件 .D 既不充分又不必要条件【知识点】充分、必要条件的判断.【答案解析】A 解析 :解:若1k =,则直线与圆交于()()0,1,1,0两点,所以111122ABO S =创= ,充分性成立;若△ABO 的面积为12,易知1k =?,必要性不成立,故选A.【思路点拨】看两命题是否能够互相推出,然后根据必要条件、充分条件和充要条件的定义进行判断.5. 已知函数 y = 2sin x 的定义域为[a,b] ,值域为[-2,1] ,则 b-a 的值不可能是( ) A.56π B.π C . 76π D. 2π 【知识点】正弦函数的图象;利用图象求函数的值域. 【答案解析】D 解析 :解:函数2sin y x =在R 上有22y-#函数的周期T =2p ,值域[]2,1-含最小值不含最大值,故定义域[],a b 小于一个周期 b a 2p -<,故选D【思路点拨】结合三角函数R 上的值域,当定义域为[],a b ,值域为[]2,1-,可知[],a b 小于一个周期,从而可得结果.6.若,x y满足2020x ykx yy+-≥⎧⎪-+≥⎨⎪≥⎩且z y x=-的最小值为-2,则k的值为()A. 1B.-1C. 2D. --2 【知识点】简单线性规划.【答案解析】B解析:解:由约束条件2020x ykxyy+-≥⎧⎪-+≥⎨⎪≥⎩作出可行域如图,由20kx y-+=,得2xk=-,∴B2,0k骣琪-琪桫.由z y x=-得y x z=+.由图可知,当直线y x z=+过B2,0k骣琪-琪桫时直线在y轴上的截距最小,即z最小.7.在空间直角坐标系Oxyz中,已知()2,0,0A,()2,2,0B,()0,2,0C,(1D,若1S,2S,3S分别表示三棱锥D A B C-在xO y,yO z,zOx坐标平面上的正投影图形的面积,则()A123S S S== B12S S=且31S S≠C13S S=且32S S≠ D23SS=且13S S≠【知识点】空间直角坐标系.【答案解析】D解析:解:设()2,0,0A,()2,2,0B,()0,2,0C,(1D,则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),8.已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C,则2C 的渐近线方程为( )A . 0x ?B.0y ±= C.20x y ±= D.20x y ±===0?选A.【思路点拨】由已知椭圆、双曲线的几何性质可得双曲线的渐近线方程.9.已知向量 ,a b 满足1,a = a 与b 的夹角为3p,若对一切实数x , 2xa b a b +?恒成立,则b的取值范围是( )。
湖北省教学合作高三数学上学期10月联考试题 理(扫描版)
湖北省教学合作2015届高三数学上学期10月联考试题理(扫描版)教学合作2015届高三年级十月联考试题数学(理科)答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.解析:D 依题意;化简集合{|13}A x x x =≤-≥或,{|22}B x x =-≤<, 利用集合的运算可得:{|21}AB x x =-≤≤-.故选D.2.解析:C 命题(1)(2)是真命题,(3)是假命题,故选C3.解析:A ①sin y x x =是偶函数,其图象关于y 轴对称;②cos y x x =是奇函数,其图象关于原点对称;③|cos |y x x =是奇函数,其图象关于原点对称。
且当0x >时,0y ≥;④2x y x =⋅为非奇非偶函数,且当0x >时,0y >;当0x <时,0y <;故选A.4.解析:B 由指数函数和对数函数的性质可知01,0,01a b c <<<<<,而1211()52a ==<,155511log log 3log 32c ==>=,所以有c a b >>,故选B.5.解析:D化简函数得2cos 22sin(2)6y x x x π=-=-,所以2()2sin(2)3g x x π=-易求最大值是2,周期是π,由22()32x k k Z πππ-=+∈,得对称轴方程是7()122k x k Z ππ=+∈ 由27222()2321212k x k k x k k Z πππππππππ-+≤-≤+⇔+≤≤+∈,故选D. 6.解析:A 由于函数()log (01)a f x x a =<<是可导函数且为单调递减函数,,A C 分别表示函数在点,1a a +处切线的斜率,因为(1)()(1)f a f a B a a +-=+-,(2)(1)(2)(1)f a f a D a a +-+=+-+,故,B D 分别表示函数图象上两点(,()),(1,(1))a f a a f a ++和两点(1,(1)),(2,(2))a f a a f a ++++连线的斜率,由函数图象可知一定有A B C D <<<,四个数中最大的是D ,故选D .7.解析:C 对于①,1101111()2||2()22f x dx x dx x dx xdx ---==-+=⎰⎰⎰⎰,或者利用积分的几何意义(面积)直接可求得11()2f x dx -=⎰,而11121111()(+1)()|22g x dx x dx x x ---==+=⎰⎰,所以①是一组“等积分”函数;对于②,1111()sin 0f x dx xdx --==⎰⎰,而1111()cos 2sin10g x dx xdx --==≠⎰⎰,所以②不是一组“等积分”函数;对于③,由于函数()f x 的图象是以原点为圆心,1为半径的半圆,故111()2f x dx π--==⎰⎰,而1112311131()|442g x dx x dx x πππ---===⎰⎰,所以③是一组“等积分”函数;对于④,由于函数(),()f x g x 分别是定义在[1,1]-上的奇函数且积分值存在,利用奇函数的图象关于原点对称和定积分的几何意义,可以求得函数的定积分1111()()0f x dx g x dx --==⎰⎰,所以④是一组“等积分”函数,故选C8.解析:B 由柯西不等式得, 9))(432()232(2222=++++≤++c b a c b a ,即3232≤++c b a ,2c +的最大值为3,当且仅当22221c a b c ==++=⎩时等号成立;所以21||b c x x m +≤-++对任意实数,,,a b c x 恒成立等价于1||3x x m -++≥对任意实数x恒成立,又因为1|||(1)()||1|x x m x x m m -++≥--+=+对任意x 恒成立,因此有即13m +≥,解得24m m ≥≤-或,故选B.9.解析: B 依题意:画出不等式组0040x y y x ≤⎧⎪≥⎨⎪--≤⎩所表示的平面区域(如右图所示)可知其围成的区域是等腰直角三角形面积为8,由直线2y kx =+恒过点(0,2)B ,且原点的坐标恒满足2y kx -≤,当0k =时,2y ≤,此时平面区域Ω的面积为6,由于67<,由此可得0k <.由240y kx y x -=⎧⎨--=⎩可得242(,)11k D k k ---,依题意应有122||121k ⨯⨯=-,因此1k =-(3k =,舍去)故有(1,3)D -,设(,)N x y ,故由2z OM ON x y =⋅=-,可化为1122y x z =-,112<所以当直线1122y x z =-过点D 时,截距12z -最大,即z 取得最小值7-,故选B 。
湖北省百所重点中学2015届高三十月联合考试数学(理)试题Word版
湖北省百所重点中学2015届高三十月联合考试试题理科试题考生注意:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试时间120分钟2、请将各题答案填在卷后面的答案卡上.3、本试卷主要考试内容:集合与常用逻辑用语、函数与导数(60%);三角函数与平面向量(40%)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合2{|20}{|1}1xM x x x N x x =-+>=<-,则M N 等于A .()0,2B .()0,1C .()1,2D .()1,1- 2、2014cos()3π的值为A .12 B .12- D . 3、已知a 为常数,则使得11aa dx x>⎰成立的一个充分而不必要条件是( ) A .0a > B .0a < C .a e > D .a e <4、已知α为第三象限角,且2sin cos 2,sin 2m m ααα+==,则m 的值为A ..13- D .3-5、在ABC ∆中,角角,,A B C 的对边分别为,,a b c ,若22a b -且sin C B =, 则A 等于 A .6π B .4π C .3π D .23π6、已知定义在R 上的奇函数()f x 满足3()()2f x f x -=+,且当302x <≤时,()2log (31)f x x =+,则()2015f 等于A .1-B .2-C .1D .2 7、给出下列命题,其中错误的是A .在ABC ∆中,若AB >,则sin sin A B >B .在锐角ABC ∆中, sin sin A B > C .把函数sin 2y x =的图象沿x 轴向左平移4π个单位,可以得到函数cos 2y x =的图象D .函数sin (0)y x x ωωω=≠最小正周期为π的充要条件是2ω= 8、已知幂函数()1()n f x x n N -=∈的图象如图所示,则()y f x =在1x =的切线与两坐标轴围成的面积为 A .43 B .74 C .94D .4 9、已知,a b R ∈,函数()tan f x x =在4x π=-处于直线2y ax b π=++相切,设()x g x e =2bx c ++,若在区间[]1,2上,不等式()22m g x m ≤≤-恒成立,则实数mA .有最小值e -B .有最小值eC .有最大值eD .有最大值1e +10、对于函数()f x ,若,,a b c R ∀∈,()()(),,f a f b f c 为某一三角形的三边长,则称()f x 为“可构造三角形函数”,已知函数()1x x e t f x e +=+是“可构造三角形函数”,则实数t 的取值范围是A .[)0,+∞B .[]0,1C .[]1,2D .1[,2]2第Ⅱ卷二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答案卡中的横线上 11、已知,3sin 22cos 2παπαα<<=,则cos()απ-=12、化简2log2lg5lg2lg2+-的结果为13、已知:p 关于x 的方程210x mx ++=有两个不等的负实数根;:q 关于x 的方程244(2)10x m x +-+=的两个实数根,分别在区间()0,2与()2,3内(1)若p ⌝是真命题,则实数m 的取值范围为 (2)若()()p q ⌝∧⌝是真命题,则实数m 的取值范围为14、在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2c o s 2B a b =+,若ABC ∆的面积为2S =,则ab 的最小值为15、已知函数()2111[0,]24221,122x x f x x x x ⎧-+∈⎪⎪=⎨⎛⎤⎪∈ ⎥⎪+⎝⎦⎩,()3sin()22(0)32g x a x a a ππ=+-+>,给出下列结论: ①函数()f x 的值域为2[0,]3; ②函数()g x 在[]0,1上是增函数;③对任意0a >,方程()()f x g x =在[]0,1内恒有解;④若存在[]12,0,1x x ∈,使得12()()f x g x =,则实数a 的取值范围是44[,]95. 其中所有正确的结论的序号是三、解答题:本大题共5小题,满分65分,解答应写出文字说明、证明过程或演算步骤 16、(本小题满分11分)已知函数()sin()(,0,0,||)2f x A x x R A πωϕωϕ=+∈>><的部分图象如图所示.(1)试确定函数()f x 的解析式; (2)若1()23a f π=,求2cos()3πα-的值.17、(本小题满分12分)2014世界园艺博览会在青岛举行,某展销商在此期间销售一种商品,根据市场调查,当每套商品售价为x 元时,销售量可达到150.1x -万套,供货商把该产品的供货价格分为来那个部分,其中固定价格为每套30元,浮动价格与销量(单位:万套)成反比,比例系数为k ,假设不计其它成本,即每套产品销售利润=售价-供货价格(1)若售价为50元时,展销商的总利润为180元,求售价100元时的销售总利润; (2)若10k =,求销售这套商品总利润的函数()f x ,并求()f x 的最大值. 18、(本小题满分12分)如图,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且(,)62ππα∈,将角α的终边按逆时针方向旋转3π,交单位圆于点B ,记1122(,),(,)A x y B x y .(1)若113x =,求2x ;(2)分别过,A B 作x 轴的垂线,垂足一次为C 、D ,记AOC ∆的面积为1S ,BOD ∆的面积为2S ,若122S S =,求角α的值.19、(本小题满分12分) 已知函数()2(0)2mx nf x m x +=≠+是定义在R 上的奇函数. (1)若0m >,求()f x 在(,)m m -上递增的充要条件;(2)若()21sin cos cos 2f x θθθ≤+对任意的实数θ和正实数x 恒成立,求实数m 的取值 范围.20、(本小题满分14分) 已知()(ln 1)xf x e x =+(1)求()()y f x f x '=-的单调区间与极值;(2)若0k <,试分析方程()()2f x f x kx k e '=+-+在[)1,+∞上是否有实根,若有实数根,求出k 的取值范围;否则,请说明理由.21、(本小题满分14分) 已知()ln (,1mf x n x m n x =++为常数),在1x =处的切线方程为20x y +-=. (1)求()y f x =的单调区间;(2)若任意实数1[,1]x e ∈,使得对任意的1[,2]2t ∈上恒有()3222f x t t at ≥--+成立,求实数a 的取值范围;(3)求证:对任意正整数n ,有124()(ln1ln 2ln )2231nn n n +++++++≥+.。
湖北省稳派名校联考2015高三(上)10月调研数学(理)试卷
湖北省稳派名校联考2015高三(上)10月调研数学(理)试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)若集合中元素的个数为()“3.(5分)(2012•深圳二模)如图,直线l和圆c,当l从l0开始在平面上绕点O按逆时针方向匀速转动(转动角度不超过90度)时,它扫过的圆内阴影部分的面积S是时间t的函数,这个函数的图象大致是()B D4.(5分)若,则tan2α=()B D5.(5分)函数的值域为()6.(5分)已知函数在区间[0,1]内至少出现2次极值,则ω的最小B D7.(5分)若两个非零向量,满足|+|=|﹣|=2||,则向量+与﹣的夹角为()B D8.(5分)函数f(x)=的零点个数为()9.(5分)(2014•黄山一模)由曲线y=sinx,y=cosx与直线x=0,x=所围成的平面图形(图中的阴影部分)的面积是()D10.(5分)已知x1,x2(x1<x2)是方程4x2﹣4kx﹣1=0(k∈R)的两个不等实根,函数定义域为[x1,x2],g(k)=f(x)max﹣f(x)min,若对任意k∈R,恒只有成立,B D二、填空题(本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置,填错位置,书写不清,模棱两可均不得分11.(5分)计算:4cos70°+tan20°=_________.12.(5分)已知函数f(x)=log2(x2﹣ax+a2)的图象关于x=2对称,则a的值为_________.13.(5分)对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=﹣f(2a ﹣x),则称f(x)为准奇函数,下列函数中是准奇函数的是_________(把所有满足条件的序号都填上)①f(x)=②f(x)=x2③f(x)=tanx④f(x)=cos(x+1)14.(5分)设函数f(θ)=sinθ+cosθ,其中θ的顶点与坐标原点重合,始终与x轴非负半轴重合,终边经过点P(x,y)且0≤θ≤π.(1)若点P的坐标为,则f(θ)的值为_________(2)若点P(x,y)为平面区域Ω:内的一个动点,记f(θ)的最大值为M,最小值m,则log M m=_________.15.(5分)设f′(x)和g′(x)分别是f(x)和g(x)的导函数,若f′(x)g′(x)≤0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性相反.若函数f(x)=x3﹣2ax与g(x)=x2+2bx 在开区间(a,b)上单调性相反(a>0),则b﹣a的最大值为_________.三、解答题(本大题共6小题,共75分,解答应写出文字说、证明过程或演算步骤)16.(11分)设命题p:函数y=log a(x+1)(a>0,a≠1)在x∈(0,+∞)上单调递减;命题q:3x﹣9x<a对一切的x∈R恒成立,如果命题“p且q”为假命题,求实数a的取值范围.17.(12分)在平行四边形ABCD中,A(1,1),=(6,0),M是线段AB的中点,线段CM 与BD交于点P.(1)若=(2,5),求点C的坐标;(2)当||=||时,求点P的轨迹.18.(12分)设二次函数f(x)=ax2+bx+c(a,b,c∈R).(1)若f(x)满足下列条件:①当x∈R时,f(x)的最小值为0,且f(x﹣1)=f(﹣x﹣1)恒成立;②当x∈(0,5)时,x≤f(x)≤2|x﹣1|+1恒成立,求f(x)的解析式;(2)若对任意x1,x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=[f (x1)+f(x2)]成立.19.(12分)已知函数f(x)=Asin(wx+φ)(A>0,w>0,|φ|<)的图象在y轴上的截距为,它在y轴右侧的第一个最大值点和最小值点分别为(x0,2)和(x0+π,﹣2).(1)求函数f(x)的解析式;(2)若△ABC中的三个内角A,B,C所对的边分别为a,b,c,且锐角A满足,又已知a=7,sinB+sinC=,求△ABC的面积.20.(14分)(2011•镇江一模)如图,△ABC为一个等腰三角形形状的空地,腰CA的长为3(百米),底AB的长为4(百米).现决定在空地内筑一条笔直的小路EF(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等、面积分别为S1和S2.(1)若小路一端E为AC的中点,求此时小路的长度;(2)求的最小值.21.(14分)若函数f(x)是定义域D内的某个区间I上的增函数,且F(x)=在I上是减函数,则称y=f(x)是I上的“非完美增函数”,已知f(x)=lnx,g(x)=2x++alnx(a∈R)(1)判断f(x)在(0,1]上是否是“非完美增函数”;(2)若g(x)是[1,+∞)上的“非完美增函数”,求实数a的取值范围.参考答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.A2.C3.D4.C5.B6.B7.C8.C9.D10.A二、填空题(本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置,填错位置,书写不清,模棱两可均不得分11..12.4.13.③④14.(1)2(2)0.15..三、解答题(本大题共6小题,共75分,解答应写出文字说、证明过程或演算步骤)16.解:∵命题p:函数y=log a(x+1)(a>0,a≠1)在x∈(0,+∞)上单调递减,∴x+1∈[1,+∞),0<a<1,∵命题q:3x﹣9x<a对一切的x∈R恒成立,∴f(x)=3x﹣(3x)2,t=3x,y=﹣t2+t,t>0,当t=时,y的最大值,即必须得a>,∵p且q为真时,可得:<a<1,∴命题“p且q”为假命题时,实数a的取值范围为(0,)∪(1,+∞),17.解:(1)∵A(1,1),=(6,0),∴B(7,1),∵M 是AB 的中点,∴M (4,1). ∵=(2,5),∴D (3,6), ∵=(6,0),∴=(6,0),∴C (9,6)(2)设点P 的坐标是(x ,y ),D (a ,b ),则C (a+b ,b ),∵||=||,∴(a ﹣1)2+(b ﹣1)2=36(*)由B ,D ,P 共线,得①, 由C ,P ,M 共线,得②由①②化简得a=3x ﹣14,b=3y ﹣2,代入(*)化简得(x ﹣5)2+(y ﹣1)2=4. 18. 解:(1)∵x ∈(0,5)时,都有x ≤f (x )≤2|x ﹣1|+1恒成立, ∴1≤f (1)≤2|1﹣1|+1=1, ∴f (1)=1; ∵f (﹣1+x )=f (﹣1﹣x ), ∴f (x )=ax 2+bx+c (a ,b ,c ∈R )的对称轴为x=﹣1, ∴﹣=﹣1,b=2a .∵当x ∈R 时,函数的最小值为0,∴a >0,f (x )=ax 2+bx+c (a ,b ,c ∈R )的对称轴为x=﹣1, ∴f (x )min =f (﹣1)=0, ∴a=c .∴f (x )=ax 2+2ax+a .又f (1)=1, ∴a=c=,b=.∴f (x )=x 2+x+=(x+1)2;(2)令g (x )=f (x )﹣[f (x 1)+f (x 2)],则g (x 1)=f (x 1)﹣[f (x 1)+f (x 2)] =[f (x 1)﹣f (x 2)],g (x 2)=f (x 2)﹣[f (x 1)+f (x 2)]=[f (x 2)﹣f (x 1)], ∵f (x 1)≠f (x 2)∴g (x 1)g (x 2)<0,所以g (x )=0在(x 1,x 2)内必有一个实根,即存在x 0∈(x 1,x 2)使f (x 0)=[f (x 1)+f (x 2)]成立. 19.解:(1)由最值点可得A=2,设函数的周期为T ,由三角函数的图象特点可得T==π,解得ω=1,又图象在y 轴上的截距为,∴2sin φ=,∴sin φ=,又|φ|<,∴φ=,∴f (x )=2sin (x+);(2)∵锐角A 满足,∴2sin (A+﹣)=,解得sinA=,∴A=; 由正弦定理可得==,变形可得sinB=,sinC=,∴sinB+sinC=(b+c )=,∴b+c=13,再由余弦定理可得72=b 2+c 2﹣2bc ×,=b 2+c 2﹣bc=(b+c )2﹣3bc=169﹣3bc ,∴bc=40,∴△ABC 的面积S=bcsinA=×40×=10.20.解:(1)因为:AE=CE= AE+4>CE+3 所以F 不在BC 上,AE+AF+EF=CE+CB+FB+EF所以AE=CE AF=CB+BF 4﹣BF=BF+3 BF=cosA==所以EF 2=AE 2+AF 2﹣2AE ×AF ×cosA=所以EF=E 为AC 中点时,此时小路的长度为(2)若E 、F 分别在AC 和AB 上,sinA=设AE=x ,AF=y ,所以S 2=xysinA=S 1=S 三角形ABC ﹣S 2=2﹣S 2因为x+y=3﹣x+4﹣y+3所以x+y=5=﹣1xy ≤当且仅当x=y=时取等号 所以=当且仅当x=y=时取等号 最小值是若E 、F 分别在AC 和BC 上,sinC=设CE=x ,CF=y 同上可得≥当且仅当x=y=取等号若E 、F 分别在AC 和BC 上,最小值是21.解:(1)由于f(x)=lnx,在(0,1]上是增函数,且F(x)==,∵F′(x)=,∴当x∈(0,1]时,F′(x)>0,F(x)为增函数,∴f(x)在(0,1]上不是“非完美增函数”;(2)∵g(x)=2x++alnx,∴g′(x)=2﹣+=,∵g(x)是[1,+∞)上的“非完美增函数”,∴g′(x)≥0在[1,+∞)上恒成立,∴g′(1)≥0,∴a≥0,又G(x)==2++在[1,+∞)上是减函数,∴G′(x)≤0在[1,+∞)恒成立,即﹣+≤0在[1,+∞)恒成立,即ax﹣axlnx﹣4≤0在[1,+∞)恒成立,令p(x)=ax﹣axlnx﹣4,则p′(x)=﹣alnx≤0恒成立(∵a≥0,x≥1),∴p(x)=ax﹣axlnx﹣4在[1,+∞)上单调递减,∴p(x)max=p(1)=a﹣4≤0,解得:a≤4;综上所述0≤a≤4.。
湖北省广水市文华高中2015届高三10月月考数学理试卷Word版含答案
文华高中2014-2015学年第一学期10月份月考高三年级数学试题(理科)★祝考试顺利★一、选择题:本大题共10小题,每小题5分,共50分.1.设集合A={1,2,3,4},B={0,1,2,4,5},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个2.下列有关命题的说法正确的是().A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x-1<0”的否定是“∀x∈R,均有x2+x-1>0”D.命题“若x=y,则sin x=sin y”的逆否命题为真命题3.对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的().A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.若函数f(x)=1-x的定义域为A,函数g(x)=lg(x-1),x∈[2,11]的值域为B,则A∩B等于().A.(-∞,1] B.(-∞,1) C.[0,1] D.[0,1)5.设f(x)是R上的任意函数,则下列叙述正确的是().A.f(x)f(-x)是奇函数 B.f(x)f(-x)是奇函数C.f(x)-f(-x)是偶函数D.f(x)+f(-x)是偶函数6.若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=().A.-1 B.1 C.-2 D.27.设函数f(x)为奇函数,且在(-∞,0)上是减函数,若f(-2)=0,则xf(x)<0的解集为().A.(-2,0)∪(2,+∞) B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞) D.(-2,0)∪(0,2)8.曲线f(x)=x2(x-2)+1在点(1,f(1))处的切线方程为().A .x +2y -1=0B .2x +y -1=0C .x -y +1=0D .x +y -1=09.曲线y =x 与x =1,x =4及x 轴所围成的封闭图形的面积为( ). A.143B.53C.103D.16310.已知直线y =kx 是曲线y =ln x 的切线,则k 的值是 ( ). A .eB .-eC.1eD .-1e二、填空题:本大题共5小题,每小题5分,共25分11.函数()f x =的定义域为_____________________12.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是________.13.设函数f (x )=x 3cos x +1,若f (a )=11,则f (-a )=________.14.某类产品按质量可分10个档次,生产最低档次(第1档次为最低档次,第10档次为最高档次),每件利润为8元,如果产品每提高一个档次,则利润增加2元.用同样的工时,最低档次产品每天可生产60件,提高一个档次将减少3件产品,则生产第________档次的产品,所获利润最大.15.已知f (x+1)的定义域为[]2,3-,则f (x )的定义域是 。
湖北省教学合作2015届高三上学期10月联考数学(文)试题
教学合作2015届高三年级十月联考试题数学(文科)本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试用时120分钟第Ⅰ卷 (选择题,50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1、设全集(2),{|21},{|ln(1)}x x U R A x B x y x -==<==-,则图中阴影部分表示的集合为 A .{}|1x x ≥ B .{}|1x x ≤ C .{}|01x x <≤ D .{}|11x x ≤< 2、已知()3sin f x x x π=-,命题():(0,),02p x f x π∀∈<,则A .p 是真命题,():(0,),02p x f x π⌝∀∈> B .p 是真命题,()0:(0,),02p x f x π⌝∀∈≥C .p 是假命题,():(0,),02p x f x π⌝∀∈≥ D .p 是假命题,()0:(0,),02p x f x π⌝∀∈≥3、定义在R 上的函数()f x 满足()()()(),22f x f x f x f x -=--=+,且(1,0)x ∈-时,()125x f x =+,则()2log 20f =A .1B .45C .1-D .45-4、某产品在某零售摊位的零售价x (单位:元)与每天的销售量y (单位:个)的统计资料如下表所示:由上表可得回归直线方程ˆˆˆybx a =+中的ˆ4b =-,据此模型预测零售价 为15元时,每天的销售量为A .51个B .50个C .49个D .48个5、已知1tan()42πα+=,且02πα-<<,则22sin sin 2cos()4ααπα+=- A. B. C. D6、已知函数()322,()2,03a f x x ax cx g x ax ax c a =++=++≠,则它们的图象可能是7、已知函数()sin()(0)4f x x πωω=+>的最小正周期为π,则该函数的图象是A .关于直线8x π=对称 B .关于点(,0)4π对称 C .关于直线4x π=对称 D .关于点(,0)8π对称8、一只受伤的丹顶鹤在如图所示(直角梯形)的草原上飞过,其中2,1AD DC BC ==,它可能随机在草原上任何一 处(点),若落在扇形沼泽区域ADE 以外丹顶鹤能生还, 则该丹顶鹤生还的概率是( ) A .1215π- B .110π- C .16π- D .3110π- 9、已知函数()y f x =对于任意的(,)22x ππ∈-满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( ) A()()34f ππ< B .(0)2()3f f π<C.(0)()4f π<D()()34f ππ-<-10、已知函数()32(,f x x bx cx d bc d =+++均为常数),当(0,1)x ∈时取极大值,当(1,2)x ∈时取极小值,则221()(3)2b c ++-的取值范围是A. B.)C .37(,25)4D .()5,25第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题5分,共35分,把答案填在题中的横线上11、已知集合22{|201520140},{|log }A x x x B x x m =-+<=<,若A B ⊆,则整数m 的最小值是12、若不等式131x x m ++-≥-恒成立,则实数m 的取值范围是13、某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[]0,100,样本数据分组为:[)[)[)0,20,20,40,40,60[)[]60,820,80,100,则(1)图中的x =(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计 名学生可以申请住宿.14、定义行列式的运算:12122112a a a b a b b b =-,若将函数()sin cos x f x x=的图象向左平移(0)t t >个单位,所得图象对应的函数为偶函数,则t 的最小值为15、设曲线2cos sin x y x -=在点(,2)2π处切线与直线10x ay ++=垂直,则a =16、已知命题:p 函数()22lg(4)f x x x a =-+的定义域为R ;命题:q [1,1]m ∀∈-,不等式253a a --≥p q ∨“为真命题,且“p q ∧”为假命题,则实数a 的取值范围是17、已知函数()2xf x e x a =-+有零点,则a 的取值范围是三、解答题:本大题共5小题,共65分,解答应写成文字说明、证明过程或演算步骤 18、(本小题满分12分)已知函数())cos()2,()66f x x x x R ππ=++++∈. (1)求5()6f π的值; (2)求()f x 子啊区间[,]22ππ-上的最大值和最小值及其相应的x 的值.19、(本小题满分12分)2015年国庆节之前,市教育局为高三学生在紧张学习之余,不忘体能素质的提升,要求该市高三全体学生进行一套满分为120分的体能测试,市教育局为了迅速了解学生体能素质状况,按照全市高三测试学生的先后顺序,每间隔50人就抽取一人的抽样方法抽取40分进行统计分析,将这40人的体能测试成绩分成六段[)[)[)[)[)[)80,85,85,90,90,95,95,100,100,105,105,110后,得到如下图的频率分布直方图.(1)市教育局在采样中,用的是什么抽样方法?并估计这40人体能测试成绩平均数;(2)从体能测试成绩在[)80,90的学生中任抽取2人,求抽出的2人体能测试成绩在[)85,90概率. 参考数据:82.50.0187.50.0292.50.0497.50.06102.50.05107.50.0219.4⨯+⨯+⨯+⨯+⨯+⨯=20、(本小题满分13分)已知函数()()322,3m x x h x ax ==-(1)若函数()()()f x m x h x =-在1x =处取得极值,求实数a 的值; (2)若函数()()()f x m x h x =-在(,)-∞+∞不单调,求实数a 的取值范围;(3)判断过点5(1,)2A -可作曲线()()23f x m x x =+-多少条切线,并说明理由.21、(本小题满分14分)如图,在一座底部不可到达的孤山两侧,有两段平行的公路AB 和CD ,现测得5,9AB AC ==30,45BCA ADB ∠=∠=(1)求sin ABC ∠ (2)求BD 的长度.22、(本小题满分14分) 已知()(),ln g x mx G x x ==.(1)若()()1f x G x x =-+,求函数()f x 的单调区间; (2)若()()2G x x g x ++≤恒成立,求m 的取值范围; (3)令()2b G a a =++,求证:21b a -≤.十月联考数学(文科)参考答案与评分标准一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1. D【解析】因为图中阴影部分表示的集合为()U AC B ,由题意可知{}{}02,1A x x B x x =<<=<,所以()U AC B {}{}021x x x x =<<≥{}12x x =≤<,故选.D2. B【解析】依题意得,当0,2x π⎛⎫∈ ⎪⎝⎭时,()3cos 30f x x ππ'=-<-<,函数()f x 是减函数,此时()()03sin 000f x f π<=-⨯=,即有()0f x <恒成立,因此命题p 是真命题,p ┐应是“()000,,02x f x π⎛⎫∃∈≥ ⎪⎝⎭”.综上所述,应选.B 3. C 【解析】由()()()()224fx f x f x f x -=+⇒=+,因为24l o g 205<<,所以20l o g 2041<-<,214log 200-<-<,所以()()()22224log 20log 2044log 20log 15f f f f ⎛⎫=-=--=-=- ⎪⎝⎭.故选.C4. C【解析】由题意知17.5,39x y ==,代入回归直线方程得109,a =109154-⨯49=,故选.C 5. A 【解析】tan 11tan 41tan 2πααα+⎛⎫+== ⎪-⎝⎭,1tan 3α∴=-,02πα-<<,sin α∴=,则22sin sin cos 2sin sin 2cos 4ααπα++=⎛⎫- ⎪⎝⎭α=⎛== ⎝⎭.A6. B【解析】因为()22f x ax ax c '=++,则函数()f x '即()g x 图象的对称轴为1x =-,故可排除,A D ;由选项C 的图象可知,当0x >时,()0f x '>,故函数()323a f x x ax cx =++在()0,+∞上单调递增,但图象中函数()f x 在()0,+∞上不具有单调性,故排除.C 本题应选.B7.A【解析】依题意得2,2T ππωω===,故()sin 24f x x π⎛⎫=+ ⎪⎝⎭,所以sin 2sin 108842f ππππ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,sin 2444f πππ⎛⎫⎛⎫=⨯+ ⎪ ⎪⎝⎭⎝⎭3sin4π==0≠,因此该函数的图象关于直线8x π=对称,不关于点,04π⎛⎫⎪⎝⎭和点,08π⎛⎫⎪⎝⎭对称,也不关于直线4x π=对称.故选.A8. B【解析】过点D 作DF AB ⊥于点F ,在Rt AFD ∆中,易知1,45AF A =∠=,梯形的面积()115221122S =++⨯=,扇形ADE的面积221244S ππ=⨯⨯=,则丹顶鹤生还的概率12152415102S S P S ππ--===-,故选.B9. D【解析】由()()cos sin 0f x x f x x '+>知()0cos f x x '⎛⎫> ⎪⎝⎭,所以()()cos f x g x x =在,22ππ⎛⎫- ⎪⎝⎭上是增函数,所以34g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即34cos cos 34f f ππππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭>34f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以A 不正确;易知()03g g π⎛⎫> ⎪⎝⎭,即()03cos0cos 3f f ππ⎛⎫⎪⎝⎭>,得()023f f π⎛⎫< ⎪⎝⎭,所以B 不正确;易知()04g g π⎛⎫> ⎪⎝⎭,即()04cos0cos 4f f ππ⎛⎫⎪⎝⎭>,得()04f π⎛⎫< ⎪⎝⎭,所以C 不正确;易知34g g ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,即34cos cos 34f f ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,所以D 正确.故选.D10. D【解析】因为()232f x x bx c '=++,依题意,得()()()00,1230,24120,f c f b c f b c '=>⎧⎪'=++<⎨⎪'=++>⎩则点(),b c 所满足的可行域如图所示(阴影部分,且不包括边界),其中()4.5,6A -,()3,0B -,()1.5,0D -.()22132T b c ⎛⎫=++- ⎪⎝⎭表示点(),b c 到点1,32P ⎛⎫- ⎪⎝⎭的距离的平方,因为点P 到直线AD 的距离d ==,观察图形可知,22d T PA<<,又()22214.563252PA ⎛⎫=-++-= ⎪⎝⎭,所以525T <<,故选.D二、填空题:(7题,每题5分) 11. 11【解析】由2201520140x x -+<,解得12014x <<,故{}12014A x x =<<.由2log x m <,解得02mx <<,故{}02mB x x =<<.由A B ⊆,可得22014m≥,因为101121024,22048==,所以整数m 的最小值为11.12. []3,5-【解析】由于()()13134x x x x ++-≥+--=,则有14m -≤,即414m -≤-≤,解得35m -≤≤,故实数m 的取值范围是[]3,5-.13.(1)0.0125;(2)72 【解析】(1)由频率分布直方图知()201200.0250.00650.0030.003x =-⨯+++,解得0.0125x =.(2)上学时间不少于1小时的学生频率为0.12,因此估计有0.1260072⨯=名学生可以申请住宿.14.56π 【解析】()sin 2cos 6f x x x x π⎛⎫=-=+⎪⎝⎭,平移后得到函数 2cos 6y x t π⎛⎫=++ ⎪⎝⎭,则由题意得,,66t k t k k Z ππππ+==-∈,因为0t >,所以t 的最小值为56π. 15. 1【解析】由题意得()()()222cos sin 2cos sin 12cos sin sin x x x x x y xx''----'==,在点,22π⎛⎫⎪⎝⎭处的切线的斜率1212cos2 1.sin 2k ππ-==又该切线与直线10x ay ++=垂直,直线10x ay ++=的斜率21k a=-, 由121k k =-,解得 1.a =16. []()2,12,6--【解析】若命题p 为真,则216402a a ∆=-<⇒>或2a <-.若命题q 为真,因为[]1,1m ∈-⎡⎤⎣⎦.因为对于[]1,1m ∀∈-,不等式253a a --≥立,只需满足2533a a --≥,解得6a ≥或1a ≤-.命题“p q ∨”为真命题,且“p q ∧”为假命题,则,p q 一真一假.①当p 真q 假时,可得22,2616a a a a ><-⎧⇒<<⎨-<<⎩或; ②当p q 假真时,可得22,2116a a a a -≤≤⎧⇒-≤≤-⎨≤-≥⎩或.综合①②可得a 的取值范围是[]()2,12,6--.17. (],22ln 2-∞-+【解析】由()20xf x e '=-=,解得ln 2.x =当(),ln 2x ∈-∞时,()0f x '<,函数()f x 单调递减; 当()ln 2,x ∈+∞时,()0f x '>,函数()f x 单调递增. 故该函数的最小值为()ln2ln 22ln 222ln 2.f e a a =-+=-+因为该函数有零点,所以()ln 20f ≤,即22ln 20a -+≤,解得22ln 2.a ≤-+ 故a 的取值范围是(],22ln 2-∞-+.三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.【解析】(1) 2)6cos()6sin(3)(++++=ππx x x f ⎪⎭⎫ ⎝⎛+=3sin 2πx +2…2分+2………………4分=1 ……………………………………………………… 6分 (2)22ππ≤≤-x6536πππ≤+≤-∴x ………………… 7分 13sin 21≤⎪⎭⎫ ⎝⎛+≤-∴πx …………………8分 从而当23ππ=+x 时,即6π=x 时4)(max =x f …………………………………… 10分而当63ππ-=+x 时,即2π-=x 时1)(min =x f …………………12分19.【解析】(1)根据“每间隔50人就抽取一人”,符合系统抽样的原理,故市教育局在采样中,用到的是系统抽样方法.…………3分平均数的估计值为:(82.50.0187.50.0292.50.0497.50.06102.50.05107.50.02)5⨯+⨯+⨯+⨯+⨯+⨯⨯ 19.4597=⨯=…………………………6分(2)从图中可知,体能测试成绩在[80,85)的人数为10.015402m =⨯⨯=(人),分别记为12,B B ;体能测试成绩在[85,90)人数为20.025404m =⨯⨯=(辆),分别记为1234,,,A A A A ,从这6人中随机抽取两人共有15种情况:1213141112(,),(,),(,),(,),(,)A A A A A A A B A B ,2324(,),(,)A A A A ,2122(,),(,)A B A B ,3431(,),(,)A A A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B .……………………9分抽出的2人中体能测试成绩在[85,90)的情况有1213(,),(,),A A A A 14(,),A A 2324(,),(,)A A A A34(,)A A 共6种,………………………………………………………11分 故所求事件的概率62()155P A ==.…………………………………12分 20.【解析】(1)∵233-)(x x x m =,ax ax x h 3-3)(2=,∴)(-)()(x h x m x f =,∴ a x a x x f 3)1(323)(2++-=' ……………………………………1分∵ 0)1(='f ∴0)1(3233=+-+a a ∴ 1-=a ……………………2分∴ )1)(1(3)(+-='x x x f ,显然在1=x 附近)(x f '符号不同,∴ 1=x 是函数)(x f 的一个极值点 ………………………………………3分∴ 1-=a 即为所求 ………………………………………………………4分(2)∵233-)(x x x m =,ax ax x h 3-3)(2=,∴)(-)()(x h x m x f =,若函数)(x f 在),(∞+-∞不单调,则03)1(323)(2=++-='a x a x x f 应有二不等根 …………………………5分∴ 036)1(122>-+=∆a a ∴012>+-a a ……………………………7分 ∴ 251+>a 或251-<a ………………………………… ……………8分 (3)∵233-)(x x x m =,∴x x x x x m x f 33-3)()(32-=+=,∴)1(3)(2-='x x f ,设切点),(00y x M ,则M 纵坐标03003x x y -=,又)1(3)(200-='x x f , ∴ 切线的斜率为1253)1(3003020-+-=-x x x x ,得021322030=+-x x ……10分 设=)(0x g 21322030+-x x ,∴=')(0x g 02066x x - 由=')(0x g 0,得00=x 或10=x ,∴)(0x g 在),1(),0,(∞+-∞上为增函数,在)1,0(上为减函数,∴ 函数=)(0x g 3322030++-m x x 的极大值点为00=x ,极小值点为10=x , ∵ ⎪⎪⎩⎪⎪⎨⎧<-=>=021)1(021)0(g g ∴ 函数=)(0x g 21322030+-x x 有三个零点 ……………12分 ∴ 方程021322030=+-x x 有三个实根 ∴ 过点)25,1(-A 可作曲线)(x f y =三条切线 ……………………………13分21.【解析】(Ⅰ)在ABC ∆中,由正弦定理,得sin sin AB AC BCA ABC =∠∠,sin 9sin309sin 510AC BCA ABC AB ∠︒∠===.………………………………7分 (Ⅱ)∵ AD BC ∥,∴ 180BAD ABC ∠=︒-∠,9sin sin(180)sin 10BAD ABC ABC ∠=︒-∠=∠=, 在ABD ∆中,由正弦定理,得sin sin AB BD ADB BAD=∠∠,∴ 95sin sin 2AB BAD BD ADB ⨯∠==∠分 22.【解析】(Ⅰ)1)()(+-=x x G x f =1﹣x+lnx ,求导得:'11()1x f x x x -=-=,由'()0f x =,得1x =. 当()0,1x Î时,'()0f x >;当()1,x ??时,'()0f x <.所以,函数()y f x =在()0,1上是增函数,在()1,+?上是减函数.…………5分(Ⅱ) 令2)1(ln 2ln )(2)()(++-=-+-=-+-=x m x mx x x x g x x G x h 则()()'11h x m x=-+ 因为0m >,所以10m +>,由()'0h x =得11x m =+ 当10,1x m 骣÷çÎ÷ç÷桫+时,'()0h x >,()h x 在10,1m 骣÷ç÷ç÷桫+上是增函数; 当1,1x m 骣÷ç??÷ç÷桫+时,'()0h x <,()h x 在1,1m骣÷ç+?÷ç÷+上是减函数. 所以,()h x 在()0,+?上的最大值为()1()1ln 101h m m=-+?+,解得1m e ≥- 所以当1m e ≥-时()()f x g x ≤恒成立. ………………………10分 (Ⅲ)由题意知, ln 2,b a a =++ .由(Ⅰ)知()ln 1(1)f x x x f =-+?,即有不等式()ln 10x x x ?>. 于是 ln 21221,b a a a a a =++?++=+即 21b a -? ………14分。
湖北省教学合作2015届高三上学期10月联考数学(文)试题Word版
湖北省教学合作2015届高三上学期10月联考数学(文)试题Word 版本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试用时120分钟第Ⅰ卷 (选择题,50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1、设全集(2),{|21},{|ln(1)}x x U R A x B x y x -==<==-, 则图中阴影部分表示的集合为 A .{}|1x x ≥ B .{}|1x x ≤ C .{}|01x x <≤ D .{}|11x x ≤<2、已知()3sin f x x x π=-,命题():(0,),02p x f x π∀∈<,则A .p 是真命题,():(0,),02p x f x π⌝∀∈> B .p 是真命题,()0:(0,),02p x f x π⌝∀∈≥C .p 是假命题,():(0,),02p x f x π⌝∀∈≥ D .p 是假命题,()0:(0,),02p x f x π⌝∀∈≥3、定义在R 上的函数()f x 满足()()()(),22f x f x f x f x -=--=+,且(1,0)x ∈-时,()125x f x =+,则()2log 20f =A .1B .45C .1-D .45-4、某产品在某零售摊位的零售价x (单位:元)与每天的 销售量y (单位:个)的统计资料如下表所示:由上表可得回归直线方程ˆˆˆybx a =+中的ˆ4b =-,据此模型预测零售价 为15元时,每天的销售量为A .51个B .50个C .49个D .48个5、已知1tan()42πα+=,且02πα-<<,则22sin sin 2cos()4ααπα+=- A. B. C. D6、已知函数()322,()2,03a f x x ax cx g x ax ax c a =++=++≠,则它们的图象可能是7、已知函数()sin()(0)4f x x πωω=+>的最小正周期为π,则该函数的图象是A .关于直线8x π=对称 B .关于点(,0)4π对称 C .关于直线4x π=对称 D .关于点(,0)8π对称8、一只受伤的丹顶鹤在如图所示(直角梯形)的草原上飞过,其中2,1AD DC BC ===,它可能随机在草原上任何一 处(点),若落在扇形沼泽区域ADE 以外丹顶鹤能生还, 则该丹顶鹤生还的概率是( ) A .1215π- B .110π- C .16π- D .3110π- 9、已知函数()y f x =对于任意的(,)22x ππ∈-满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( )A ()()34f ππ<B .(0)2()3f f π<C .(0)()4f π<D ()()34f ππ-<- 10、已知函数()32(,f x x bx cx d bc d =+++均为常数),当(0,1)x ∈时取极大值,当(1,2)x ∈时取极小值,则221()(3)2b c ++-的取值范围是A .B .)C .37(,25)4D .()5,25第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题5分,共35分,把答案填在题中的横线上11、已知集合22{|201520140},{|log }A x x x B x x m =-+<=<,若A B ⊆,则整数m 的最小值是 12、若不等式131x x m ++-≥-恒成立,则实数m 的取值范围是13、某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[]0,100,样本数据分组为:[)[)[)0,20,20,40,40,60[)[]60,820,80,100,则(1)图中的x =(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计 名学生可以申请住宿. 14、定义行列式的运算:12122112a a ab a b b b =-,若将函数()sin cos xf x x=的图象向左平移(0)t t >个单位,所得图象对应的函数为偶函数,则t 的最小值为 15、设曲线2cos sin x y x -=在点(,2)2π处切线与直线10x ay ++=垂直,则a =16、已知命题:p 函数()22lg(4)f x x x a =-+的定义域为R ;命题:q [1,1]m ∀∈-,不等式253a a --≥p q ∨“为真命题,且“p q ∧”为假命题,则实数a 的取值范围是17、已知函数()2xf x e x a =-+有零点,则a 的取值范围是三、解答题:本大题共5小题,共65分,解答应写成文字说明、证明过程或演算步骤 18、(本小题满分12分) 已知函数())cos()2,()66f x x x x R ππ=++++∈.(1)求5()6f π的值; (2)求()f x 子啊区间[,]22ππ-上的最大值和最小值及其相应的x 的值.19、(本小题满分12分)2015年国庆节之前,市教育局为高三学生在紧张学习之余,不忘体能素质的提升,要求该市高三全体学生进行一套满分为120分的体能测试,市教育局为了迅速了解学生体能素质状况,按照全市高三测试学生的先后顺序,每间隔50人就抽取一人的抽样方法抽取40分进行统计分析,将这40人的体能测试成绩分成六段[)[)[)[)[)[)80,85,85,90,90,95,95,100,100,105,105,110后,得到如下图的频率分布直方图.(1)市教育局在采样中,用的是什么抽样方法?并估计这40人体能测试成绩平均数;(2)从体能测试成绩在[)80,90的学生中任抽取2人,求抽出的2人体能测试成绩在[)85,90概率. 参考数据:82.50.0187.50.0292.50.0497.50.06102.50.05107.50.0219.4⨯+⨯+⨯+⨯+⨯+⨯=20、(本小题满分13分)已知函数()()322,3m x x h x ax ==-(1)若函数()()()f x m x h x =-在1x =处取得极值,求实数a 的值; (2)若函数()()()f x m x h x =-在(,)-∞+∞不单调,求实数a 的取值范围;(3)判断过点5(1,)2A -可作曲线()()23f x m x x =-多少条切线,并说明理由.21、(本小题满分14分)如图,在一座底部不可到达的孤山两侧,有两段平行的公路AB 和CD ,现测得5,9AB AC ==30,45BCA ADB ∠=∠=(1)求sin ABC ∠ (2)求BD 的长度.22、(本小题满分14分) 已知()(),ln g x mx G x x ==.(1)若()()1f x G x x =-+,求函数()f x 的单调区间; (2)若()()2G x x g x ++≤恒成立,求m 的取值范围; (3)令()2b G a a =++,求证:21b a -≤.十月联考数学(文科)参考答案与评分标准一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1. D【解析】因为图中阴影部分表示的集合为()U AC B ,由题意可知{}{}02,1A x x B x x =<<=<,所以()U AC B {}{}021x x x x =<<≥{}12x x =≤<,故选.D2. B【解析】依题意得,当0,2x π⎛⎫∈ ⎪⎝⎭时,()3cos 30f x x ππ'=-<-<,函数()f x 是减函数,此时()()03sin000f x f π<=-⨯=,即有()0f x <恒成立,因此命题p 是真命题,p ┐应是“()000,,02x f x π⎛⎫∃∈≥ ⎪⎝⎭”.综上所述,应选.B 3. C【解析】由()()()()224f x f x f x f x -=+⇒=+,因为24log 205<<,所以20log 2041<-<,214log 200-<-<,所以()()()22224log 20log 2044log 20log 15f f f f ⎛⎫=-=--=-=- ⎪⎝⎭.故选.C 4. C【解析】由题意知17.5,39x y ==,代入回归直线方程得109,a =109154-⨯49=,故选.C 5. A 【解析】tan 11tan 41tan 2πααα+⎛⎫+== ⎪-⎝⎭,1tan 3α∴=-,02πα-<<,sin α∴=,则22sin sin cos 2sin sin 2cos 4ααπα++=⎛⎫- ⎪⎝⎭α=⎛== ⎝⎭,故选.A 6. B【解析】因为()22f x ax ax c '=++,则函数()f x '即()g x 图象的对称轴为1x =-,故可排除,A D ;由选项C 的图象可知,当0x >时,()0f x '>,故函数()323a f x x ax cx =++在()0,+∞上单调递增,但图象中函数()f x 在()0,+∞上不具有单调性,故排除.C 本题应选.B7.A【解析】依题意得2,2T ππωω===,故()sin 24f x x π⎛⎫=+ ⎪⎝⎭,所以 sin 2sin 108842f ππππ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,sin 2444f πππ⎛⎫⎛⎫=⨯+ ⎪ ⎪⎝⎭⎝⎭3sin4π==0≠,因此该函数的图象关于直线8x π=对称,不关于点,04π⎛⎫ ⎪⎝⎭和点,08π⎛⎫⎪⎝⎭对称,也不关于直线4x π=对称.故选.A 8. B【解析】过点D 作DF AB ⊥于点F ,在Rt AFD ∆中,易知1,45AF A =∠=, 梯形的面积()115221122S =++⨯=,扇形ADE 的面积221244S ππ=⨯⨯=,则丹顶鹤生还的概率1215241102S S P S ππ--===-,故选.B9. D【解析】由()()cos sin 0f x x f x x '+>知()0cos f x x '⎛⎫> ⎪⎝⎭,所以()()cos f x g x x =在,22ππ⎛⎫- ⎪⎝⎭上是增函数,所以34g g ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭,即34cos cos 34f f ππππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭>,得34f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以A 不正确;易知()03g g π⎛⎫> ⎪⎝⎭,即()03cos0cos 3f f ππ⎛⎫⎪⎝⎭>,得()023f f π⎛⎫< ⎪⎝⎭,所以B 不正确;易知()04g g π⎛⎫> ⎪⎝⎭,即()04cos0cos4f f ππ⎛⎫⎪⎝⎭>,得()04f π⎛⎫< ⎪⎝⎭,所以C 不正确;易知34g g ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,即34cos cos 34f f ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,所以D 正确.故选.D10. D【解析】因为()232f x x bx c '=++,依题意,得()()()00,1230,24120,f c f b c f b c '=>⎧⎪'=++<⎨⎪'=++>⎩则点(),b c 所满足的可行域如图所示(阴影部分,且不包括边界),其中()4.5,6A -,()3,0B -,()1.5,0D -.()22132T b c ⎛⎫=++- ⎪⎝⎭表示点(),b c 到点1,32P ⎛⎫- ⎪⎝⎭的距离的平方,因为点P 到直线AD的距离d ==22d T PA <<,又()22214.563252PA ⎛⎫=-++-= ⎪⎝⎭,所以525T <<,故选.D二、填空题:(7题,每题5分) 11. 11【解析】由2201520140x x -+<,解得12014x <<,故{}12014A x x =<<.由2log x m <,解得02mx <<,故{}02mB x x =<<.由A B ⊆,可得22014m≥,因为101121024,22048==,所以整数m 的最小值为11.12. []3,5-【解析】由于()()13134x x x x ++-≥+--=,则有14m -≤,即414m -≤-≤,解得35m -≤≤,故实数m 的取值范围是[]3,5-.13.(1)0.0125;(2)72 【解析】(1)由频率分布直方图知()201200.0250.00650.0030.003x =-⨯+++,解得0.0125x =.(2)上学时间不少于1小时的学生频率为0.12,因此估计有0.1260072⨯=名学生可以申请住宿.14.56π【解析】()sin 2cos 6f x x x x π⎛⎫=-=+⎪⎝⎭,平移后得到函数 2cos 6y x t π⎛⎫=++ ⎪⎝⎭,则由题意得,,66t k t k k Z ππππ+==-∈,因为0t >,所以t 的最小值为56π. 15. 1【解析】由题意得()()()222cos sin 2cos sin 12cos sin sin x x x x x y xx''----'==,在点,22π⎛⎫⎪⎝⎭处的切线的斜率1212cos2 1.sin 2k ππ-==又该切线与直线10x ay ++=垂直,直线10x ay ++=的斜率21k a=-, 由121k k =-,解得 1.a =16. []()2,12,6--【解析】若命题p 为真,则216402a a ∆=-<⇒>或2a <-.若命题q 为真,因为[]1,1m ∈-,所以⎡⎤⎣⎦.因为对于[]1,1m ∀∈-,不等式253a a --恒成立,只需满足2533a a --≥,解得6a ≥或1a ≤-.命题“p q ∨”为真命题,且“p q ∧”为假命题,则,p q 一真一假.①当p 真q 假时,可得22,2616a a a a ><-⎧⇒<<⎨-<<⎩或;②当p q 假真时,可得22,2116a a a a -≤≤⎧⇒-≤≤-⎨≤-≥⎩或.综合①②可得a 的取值范围是[]()2,12,6--.17. (],22ln 2-∞-+【解析】由()20xf x e '=-=,解得ln 2.x =当(),ln 2x ∈-∞时,()0f x '<,函数()f x 单调递减; 当()ln 2,x ∈+∞时,()0f x '>,函数()f x 单调递增. 故该函数的最小值为()ln2ln22ln222ln2.f ea a =-+=-+因为该函数有零点,所以()ln 20f ≤,即22ln 20a -+≤,解得22ln 2.a ≤-+ 故a 的取值范围是(],22ln 2-∞-+.三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.【解析】(1) 2)6cos()6sin(3)(++++=ππx x x f ⎪⎭⎫ ⎝⎛+=3sin 2πx +2…2分+2………………4分=1 ……………………………………………………… 6分 (2)22ππ≤≤-x6536πππ≤+≤-∴x ………………… 7分13sin 21≤⎪⎭⎫ ⎝⎛+≤-∴πx …………………8分 从而当23ππ=+x 时,即6π=x 时4)(max =x f …………………………………… 10分而当63ππ-=+x 时,即2π-=x 时1)(min =x f …………………12分19.【解析】(1)根据“每间隔50人就抽取一人”,符合系统抽样的原理,故市教育局在采样中,用到的是系统抽样方法.…………3分平均数的估计值为:(82.50.0187.50.0292.50.0497.50.06102.50.05107.50.02)5⨯+⨯+⨯+⨯+⨯+⨯⨯ 19.4597=⨯=…………………………6分(2)从图中可知,体能测试成绩在[80,85)的人数为10.015402m =⨯⨯=(人),分别记为12,B B ;体能测试成绩在[85,90)人数为20.025404m =⨯⨯=(辆),分别记为1234,,,A A A A ,从这6人中随机抽取两人共有15种情况:1213141112(,),(,),(,),(,),(,)A A A A A A A B A B ,2324(,),(,)A A A A ,2122(,),(,)A B A B ,3431(,),(,)A A A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B .……………………9分抽出的2人中体能测试成绩在[85,90)的情况有1213(,),(,),A A A A 14(,),A A 2324(,),(,)A A A A34(,)A A 共6种,………………………………………………………11分故所求事件的概率62()155P A ==.…………………………………12分 20.【解析】 (1)∵233-)(x x x m =,ax ax x h 3-3)(2=,∴)(-)()(x h x m x f =, ∴ a x a x x f 3)1(323)(2++-=' ……………………………………1分∵ 0)1(='f ∴0)1(3233=+-+a a ∴ 1-=a ……………………2分 ∴ )1)(1(3)(+-='x x x f ,显然在1=x 附近)(x f '符号不同,∴ 1=x 是函数)(x f 的一个极值点 ………………………………………3分 ∴ 1-=a 即为所求 ………………………………………………………4分(2)∵233-)(x x x m =,ax ax x h 3-3)(2=,∴)(-)()(x h x m x f =, 若函数)(x f 在),(∞+-∞不单调, 则03)1(323)(2=++-='a x a x x f 应有二不等根 …………………………5分∴ 036)1(122>-+=∆a a ∴012>+-a a ……………………………7分 ∴ 251+>a 或251-<a ………………………………… ……………8分 (3)∵233-)(x x x m =,∴x x x x x m x f 33-3)()(32-=+=,∴)1(3)(2-='x x f ,设切点),(00y x M ,则M 纵坐标03003x x y -=,又)1(3)(200-='x x f , ∴ 切线的斜率为1253)1(3003020-+-=-x x x x ,得021322030=+-x x ……10分 设=)(0x g 21322030+-x x ,∴=')(0x g 02066x x - 由=')(0x g 0,得00=x 或10=x ,∴)(0x g 在),1(),0,(∞+-∞上为增函数,在)1,0(上为减函数,∴ 函数=)(0x g 3322030++-m x x 的极大值点为00=x ,极小值点为10=x , ∵ ⎪⎪⎩⎪⎪⎨⎧<-=>=021)1(021)0(g g ∴ 函数=)(0x g 21322030+-x x 有三个零点 ……………12分∴ 方程021322030=+-x x 有三个实根 ∴ 过点)25,1(-A 可作曲线)(x f y =三条切线 ……………………………13分21.【解析】(Ⅰ)在ABC ∆中,由正弦定理,得sin sin AB AC BCA ABC =∠∠, sin 9sin309sin 510AC BCA ABC AB ∠︒∠===.………………………………7分 (Ⅱ)∵ AD BC ∥,∴ 180BAD ABC ∠=︒-∠,9sin sin(180)sin 10BAD ABC ABC ∠=︒-∠=∠=, 在ABD ∆中,由正弦定理,得sin sin AB BD ADB BAD=∠∠,∴ 95sin sin AB BAD BD ADB ⨯∠===∠.……………………………………14分 22.【解析】(Ⅰ)1)()(+-=x x G x f =1﹣x+lnx ,求导得:'11()1x f x x x -=-=,由'()0f x =,得1x =. 当()0,1x Î时,'()0f x >;当()1,x ? 时,'()0f x <.所以,函数()y f x =在()0,1上是增函数,在()1,+ 上是减函数.…………5分(Ⅱ) 令2)1(ln 2ln )(2)()(++-=-+-=-+-=x m x mx x x x g x x G x h 则()()'11h x m x=-+ 因为0m >,所以10m +>,由()'0h x =得11x m =+当10,1x m 骣÷çÎ÷÷ç桫+时,'()0h x >,()h x 在10,1m 骣÷ç÷÷ç桫+上是增函数; 当1,1x m 骣÷ç? ÷ç÷桫+时,'()0h x <,()h x 在1,1m骣÷ç+ ÷ç÷桫+上是减函数. 所以,()h x 在()0,+ 上的最大值为()1()1ln 101h m m=-+ +,解得1m e ≥- 所以当1m e ≥-时()()f x g x ≤恒成立. ………………………10分 (Ⅲ)由题意知, ln 2,b a a =++ .由(Ⅰ)知()ln 1(1)f x x x f =-+ ,即有不等式()ln 10x x x ?>. 于是 ln 21221,b a a a a a =++?++=+即 21b a - ………14分。
湖北省稳派名校2015届高三10月联合调研考试数学理试卷(WORD版含答案)
2014-2015学年湖北省稳派名校联考高三(上)10月调研数学试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合中元素的个数为()A.3个B.2个C.1个D.0个2.下列有关命题的说法中,错误的是()A.若“p或q”为假命题,则p,q均为假命题B.“x=1”是“x≥1”的充分不必要条件C.“”是“”的必要不充分条件D.若命题p:”∃实数x0,使x02≥0”则命题¬p:“对于∀x∈R,都有x2<0”3.如图,直线l和圆c,当l从l0开始在平面上绕点O按逆时针方向匀速转动(转动角度不超过90度)时,它扫过的圆内阴影部分的面积S是时间t的函数,这个函数的图象大致是()4.若,则tan2α=()A.B.C.D.5.函数的值域为()A.(﹣∞,1)B.(﹣∞,1]C.(0,1]D.[0,1]6.已知函数在区间[0,1]内至少出现2次极值,则ω的最小值为()A.B.C.D.7.若两个非零向量,满足|+|=|﹣|=2||,则向量+与﹣的夹角为()A.B.C.D.8.函数f(x)=的零点个数为()A.1个B.2个C.3个D.4个9.由曲线y=sinx,y=cosx与直线x=0,x=所围成的平面图形(图中的阴影部分)的面积是()A.1 B.C.D.210.已知x1,x2(x1<x2)是方程4x2﹣4kx﹣1=0(k∈R)的两个不等实根,函数定义域为[x1,x2],g(k)=f(x)max﹣f(x)min,若对任意k∈R,恒只有成立,则实数a的取值范围是()A.B.C.D.二、填空题(本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置,填错位置,书写不清,模棱两可均不得分11.计算:4cos70°+tan20°=_________.12.已知函数f(x)=log2(x2﹣ax+a2)的图象关于x=2对称,则a的值为_________.13.对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=﹣f(2a﹣x),则称f(x)为准奇函数,下列函数中是准奇函数的是_________(把所有满足条件的序号都填上)①f(x)=②f(x)=x2③f(x)=tanx④f(x)=cos(x+1)14.设函数f(θ)=sinθ+cosθ,其中θ的顶点与坐标原点重合,始终与x轴非负半轴重合,终边经过点P(x,y)且0≤θ≤π.(1)若点P的坐标为,则f(θ)的值为_________(2)若点P(x,y)为平面区域Ω:内的一个动点,记f(θ)的最大值为M,最小值m,则log M m=_________.15.设f′(x)和g′(x)分别是f(x)和g(x)的导函数,若f′(x)g′(x)≤0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性相反.若函数f(x)=x3﹣2ax与g(x)=x2+2bx在开区间(a,b)上单调性相反(a>0),则b﹣a的最大值为_________.三、解答题(本大题共6小题,共75分,解答应写出文字说、证明过程或演算步骤)16.(11分)设命题p:函数y=log a(x+1)(a>0,a≠1)在x∈(0,+∞)上单调递减;命题q:3x ﹣9x<a对一切的x∈R恒成立,如果命题“p且q”为假命题,求实数a的取值范围.17.(12分)在平行四边形ABCD中,A(1,1),=(6,0),M是线段AB的中点,线段CM与BD交于点P.(1)若=(2,5),求点C的坐标;(2)当||=||时,求点P的轨迹.18.(12分)设二次函数f(x)=ax2+bx+c(a,b,c∈R).(1)若f(x)满足下列条件:①当x∈R时,f(x)的最小值为0,且f(x﹣1)=f(﹣x﹣1)恒成立;②当x∈(0,5)时,x≤f(x)≤2|x﹣1|+1恒成立,求f(x)的解析式;(2)若对任意x1,x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=[f (x1)+f(x2)]成立.19.(12分)已知函数f(x)=Asin(wx+φ)(A>0,w>0,|φ|<)的图象在y轴上的截距为,它在y轴右侧的第一个最大值点和最小值点分别为(x0,2)和(x0+π,﹣2).(1)求函数f(x)的解析式;(2)若△ABC中的三个内角A,B,C所对的边分别为a,b,c,且锐角A满足,又已知a=7,sinB+sinC=,求△ABC的面积.20.(14分)如图,△ABC为一个等腰三角形形状的空地,腰CA的长为3(百米),底AB的长为4(百米).现决定在空地内筑一条笔直的小路EF(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等、面积分别为S1和S2.(1)若小路一端E为AC的中点,求此时小路的长度;(2)求的最小值.21.(14分)若函数f(x)是定义域D内的某个区间I上的增函数,且F(x)=在I上是减函数,则称y=f(x)是I上的“非完美增函数”,已知f(x)=lnx,g(x)=2x++alnx(a∈R)(1)判断f(x)在(0,1]上是否是“非完美增函数”;(2)若g(x)是[1,+∞)上的“非完美增函数”,求实数a的取值范围.参考答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.A2.C3.D4.C5.B6.B7.C8.C9.D10.A二、填空题(本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置,填错位置,书写不清,模棱两可均不得分11..12.4.13.③④14.(1)2(2)0.15..三、解答题(本大题共6小题,共75分,解答应写出文字说、证明过程或演算步骤)16.解:∵命题p:函数y=log a(x+1)(a>0,a≠1)在x∈(0,+∞)上单调递减,∴x+1∈[1,+∞),0<a<1,∵命题q:3x﹣9x<a对一切的x∈R恒成立,∴f(x)=3x﹣(3x)2,t=3x,y=﹣t2+t,t>0,当t=时,y的最大值,即必须得a>,∵p且q为真时,可得:<a<1,∴命题“p且q”为假命题时,实数a的取值范围为(0,)∪(1,+∞),17.解:(1)∵A(1,1),=(6,0),∴B(7,1),∵M是AB的中点,∴M(4,1).∵=(2,5),∴D(3,6),∵=(6,0),∴=(6,0),∴C(9,6)(2)设点P的坐标是(x,y),D(a,b),则C(a+b,b),∵||=||,∴(a﹣1)2+(b﹣1)2=36(*)由B,D,P共线,得①,由C,P,M共线,得②由①②化简得a=3x﹣14,b=3y﹣2,代入(*)化简得(x﹣5)2+(y﹣1)2=4.18.解:(1)∵x∈(0,5)时,都有x≤f(x)≤2|x﹣1|+1恒成立,∴1≤f(1)≤2|1﹣1|+1=1,∴f(1)=1;∵f(﹣1+x)=f(﹣1﹣x),∴f(x)=ax2+bx+c(a,b,c∈R)的对称轴为x=﹣1,∴﹣=﹣1,b=2a.∵当x∈R时,函数的最小值为0,∴a>0,f(x)=ax2+bx+c(a,b,c∈R)的对称轴为x=﹣1,∴f(x)min=f(﹣1)=0,∴a=c.∴f(x)=ax2+2ax+a.又f(1)=1,∴a=c=,b=.∴f(x)=x2+x+=(x+1)2;(2)令g(x)=f(x)﹣[f(x1)+f(x2)],则g(x1)=f(x1)﹣[f(x1)+f(x2)]=[f(x1)﹣f(x2)],g(x2)=f(x2)﹣[f(x1)+f(x2)]=[f(x2)﹣f(x1)],∵f(x1)≠f(x2)∴g(x1)g(x2)<0,所以g(x)=0在(x1,x2)内必有一个实根,即存在x0∈(x1,x2)使f(x0)=[f(x1)+f(x2)]成立.19.解:(1)由最值点可得A=2,设函数的周期为T,由三角函数的图象特点可得T==π,解得ω=1,又图象在y轴上的截距为,∴2sinφ=,∴sinφ=,又|φ|<,∴φ=,∴f(x)=2sin(x+);(2)∵锐角A满足,∴2sin(A+﹣)=,解得sinA=,∴A=;由正弦定理可得==,变形可得sinB=,sinC=,∴sinB+sinC=(b+c)=,∴b+c=13,再由余弦定理可得72=b2+c2﹣2bc×,=b2+c2﹣bc=(b+c)2﹣3bc=169﹣3bc,∴bc=40,∴△ABC的面积S=bcsinA=×40×=10.20.解:(1)因为:AE=CE=AE+4>CE+3 所以F不在BC上,AE+AF+EF=CE+CB+FB+EF所以AE=CE AF=CB+BF 4﹣BF=BF+3 BF=cosA==所以EF2=AE2+AF2﹣2AE×AF×cosA=所以EF=E为AC中点时,此时小路的长度为(2)若E、F分别在AC和AB上,sinA=设AE=x,AF=y,所以S2=xysinA=S1=S三角形ABC﹣S2=2﹣S2因为x+y=3﹣x+4﹣y+3所以x+y=5=﹣1xy≤当且仅当x=y=时取等号所以=当且仅当x=y=时取等号最小值是若E、F分别在AC和BC上,sinC=设CE=x,CF=y同上可得≥当且仅当x=y=取等号若E、F分别在AC和BC上,最小值是21.解:(1)由于f(x)=lnx,在(0,1]上是增函数,且F(x)==,∵F′(x)=,∴当x∈(0,1]时,F′(x)>0,F(x)为增函数,∴f(x)在(0,1]上不是“非完美增函数”;(2)∵g(x)=2x++alnx,∴g′(x)=2﹣+=,∵g(x)是[1,+∞)上的“非完美增函数”,∴g′(x)≥0在[1,+∞)上恒成立,∴g′(1)≥0,∴a≥0,又G(x)==2++在[1,+∞)上是减函数,∴G′(x)≤0在[1,+∞)恒成立,即﹣+≤0在[1,+∞)恒成立,即ax﹣axlnx﹣4≤0在[1,+∞)恒成立,令p(x)=ax﹣axlnx﹣4,则p′(x)=﹣alnx≤0恒成立(∵a≥0,x≥1),∴p(x)=ax﹣axlnx﹣4在[1,+∞)上单调递减,∴p(x)max=p(1)=a﹣4≤0,解得:a≤4;综上所述0≤a≤4.。
2015年高考湖北理科数学试题及答案(word解析版)
2015年普通高等学校招生全国统一考试(湖北卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2015年湖北,理1,5分】i 为虚数单位,607i 的共轭复数....为( ) (A )i (B )i - (C )1 (D )1- 【答案】A【解析】60741513i i i i ⨯=⋅=-,共轭复数为i ,故选A .【点评】本题考查复数的基本运算,复式单位的幂运算以及共轭复数的知识,基本知识的考查.(2)【2015年湖北,理2,5分】我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) (A )134石 (B )169石 (C )338石 (D )1365石 【答案】B【解析】依题意,这批米内夹谷约为281534169254⨯=石,故选B .【点评】本题考查利用数学知识解决实际问题,考查学生的计算能力,比较基础.(3)【2015年湖北,理3,5分】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) (A )122(B )112 (C )102 (D )92【答案】D 【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以37n n C C =,解得10n =,所以二项式(1)n x + 中奇数项的二项式系数和为1091222⨯=,故选D .【点评】本题考查二项式定理的应用,组合数的形状的应用,考查基本知识的灵活运用 以及计算能力.(4)【2015年湖北,理4,5分】设211(,)X N μσ,222(,)Y N μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是( )(A )21()()P Y P Y μμ≥≥≥ (B )21()()P X P X σσ≤≤≤(C )对任意正数t ,()()P X t P Y t ≤≥≤ (D )对任意正数t ,()()P X t P Y t ≥≥≥ 【答案】C【解析】正态分布密度曲线图象关于x μ=对称,所以12μμ<,从图中容易得到()()P X t P Y t ≤≥≤,故选C .【点评】本题考查了正态分布的图象与性质,学习正态分布,一定要紧紧抓住平均数μ和标准差σ这两个关键量,结合正态曲线的图形特征,归纳正态曲线的性质.(5)【2015年湖北,理5,5分】设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( ) (A )p 是q 的充分条件,但不是q 的必要条件 (B )p 是q 的必要条件,但不是q 的充分条件 (C )p 是q 的充分必要条件 (D )p 既不是q 的充分条件,也不是q 的必要条件 【答案】A【解析】对命题12:,,,n p a a a 成等比数列,则公比()13n n aq n a -=≥且0n a ≠;对命题q ,①当时,成立;②当时,根据柯西不等式,等式成立,则,所以成等比数列,所以p 是q 的充分条件,但不是q 的必要 0=n a 22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++0≠n a 22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++nn a a a a a a 13221-=⋅⋅⋅==12,,,n a a a条件.故选A .(6)【2015年湖北,理6,5分】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )(A )sgn[()]sgn g x x = (B )sgn[()]sgn g x x =- (C )sgn[()]sgn[()]g x f x = (D )sgn[()]sgn[()]g x f x =- 【答案】B【解析】因为()f x 是R 上的增函数,令()f x x =,所以()()1g x a x =-,因为1a >,所以()g x 是R 上的减函数,由符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩知,1,0,sgn 0,0,sgn 1,0.x x x x x >⎧⎪===-⎨⎪-<⎩,故选B .(7)【2015年湖北,理7,5分】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则( ) (A )123p p p << (B )231p p p << (C )312p p p << (D )321p p p << 【答案】B【解析】因为[],0,1x y ∈,对事件“12x y -≥”如图(1)阴影部分1S , 对事件“12x y -≤”,如图(2)阴影部分2S ,对事件“12xy ≤”,如图(3)阴影部分3S ,由图知,阴影部分的面积从下到大依次是231S S S <<,正方形的面积为111⨯=,根据几何概型公式可得231p p p <<,故选B .【点评】本题主要考查几何概型的概率计算,利用数形结合是解决本题的关键.本题也可以直接通过图象比较面积的大小即可比较大小.(8)【2015年湖北,理8,5分】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )(A )对任意的,a b ,12e e > (B )当a b >时,12e e >;当a b <时,12e e <(C )对任意的,a b ,12e e < (D )当a b >时,12e e <;当a b <时,12e e > 【答案】D【解析】依题意,22211a b b e a +⎛⎫==+ ⎪⎝⎭,()()22221a m b m b m e a m ++++⎛⎫==+ ⎪+⎝⎭,因为()()()m b a b b m ab bm ab am a a m a a m a a m -++---==+++,由于0m >,0a >,0b >, 当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22b b m a a m +⎛⎫⎛⎫< ⎪ ⎪+⎝⎭⎝⎭,所以12e e <;当a b <时,1b a >,1b m a m +>+,而b b m a a m +>+,所以22b b m a a m +⎛⎫⎛⎫> ⎪ ⎪+⎝⎭⎝⎭,所以12e e >.所以当a b >时,12e e <,当a b <时,12e e >,故选D .【点评】本题考查双曲线的性质,考查学生的计算能力,比较基础.(9)【2015年湖北,理9,5分】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B⊕中元素的个数为( )(A )77 (B )49 (C )45 (D )30 【答案】C【解析】因为集合(){}22,1,,A x y xy x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111A B C D中的整点(除去四个顶点),即77445⨯-=个,故选C .【点评】本题以新定义为载体,主要考查了几何的基本定义及运算,解题中需要取得重复的元素.(10)【2015年湖北,理10,5分】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立....,则正整数n 的最大值是( ) (A )3 (B )4 (C )5 (D )6 【答案】B【解析】由[]1t =得12t ≤<,由2[]2t =得223t ≤<,由43t ⎡⎤=⎣⎦得445t ≤<,可得225t ≤<,所以225t ≤<; 由3[]3t =得334t ≤<,所以5645t ≤<,由55t ⎡⎤=⎣⎦得556t ≤<,与5645t ≤<矛盾,故正整数n 的最大值是4,故选B .【点评】本题考查简单的演绎推理,涉及新定义,属基础题.二、填空题:共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上....答错位置,书写不清,模棱两可均不得分. (一)必考题(11-14题)(11)【2015年湖北,理11,5分】已知向量OA AB ⊥,||3OA =,则OA OB ⋅= . 【答案】9 【解析】因为OA AB ⊥,3OA =,()22239OA OB OA OA OB OA OA OB OA ⋅=⋅+=+⋅===.【点评】本题考查了平面向量的数量积运算,考查了向量模的求法,是基础的计算题.(12)【2015年湖北,理12,5分】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 【答案】2 【解析】因为()()()()()24cos cos 2sin ln 121cos sin 2sin ln 1sin 2ln 122x x f x x x x x x x x x x ⎛⎫=----=+--+=-+ ⎪⎝⎭,所以函数()f x 的零点个数为函数sin 2y x =与()ln 1y x =+图像如图,由图知,两函数图像右2个交点,所以函数()f x 由2个零点.【点评】本题考查三角函数的化简,函数的零点个数的判断,考查数形结合与转化思想的应用.(13)【2015年湖北,理13,5分】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD = m .【答案】1006【解析】依题意,30BAC ∠=︒,105ABC ∠=︒,在ABC ∆中,由180ABC BAC ACB ∠+∠+∠=︒,所以45ACB ∠=︒,因为600AB =,由正弦定理可得600sin 45sin30BC-=︒︒,即3002BC =m ,在Rt BCD ∆中,因为30CBD ∠=︒,3002BC =,所以tan303002CD BC ︒==,所以1006CD =m . 【点评】本题主要考查了解三角形的实际应用.关键是构造三角形,将各个已知条件向这个主三角形集中,再通过正弦、余弦定理或其他基本性质建立条件之间的联系,列方程或列式求解.(14)【2015年湖北,理14,5分】如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A的上方),且2AB =.(1)圆C 的标准..方程为 ;(2)过点A 任作一条直线 与圆22:1O x y +=相交于,M N 两点,下列三个结论: ①NA MA NBMB=; ②2NB MA NAMB-=; ③22NB MA NAMB+=.其中正确结论的序号是 . (写出所有正确结论的序号) 【答案】(1)()()22122x y -+-=;(2)①②③【解析】(1)依题意,设()1,C r (r 为圆的半径),因为2AB =,所以22112r =+=,所以圆心()1,2C ,故圆的标准方程为()()22122x y -+-=.(2)解法一:联立方程组()()22122x x y =⎧⎪⎨-+-=⎪⎩,解得021x y =⎧⎪⎨=-⎪⎩或021x y =⎧⎪⎨=+⎪⎩,因为B 在A 的上方,所以()0,21A -,()0,21B +,领直线MN 的方程为0x =,此时()0,1M -,()0,1N ,所以2MA =,22MB =+,22NA =-,2NB =,因为22212NA NB-==-,22122MA MB==-+,所以NA MA NBMB =所以()22212122222NB MA NAMB-=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.解法二:因为圆心()1,2C ,()0,2E ∴,又2AB =,且E 为AB 中点,∴()0,21A -,()0,21B +,M ,N 在圆22:1O x y +=,∴可设()cos ,sin M αα,()cos ,sin N ββ,()()22cos 0sin 21NA ββ⎡⎤∴=-+--⎣⎦()22cos sin 221sin 322βββ=+--+-()()()422221sin 2221221sin ββ=---=---()()2212sin β=--,()()22cos 0sin 21NB ββ⎡⎤∴=-+-+⎣⎦()22cos sin 221sin 322βββ=+-+++()()()422221sin 2221221sin ββ=+-+=+-+()()2212sin β=+-,()()()()2212sin 2121212212sin NA NBββ---∴===-++-,同理21MA MB=-.所以NA MA NBMB=,所以()22212122222NB MA NA MB -=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.【点评】本题考查求圆的标准方程,用三角函数值表示单位圆上点的坐标是解决本题的关键,注意解题方法的积累,属于难题.(一)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.)(15)【2015年湖北,理15,5分】(选修4-1:几何证明选讲)如图,P A 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=_______.【答案】12【解析】因为PA 是圆的切线,A 为切点,PBC 是圆的割线,由切割定理知,()2PA PB PC PB PB BC =⋅=+,因为3BC PB =,所以224PA PB =,即2PA PB =,由A PAB PC ∆∆∽,所以12AB PB AC PA ==. 【点评】本题考查切割线定理以及相似三角形的判定与应用,考查逻辑推理能力.(16)【2015年湖北,理16,5分】(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB =.【答案】25【解析】因为()sin 3cos 0ρθθ-=,所以sin 3cos 0ρθρθ-=,所以30y x -=,即3y x =;由11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩,消去t 得224y x -=,联立方程组2234y x y x =⎧⎨-=⎩,解得2232x y ⎧=⎪⎪⎨⎪=⎪⎩或2232x y ⎧=-⎪⎪⎨⎪=-⎪⎩,即232,A ⎛⎫ ⎪ ⎪⎝⎭,232,B ⎛⎫-- ⎪ ⎪⎝⎭,由两点间的距离公式得22223232252222AB ⎛⎫⎛⎫=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查极坐标方程化直角坐标方程,参数方程化普通方程,考查了直线和圆锥曲线的位置关系,是基础的计算题.三、解答题:共6题,共75分.解答应写出文字说明,演算步骤或证明过程.(17)【2015年湖北,理17,11分】某同学用“五点法”画函数()sin()f x A x ωϕ=+π(0,||)2ωϕ><在某一个周期(1...........(2)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值.解:(1)根据表中已知数据,解得π5,2,A ωϕ===-.数据补全如下表:且函数表达式为()5sin(2)6f x x =-.(2)由(1)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k ,k ∈Z .令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 【点评】本题主要考查了由()sin y A x ωϕ=+的部分图象确定其解析式,函数()sin y A x ωϕ=+的图象变换规律的应用,属于基本知识的考查.(18)【2015年湖北,理18,12分】设等差数列{}n a 的公差为d 前n 项和为n S ,等比数列{}n b 的公、比为q .已知11b a =,22b =,q d =,10100S =.(1)求数列{}n a ,{}n b 的通项公式;(2)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .解:(1)由题意知:1110451002a d a d -=⎧⎨=⎩,即1129202a d a d +=⎧⎨=⎩,得112a d =⎧⎨=⎩或1929a d =⎧⎪⎨=⎪⎩,故1212n n na nb -=-⎧⎪⎨=⎪⎩或()112799299n n n a n b -⎧=+⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩. (2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=, 于是2341357921122222n n n T --=+++++ ① 2345113579212222222n n n T -=+++++ ② 由①-②可得234521111111212323222222222n n n n n n T --+=++++++-=-,故12362nn n T -+=-. 【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.(19)【2015年湖北,理19,12分】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,.DE DF BD BE .(1)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.解:解法一:(1)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点, 所以DE PC ⊥. 而PC BC C =,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥. 又PB EF ⊥,DE EF E =,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形, 即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)如图1,在面PBC 内,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的交线.由(1)知,PB DEF ⊥平面,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以 PD DG ⊥. 而PD PB P =,所以DG PBD ⊥平面.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD DC ==,BC λ=,有21BD λ=+,在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 2πtan tan 133BD DPF PD λ=∠==+=, 解得2λ=.所以12.DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. 解法二:(1)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ,(,1,1)PB λ=-,点E 是PC 的中点,所以11(0,,)22E ,11(0,,)22DE =,于是0PB DE ⋅=,即PB DE ⊥. 又已知EF PB ⊥,而DE EF E =,所以PB DEF ⊥平面. 因(0,1,1)PC =-, 0DE PC ⋅=, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面 PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑, 四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)由PD ABCD ⊥平面,所以(0,0,1)DP =是平面ABCD 的一个法向量;由(1)知,PB DEF ⊥平面,所以(,1,1)BP λ=--是平面DEF 的一个法向量. 若面DEF 与面ABCD 所成二面角的大小为π3,则2π11cos 32||||2BP DP BP DP λ⋅===⋅+, 解得2λ=. 所以12.DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,2DC BC =. 【点评】本题综合考查了空间直线平面的垂直问题,直线与直线,直线与平面的垂直的转化,空间角的求解,属于难题.(20)【2015年湖北,理20,12分】某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过12小时.Z (单位:元)是一个随机变量.(1)求Z 的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.解:(1)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1) 目标函数为 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当 2.4, 4.8x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当3, 6x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=.当18W =时,(1)表示的平面区域如图3,四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D . 将10001200z x y =+变形为561200zy x =-+,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.(2)由(1)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为()3311110.30.973p p =--=-=.【点评】本题考查离散型随机变量的分布列以及期望的求法,线性规划的应用,二项分布概率的求法,考查分析问题解决问题的能力.(21)【2015年湖北,理21,14分】一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(1)求曲线C 的方程;(2)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探 究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.解:(1)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =,且||||1DN ON ==,所以00(,)2(,)t x y x t y --=-,且22002200()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -= 由于当点D 不动时,点N也不动,所以t 不恒等于0,于是02t x =,故00,42x y x y ==-,代入22001x y +=,可得221164x y +=,即所求的曲线C 的方程为22 1.164x y +=(2)①当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.②当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=.因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ 的距离为21d k =+和2||1||P Q PQ k x x =+-,可得22111222||||||||222121214OPQ P Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ②将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--. 因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQS k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.【点评】本题主要考查椭圆方程的求解,以及直线和圆锥曲线的位置关系的应用,结合三角形的面积公式是解决本题的关键.综合性较强,运算量较大.(22)【2015年湖北,理22,14分】已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n+=+∈N ,e 为自然对数的底数.(1)求函数()1e x f x x =+-的单调区间,并比较1(1)n n+与e 的大小;(2)计算11b a ,1212b ba a ,123123b b b a a a ,由此推测计算1212n n b b b a a a 的公式,并给出证明;(3)令112()nn n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T ,证明:e n n T S <.解:(1)()f x 的定义域为(,)-∞+∞,()1e x f x '=-.当()0f x '>,即0x <时,()f x 单调递增;当()0f x '<,即0x >时,()f x 单调递减. 故()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞.当0x >时,()(0)0f x f <=,即1e xx +<. 令1x n=,得111e n n +<,即1(1)e n n +<. ①(2)11111(1)1121b a =⋅+=+=;22212121212122(1)(21)32b b b b a a a a =⋅=⋅+=+=;2333123312123123133(1)(31)43b b b b b b a a a a a a =⋅=⋅+=+=. 由此推测:1212(1).n n nb b b n a a a =+ ② 下面用数学归纳法证明②.①当1n =时,左边=右边2=,②成立.②假设当n k =时,②成立,即1212(1)k kk b b b k a a a =+. 当1n k =+时,1111(1)(1)1k k k b k a k +++=+++,由归纳假设可得 111211211211211(1)(1)(1)(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++=⋅=+++=++.所以当1n k =+时,②也成立.根据(1)(2),可知②对一切正整数n 都成立.(3)由n c 的定义,②,算术-几何平均不等式,n b 的定义及①得123n n T c c c c =++++=111131211212312()()()()nn a a a a a a a a a ++++111131212312112()()()()2341nn b b b b b b b b b n =+++++ 121111111[][]1223(1)2334(1)(1)n b b b n n n n n n =+++++++++⋅⨯⨯+⨯⨯++ 1211111(1)()()1211n b b b n n n n =-+-++-+++1212n b b b n <+++1212111(1)(1)(1)12n n a a a n =++++++12e e e n a a a <+++=e n S . 即e n n T S <.【点评】本题主要考查导数在研究函数中的应用,考查利用归纳法证明与自然数有关的问题,考查推理论证能力、运算求解能力、创新知识,考查了利用放缩法法证明数列不等式,是压轴题.。
2015年普通高等学校招生全国统一考试(湖北卷)数学试题 (理科)解析版
()
A. sgn[g(x)] sgn x
B. sgn[g(x)] sgn x
C. sgn[g(x)] sgn[ f (x)]
D. sgn[g(x)] sgn[ f (x)]
【答案】B
【解析】
试题分析:因为 f (x) 是 R 上的增函数,令 f (x) x ,所以 g(x) (1 a)x ,因为 a 1 ,
x,
y
,记
p1 为事件“
x
y
1 2
”的概率,p2
为事件“ |
x
y
|
1 2
”
的概率,
p3
为事件“
xy
1 2
”的概率,则
(
A. p1 p2 p3
B. p2 p3 p1
【答案】B
) C. p3 p1 p2
D. p3 p2 p1
(1)
(2)
考点:几何概型.
(3)
8.将离心率为 e1 的双曲线 C1 的实半轴长 a 和虚半轴长 b (a b) 同时增加 m (m 0) 个单位长
度,得到离心率为 e2 的双曲线 C2 ,则( )
A.对任意的 a, b , e1 e2
B.当 a b 时, e1 e2 ;当 a b 时, e1 e2
C.对任意的 a, b , e1 e2
D.当 a b 时, e1 e2 ;当 a b 时, e1 e2
【答案】D
3
考点:1.双曲线的性质,2.离心率.
9.已知集合 A {(x, y) x2 y2 1, x, y Z}, B {(x, y) | x | 2 , | y | 2, x, y Z},定义集合
A B {(x1 x2 , y1 y2 ) (x1, y1) A, (x2 , y2 ) B} ,则 A B 中元素的个数为( )
湖北省百所重点中学2015届高三数学十月联合考试试题 理(含解析)新人教A版
湖北省百所重点中学2015届高三十月联合考试试题理科试题【试卷综评】本次试卷从题型设置、考察知识的范围等方面保持稳定,试题难度适中,试题在考查高中数学基本概念、基本技能和基本方法等数学基础知识,突出三基,强化三基的同时,突出了对学生能力的考查,注重了对学科的内在联系和知识的综合、重点知识的考查,以它的知识性、思辨性、灵活性,基础性充分体现了考素质,考基础,考方法,考潜能的检测功能。
试题中无偏题,怪题,起到了引导高中数学向全面培养学生数学素质的方向发展的作用。
突出考查数学主干知识 ,侧重于中学数学学科的基础知识和基本技能的考查;侧重于知识交汇点的考查。
全面考查了考试说明中要求的内容。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)【题文】1、已知集合2{|20}{|1}1xM x x x N x x =-+>=<-,则MN 等于A .()0,2 B .()0,1 C .()1,2 D .()1,1-【知识点】交集及其运算.L4【答案解析】B 解析:由M 中不等式变形得:x (x ﹣2)<0,解得:0<x <2,即M=(0,2);由N 中不等式变形得:﹣1<0,即<0,解得:x <1,即N=(﹣∞,1),则M∩N=(0,1).故选B【思路点拨】求出M 与N 中不等式的解集确定出M 与N ,找出两集合的交集即可.【题文】2、2014cos()3π的值为A .12B .32C .12-D . 32-【知识点】运用诱导公式化简求值.L4 【答案解析】C 解析:cos ()=cos (670+)=cos=cos (π+)=﹣cos=﹣,故选:C .【思路点拨】原式中角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果. 【题文】3、已知a 为常数,则使得11aa dxx >⎰成立的一个充分而不必要条件是( )A .0a >B .0a <C .a e >D .a e <【知识点】微积分基本定理;必要条件、充分条件与充要条件的判断.L4【答案解析】C 解析:由积分运算法则,得=lnx =lne ﹣ln1=1因此,不等式即11aa dxx >⎰即a >1,对应的集合是(1,+∞),将此范围与各个选项加以比较,只有C 项对应集合(e ,+∞)是(1,+∞)的子集∴原不等式成立的一个充分而不必要条件是a >e ,故选: C【思路点拨】由定积分计算公式,求出函数f (x )=的一个原函数F (x )=lnx ,从而利用微积分基本定理得到=lne ,结合充分条件、必要条件的定义,即可得到不等式成立的一个充分而不必要条件.【题文】4、已知α为第三象限角,且2sin cos 2,sin 2m m ααα+==,则m 的值为A .33B .33-C .13-D .23-【知识点】两角和与差的正弦函数.L4【答案解析】B 解析:把sinα+cosα=2m 两边平方可得1+sin2α=4m2,又sin2α=m2,∴3m2=1,解得m=,又α为第三象限角,∴m=,故选:B【思路点拨】把sinα+cosα=2m 两边平方可得m 的方程,解方程可得m ,结合角的范围可得答案.【题文】5、在ABC ∆中,角角,,A B C 的对边分别为,,a b c ,若223a b bc -=且sin 23sin C B =,则A 等于A .6πB .4πC .3πD .23π【知识点】余弦定理.L4 【答案解析】A 解析:由sinC=2sinB ,由正弦定理可知:c=2b ,代入a2﹣b2=bc ,可得a2=7b2,所以cosA==,∵0<A <π,∴A=.故选:A .【思路点拨】利用正弦定理化三角函数为三角形边的关系,然后通过余弦定理求解即可.【题文】6、已知定义在R 上的奇函数()f x 满足3()()2f x f x -=+,且当302x <≤时,()2log (31)f x x =+,则()2015f 等于A .1-B .2-C .1D .2【知识点】函数奇偶性的性质.L4【答案解析】B 解析:由f (x )为奇函数可得f (﹣x )=﹣f (x ),再由条件可得f (﹣x )=f (+x ),所以,f (3+x )=f (x ).所以,f (2015)=f (671×3+2)=f (﹣1)=﹣f (1)=﹣2.故选:B .【思路点拨】由已知得f (3+x )=f (x ),所以f (2015)=f (671×3+2)=f (﹣1)=﹣f (1)=﹣2.【题文】7、给出下列命题,其中错误的是 A .在ABC ∆中,若A B >,则sin sin A B > B .在锐角ABC ∆中, sin sin A B >C .把函数sin 2y x =的图象沿x 轴向左平移4π个单位,可以得到函数cos 2y x =的图象 D .函数sin 3cos (0)y x x ωωω=+≠最小正周期为π的充要条件是2ω=【知识点】命题的真假判断与应用.L4 【答案解析】 D 解析:对于A .在△ABC 中,若A >B ,则a >b ,即由正弦定理有sinA >sinB ,故A 正确;对于B .在锐角△ABC 中,A+B >,则A >﹣B ,由y=sinx 在(0,)上递增,则sinA >sin (﹣B )=cosB ,故B 正确;对于C .把函数y=sin2x 的图象沿x 轴向左平移个单位,可以得到函数y=sin2(x)=sin (2x)=cos2x 的图象,故C 正确;对于D .函数y=sinωx+cosωx(ω≠0)=2sin (ωx ),最小正周期为π时,ω也可能为﹣2,故D 错. 故选D .【思路点拨】由正弦定理和三角形中大角对大边,即可判断A ;由锐角三角形中,两锐角之和大于90°,运用正弦函数的单调性,即可判断B ;运用图象的左右平移,只对自变量x 而言,再由诱导公式,即可判断C ;由两角和的正弦公式化简,再由周期公式,即可判断D . 【题文】8、已知幂函数()1()n f x x n N -=∈的图象如图所示,则()y f x =在1x =的切线与两坐标轴围成的面积为A .43B .74C .94 D .4【知识点】幂函数的性质.L4【答案解析】C 解析:根据幂函数的图象可知,n﹣2<0,且为偶数,又n∈N,故n=0,所以f(x)=x﹣2,则f′(x)=﹣2x﹣3,所以切线的斜率为f′(1)=﹣2,切线方程为y﹣1=﹣2(x﹣1),即2x+y﹣3=0,与两坐标轴围成的面积为=,故选:C.【思路点拨】先根据幂函数的图象和性质,得到n=﹣2,再根据导数求出切线的斜率,求出切线方程,问题得以解决.【题文】9、已知,a b R∈,函数()tanf x x=在4xπ=-处于直线2y ax bπ=++相切,设()xg x e=2bx c++,若在区间[]1,2上,不等式()22m g x m≤≤-恒成立,则实数mA.有最小值e- B.有最小值e C.有最大值e D.有最大值1e+【知识点】利用导数研究曲线上某点切线方程.L4【答案解析】D 解析:f(x)=tanx的导数f′(x)=()′==,则a=f′(﹣)==2,将切点(﹣,﹣1)代入切线方程,即﹣1=﹣2+b+,即有b=﹣1.则g(x)=ex﹣x2+2,令h(x)=g′(x)=ex﹣2x,h′(x)=ex﹣2,在[1,2]上h′(x)>0恒成立,即h(x)在[1,2]上递增,即g′(x)在[1,2]上递增,则有g′(x)≥g′(1)=e﹣2>0,则g(x)在[1,2]上递增,g(1)最小,g(2)最大,不等式m≤g(x)≤m2﹣2恒成立,即有,解得m≤﹣e或e≤m≤e+1.即m的最大值为e+1.故选D.【思路点拨】求出f(x)的导数,求出切线的斜率,得a=2,将切点(﹣,﹣1)代入切线方程,求得b=﹣1,再求g(x)的导数,判断g(x)在[1,2]上的单调性,求出最值,再由不等式m≤g(x)≤m2﹣2恒成立,即有,解出m的取值范围,即可判断.【题文】10、对于函数()f x,若,,a b c R∀∈,()()(),,f a f b f c为某一三角形的三边长,则称()f x为“可构造三角形函数”,已知函数()1xxe tf xe+=+是“可构造三角形函数”,则实数t 的取值范围是A .[)0,+∞B .[]0,1C .[]1,2D .1[,2]2【知识点】指数函数综合题.L4【答案解析】D 解析:由题意可得f (a )+f (b )>f (c )对于∀a ,b ,c ∈R 都恒成立,由于f (x )==1+,①当t ﹣1=0,f (x )=1,此时,f (a ),f (b ),f (c )都为1,构成一个等边三角形的三边长,满足条件.②当t ﹣1>0,f (x )在R 上是减函数,1<f (a )<1+t ﹣1=t ,同理1<f (b )<t ,1<f (c )<t ,由f (a )+f (b )>f (c ),可得 2≥t,解得1<t≤2.③当t ﹣1<0,f (x )在R 上是增函数,t <f (a )<1,同理t <f (b )<1,2<f (c )<1, 由f (a )+f (b )>f (c ),可得 2t≥1,解得1>t≥.综上可得,≤t≤2,故选:A .【思路点拨】因对任意实数a 、b 、c ,都存在以f (a )、f (b )、f (c )为三边长的三角形,则f (a )+f (b )>f (c )恒成立,将f (x )解析式用分离常数法变形,由均值不等式可得分母的取值范围,整个式子的取值范围由t ﹣1的符号决定,故分为三类讨论,根据函数的单调性求出函数的值域,然后讨论k 转化为f (a )+f (b )的最小值与f (c )的最大值的不等式,进而求出实数k 的取值范围. 第Ⅱ卷二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答案卡中的横线上【题文】11、已知,3sin 22cos 2παπαα<<=,则cos()απ-=【知识点】二倍角的正弦;诱导公式的作用.L4【答案解析】223 解析:∵,3sin2α=2cosα,∴6sinα•cosα=2cosα,解得 sinα=,∴cosα=﹣223.故cos (α﹣π)=cos (π﹣α)=﹣cosα=223,故答案为223.【思路点拨】由条件利用二倍角公式求得sinα=,再利用同角三角函数的基本关系求出cosα 的值,再利用诱导公式求出cos (α﹣π)的值. 【题文】12、化简2log2lg 5lg 2lg 2+-的结果为【知识点】对数的运算性质.L4【答案解析】25 解析:原式=+lg5lg2+lg22﹣lg2=25+lg2(lg5+lg2)﹣lg2=25.【思路点拨】利用对数的运算法则、lg2+lg5=1即可得出.【题文】13、已知:p 关于x 的方程210x mx ++=有两个不等的负实数根;:q 关于x 的方程244(2)10x m x +-+=的两个实数根,分别在区间()0,2与()2,3内(1)若p ⌝是真命题,则实数m 的取值范围为 (2)若()()p q ⌝∧⌝是真命题,则实数m 的取值范围为 【知识点】复合命题的真假.L4【答案解析】(],2-∞;131,,2128⎛⎤⎡⎤-∞-⋃- ⎥⎢⎥⎝⎦⎣⎦ 解析:(1)若p 为真,则,解得:m >2,若¬p 是真命题,则p 是假命题,故实数m 的取值范围是:(﹣∞,2];(2)对于q :设f (x )=4x2+4(m ﹣2)x+1,由q 为真可得,解得:﹣<m <﹣,若q 为假,则m≤﹣或m≥﹣,∴若(¬p )∧(¬q )是真命题,则有m≤﹣或﹣m≤2,即m 的范围是:(﹣∞,﹣]∪[﹣,2];故答案为:(﹣∞,2],(﹣∞,﹣]∪[﹣,2].【思路点拨】(1))若p 为真,求出m 的范围,若¬p 是真命题,则p 是假命题,从而得出m 的范围;(2)由q 为真可得m 的范围,若q 为假,求出m 的范围,若(¬p )∧(¬q )是真命题,从而求出m 的范围.【题文】14、在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2cos 2B a b =+,若ABC ∆的面积为32S c=,则ab 的最小值为【知识点】正弦定理.L4 【答案解析】12 解析:在△ABC 中,由条件里用正弦定理可得2sinCcosB=2sinA+sinB=2sin (B+C )+sinB ,即 2sinCcosB=2sinBcosC+2sinCcosB+sinB ,∴2sinBcosC+sinB=0, ∴cosC=﹣,C=.由于△ABC 的面积为S=ab•sinC=ab=c ,∴c=ab .再由余弦定理可得c2=a2+b2﹣2ab•cosC,整理可得a2b2=a2+b2+ab≥3ab,当且仅当a=b 时,取等号,∴ab≥12,故答案为:12.【思路点拨】由条件里用正弦定理、两角和的正弦公式求得cosC=﹣,C=.根据△ABC的面积为S=ab•sinC=c ,求得c=ab .再由余弦定理化简可得a2b2=a2+b2+ab≥3ab,由此求得ab 的最小值.【题文】15、已知函数()2111[0,]24221,122x x f x x x x ⎧-+∈⎪⎪=⎨⎛⎤⎪∈ ⎥⎪+⎝⎦⎩,()3sin()22(0)32g x a x a a ππ=+-+>,给出下列结论:①函数()f x 的值域为2[0,]3; ②函数()g x 在[]0,1上是增函数;③对任意0a >,方程()()f xg x =在[]0,1内恒有解;④若存在[]12,0,1x x ∈,使得12()()f x g x =,则实数a 的取值范围是44[,]95. 其中所有正确的结论的序号是【知识点】分段函数的应用.菁优L4【答案解析】①②④解析:当x ∈[0,]时,f (x )=﹣x 是递减函数,则f (x )∈[0,],当x ∈(,1]时,f (x )==2(x+2)+﹣8,f′(x )=2﹣>0,则f (x )在(,1]上递增,则f (x )∈(,].则x ∈[0,1]时,f (x )∈[0,],故①正确; 当x ∈[0,1]时,g (x )=asin (x+)﹣2a+2(a >0)=﹣acosx ﹣2a+2,由a >0,0≤x≤,则g (x )在[0,1]上是递增函数,故②正确;由②知,a >0,x ∈[0,1]时g (x )∈[2﹣3a ,2﹣],若2﹣3a >或2﹣<0,即0<a <或a >,方程f (x )=g (x )在[0,1]内无解,故③错;故存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则解得≤a≤.故④正确.故答案为:①②④.【思路点拨】求得f(x)的各段的值域,再求并集,即可判断①;化简g(x),判断g(x)的单调性即可判断②;求出g(x)在[0,1]的值域,求出方程f(x)=g(x)在[0,1]内无解的a的范围,即可判断③;由③得,有解的条件为:g(x)的最小值不大于f(x)的最大值且g(x)的最大值不小于f(x)的最小值,解出a的范围,即可判断④.三、解答题:本大题共5小题,满分65分,解答应写出文字说明、证明过程或演算步骤【题文】16、(本小题满分11分)已知函数()sin()(,0,0,||)2f x A x x R Aπωϕωϕ=+∈>><的部分图象如图所示.(1)试确定函数()f x的解析式;(2)若1()23afπ=,求2cos()3πα-的值.【知识点】由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数中的恒等变换应用.【答案解析】(1)f(x)=2sin (πx+);(2)﹣解析:(1)由图可知,A=2,=﹣=,又ω>0,∴T==2,∴ω=π;由图可知,f(x)=Asin (ωx+φ)经过(,2),∴ω+φ=,即+φ=,∴φ=,∴f (x)=2sin(πx+);(2)∵f()=,∴2sin(+)=,∴sin(+)=cos[﹣(+)]=cos(﹣)=,∴cos(﹣α)=2﹣1=2×﹣1=﹣.【思路点拨】(1)由图可知,A=2,=,可求得ω,再利用ω+φ=可求得φ,从而可求得f(x)的解析式;(2)由(1)知f(x)的解析式,结合已知f()=,可求得α的三角函数知,最后利用两角差的余弦计算即可求cos(﹣α)的值.【题文】17、(本小题满分12分)2014世界园艺博览会在青岛举行,某展销商在此期间销售一种商品,根据市场调查,当每套商品售价为x 元时,销售量可达到150.1x -万套,供货商把该产品的供货价格分为来那个部分,其中固定价格为每套30元,浮动价格与销量(单位:万套)成反比,比例系数为k ,假设不计其它成本,即每套产品销售利润=售价-供货价格(1)若售价为50元时,展销商的总利润为180元,求售价100元时的销售总利润;(2)若10k =,求销售这套商品总利润的函数()f x ,并求()f x 的最大值.【知识点】函数模型的选择与应用.L4【答案解析】(1)330(万元)(2)f (x )= ﹣0.1x2+18x ﹣460,(0<x <150),350(万元). 解析:(1)售价为50元时,销量为15﹣0.1×50=10万套,此时每套供货价格为30+(元), 则获得的总利润为10×(50﹣30﹣)=180,解得k=20,∴售价为100元时,销售总利润为;(15﹣0.1×1000(100﹣30﹣)=330(万元).(2)由题意可知每套商品的定价x 满足不等式组,即0<x <150,∴f (x )=[x ﹣(30+)]×(15﹣0.1x )=﹣0.1x2+18x ﹣460,(0<x <150),∴f′(x )=﹣0.2x+18,令f′(x )=0可得x=90,且当0<x <90时,f′(x )>0,当90<x <150时,f′(x )<0, ∴当x=90时,f (x )取得最大值为350(万元). 【思路点拨】(1)由题意可得10×(50﹣30﹣)=180,解得k=20,即可求得结论;(2)由题意得f (x )=[x ﹣(30+)]×(15﹣0.1x )=﹣0.1x2+18x ﹣460,(0<x<150),利用导数判断函数的单调性即可求得最大值. 【题文】18、(本小题满分12分)如图,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且(,)62ππα∈,将角α的终边按逆时针方向旋转3π,交单位圆于点B ,记1122(,),(,)A x yB x y .(1)若113x =,求2x ;(2)分别过,A B 作x 轴的垂线,垂足一次为C 、D ,记AOC ∆的面积为1S ,BOD ∆的面积为2S ,若122S S =,求角α的值.【知识点】两角和与差的正弦函数;任意角的三角函数的定义.【答案解析】(1)1266-(2)解析:(1)解:由三角函数定义,得 x1=cosα,.因为,,所以.所以 .(2)解:依题意得 y1=sinα,. 所以,.依题意S1=2S2 得 ,即sin2α=﹣2[sin2αcos +cos2αsin ]=sin2α﹣cos2α,整理得 cos2α=0.因为,所以,所以,即.【思路点拨】(1)由三角函数定义,得 x1=cosα=,由此利用同角三角函数的基本关系求得sinα的值,再根据,利用两角和的余弦公式求得结果.(2)依题意得 y1=sinα,,分别求得S1 和S2 的解析式,再由S1=2S2 求得cos2α=0,根据α的范围,求得α的值. 【题文】19、(本小题满分12分)已知函数()2(0)2mx n f x m x +=≠+是定义在R 上的奇函数.(1)若0m >,求()f x 在(,)m m -上递增的充要条件;(2)若()21sin cos cos 22f x θθθ≤++-对任意的实数θ和正实数x 恒成立,求实数m 的取值范围.【知识点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.L4【答案解析】(1)0<m≤.(2)(﹣∞,0)∪(0,2]. 解析:(1)∵函数f (x )=(m≠0)是定义在R 上的奇函数.∴f (0)=0,即=0,∴n=0,∴f (x )=,显然f (﹣x )=﹣f (x )成立,故n=0时f (x )为R 上的奇函数, ∴f′(x )==,∵m >0,∴﹣m <0, 由f′(x )>0可得x2﹣2<0,解得﹣<x <,即f (x )的递增区间是(﹣,),由题意只需(﹣m ,m )⊆(﹣,),∴0<m≤, ∴f (x )在(﹣m ,m )上递增的充要条件是0<m≤. (2)设g (x )=sinθc0sθ+cos2θ+﹣,∵f (x )≤sinθcosθ+cos2θ+﹣对任意的实数θ和正实数x 恒成立,∴f (x )≤g(x )min 恒成立,∵g (x )=sinθc0sθ+cos2θ+﹣=sin2θ+﹣=sin2θ+cos2θ+=sin (2θ+)+,∴g (x )min=﹣+=,∴只需f (x )≤,即≤,∵x >0,∴只需≤,即m≤(x+)恒成立,而(x+)≥×2=2,当且仅当x=时取得最小值2,∴m≤2,又m≠0,∴实数m 的取值范围是(﹣∞,0)∪(0,2].【思路点拨】(1)利用导数判断函数的单调性,由f′(x )>0解得即可;(2)设g (x )=sinθc0sθ+cos2θ+﹣,由题意得只需f (x )≤g(x )min 恒成立,利用三角变换求得g (x )的最小值,列出不等式解得即可.【题文】20、(本小题满分14分)已知()(ln 1)x f x e x =+(1)求()()y f x f x '=-的单调区间与极值; (2)若0k <,试分析方程()()2f x f x kx k e '=+-+在[)1,+∞上是否有实根,若有实数根,求出k 的取值范围;否则,请说明理由.【知识点】利用导数研究函数的单调性;利用导数研究函数的极值.菁L4【答案解析】(1)y=f (x )﹣f′(x )的单调递增区间为(0,1),单调递减区间为(1,+∞),∴当x=1时,y 取极大值﹣e ,函数无极小值.(2)方程f′(x )=f (x )+kx ﹣k2+e 在[1,+∞]上无实根.解析:(1)函数f (x )=ex (lnx+1)的定义域为(0,+∞),f′(x )=+ex ,则 y=f (x )﹣f′(x )=,∴y′=,由y′=0可得x=1.当x >1时,y′<0;当x <1时,y′>0;∴y=f (x )﹣f′(x )的单调递增区间为(0,1),单调递减区间为(1,+∞),∴当x=1时,y 取极大值﹣e ,函数无极小值.(2)方程f′(x )=f (x )+kx ﹣k2+e 可变为f′(x )﹣f (x )﹣kx+k2﹣e=0 进一步化为﹣kx+k2﹣e=0,令g (x )=﹣kx+k2﹣e ,g′(x )=. ∵x≥1,∴x ﹣1≥0,而ex >0,∴,又k <0,∴g′(x )=>0,∴g (x )在[1,+∞]上单调递增,且g (x )的最小值为g (1)=k2﹣k ,则方程f′(x )=f (x )+kx ﹣k2+e 在[1,+∞]上最多只有一个实根,∴要使方程f′(x )=f (x )+kx ﹣k2+e 在[1,+∞]上有一个实根,只需k2﹣k ≤0,解得0≤k≤1,这与k <0矛盾,故方程f′(x )=f (x )+kx ﹣k2+e 在[1,+∞]上无实根.【思路点拨】(1)先求出f (x )的导数,代入y=f (x )﹣f′(x )得出函数表达式,再去研究单调性与极值,(2)把方程f′(x )=f (x )+kx ﹣k2+e 化简,构造函数,用导数研究方程有无实根.【题文】21、(本小题满分14分)已知()ln(,1mf x n x m nx=++为常数),在1x=处的切线方程为20x y+-=.(1)求()y f x=的单调区间;(2)若任意实数1[,1]xe∈,使得对任意的1[,2]2t∈上恒有()3222f x t t at≥--+成立,求实数a的取值范围;(3)求证:对任意正整数n,有124()(ln1ln2ln)2 231nn nn+++++++≥+.【知识点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性。
湖北省教学合作2015届高三年级十月联考试题数学(理)
湖北省教学合作2015届高三年级十月联考试题数学(理)本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试用时120分钟第Ⅰ卷 (选择题,50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1、已知集合2{|{|0}2x A x y B x x +===≤-,则A B = A .[]1,1- B .[)1,2- C .[)1,2 D .[]2,1-- 2、下列命题中真命题的个数是(1)若命题,p q 中有一个是假命题,则()p q ⌝∧是真命题.(2)在ABC ∆中,“cos sin cos sin A A B B +=+”是“90C =”的必要不充分条件. (3)C 表示复数集,则有2,11x C x ∀∈+≥. A .0 B .1 C .2 D .33、已知四个函数:①sin y x x =;②cos y x x =;③cos y x x =;④2xy x =⋅的图象如下,但顺序打乱,则按照图象从左到右的顺序,对应的函数正确的一组是A .①④②③B .①④③②C .④①②③D .③④②①4、已知12515111(),log ,log 533a b c ===,则,,a b c 的大小关系是A .a b c >>B .c a b >>C .a c b >>D .c b a >> 5、将函数2cos2y x x =-的图象向右平移4π个单位长度,所得图象对应的函数()g x A1 B .对称轴方程是7,12x k k Z ππ=+∈C .是周期函数,周期2T π=D .在区间7[,]1212ππ上单调递增 6、已知函数()log (01)a f x x a =<<的导函数()f x ',(),(1)()A f a b f a f a '==+-(1),(2)(1)C f a D f a f a '=+=+-+,则,,,A B C D 中最大的数是A .AB .BC .CD .D 7、已知a b <,若函数()(),f x g x 满足()()b baaf x dxg x dx =⎰⎰,则称()(),f x g x 为区间[],a b 上的一组“等积分”函数,给出四组函数:①()()2,1f x x g x x ==+; ②()()sin ,cos f x x g x x ==; ③()()234f xg x x π==; ④函数()(),f x g x 分别是定义在[]1,1-上的奇函数且积分值存在. 其中为区间[]1,1-上的“等积分”函数的组数是 A .1 B .2 C .3 D .48、已知2221a b c ++=21c x x m +≤-++对任意实数,,,a b c x 恒成立,则实数m 的取值范围是A .[)8,+∞B .(][),42,-∞-+∞ C .(][),18,-∞-+∞ D .[)2,+∞9、已知由不等式组00240x y y kx y x ≤⎧⎪≥⎪⎨-≤⎪⎪--≤⎩,确定的平面区域Ω的面积为7,定点M 的坐标为()1,2-,若N ∈Ω,O 为坐标原点,则OM ON ⋅的最小值是A .8-B .7-C .6-D .4- 10、已知函数()()2212,3ln 2f x x axg x a x b =+=+设两曲线()(),y f x y g x ==有公共点,且在该点处的切线相同,则(0,)a ∈+∞时,实数b 的最大值是A .6136eB .616eC .2372eD .2332e第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在题中的横线上11、已知向量a 与向量b 的夹角为120,若()(2)a b a b +⊥-且2a =,则b 在a 上的投影为 12、已知偶函数()f x 在(],0-∞上满足:当(]12,,0x x ∈-∞且12x x ≠时,总有12120()()x x f x f x -<-,则不等式()()1f x f x -<的解集为13、点O 是锐角ABC ∆的外心,812,3AB AC A π===,若AO xAB yAC =+,则23x y +=14、定义在正整数集上的函数()f n 满足(1)(())43()f f n n n N +=+∈;(2)(125)()f m m N +=∈,则有()f m =(2015)f =15、(选修4-4:坐标系与参数方程) 曲线C 的参数方程是22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数,且(,2)θππ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的方程为sin()04πρθ+=,取线C 与曲线D 的交点为P ,则过交点P 且与曲线C 相切的极坐标方程是三、解答题:本大题共6小题,共75分,解答应写成文字说明、证明过程或演算步骤 16、(本小题满分12分)已知集合U R =,集合{|(2)(3)0}A x x x =--<,函数2(2)lg x a y a x-+=-的定义域为集合B .(1) 若12a =,求集合()U A C B ; (2) 命题:p x A ∈,命题:q x B ∈,若q 是p 的必要条件,求实数a 的取值范围.17、(本小题满分12分)在ABC ∆中,,,A B C 所对的边分别为,,a b c ,向量(cos ,sin )m A A =,向量(2sin ,cos )n A A =-若2m n +=. (1)求角A 的大小;(2)若ABC ∆外接圆的半径为2,2b =,求边c 的长.18、(本小题满分12分)据气象中心观察和预测:发生于沿海M 地的台风已知向正南方向移动,其移动速度(/)v km h 与时间()t h 的函数图象如图所示,过线段OC 上一 点(,0)T t 作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为()t h 内 台风所经过的路程()s km .(1)当4t =时,求s 的值,并将s 随t 变化的规律用数学关系式表示出来;(2)若N 城位于M 地正南方向,且距N 地650km ,试判断这场台风师父会侵袭到N 城,如果会,在台风发生后多出时间它将侵袭到N 城?如果不会,请说明理由.19、(本小题满分12分)某地一天的温度(单位:C )随时间t (单位:小时)的变化近似满足函数关系:()[]244sin ,0,24f t t t t ωω=--∈,且早上8时的温度为24C ,(0,)8πω∈.(1)求函数的解析式,并判断这一天的最高温度是多少?出现在何时?(2)当地有一通宵营业的超市,我节省开支,跪在在环境温度超过28C 时,开启中央空调降温,否则关闭中央空调,问中央空调应在何时开启?何时关闭?20、(本小题满分13分)已知函数()()22(),(1)f x x x a g x x a x =-=-+-(其中a 为常数)(1)如果函数()y f x =和()y g x =有相同的极值点,求a 的值,并写出函数()y f x =的单调区间; (2)求方程()()0f x g x -=在区间[]1,3-上实数解的个数.21、(本小题满分14分)(Ⅰ)证明:当1x >时,12ln x x x<-; (Ⅱ)若不等式(1)ln(1)a t a t++>对任意的正实数t 恒成立,求正实数a 的取值范围; (Ⅲ)求证:19291()10e<教学合作2015届高三年级十月联考试题数学(理科)答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.解析:D 依题意;化简集合{|13}A x x x =≤-≥或,{|22}B x x =-≤<, 利用集合的运算可得:{|21}AB x x =-≤≤-.故选D.2.解析:C 命题(1)(2)是真命题,(3)是假命题,故选C3.解析:A ①sin y x x =是偶函数,其图象关于y 轴对称;②cos y x x =是奇函数,其图象关于原点对称;③|cos |y x x =是奇函数,其图象关于原点对称.且当0x >时,0y ≥;④2xy x =⋅为非奇非偶函数,且当0x >时,0y >;当0x <时,0y <;故选A.4.解析:B 由指数函数和对数函数的性质可知01,0,01a b c <<<<<,而1211()52a ==<,155511log log 3log 32c ==>=,所以有c a b >>,故选B.5.解析:D化简函数得2cos 22sin(2)6y x x x π=-=-,所以2()2sin(2)3g x x π=-易求最大值是2,周期是π,由22()32x k k Z πππ-=+∈,得对称轴方程是7()122k x k Z ππ=+∈由27222()2321212k x k k x k k Z πππππππππ-+≤-≤+⇔+≤≤+∈,故选D. 6.解析:A 由于函数()log (01)a f x x a =<<是可导函数且为单调递减函数,,A C 分别表示函数在点,1a a +处切线的斜率,因为(1)()(1)f a f a B a a+-=+-,(2)(1)(2)(1)f a f a D a a +-+=+-+,故,B D 分别表示函数图象上两点(,()),(1,(1))a f a a f a ++和两点(1,(1)),(2,(2))a f a a f a ++++连线的斜率,由函数图象可知一定有A B C D <<<,四个数中最大的是D ,故选D .7.解析:C 对于①,1101111()2||2()22f x dx x dx x dx xdx ---==-+=⎰⎰⎰⎰,或者利用积分的几何意义(面积)直接可求得11()2f x dx -=⎰,而11121111()(+1)()|22g x dx x dx x x ---==+=⎰⎰,所以①是一组“等积分”函数;对于②,1111()sin 0f x dx xdx --==⎰⎰,而1111()cos 2sin10g x dx xdx --==≠⎰⎰,所以②不是一组“等积分”函数;对于③,由于函数()f x 的图象是以原点为圆心,1为半径的半圆,故111()2f x dx π--==⎰⎰,而1112311131()|442g x dx x dx x πππ---===⎰⎰,所以③是一组“等积分”函数;对于④,由于函数(),()f x g x 分别是定义在[1,1]-上的奇函数且积分值存在,利用奇函数的图象关于原点对称和定积分的几何意义,可以求得函数的定积分1111()()0f x dx g x dx --==⎰⎰,所以④是一组“等积分”函数,故选C8.解析:B 由柯西不等式得, 9))(432()232(2222=++++≤++c b a c b a ,即3232≤++c b a ,2c ++的最大值为3,当且仅当22221c a b c ==++=⎩时等号成立;21||c x x m +≤-++对任意实数,,,a b c x 恒成立等价于1||3x x m -++≥对任意实数x 恒成立,又因为1|||(1)()||1|x x m x x m m -++≥--+=+对任意x 恒成立,因此有即13m +≥,解得24m m ≥≤-或,故选B.9.解析: B 依题意:画出不等式组0040x y y x ≤⎧⎪≥⎨⎪--≤⎩所表示的平面区域(如右2y kx =+恒图所示)可知其围成的区域是等腰直角三角形面积为8,由直线过点(0,2)B ,且原点的坐标恒满足2y kx -≤,当0k =时,2y ≤,此时平面区域Ω的面积为6,由于67<,由此可得0k <.由240y kx y x -=⎧⎨--=⎩可得242(,)11k D k k ---,依题意应有122||121k ⨯⨯=-,因此1k =-(3k =,舍去) 故有(1,3)D -,设(,)N x y ,故由2z OM ON x y =⋅=-,可化为1122y x z =-,112<所以当直线1122y x z =-过点D 时,截距12z -最大,即z 取得最小值7-,故选B . 10.解析:D依题意:()2f x x a '=+,23()a g x x'=,因为两曲线()y f x =,()y g x =有公共点,设为00(,)P x y ,所以220000020000001()()23ln 23()()23f x g x x ax a x b a f x g x x a x a x a x ⎧=⇔+=+⎪⎪⎨⎪''=⇔+=⇔==-⎪⎩或,因为00x >,0a > 所以0x a =,因此22220001523ln 3ln (0)22b x ax a x a a a a =+-=-> 构造函数225()3ln (0)2h t t t t t =->,由()2(13l n )h t t t '=-,当130t e <<时,()0h t '>即()h t 单调递增;当13t e >时,()0h t '<即()h t 单调递减,所以1233max3()()2h t h e e ==即为实数b 的最大值.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上.11.解析: 因为向量a 与向量b 的夹角为︒120,所以b 在a 上的投影为01||cos120||2b b =-,问题转化为求||b ,因为2()(2)()(2)02||||40a b a b a b a b b b +⊥-⇔+⋅-=⇔--= 故331||b +=所以b 在a 上的投影为.12.解析:1{|}2x R x ∈> 依题意:偶函数()f x 在(,0]-∞上单调递减,所以()f x 在[0,)+∞上单调递增,直接构造函数2()f x x =,问题转化为解不等式22(1)x x -<,解之得:12x >, 所以不等式(1)()f x f x -<的解集为1{|}2x R x ∈>.另解:依题意:偶函数()f x 在(,0]-∞上单调递减,所以()f x 在[0,)+∞上单调递增, 由于(1)()f x f x -<,即1(|1|)(||)|1|||2f x f x x x x -<⇔-<⇔> 所以不等式(1)()f x f x -<的解集为1{|}2x R x ∈>. 13.解析:53如图,O 点在,AB AC 上的射影是点,D E ,它们分别为,AB AC 的中点,由数量积的几何意义,可得||||32AB AO AB AD ⋅=⋅=,||||72AC AO AC AE ⋅=⋅=依题意有2644832AB AO xAB yAC AB x y ⋅=+⋅=+=,即432x y +=,同理24814472AC AO xAB AC yAC x y ⋅=⋅+=+=,即263x y += 综上,将两式相加可得:695x y +=,即5233x y +=14.解析:503 (2分) 1615m +(3分) 注意到(())43f f n n =+和(125)f m =, 易求得()((125))41253503f m f f ==⨯+=;因为(())43f f n n =+,所以((()))(43)4()3f f f n f n f n =+=+ 故有2(2015)(45033)4(503)34(41253)34(125)4331615f f f f f m =⨯+=+=⨯++=+⨯+=+ 15.解析: sin 2ρθ=-曲线Γ即直线的普通方程为0x y+=,又曲线C即圆心为()2,0C,半径为2的半圆,其方程为22(2)4x y-+=,注意到(,2)θππ∈,所以0y<,联立方程组得22(2)4x yx yy+=⎧⎪-+=⎨⎪<⎩,解之得22xy=⎧⎨=-⎩,故交点P的坐标为(2,2)-.过交点P且与曲线C相切的直线的普通方程是2y=-,对应的极坐标方程为sin2ρθ=-.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)解析:(1)因为集合{|23}A x x=<<,因为12a=函数29(2)4lg=lg12xx aya x x--+=--,由9412xx-->0,可得集合19={|}24B x x<<…………2分19{|}24UB x x x=≤≥或ð,…………………………………………4分故9(){|3}4UA B x x=≤<ð. ……………………………6分(2)因为q是p的必要条件等价于p是q的充分条件,即A B⊆由{|23}A x x=<<,而集合B应满足2(2)x aa x-+>-,因为22172()024a a a+-=-+>故2{|2}B x a x a=<<+,……………………8分依题意就有:2223aa≤⎧⎨+≥⎩,………………………………………10分即1a≤-或12a≤≤所以实数a 的取值范围是∞(-,-1][1,2]. …………………12分17.(本小题满分12分)解析:(Ⅰ)依题意:(cos sin sin )m n A A A A +=-+,因为||2m n += 所以22(cos sin (cos sin )4A A A A -++=,化简得:sin cos tan 1A A A =⇒=,故有4A π=. …………………6分(Ⅱ)依题意,在ABC ∆中,由正弦定理24sin aR A==,所以a = 由余弦定理可得:2222cos a b c b c A =+-⋅⋅,化简得:240c --=,解得:c =分18.(本小题满分12分) 解析:(Ⅰ)由图象可知:直线OA 的方程是:3v t =,直线BC 的方程是:270v t =-+ 当4t =时,12v =,所以1412242s =⨯⨯=. …………………………………2分 当010t ≤≤时,213322s t t t =⨯⨯=; ………………………3分 当1020t <≤时,11030(10)30301502s t t =⨯⨯+-⨯=-…………………4分 当2035t <≤时,21150300(20)(27030)705502s t t t t =++⨯-⨯-++=-++ …………5分综上可知s 随t 变化的规律是223[0,10]230150(10,20]70550(20,35]tt s t t t t t ⎧∈⎪⎪⎪=-∈⎨⎪⎪-+-∈⎪⎩………………………………………7分(Ⅱ)[0,10]t ∈,2max 3101506502s =⨯=<, …………………………………………8分 (10,20]t ∈,max 3020150450650s =⨯-=< …………………………9分当(20,35]t ∈时,令270550650t t -++=,解得30t =,(40t =舍去)…………………………11分即在台风发生后30小时后将侵袭到N 城. ……………………12分19.(本小题满分12分)解析:(Ⅰ)依题意()244sin 248sin()3f t t t t πωωω=--=-+ ……………………2分 因为早上8时的温度为24C ,即(8)24f =, 11sin(8)08()()3383k k k Z ππωωπωπ+=⇒+=⇒=-∈……………………3分 (0,)8πω∈,故取1k =,12πω=, 所求函数解析式为()248sin(),(0,24]123f t t t ππ=-+∈. …………………………………5分 由sin()1123t ππ+=-,7(,)12333t ππππ+∈,可知3141232t t πππ+=⇒=, 即这一天在14时也就是下午2时出现最高温度,最高温度是32C .…………7分(Ⅱ)依题意:令248sin()28123t ππ-+=,可得 1sin()1232t ππ+=- ……………………………9分 7(,)12333t ππππ+∈,71236t πππ∴+=或111236t πππ+=, 即10t =或18t =,………………11分故中央空调应在上午10时开启,下午18时(即下午6时)关闭…………12分20.(本小题满分13分)解析:(Ⅰ)2322()()2f x x x a x ax a x =-=-+,则22()34(3)()f x x ax a x a x a '=-+=--, ……………………1分 令()0f x '=,得x a =或3a ,而二次函数()g x 在12a x -=处有极大值, ∴112a a a -=⇒=-或1323a a a -=⇒=; 综上:3a =或1a =-. ………………………4分 当3a =时,()y f x =的单调增区间是(,1],[3,)-∞+∞,减区间是(1,3)……5分当1a =-时,()y f x =的单调增区间是1(,1],[,)3-∞--+∞,减区间是1(1,)3--; ………………6分 (Ⅱ)22()()()[(1)]f x g x x x a x a x a -=---+-+2()()(1)x x a x a x =-+-+ 2()[(1)1]x a x a x =-+-+, …………8分2()(1)1h x x a x =+-+, (1)(3)a a ∆=+- 1 当13a -<<时,0∆<,()0h x =无解,故原方程的解为[1,3]x a =∈-,满足题意,即原方程有一解,[1,3]x a =∈-; …………………9分 2 当3a =时,0∆=,()0h x =的解为1x =,故原方程有两解,1,3x =; 3 当1a =-时,0∆=,()0h x =的解为1x =-,故原方程有一解,1x =-; 4 当3a >时,0∆>,由于(1)14,(0)1,(3)133h a h h a -=+>==- 若1313303a a -≤⇒≥时,()0h x =在[1,3]-上有一解,故原方程有一解; 若13133033a a ->⇒<<时,()0h x =在[1,3]-上无解,故原方程有无解; 5 当1a <-时,0∆>,由于(1)10,(0)1,(3)1330h a h h a -=+<==->()0h x =在[1,3]-上有一解,故原方程有一解; …………………11分 综上可得:当1333a <<时,原方程在[1,3]-上无解;当3a <或133a ≥时,原方程在[1,3]-上有一解;当3a =时,原方程在[1,3]-上有两解.……………13分21.(本小题满分14分)解析: (Ⅰ)令函数1()2ln f x x x x=-+,定义域是{|1}x R x ∈> 由22221(1)()10x f x x x x--'=--=≤,可知函数()f x 在(1,)+∞上单调递减 故当1x >时,1()2ln (1)0f x x x f x =-+<=,即12ln x x x<-. ……………………………3分 (Ⅱ)因为0,0t a >>,故不等式(1)ln(1)a t a t ++>可化为ln(1)at t t a +>+……()* 问题转化为()*式对任意的正实数t 恒成立, 构造函数()ln(1)(0)at g t t t t a=+->+, 则2221[(2)]()1()(1)()a t t a a g t t t a t t a --'=-=++++,……………6分 (1)当02a <≤时,0,(2)0t a a >-≤,()0g t '∴≥即()g t 在(0,)+∞上单调递增,所以()(0)0g t g >=,即不等式ln(1)at t t a +>+对任意的正实数t 恒成立. (2)当2a >时,(2)0a a ->因此(0,(2))()0t a a g t '∈-<,,函数()g t 单调递减;((2),+)()0t a a g t '∈-∞>,,函数()g t 单调递增, 所以min (2)()((2))2ln(1)1a a g t g a a a a -=-=--- 2,11a a >∴->,令11x a =->, 由(Ⅰ)可知2min (2)11()2ln(1)2ln 2ln ()01a a x g t a x x x a x x--=--=-=--<-,不合题意. 综上可得,正实数a 的取值范围是(0,2]. ………………10分 (Ⅲ)要证19291()10e <,即证910119ln 2ln 19ln 219ln(1)21099e <-⇔>⇔+>, 由(Ⅱ)的结论令2a =,有2(1)ln(1)2t t++>对0t >恒成立,取19t =可得不等式119ln(1)29+>成立, 综上,不等式19291()10e <成立. ………………………………14分。
湖北省部分重点中学2015届高三第一次联考数学(理)试题 Word版含答案
湖北省部分重点中学2015届高三第一次联考数学试卷(理)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、复数11z i=+的共轭复数是( )A .1i --B .1i -+C .1i -D .1i +2、已知实数,x y 满足1212y y x x ≥⎧⎪≥-⎨⎪≤⎩,则目标函数22z x y =+的最小值为( )A.2 C .1 D .53、模几何体的正视图与俯视图都是边长为1的正方形,且体积为12,则该几何体的侧视图可以 是( )4、阅读程序框图,运行相应的程序,输出的结果为( ) A .6 B .-6 C .0 D .185、已知()2(,)f x x bx c b c R =++∈,命题甲:函数()()2log g x f x =的值域为R ;命题乙:0x R∃∈使0()0f x <成立,则甲是乙的( )条件。
A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要6、过双曲线2222:1(0,0)x y C a b a b-=>>上任意一点P 作与实轴平行的直线,交两渐近线于,M N 两点,若23PM PN b ⋅=,则双曲线C 的离心率为( )A .3B .3 D .37、从编号为001,002,,500的500个产品中用系统抽样的的方法抽取一个样本,已知样本编号从小到大依次为007,032,,则样本中最大的编号应该为( )A .483B .482C .481D .4808、已知函数()23420151(0)2342015x x x x f x x x =+-+-++>,则()f x 在定义域上的单调性是( ) A .在()0,+∞单调递增 B .在()0,+∞单调递减C .在(0,1)单调递增,()1,+∞单调递减D .在(0,1)单调递减,()1,+∞单调递增 9、设函数()4sin(31)f x x x =+-,则下列区间中()f x 不存在零点的是( ) A .[]0,1 B .[]2,1-- C .[]3,4 D .[]3,2-- 10、非空数集123{,,,,}n A a a a a =(,0)n n N a *∈>中,所有元素的算术平均数即为()E A ,即()123na a a a E A n++++=,若非空数集B 满足下列两个条件:①B A ⊆;②()()E B E A =,则称B 为A 的一个“包均值子集”,据此,集合{}1,2,3,4,5,6,7的子集中是“包均值子集”的概率是( ) A .15128 B .19128 C .1164D .63128二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分,把答案填在答题卡对应的题号的位置上,答错位置,书写不清,模棱两可均不得分。
湖北省教学合作2015届高三数学10月联考试题 理(含解析)新人教A版
教学合作2015届高三年级十月联考试题数学(理科)【试卷综评】本试卷试题主要注重基本知识、基本能力、基本方法等当面的考察,覆盖面广,注重数学思想方法的简单应用,试题有新意,符合课改和教改方向,能有效地测评学生,有利于学生自我评价,有利于指导学生的学习,既重视双基能力培养,侧重学生自主探究能力,分析问题和解决问题的能力,突出应用,同时对观察与猜想、阅读与思考等方面的考查。
本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试用时120分钟 第Ⅰ卷 (选择题,50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的【题文】1、已知集合22{|23},{|0}2x A x y x x B x x +==--=≤-,则A B =A .[]1,1- B .[)1,2- C .[)1,2 D .[]2,1--【知识点】交集及其运算.A1【答案解析】D 解析:依题意;化简集合{|13}A x x x =≤-≥或,{|22}B x x =-≤<, 利用集合的运算可得:{|21}AB x x =-≤≤-.故选D.【思路点拨】求出集合A ,B 的等价条件,即可得到结论.【题文】2、下列命题中真命题的个数是(1)若命题,p q 中有一个是假命题,则()p q ⌝∧是真命题.(2)在ABC ∆中,“cos sin cos sin A A B B +=+”是“90C =”的必要不充分条件.(3)C 表示复数集,则有2,11x C x ∀∈+≥. A .0 B .1 C .2 D .3【知识点】必要条件、充分条件与充要条件的判断.A2 【答案解析】C 解析:命题(1)(2)是真命题,(3)是假命题,故选C【思路点拨】根据p ∧q ,¬p 的真假和p ,q 真假的关系,二倍角的正弦公式,复数的概念即可判断这几个命题的真假.【题文】3、已知四个函数:①sin y x x =;②cos y x x =;③cos y x x =;④2xy x =⋅的图象如下,但顺序打乱,则按照图象从左到右的顺序,对应的函数正确的一组是A .①④②③B .①④③②C .④①②③D .③④②① 【知识点】函数的图象与图象变化.B10【答案解析】A 解析:①sin y x x =是偶函数,其图象关于y 轴对称;②cos y x x =是奇函数,其图象关于原点对称;③|cos |y x x =是奇函数,其图象关于原点对称.且当0x >时,0y ≥;④2xy x =⋅为非奇非偶函数,且当0x >时,0y >;当0x <时,0y <;故选A.【思路点拨】从左到右依次分析四个图象可知,第一个图象关于Y 轴对称,是一个偶函数,第二个图象不关于原点对称,也不关于Y 轴对称,是一个非奇非偶函数;第三、四个图象关于原点对称,是奇函数,但第四个图象在Y 轴左侧,函数值不大于0,分析四个函数的解析后,即可得到函数的性质,进而得到答案.【题文】4、已知12515111(),log ,log 533a b c ===,则,,a b c 的大小关系是 A .a b c >> B .c a b >> C .a c b >> D .c b a >> 【知识点】对数值大小的比较.菁B7【答案解析】B 解析:由指数函数和对数函数的性质可知01,0,01a b c <<<<<,而1211()52a ==<,155511log log 3log 32c ==>=,所以有c a b >>,故选B. 【思路点拨】利用指数函数和对数函数的单调性即可得出.【题文】5、将函数2cos 2y x x =-的图象向右平移4π个单位长度,所得图象对应的函数()g xA1 B .对称轴方程是7,12x k k Z ππ=+∈C .是周期函数,周期2T π=D .在区间7[,]1212ππ上单调递增【知识点】两角和与差的正弦函数;函数y=Asin (ωx+φ)的图象变换.C5 C4【答案解析】D 解析:化简函数得2cos 22sin(2)6y x x x π=-=-,所以2()2sin(2)3g x x π=-易求最大值是2,周期是π,由22()32x k k Z πππ-=+∈,得对称轴方程是7()122k x k Z ππ=+∈由27222()2321212k x k k x k k Z πππππππππ-+≤-≤+⇔+≤≤+∈,故选D.【思路点拨】由两角差的正弦公式化简函数,再由图象平移的规律得到2()2sin(2)3g x x π=-,易得最大值是2,周期是π,故A ,C 均错;由22()32x k k Z πππ-=+∈,求出x ,即可判断B ;再由正弦函数的增区间,即可得到g (x )的增区间,即可判断D .【题文】6、已知函数()log (01)a f x x a =<<的导函数()f x ',(),(1)()A f a b f a f a '==+-(1),(2)(1)C f aD f a f a '=+=+-+,则,,,A B C D 中最大的数是A .AB .BC .CD .D 【知识点】导数的运算.B11 【答案解析】D 解析:由于函数()log (01)a f x x a =<<是可导函数且为单调递减函数,,A C 分别表示函数在点,1a a +处切线的斜率,因为(1)()(1)f a f a B a a +-=+-,(2)(1)(2)(1)f a f a D a a +-+=+-+,故,B D 分别表示函数图象上两点(,()),(1,(1))a f a a f a ++和两点(1,(1)),(2,(2))a f a a f a ++++连线的斜率,由函数图象可知一定有A B C D <<<,四个数中最大的是D ,故选D .【思路点拨】设利用导数及直线斜率的求法得到A 、B 、C ,D 分别为对数函数的斜率,根据对数函数的图象可知大小,得到正确答案. 【题文】7、已知a b <,若函数()(),f x g x 满足()()bbaaf x dxg x dx=⎰⎰,则称()(),f x g x 为区间[],a b 上的一组“等积分”函数,给出四组函数:①()()2,1f x x g x x ==+; ②()()sin ,cos f x x g x x==;③()()234f x g x x π==;④函数()(),f x g x 分别是定义在[]1,1-上的奇函数且积分值存在.其中为区间[]1,1-上的“等积分”函数的组数是A .1B .2C .3D .4 【知识点】微积分基本定理.B13 【答案解析】C 解析:对于①,111111()2||2()22f x dx x dx x dx xdx ---==-+=⎰⎰⎰⎰,或者利用积分的几何意义(面积)直接可求得11()2f x dx -=⎰,而11121111()(+1)()|22g x dx x dx x x ---==+=⎰⎰,所以①是一组“等积分”函数;对于②,1111()sin 0f x dx xdx --==⎰⎰,而1111()cos 2sin10g x dx xdx --==≠⎰⎰,所以②不是一组“等积分”函数;对于③,由于函数()f x 的图象是以原点为圆心,1为半径的半圆,故111()2f x dx π--==⎰⎰,而1112311131()|442g x dx x dx x πππ---===⎰⎰,所以③是一组“等积分”函数;对于④,由于函数(),()f x g x 分别是定义在[1,1]-上的奇函数且积分值存在,利用奇函数的图象关于原点对称和定积分的几何意义,可以求得函数的定积分1111()()0f x dxg x dx --==⎰⎰,所以④是一组“等积分”函数,故选C【思路点拨】利用“等积分”函数的定义,对给出四组函数求解,即可得出区间[﹣1,1]上的“等积分”函数的组数【题文】8、已知2221a b c ++=,21c x x m+≤-++对任意实数,,,a b c x恒成立,则实数m 的取值范围是 A .[)8,+∞ B .(][),42,-∞-+∞ C .(][),18,-∞-+∞ D .[)2,+∞【知识点】一般形式的柯西不等式.N4 【答案解析】 B 解析:由柯西不等式得,9))(432()232(2222=++++≤++c b a c b a ,即3232≤++c b a ,2c +的最大值为3,当且仅当22221c a b c ==++=⎩时等号成立;所以21||c x x m +≤-++对任意实数,,,a b c x 恒成立等价于1||3x x m -++≥对任意实数x恒成立,又因为1|||(1)()||1|x x m x x m m -++≥--+=+对任意x 恒成立,因此有即13m +≥,解得24m m ≥≤-或,故选B.【思路点拨】由柯西不等式求得3232≤++c b a ,可得1||3x x m -++≥对任意实数x 恒成立.再根据|x ﹣1|+|x+m|≥|m+1|,可得13m +≥,由此求得m 的范围.【题文】9、已知由不等式组00240x y y kx y x ≤⎧⎪≥⎪⎨-≤⎪⎪--≤⎩,确定的平面区域Ω的面积为7,定点M 的坐标为()1,2-,若N ∈Ω,O 为坐标原点,则OM ON ⋅的最小值是A .8-B .7-C .6-D .4- 【知识点】简单线性规划.E5【答案解析】B 解析:依题意:画出不等式组040x y y x ≤⎧⎪≥⎨⎪--≤⎩所表示的平面区域(如右图所示)可知其围成的区域是等腰直角三角形面积为8,由直线2y kx =+恒过点(0,2)B ,且原点的坐标恒满足2y kx -≤,当0k =时,2y ≤,此时平面区域Ω的面积为6,由于67<,由此可得0k <.由240y kx y x -=⎧⎨--=⎩可得242(,)11k D k k ---,依题意应有122||121k ⨯⨯=-,因此1k =-(3k =,舍去)故有(1,3)D -,设(,)N x y ,故由2z OM ON x y =⋅=-,可化为1122y x z =-,112<所以当直线1122y x z =-过点D 时,截距12z -最大,即z 取得最小值7-,故选B .【思路点拨】首先作出不等式组40x y y x ≤⎧⎪≥⎨⎪--≤⎩所表示的平面区域,然后根据直线2y kx =+恒过点B (0,2),且原点的坐标恒满足2y kx -≤,当k=0时,y≤2,此时平面区域Ω的面积为6,由于6<7,由此可得k <0.联立方程组求出D 的坐标,根据三角形的面积公式求得k 的值,最后把OM ON ⋅转化为线性目标函数解决.【题文】10、已知函数()()2212,3ln 2f x x ax g x a x b =+=+设两曲线()(),y f x y g x ==有公共点,且在该点处的切线相同,则(0,)a ∈+∞时,实数b 的最大值是A .6136eB .616eC .2372eD .2332e【知识点】利用导数研究曲线上某点切线方程.B12【答案解析】D 解析:依题意:()2f x x a '=+,23()a g x x '=,因为两曲线()y f x =,()y g x =有公共点,设为00(,)P x y ,所以220000020000001()()23ln 23()()23f x g x x ax a x b a f x g x x a x a x ax ⎧=⇔+=+⎪⎪⎨⎪''=⇔+=⇔==-⎪⎩或,因为00x >,0a >所以0x a=,因此22220001523ln 3ln (0)22b x ax a x a a a a =+-=->构造函数225()3ln (0)2h t t t t t =->,由()2(13ln )h t t t '=-,当130t e <<时,()0h t '>即()h t 单调递增;当13t e >时,()0h t '<即()h t 单调递减,所以1233max3()()2h t h e e==即为实数b 的最大值.【思路点拨】分别求出函数f (x )的导数,函数g (x )的导数.由于两曲线y=f (x ),y=g(x )有公共点,设为00(,)P x y ,则有00()()f xg x =,且00()()f xg x ''=,解出x0=a ,得到b 关于a 的函数,构造函数225()3ln (0)2h t t t t t =->,运用导数求出单调区间和极值、最值,即可得到b 的最大值.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在题中的横线上 【题文】11、已知向量a 与向量b 的夹角为120,若()(2)a b a b +⊥-且2a =,则b 在a上的投影为【知识点】数量积判断两个平面向量的垂直关系.F3【答案解析】18-解析:因为2()(2)()(2)02||||40a b a b a b a b b b +⊥-⇔+⋅-=⇔--=,故331||4b +=所以b在a 上的投影为.1{|}2x R x ∈>53503sin 2ρθ=- 【思路点拨】因为向量a 与向量b 的夹角为︒120,所以b 在a上的投影为01||cos120||2b b =-,问题转化为求||b 。
湖北省教学合作高三数学上学期10月联考试题 文(扫描版
湖北省教学合作2015届高三数学上学期10月联考试题文(扫描版)十月联考数学(文科)参考答案与评分标准一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1. D【解析】因为图中阴影部分表示的集合为()U A C B I ,由题意可知{}{}02,1A x x B x x =<<=<,所以()U A C B I {}{}021x x x x =<<≥I {}12x x =≤<,故选.D2. B【解析】依题意得,当0,2x π⎛⎫∈ ⎪⎝⎭时,()3cos 30f x x ππ'=-<-<,函数()f x 是减函数,此时()()03sin000f x f π<=-⨯=,即有()0f x <恒成立,因此命题p 是真命题,p ┐应是“()000,,02x f x π⎛⎫∃∈≥ ⎪⎝⎭”.综上所述,应选.B 3. C【解析】由()()()()224f x f x f x f x -=+⇒=+,因为24log 205<<,所以20log 2041<-<,214log 200-<-<,所以()()()22224log 20log 2044log 20log 15f f f f ⎛⎫=-=--=-=- ⎪⎝⎭.故选.C4. C【解析】由题意知17.5,39x y ==,代入回归直线方程得$109,a=109154-⨯49=,故选.C5. A【解析】tan 11tan 41tan 2πααα+⎛⎫+== ⎪-⎝⎭Q ,1tan 3α∴=-,02πα-<<Q,sin α∴=,则22sin sin cos 2sin sin 2cos 4αααααπα++=⎛⎫- ⎪⎝⎭α=105⎛=-=- ⎝⎭,故选.A 6. B【解析】因为()22f x ax ax c '=++,则函数()f x '即()g x 图象的对称轴为1x =-,故可排除,A D ;由选项C 的图象可知,当0x >时,()0f x '>,故函数()323a f x x ax cx =++在()0,+∞上单调递增,但图象中函数()f x 在()0,+∞上不具有单调性,故排除.C 本题应选.B7.A 【解析】依题意得2,2T ππωω===,故()sin 24f x x π⎛⎫=+ ⎪⎝⎭,所以sin 2sin 108842f ππππ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,sin 2444f πππ⎛⎫⎛⎫=⨯+ ⎪ ⎪⎝⎭⎝⎭3sin 4π==0≠,因此该函数的图象关于直线8x π=对称,不关于点,04π⎛⎫⎪⎝⎭和点,08π⎛⎫⎪⎝⎭对称,也不关于直线4x π=对称.故选.A8. B【解析】过点D 作DF AB ⊥于点F ,在Rt AFD ∆中,易知1,45AF A =∠=o,梯形的面积()115221122S =++⨯=,扇形ADE的面积221244S ππ=⨯⨯=,则丹顶鹤生还的概率12152415102S S P S ππ--===-,故选.B9. D【解析】由()()cos sin 0f x x f x x '+>知()0cos f x x '⎛⎫> ⎪⎝⎭,所以()()cos f x g x x =在,22ππ⎛⎫- ⎪⎝⎭上是增函数,所以34g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即34cos cos34f f ππππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭>,34f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以A 不正确;易知()03g g π⎛⎫> ⎪⎝⎭,即()03cos 0cos3f f ππ⎛⎫⎪⎝⎭>,得()023f f π⎛⎫< ⎪⎝⎭,所以B 不正确;易知()04g g π⎛⎫> ⎪⎝⎭,即()04cos 0cos4f f ππ⎛⎫ ⎪⎝⎭>,得()024f f π⎛⎫< ⎪⎝⎭,所以C 不正确;易知34g g ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,即34cos cos 34f f ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,得234f f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,所以D 正确.故选.D10. D【解析】因为()232f x x bx c '=++,依题意,得()()()00,1230,24120,f c f b c f b c '=>⎧⎪'=++<⎨⎪'=++>⎩则点(),b c 所满足的可行域如图所示(阴影部分,且不包括边界),其中()4.5,6A -,()3,0B -,()1.5,0D -.()22132T b c ⎛⎫=++- ⎪⎝⎭表示点(),b c 到点1,32P ⎛⎫- ⎪⎝⎭的距离的平方,因为点P 到直线AD 的距离2212332521d ⎛⎫⨯-++ ⎪⎝⎭==+,观察图形可知,22d T PA <<,又()22214.563252PA ⎛⎫=-++-= ⎪⎝⎭,所以525T <<,故选.D二、填空题:(7题,每题5分) 11. 11【解析】由2201520140x x -+<,解得12014x <<,故{}12014A x x =<<.由2log x m <,解得02m x <<,故{}02m B x x =<<.由A B ⊆,可得22014m≥,因为101121024,22048==,所以整数m 的最小值为11.12. []3,5-【解析】由于()()13134x x x x ++-≥+--=,则有14m -≤,即414m -≤-≤,解得35m -≤≤,故实数m 的取值范围是[]3,5-.13.(1)0.0125;(2)72【解析】(1)由频率分布直方图知()201200.0250.00650.0030.003x =-⨯+++,解得0.0125x =.(2)上学时间不少于1小时的学生频率为0.12,因此估计有0.1260072⨯=名学生可以申请住宿. 14. 56π 【解析】()sin 2cos 6f x x x x π⎛⎫=-=+ ⎪⎝⎭,平移后得到函数 2cos 6y x t π⎛⎫=++ ⎪⎝⎭,则由题意得,,66t k t k k Z ππππ+==-∈,因为0t >,所以t 的最小值为56π. 15. 1【解析】由题意得()()()222cos sin 2cos sin 12cos sin sin x x x x x y x x ''----'==,在点,22π⎛⎫ ⎪⎝⎭处的切线的斜率1212cos 2 1.sin 2k ππ-==又该切线与直线10x ay ++=垂直,直线10x ay ++=的斜率21k a =-, 由121k k =-,解得 1.a =16. []()2,12,6--U【解析】若命题p 为真,则216402a a ∆=-<⇒>或2a <-.若命题q 为真,因为[]1,1m ∈-,所以⎡⎤⎣⎦.因为对于[]1,1m ∀∈-,不等式253a a --≥恒成立,只需满足2533a a --≥,解得6a ≥或1a ≤-.命题“p q ∨”为真命题,且“p q ∧”为假命题,则,p q 一真一假.①当p 真q 假时,可得22,2616a a a a ><-⎧⇒<<⎨-<<⎩或; ②当p q 假真时,可得22,2116a a a a -≤≤⎧⇒-≤≤-⎨≤-≥⎩或.综合①②可得a 的取值范围是[]()2,12,6--U .17. (],22ln 2-∞-+【解析】由()20x f x e '=-=,解得ln 2.x =当(),ln 2x ∈-∞时,()0f x '<,函数()f x 单调递减;当()ln 2,x ∈+∞时,()0f x '>,函数()f x 单调递增.故该函数的最小值为()ln2ln 22ln 222ln 2.f e a a =-+=-+因为该函数有零点,所以()ln 20f ≤,即22ln 20a -+≤,解得22ln 2.a ≤-+ 故a 的取值范围是(],22ln 2-∞-+.三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.【解析】(1)Θ2)6cos()6sin(3)(++++=ππx x x f ⎪⎭⎫ ⎝⎛+=3sin 2πx +2…2分+2………………4分 =1 ……………………………………………………… 6分(2)22ππ≤≤-x Θ 6536πππ≤+≤-∴x ………………… 7分 13sin 21≤⎪⎭⎫ ⎝⎛+≤-∴πx …………………8分 从而当23ππ=+x 时,即6π=x 时4)(max =x f …………………………………… 10分而当63ππ-=+x 时,即2π-=x 时1)(min =x f …………………12分19.【解析】(1)根据“每间隔50人就抽取一人”,符合系统抽样的原理,故市教育局在采样中,用到的是系统抽样方法.…………3分平均数的估计值为:(82.50.0187.50.0292.50.0497.50.06102.50.05107.50.02)5⨯+⨯+⨯+⨯+⨯+⨯⨯ 19.4597=⨯=…………………………6分(2)从图中可知,体能测试成绩在[80,85)的人数为10.015402m =⨯⨯=(人),分别记为12,B B ;体能测试成绩在[85,90)人数为20.025404m =⨯⨯=(辆),分别记为1234,,,A A A A ,从这6人中随机抽取两人共有15种情况:1213141112(,),(,),(,),(,),(,)A A A A A A A B A B ,2324(,),(,)A A A A ,2122(,),(,)A B A B ,3431(,),(,)A A A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B .……………………9分抽出的2人中体能测试成绩在[85,90)的情况有1213(,),(,),A A A A 14(,),A A 2324(,),(,)A A A A34(,)A A 共6种,………………………………………………………11分 故所求事件的概率62()155P A ==.…………………………………12分 20.【解析】(1)∵233-)(x x x m =,ax ax x h 3-3)(2=,∴)(-)()(x h x m x f =,∴ a x a x x f 3)1(323)(2++-=' ……………………………………1分∵ 0)1(='f ∴0)1(3233=+-+a a ∴ 1-=a ……………………2分 ∴ )1)(1(3)(+-='x x x f ,显然在1=x 附近)(x f '符号不同,∴ 1=x 是函数)(x f 的一个极值点 ………………………………………3分 ∴ 1-=a 即为所求 ………………………………………………………4分(2)∵233-)(x x x m =,ax ax x h 3-3)(2=,∴)(-)()(x h x m x f =,若函数)(x f 在),(∞+-∞不单调, 则03)1(323)(2=++-='a x a x x f 应有二不等根 …………………………5分∴ 036)1(122>-+=∆a a ∴012>+-a a ……………………………7分 ∴ 251+>a 或251-<a ………………………………… ……………8分 (3)∵233-)(x x x m =,∴x x x x x m x f 33-3)()(32-=+=,∴)1(3)(2-='x x f ,设切点),(00y x M ,则M 纵坐标03003x x y -=,又)1(3)(200-='x x f ,∴ 切线的斜率为1253)1(3003020-+-=-x x x x ,得021322030=+-x x ……10分 设=)(0x g 21322030+-x x ,∴=')(0x g 02066x x - 由=')(0x g 0,得00=x 或10=x ,∴)(0x g 在),1(),0,(∞+-∞上为增函数,在)1,0(上为减函数,∴ 函数=)(0x g 3322030++-m x x 的极大值点为00=x ,极小值点为10=x , ∵ ⎪⎪⎩⎪⎪⎨⎧<-=>=021)1(021)0(g g ∴ 函数=)(0x g 21322030+-x x 有三个零点 ……………12分 ∴ 方程021322030=+-x x 有三个实根 ∴ 过点)25,1(-A 可作曲线)(x f y =三条切线 ……………………………13分21.【解析】(Ⅰ)在ABC ∆中,由正弦定理,得sin sin AB AC BCA ABC =∠∠,sin 9sin309sin 510AC BCA ABC AB ∠︒∠===.………………………………7分 (Ⅱ)∵ AD BC ∥,∴ 180BAD ABC ∠=︒-∠,9sin sin(180)sin 10BAD ABC ABC ∠=︒-∠=∠=, 在ABD ∆中,由正弦定理,得sin sin AB BD ADB BAD =∠∠,∴ 95sin sin 2AB BAD BD ADB ⨯∠===∠.……………………………………14分 22.【解析】 (Ⅰ)1)()(+-=x x G x f =1﹣x+lnx ,求导得:'11()1x f x x x -=-=,由'()0f x =,得1x =.当()0,1x Î时,'()0f x >;当()1,x ??时,'()0f x <.所以,函数()y f x =在()0,1上是增函数,在()1,+?上是减函数.…………5分(Ⅱ) 令2)1(ln 2ln )(2)()(++-=-+-=-+-=x m x mx x x x g x x G x h 则()()'11h x m x=-+ 因为0m >,所以10m +>,由()'0h x =得11x m =+ 当10,1x m 骣÷çÎ÷ç÷桫+时,'()0h x >,()h x 在10,1m 骣÷ç÷ç÷桫+上是增函数; 当1,1x m 骣÷ç??÷ç÷桫+时,'()0h x <,()h x 在1,1m骣÷ç+?÷ç÷桫+上是减函数. 所以,()h x 在()0,+?上的最大值为()1()1ln 101h m m=-+?+,解得1m e ≥- 所以当1m e ≥-时()()f x g x ≤恒成立. ………………………10分 (Ⅲ)由题意知, ln 2,b a a =++ .由(Ⅰ)知()ln 1(1)f x x x f =-+?,即有不等式()ln 10x x x ?>. 于是 ln 21221,b a a a a a =++?++=+即 21b a -? ………14分。
湖北省教学合作高三10月联考——数学(理)数学(理)
湖北省教学合作 2015届高三10月联考数学(理)试题本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试用时120分钟第Ⅰ卷 (选择题,50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的 1、已知集合2{|{|0}2x A x y B x x +===≤-,则 A . B . C . D . 2、下列命题中真命题的个数是(1)若命题中有一个是假命题,则是真命题.(2)在中,“cos sin cos sin A A B B +=+”是“”的必要不充分条件. (3)表示复数集,则有.A .0B .1C .2D .33、已知四个函数:①;②;③;④的图象如下,但顺序打乱,则按照图象从左到右的顺序,对应的函数正确的一组是A .①④②③B .①④③②C .④①②③D .③④②①4、已知12515111(),log ,log 533a b c ===,则的大小关系是A .B .C .D . 5、将函数2cos 2y x x =-的图象向右平移个单位长度,所得图象对应的函数A .由最大值,最大值为B .对称轴方程是C .是周期函数,周期D .在区间上单调递增6、已知函数()log (01)a f x x a =<<的导函数,(),(1)()A f a b f a f a '==+-(1),(2)(1)C f a D f a f a '=+=+-+,则中最大的数是A .B .C .D . 7、已知,若函数满足()()bbaaf x dxg x dx =⎰⎰,则称为区间上的一组“等积分”函数,给出四组函数:①()()2,1f x x g x x ==+; ②()()sin ,cos f x x g x x ==;③()()234f xg x x π==; ④函数分别是定义在上的奇函数且积分值存在. 其中为区间上的“等积分”函数的组数是 A .1 B .2 C .3 D .4821c x x m +≤-++对任意实数恒成立,则实数的取值范围是A .B .C .D .9、已知由不等式组00240x y y kx y x ≤⎧⎪≥⎪⎨-≤⎪⎪--≤⎩,确定的平面区域的面积为7,定点M 的坐标为,若,O 为坐标原点,则的最小值是A .B .C .D . 10、已知函数()()2212,3ln 2f x x axg x a x b =+=+设两曲线有公共点,且在该点处的切线相同,则时,实数的最大值是A .B .C .D .第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在题中的横线上 11、已知向量与向量的夹角为,若且,则在上的投影为12、已知偶函数在上满足:当且时,总有, 则不等式的解集为 13、点O 是锐角的外心,812,3AB AC A π===,若,则14、定义在正整数集上的函数满足(1)(())43()f f n n n N +=+∈;(2),则有 15、(选修4-4:坐标系与参数方程) 曲线C 的参数方程是(为参数,且),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的方程为,取线C 与曲线D 的交点为P ,则过交点P 且与曲线C 相切的极坐标方程是 三、解答题:本大题共6小题,共75分,解答应写成文字说明、证明过程或演算步骤 16、(本小题满分12分) 已知集合,集合{|(2)(3)0}A x x x =--<,函数的定义域为集合B . (1) 若,求集合;(2) 命题,命题,若是的必要条件,求实数的取值范围. 17、(本小题满分12分)在中,所对的边分别为,向量,向量(2sin ,cos )n A A =- 若.(1)求角A 的大小;(2)若外接圆的半径为2,,求边的长.18、(本小题满分12分)据气象中心观察和预测:发生于沿海M 地的台风已知向正南方向移动,其移动速度与时间的函数图象如图所示,过线段OC 上一点作横轴的垂线,梯形OABC 在直线左侧部分的面积即为内台风所经过的路程.(1)当时,求的值,并将随变化的规律用数学关系式表示出来;(2)若N 城位于M 地正南方向,且距N 地,试判断这场台风师父会侵袭到N 城,如果会,在台风发生后多出时间它将侵袭到N 城?如果不会,请说明理由. 19、(本小题满分12分) 某地一天的温度(单位:)随时间(单位:小时)的变化近似满足函数关系:()[]244sin ,0,24f t t t t ωω=--∈,且早上8时的温度为,. (1)求函数的解析式,并判断这一天的最高温度是多少?出现在何时?(2)当地有一通宵营业的超市,我节省开支,跪在在环境温度超过时,开启中央空调降温,否则关闭中央空调,问中央空调应在何时开启?何时关闭? 20、(本小题满分13分) 已知函数()()22(),(1)f x x x a g x x a x =-=-+-(其中为常数)(1)如果函数和有相同的极值点,求的值,并写出函数的单调区间; (2)求方程在区间上实数解的个数. 21、(本小题满分14分) (Ⅰ)证明:当时,;(Ⅱ)若不等式对任意的正实数恒成立,求正实数的取值范围; (Ⅲ)求证:参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.解析:D 依题意;化简集合{|13}A x x x =≤-≥或,, 利用集合的运算可得:{|21}AB x x =-≤≤-.故选D.2.解析:C 命题(1)(2)是真命题,(3)是假命题,故选C3.解析:A ①是偶函数,其图象关于轴对称;②是奇函数,其图象关于原点对称;③是奇函数,其图象关于原点对称.且当时,;④为非奇非偶函数,且当时,;当时,;故选A. 4.解析:B 由指数函数和对数函数的性质可知01,0,01a b c <<<<<,而,155511log log 3log 32c ==>=,所以有,故选B. 5.解析:D化简函数得2cos 22sin(2)6y x x x π=-=-,所以2()2sin(2)3g x x π=-易求最大值是2,周期是,由22()32x k k Z πππ-=+∈,得对称轴方程是 由27222()2321212k x k k x k k Z πππππππππ-+≤-≤+⇔+≤≤+∈,故选D.6.解析:A 由于函数()log (01)a f x x a =<<是可导函数且为单调递减函数,分别表示函数在点处切线的斜率,因为,(2)(1)(2)(1)f a f a D a a +-+=+-+,故分别表示函数图象上两点(,()),(1,(1))a f a a f a ++和两点(1,(1)),(2,(2))a f a a f a ++++连线的斜率,由函数图象可知一定有,四个数中最大的是,故选. 7.解析:C 对于①,1101111()2||2()22f x dx x dx x dx xdx ---==-+=⎰⎰⎰⎰,或者利用积分的几何意义(面积)直接可求得,而11121111()(+1)()|22g x dx x dx x x ---==+=⎰⎰,所以①是一组“等积分”函数;对于②,1111()sin 0f x dx xdx --==⎰⎰,而1111()cos 2sin10g x dx xdx --==≠⎰⎰,所以②不是一组“等积分”函数;对于③,由于函数的图象是以原点为圆心,1为半径的半圆,故111()2f x dx π--==⎰⎰,而1112311131()|442g x dx x dx x πππ---===⎰⎰,所以③是一组“等积分”函数;对于④,由于函数分别是定义在上的奇函数且积分值存在,利用奇函数的图象关于原点对称和定积分的几何意义,可以求得函数的定积分1111()()0f x dx g x dx --==⎰⎰,所以④是一组“等积分”函数,故选C8.解析:B 由柯西不等式得, 9))(432()232(2222=++++≤++c b a c b a ,22221c a b c ==++=⎩时等号成即,即的最大值为3,当且仅当立;21||c x x m +≤-++对任意实数恒成立等价于对任意实数恒成立,又因为1|||(1)()||1|x x m x x m m -++≥--+=+对任意恒成立,因此有即,解得,故选B. 9.解析: B 依题意:画出不等式组0040x y y x ≤⎧⎪≥⎨⎪--≤⎩所表示的平面区域(如右图所示)可知其围成的区域是等腰直角三角形面积为,由直线恒过点,且原点的坐标恒满足, 当时,,此时平面区域的面积为,由于,由此可得. 由可得,依题意应有,因此(,舍去)故有,设,故由2z OM ON x y =⋅=-,可化为,所以当直线过点时,截距最大,即取得最小值,故选B . 10.解析:D依题意:,,因为两曲线,有公共点,设为 ,所以220000020000001()()23ln 23()()23f x g x x ax a x b a f x g x x a x a x a x ⎧=⇔+=+⎪⎪⎨⎪''=⇔+=⇔==-⎪⎩或,因为, 所以,因此22220001523ln 3ln (0)22b x ax a x a a a a =+-=-> 构造函数225()3ln (0)2h t t t t t =->,由,当时,即单调递增;当时,即单调递减,所以即为实数的最大值.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上. 11.解析: 因为向量与向量的夹角为,所以在上的投影为,问题转化为求,因为2()(2)()(2)02||||40a b a b a b a b b b +⊥-⇔+⋅-=⇔--=故所以在上的投影为.12.解析: 依题意:偶函数在上单调递减,所以在上单调递增,直接构造函数,问题转化为解不等式,解之得:, 所以不等式的解集为.另解:依题意:偶函数在上单调递减,所以在上单调递增,由于,即1(|1|)(||)|1|||2f x f x x x x -<⇔-<⇔> 所以不等式的解集为.13.解析:如图,点在上的射影是点,它们分别为的中点,由数量积的几何意义,可得||||32AB AO AB AD ⋅=⋅=,||||72AC AO AC AE ⋅=⋅=依题意有2644832AB AO xAB yAC AB x y ⋅=+⋅=+=,即,同理24814472AC AO xAB AC yAC x y ⋅=⋅+=+=,即 综上,将两式相加可得:,即14.解析: (2分)(3分) 注意到和,易求得()((125))41253503f m f f ==⨯+=; 因为,所以((()))(43)4()3f f f n f n f n =+=+ 故有2(2015)(45033)4(503)34(41253)34(125)4331615f f f f f m =⨯+=+=⨯++=+⨯+=+15.解析:曲线即直线的普通方程为,又曲线即圆心为,半径为2的半圆,其方程为,注意到,所以,联立方程组得220(2)40x y x y y +=⎧⎪-+=⎨⎪<⎩,解之得,故交点的坐标为.过交点且与曲线相切的直线的普通方程是,对应的极坐标方程为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)解析:(1)因为集合,因为函数29(2)4lg =lg12x x a y a x x --+=--,由9412x x -->0, 可得集合…………2分19{|}24UB x x x =≤≥或ð, …………………………………………4分 故9(){|3}4UA B x x =≤<ð. ……………………………6分 (2)因为是的必要条件等价于是的充分条件,即 由,而集合应满足,因为22172()024a a a +-=-+> 故2{|2}B x a x a =<<+, ……………………8分 依题意就有:, ………………………………………10分 即或所以实数的取值范围是. …………………12分 17.(本小题满分12分)解析:(Ⅰ)依题意:(cos sin sin )m n A A A A +=-+,因为所以22(cos sin (cos sin )4A A A A -++=,化简得:sin cos tan 1A A A =⇒=,故有. …………………6分 (Ⅱ)依题意,在中,由正弦定理,所以, 由余弦定理可得:2222cos a b c b c A =+-⋅⋅, 化简得:,解得:(负值舍去).…………12分 18.(本小题满分12分)解析:(Ⅰ)由图象可知: 直线的方程是:,直线的方程是: 当时,,所以. …………………………………2分 当时,; ………………………3分当时,11030(10)30301502s t t =⨯⨯+-⨯=-…………………4分 当时,21150300(20)(27030)705502s t t t t =++⨯-⨯-++=-++ …………5分综上可知随变化的规律是223[0,10]230150(10,20]70550(20,35]tt s t t t t t ⎧∈⎪⎪⎪=-∈⎨⎪⎪-+-∈⎪⎩ ………………………………………7分 (Ⅱ),2max 3101506502s =⨯=<, …………………………………………8分,max 3020150450650s =⨯-=< …………………………9分当时,令,解得,(舍去)…………………………11分即在台风发生后30小时后将侵袭到城. ……………………12分 19.(本小题满分12分)解析:(Ⅰ)依题意()244sin 248sin()3f t t t t πωωω=--=-+ ……………………2分因为早上时的温度为,即,11sin(8)08()()3383k k k Z ππωωπωπ+=⇒+=⇒=-∈……………………3分,故取,,所求函数解析式为()248sin(),(0,24]123f t t t ππ=-+∈. …………………………………5分由,,可知3141232t t πππ+=⇒=,即这一天在时也就是下午时出现最高温度,最高温度是.…………7分 (Ⅱ)依题意:令248sin()28123t ππ-+=,可得……………………………9分,或,即或,………………11分故中央空调应在上午时开启,下午时(即下午时)关闭…………12分 20.(本小题满分13分)解析:(Ⅰ)2322()()2f x x x a x ax a x =-=-+,则22()34(3)()f x x ax a x a x a '=-+=--, ……………………1分令,得或,而二次函数在处有极大值,∴或;综上:或. ………………………4分 当时,的单调增区间是,减区间是……5分当时,的单调增区间是,减区间是; ………………6分(Ⅱ)22()()()[(1)]f x g x x x a x a x a -=---+-+2()()(1)x x a x a x =-+-+2()[(1)1]x a x a x =-+-+, …………8分 2()(1)1h x x a x =+-+,当时,,无解,故原方程的解为,满足题意,即原方程有一解,; ……………9分 当时,,的解为,故原方程有两解,; 当时,,的解为,故原方程有一解,; 当时,,由于(1)14,(0)1,(3)133h a h h a -=+>==- 若时,在上有一解,故原方程有一解;若13133033a a ->⇒<<时,在上无解,故原方程有无解; 当时,,由于(1)10,(0)1,(3)1330h a h h a -=+<==->在上有一解,故原方程有一解; …………………11分综上可得:当时,原方程在上无解;当或时,原方程在上有一解;当时,原方程在上有两解.……………13分 21.(本小题满分14分)解析:(Ⅰ)令函数,定义域是由22221(1)()10x f x x x x--'=--=≤,可知函数在上单调递减 故当时,1()2ln (1)0f x x x f x=-+<=,即.………………………3分 (Ⅱ)因为,故不等式可化为……问题转化为式对任意的正实数恒成立, 构造函数()ln(1)(0)atg t t t t a=+->+, 则2221[(2)]()1()(1)()a t t a a g t t t a t t a --'=-=++++,……………6分 (1)当时,,即在上单调递增,所以,即不等式对任意的正实数恒成立. (2)当时,因此(0,(2))()0t a a g t '∈-<,,函数单调递减;((2),+)()0t a a g t '∈-∞>,,函数单调递增,所以min (2)()((2))2ln(1)1a a g t g a a a a -=-=---,令,由(Ⅰ)可知2min(2)11()2ln(1)2ln 2ln ()01a a x g t a x x x a x x --=--=-=--<-,不合题意.综上可得,正实数的取值范围是. ………………10分 (Ⅲ)要证,即证910119ln2ln 19ln 219ln(1)21099e <-⇔>⇔+>, 由(Ⅱ)的结论令,有对恒成立,取可得不等式成立,综上,不等式成立. ………………………………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省教学合作2015届高三上学期10月联考数学(理)试题Word 版本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试用时120分钟第Ⅰ卷 (选择题,50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1、已知集合2{|{|0}2x A x y B x x +===≤-,则A B = A .[]1,1- B .[)1,2- C .[)1,2 D .[]2,1-- 2、下列命题中真命题的个数是(1)若命题,p q 中有一个是假命题,则()p q ⌝∧是真命题.(2)在ABC ∆中,“cos sin cos sin A A B B +=+”是“90C =”的必要不充分条件. (3)C 表示复数集,则有2,11x C x ∀∈+≥. A .0 B .1 C .2 D .33、已知四个函数:①sin y x x =;②c os y x x =;③c o s y x x =;④2x y x =⋅的图象如下,但顺序打乱,则按照图象从左到右的顺序,对应的函数正确的一组是A .①④②③B .①④③②C .④①②③D .③④②①4、已知12515111(),log ,log 533a b c ===,则,,a b c 的大小关系是A .a b c >>B .c a b >>C .a c b >>D .c b a >> 5、将函数2cos2y x x =-的图象向右平移4π个单位长度,所得图象对应的函数()g x A1 B .对称轴方程是7,12x k k Z ππ=+∈ C .是周期函数,周期2T π= D .在区间7[,]1212ππ上单调递增 6、已知函数()log (01)a f x x a =<<的导函数()f x ',(),(1)()A f a b f a f a '==+-(1),(2)(1)C f a D f a f a '=+=+-+,则,,,A B C D 中最大的数是A .AB .BC .CD .D 7、已知a b <,若函数()(),f x g x 满足()()b baaf x dxg x dx =⎰⎰,则称()(),f x g x 为区间[],a b 上的一组“等积分”函数,给出四组函数:①()()2,1f x x g x x ==+; ②()()sin ,cos f x x g x x ==; ③()()234f xg x x π==; ④函数()(),f x g x 分别是定义在[]1,1-上的奇函数且积分值存在. 其中为区间[]1,1-上的“等积分”函数的组数是 A .1 B .2 C .3 D .48、已知2221a b c ++=21c x x m ++≤-++对任意实数,,,a b c x 恒成立,则实数m 的取值范围是A .[)8,+∞B .(][),42,-∞-+∞ C .(][),18,-∞-+∞ D .[)2,+∞9、已知由不等式组00240x y y kx y x ≤⎧⎪≥⎪⎨-≤⎪⎪--≤⎩,确定的平面区域Ω的面积为7,定点M 的坐标为()1,2-,若N ∈Ω,O 为坐标原点,则OM ON ⋅的最小值是 A .8- B .7- C .6- D .4- 10、已知函数()()2212,3ln 2f x x axg x a x b =+=+设两曲线()(),y f x y g x ==有公共点,且在该点处的切线相同,则(0,)a ∈+∞时,实数b 的最大值是A .6136eB .616eC .2372eD .2332e第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在题中的横线上11、已知向量a 与向量b 的夹角为120,若()(2)a b a b +⊥-且2a =,则b 在a 上的投影为 12、已知偶函数()f x 在(],0-∞上满足:当(]12,,0x x ∈-∞且12x x ≠时,总有12120()()x x f x f x -<-,则不等式()()1f x f x -<的解集为13、点O 是锐角ABC ∆的外心,812,3AB AC A π===,若AO xAB yAC =+,则23x y +=14、定义在正整数集上的函数()f n 满足(1)(())43()f f n n n N +=+∈;(2)(125)()f m m N +=∈,则有()f m = (2015)f = 15、(选修4-4:坐标系与参数方程) 曲线C 的参数方程是22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数,且(,2)θππ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的方程为sin()04πρθ+=,取线C 与曲线D 的交点为P ,则过交点P 且与曲线C 相切的极坐标方程是三、解答题:本大题共6小题,共75分,解答应写成文字说明、证明过程或演算步骤 16、(本小题满分12分)已知集合U R =,集合{|(2)(3)0}A x x x =--<,函数2(2)lg x a y a x-+=-的定义域为集合B .(1) 若12a =,求集合()U A C B ; (2) 命题:p x A ∈,命题:q x B ∈,若q 是p 的必要条件,求实数a 的取值范围.17、(本小题满分12分)在ABC ∆中,,,A B C 所对的边分别为,,a b c ,向量(cos ,sin )m A A =,向量(2sin ,cos )n A A =- 若2m n +=. (1)求角A 的大小;(2)若ABC ∆外接圆的半径为2,2b =,求边c 的长.18、(本小题满分12分)据气象中心观察和预测:发生于沿海M 地的台风已知向正南方向移动,其移动速度(/)v km h 与时间()t h 的函数图象如图所示,过线段OC 上一点(,0)T t 作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为()t h 内 台风所经过的路程()s km .(1)当4t =时,求s 的值,并将s 随t 变化的规律用数学关系式表示出来;(2)若N 城位于M 地正南方向,且距N 地650km ,试判断这场台风师父会侵袭到N 城,如果会,在台风发生后多出时间它将侵袭到N 城?如果不会,请说明理由.19、(本小题满分12分)某地一天的温度(单位:C )随时间t (单位:小时)的变化近似满足函数关系:()[]244sin ,0,24f t t t t ωω=--∈,且早上8时的温度为24C ,(0,)8πω∈.(1)求函数的解析式,并判断这一天的最高温度是多少?出现在何时?(2)当地有一通宵营业的超市,我节省开支,跪在在环境温度超过28C 时,开启中央空调降温,否则关闭中央空调,问中央空调应在何时开启?何时关闭?20、(本小题满分13分)已知函数()()22(),(1)f x x x a g x x a x =-=-+-(其中a 为常数)(1)如果函数()y f x =和()y g x =有相同的极值点,求a 的值,并写出函数()y f x =的单调区间; (2)求方程()()0f x g x -=在区间[]1,3-上实数解的个数.21、(本小题满分14分)(Ⅰ)证明:当1x >时,12ln x x x<-; (Ⅱ)若不等式(1)ln(1)a t a t++>对任意的正实数t 恒成立,求正实数a 的取值范围; (Ⅲ)求证:19291()10e<教学合作2015届高三年级十月联考试题数学(理科)答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.解析:D 依题意;化简集合{|13}A x x x =≤-≥或,{|22}B x x =-≤<, 利用集合的运算可得:{|21}AB x x =-≤≤-.故选D.2.解析:C 命题(1)(2)是真命题,(3)是假命题,故选C3.解析:A ①sin y x x =是偶函数,其图象关于y 轴对称;②cos y x x =是奇函数,其图象关于原点对称;③|cos |y x x =是奇函数,其图象关于原点对称.且当0x >时,0y ≥;④2x y x =⋅为非奇非偶函数,且当0x >时,0y >;当0x <时,0y <;故选A.4.解析:B 由指数函数和对数函数的性质可知01,0,01a b c <<<<<,而1211()52a ==<,155511log log 3log 32c ==>=,所以有c a b >>,故选B.5.解析:D化简函数得2cos 22sin(2)6y x x x π=-=-,所以2()2sin(2)3g x x π=-易求最大值是2,周期是π,由22()32x k k Z πππ-=+∈,得对称轴方程是7()122k x k Z ππ=+∈ 由27222()2321212k x k k x k k Z πππππππππ-+≤-≤+⇔+≤≤+∈,故选D. 6.解析:A 由于函数()log (01)a f x x a =<<是可导函数且为单调递减函数,,A C 分别表示函数在点,1a a +处切线的斜率,因为(1)()(1)f a f a B a a +-=+-,(2)(1)(2)(1)f a f a D a a +-+=+-+,故,B D 分别表示函数图象上两点(,()),(1,(1))a f a a f a ++和两点(1,(1)),(2,(2))a f a a f a ++++连线的斜率,由函数图象可知一定有A B C D <<<,四个数中最大的是D ,故选D .7.解析:C 对于①,11011110()2||2()22f x dx x dx x dx xdx ---==-+=⎰⎰⎰⎰,或者利用积分的几何意义(面积)直接可求得11()2f x dx -=⎰,而11121111()(+1)()|22g x dx x dx x x ---==+=⎰⎰,所以①是一组“等积分”函数;对于②,1111()sin 0f x dx xdx --==⎰⎰,而1111()cos 2sin10g x dx xdx --==≠⎰⎰,所以②不是一组“等积分”函数;对于③,由于函数()f x 的图象是以原点为圆心,1为半径的半圆,故111()2f x dx π--==⎰⎰,而1112311131()|442g x dx x dx x πππ---===⎰⎰,所以③是一组“等积分”函数;对于④,由于函数(),()f x g x 分别是定义在[1,1]-上的奇函数且积分值存在,利用奇函数的图象关于原点对称和定积分的几何意义,可以求得函数的定积分1111()()0f x dx g x dx --==⎰⎰,所以④是一组“等积分”函数,故选C8.解析:B 由柯西不等式得, 9))(432()232(2222=++++≤++c b a c b a ,即3232≤++c b a ,2c +的最大值为3,当且仅当22221c a b c ==++=⎩时等号成立;所以21||c x x m +≤-++对任意实数,,,a b c x 恒成立等价于1||3x x m -++≥对任意实数x 恒成立,又因为1|||(1)()||1|x x m x x m m -++≥--+=+对任意x 恒成立,因此有即13m +≥,解得24m m ≥≤-或,故选B.9.解析: B 依题意:画出不等式组0040x y y x ≤⎧⎪≥⎨⎪--≤⎩所表示的平面区域(如右图所示)可知其围成的区域是等腰直角三角形面积为8,由直线2y kx =+恒过点(0,2)B ,且原点的坐标恒满足2y kx -≤,当0k =时,2y ≤,此时平面区域Ω的面积为6,由于67<,由此可得0k <.由240y kx y x -=⎧⎨--=⎩可得242(,)11k D k k ---,依题意应有122||121k ⨯⨯=-,因此1k =-(3k =,舍去) 故有(1,3)D -,设(,)N x y ,故由2z OM ON x y =⋅=-,可化为1122y x z =-,112<所以当直线1122y x z =-过点D 时,截距12z -最大,即z 取得最小值7-,故选B . 10.解析:D依题意:()2f x x a '=+,23()a g x x'=,因为两曲线()y f x =,()y g x =有公共点,设为00(,)P x y ,所以220000020000001()()23ln 23()()23f x g x x ax a x b a f x g x x a x a x a x ⎧=⇔+=+⎪⎪⎨⎪''=⇔+=⇔==-⎪⎩或,因为00x >,0a > 所以0x a =,因此22220001523ln 3ln (0)22b x ax a x a a a a =+-=->构造函数225()3ln (0)2h t t t t t =->,由()2(13l n )h t t t '=-,当130t e <<时,()0h t '>即()h t 单调递增;当13t e >时,()0h t '<即()h t 单调递减,所以1233max3()()2h t h e e ==即为实数b 的最大值.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上.11.解析: 因为向量a 与向量b 的夹角为︒120,所以b 在a 上的投影为01||cos120||2b b =-,问题转化为求||b ,因为2()(2)()(2)02||||40a b a b a b a b b b +⊥-⇔+⋅-=⇔--= 故331||b +=所以b在a 上的投影为.12.解析:1{|}2x R x ∈> 依题意:偶函数()f x 在(,0]-∞上单调递减,所以()f x 在[0,)+∞上单调递增,直接构造函数2()f x x =,问题转化为解不等式22(1)x x -<,解之得:12x >, 所以不等式(1)()f x f x -<的解集为1{|}2x R x ∈>.另解:依题意:偶函数()f x 在(,0]-∞上单调递减,所以()f x 在[0,)+∞上单调递增, 由于(1)()f x f x -<,即1(|1|)(||)|1|||2f x f x x x x -<⇔-<⇔> 所以不等式(1)()f x f x -<的解集为1{|}2x R x ∈>. 13.解析:53如图,O 点在,AB AC 上的射影是点,D E ,它们分别为,AB AC 的中点,由数量积的几何意义,可得||||32AB AO AB AD ⋅=⋅=,||||72AC AO AC AE ⋅=⋅=依题意有2644832AB AO xAB yAC AB x y ⋅=+⋅=+=,即432x y +=,同理24814472AC AO xAB AC yAC x y ⋅=⋅+=+=,即263x y += 综上,将两式相加可得:695x y +=,即5233x y +=14.解析:503 (2分) 1615m +(3分) 注意到(())43f f n n =+和(125)f m =, 易求得()((125))41253503f m f f ==⨯+=;因为(())43f f n n =+,所以((()))(43)4()3f f f n f n f n =+=+ 故有2(2015)(45033)4(503)34(41253)34(125)4331615f f f f f m =⨯+=+=⨯++=+⨯+=+15.解析: sin 2ρθ=-曲线Γ即直线的普通方程为0x y +=,又曲线C 即圆心为()2,0C ,半径为2的半圆,其方程为22(2)4x y -+=,注意到(,2)θππ∈,所以0y <,联立方程组得220(2)40x y x y y +=⎧⎪-+=⎨⎪<⎩,解之得22x y =⎧⎨=-⎩,故交点P 的坐标为(2,2)-.过交点P 且与曲线C 相切的直线的普通方程是2y =-,对应的极坐标方程为sin 2ρθ=-.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 解析:(1)因为集合{|23}A x x =<<,因为12a =函数29(2)4lg =lg12x x a y a x x --+=--,由9412x x -->0, 可得集合19={|}24B x x <<…………2分19{|}24U B x x x =≤≥或ð, …………………………………………4分故9(){|3}4U A B x x =≤<ð. ……………………………6分(2)因为q 是p 的必要条件等价于p 是q 的充分条件,即A B ⊆由{|23}A x x =<<,而集合B 应满足2(2)0x a a x-+>-, 因为22172()024a a a +-=-+> 故2{|2}B x a x a =<<+, ……………………8分 依题意就有:2223a a ≤⎧⎨+≥⎩, ………………………………………10分 即1a ≤-或12a ≤≤所以实数a 的取值范围是∞(-,-1][1,2]. …………………12分17.(本小题满分12分)解析:(Ⅰ)依题意:(cos sin sin )m n A A A A +=-+,因为||2m n +=所以 22(cos sin (cos sin )4A A A A -++=,化简得:sin cos tan 1A A A =⇒=,故有4A π=. …………………6分(Ⅱ)依题意,在ABC ∆中,由正弦定理24sin aR A==,所以a = 由余弦定理可得:2222cos a b c b c A =+-⋅⋅,化简得:240c --=,解得:c =分18.(本小题满分12分) 解析:(Ⅰ)由图象可知:直线OA 的方程是:3v t =,直线BC 的方程是:270v t =-+ 当4t =时,12v =,所以1412242s =⨯⨯=. …………………………………2分 当010t ≤≤时,213322s t t t =⨯⨯=; ………………………3分当1020t <≤时,11030(10)30301502s t t =⨯⨯+-⨯=-…………………4分 当2035t <≤时,21150300(20)(27030)705502s t t t t =++⨯-⨯-++=-++ …………5分综上可知s 随t 变化的规律是223[0,10]230150(10,20]70550(20,35]tt s t t t t t ⎧∈⎪⎪⎪=-∈⎨⎪⎪-+-∈⎪⎩………………………………………7分 (Ⅱ)[0,10]t ∈,2max 3101506502s =⨯=<, …………………………………………8分(10,20]t ∈,max 3020150450650s =⨯-=< …………………………9分当(20,35]t ∈时,令270550650t t -++=,解得30t =,(40t =舍去)…………………………11分即在台风发生后30小时后将侵袭到N 城. ……………………12分19.(本小题满分12分) 解析: (Ⅰ)依题意()244sin 248sin()3f t t t t πωωω=--=-+ ……………………2分因为早上8时的温度为24C ,即(8)24f =,11sin(8)08()()3383k k k Z ππωωπωπ+=⇒+=⇒=-∈……………………3分(0,)8πω∈,故取1k =,12πω=,所求函数解析式为()248sin(),(0,24]123f t t t ππ=-+∈. …………………………………5分由sin()1123t ππ+=-,7(,)12333t ππππ+∈,可知3141232t t πππ+=⇒=, 即这一天在14时也就是下午2时出现最高温度,最高温度是32C .…………7分 (Ⅱ)依题意:令248sin()28123t ππ-+=,可得1sin()1232t ππ+=- ……………………………9分 7(,)12333t ππππ+∈,71236t πππ∴+=或111236t πππ+=, 即10t =或18t =,………………11分故中央空调应在上午10时开启,下午18时(即下午6时)关闭…………12分20.(本小题满分13分)解析:(Ⅰ)2322()()2f x x x a x ax a x =-=-+,则22()34(3)()f x x ax a x a x a '=-+=--, ……………………1分令()0f x '=,得x a =或3a ,而二次函数()g x 在12a x -=处有极大值, ∴112a a a -=⇒=-或1323a a a -=⇒=; 综上:3a =或1a =-. ………………………4分 当3a =时,()y f x =的单调增区间是(,1],[3,)-∞+∞,减区间是(1,3)……5分当1a =-时,()y f x =的单调增区间是1(,1],[,)3-∞--+∞,减区间是1(1,)3--; ………………6分 (Ⅱ)22()()()[(1)]f x g x x x a x a x a -=---+-+2()()(1)x x a x a x =-+-+ 2()[(1)1]x a x a x =-+-+, …………8分2()(1)1h x x a x =+-+, (1)(3)a a ∆=+-1 当13a -<<时,0∆<,()0h x =无解,故原方程的解为[1,3]x a =∈-,满足题意,即原方程有一解,[1,3]x a =∈-; …………………9分2 当3a =时,0∆=,()0h x =的解为1x =,故原方程有两解,1,3x =;3 当1a =-时,0∆=,()0h x =的解为1x =-,故原方程有一解,1x =-;4 当3a >时,0∆>,由于(1)14,(0)1,(3)133h a h h a -=+>==-若1313303a a -≤⇒≥时,()0h x =在[1,3]-上有一解,故原方程有一解; 若13133033a a ->⇒<<时,()0h x =在[1,3]-上无解,故原方程有无解;5 当1a <-时,0∆>,由于(1)10,(0)1,(3)1330h a h h a -=+<==->()0h x =在[1,3]-上有一解,故原方程有一解; …………………11分综上可得:当1333a <<时,原方程在[1,3]-上无解;当3a <或133a ≥时,原方程在[1,3]-上有一解;当3a =时,原方程在[1,3]-上有两解.……………13分21.(本小题满分14分)解析: (Ⅰ)令函数1()2ln f x x x x=-+,定义域是{|1}x R x ∈> 由22221(1)()10x f x x x x --'=--=≤,可知函数()f x 在(1,)+∞上单调递减 故当1x >时,1()2ln (1)0f x x x f x =-+<=,即12ln x x x<-. ……………………………3分 (Ⅱ)因为0,0t a >>,故不等式(1)ln(1)a t a t ++>可化为ln(1)at t t a +>+……()* 问题转化为()*式对任意的正实数t 恒成立, 构造函数()ln(1)(0)at g t t t t a=+->+, 则2221[(2)]()1()(1)()a t t a a g t t t a t t a --'=-=++++,……………6分 (1)当02a <≤时,0,(2)0t a a >-≤,()0g t '∴≥即()g t 在(0,)+∞上单调递增,所以()(0)0g t g >=,即不等式ln(1)at t t a +>+对任意的正实数t 恒成立. (2)当2a >时,(2)0a a ->因此(0,(2))()0t a a g t '∈-<,,函数()g t 单调递减;((2),+)()0t a a g t '∈-∞>,,函数()g t 单调递增, 所以min (2)()((2))2ln(1)1a a g t g a a a a -=-=--- 2,11a a >∴->,令11x a =->, 由(Ⅰ)可知2min (2)11()2ln(1)2ln 2ln ()01a a x g t a x x x a x x--=--=-=--<-,不合题意.综上可得,正实数a 的取值范围是(0,2]. ………………10分 (Ⅲ)要证19291()10e <,即证910119ln 2ln 19ln 219ln(1)21099e <-⇔>⇔+>, 由(Ⅱ)的结论令2a =,有2(1)ln(1)2t t++>对0t >恒成立, 取19t =可得不等式119ln(1)29+>成立, 综上,不等式19291()10e<成立. ………………………………14分。