兰斯特方程
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设红军是100人,蓝军是50人,这两方PK到蓝方全部死亡为止,那么红方根据方程计算还应该死多少人?
可不是大家想象的50人哦。
根据方程计算,100的平方是10000,50的平方是2500,10000-2500=7500,再把7500开平方,得87人,答案就是100-87=13人。
给大家介绍数学上的一个方程:兰彻斯特方程。
大家自己摆渡一下,我就不贴了。
我只是想说,兰彻斯特方程揭示了数量是最广泛、最基本的优势这个道理,用俗话说就是“双拳难敌四手,好汉架不住人多”。
我们浅谈一下这个方程的一个最简单的假设:假设战斗条件下,红、蓝两军交战,双方各自装备同类武器,除了军队的数量不同,其他什么条件都是一样一样的,也没有增援。
也就是说红方100人在同样的条件下杀光蓝方50人,只会死13个人!!!
很恐怖吧。
想想中国和俄罗斯的人口差距,以及中国目前的工业生产能力,中国人只要团结一心,有必要怕老毛子的复兴吗
1915年,英国工程师F.W.兰彻斯特在《战斗中的飞机》一文中,首先提出用常微分方程组描述敌对双方兵力消灭过程,定性地说明了集中兵力的原理。 开始是用于分析交战过程中的双方伤亡比率,后用途逐渐推广。
兰切斯特方程证明,相同战斗力和战斗条件下,1000对2000人作战。几轮战斗下来。多方只要伤亡268人就能全歼1000人的队伍,兰切斯特方程特别适用于现代战争中分散化军队和远程火炮配置发生的战斗,远距离战斗比如炮战、空战、舰队海战很可能出现兰切斯特方程的理想情况。
远距离交战的时候,任一方实力与本身数量成正比,即兰切斯特线性律。 在近距离交战的时候,任一方实力与本身数量的平方成正比,即兰切斯特平方律。
战争实践表明,提高质量是部队建设的基本要求,在部队数量相差不大的情况下,质量高者获胜,质量差者失败;倘若不能形成同一质量层次的对抗,处于劣势的一方纵有再多的飞机、坦克、大炮,也可能失去还手之力。假定A的单位战斗力是B的一半,但是数量是B的三倍。假定B有1000人,A有3000人。如果是面对面的战斗,A方损失264人即可消灭掉B方的1000人。现在A需要先接近B在进行面对面的战斗,按兰切斯特线性律,A付出1000人的代价歼灭B500人以后接近,在2000对500的近战中,付出187人的代价歼灭B方500人,总损失1187人对1000人。兰切斯特方程没有考虑战场上的许多要素,并不完全,对局部的战役有参考价值,对整个战争的结局无能为力。兰切斯特方程在战争摸拟的时候会被经常使用,恩格尔曾经使用兰切斯特方程摸拟硫磺岛战役,计算结果与事实非常接近.
兰彻斯特的战斗力方程是:战斗力=参战单位总数×单位战斗效率。它表明:在数量达到最大饱和的条件下,提高质量才可以增强部队的战斗力,而且是倍增战斗力的最有效方法。在高新科学技术的影响下,军队的数量、质量与战斗力之间的关系已经发生了根本性变化:质量居于主导地位,数量退居次要地位,质量的优劣举足轻重,质量占绝对优势的军队将取得战争的主动权。一般说来,高技术应用在战场上形成的信息差、空间差、时间差和精度差,是无法以增加普通兵器和军队数量来弥补的;相反,作战部队数量的相对不足,却可以高技术武器装备为基础的质量优势来弥补,即通过提高单位战斗效率来提升战斗力。
可不是大家想象的50人哦。
根据方程计算,100的平方是10000,50的平方是2500,10000-2500=7500,再把7500开平方,得87人,答案就是100-87=13人。
给大家介绍数学上的一个方程:兰彻斯特方程。
大家自己摆渡一下,我就不贴了。
我只是想说,兰彻斯特方程揭示了数量是最广泛、最基本的优势这个道理,用俗话说就是“双拳难敌四手,好汉架不住人多”。
我们浅谈一下这个方程的一个最简单的假设:假设战斗条件下,红、蓝两军交战,双方各自装备同类武器,除了军队的数量不同,其他什么条件都是一样一样的,也没有增援。
也就是说红方100人在同样的条件下杀光蓝方50人,只会死13个人!!!
很恐怖吧。
想想中国和俄罗斯的人口差距,以及中国目前的工业生产能力,中国人只要团结一心,有必要怕老毛子的复兴吗
1915年,英国工程师F.W.兰彻斯特在《战斗中的飞机》一文中,首先提出用常微分方程组描述敌对双方兵力消灭过程,定性地说明了集中兵力的原理。 开始是用于分析交战过程中的双方伤亡比率,后用途逐渐推广。
兰切斯特方程证明,相同战斗力和战斗条件下,1000对2000人作战。几轮战斗下来。多方只要伤亡268人就能全歼1000人的队伍,兰切斯特方程特别适用于现代战争中分散化军队和远程火炮配置发生的战斗,远距离战斗比如炮战、空战、舰队海战很可能出现兰切斯特方程的理想情况。
远距离交战的时候,任一方实力与本身数量成正比,即兰切斯特线性律。 在近距离交战的时候,任一方实力与本身数量的平方成正比,即兰切斯特平方律。
战争实践表明,提高质量是部队建设的基本要求,在部队数量相差不大的情况下,质量高者获胜,质量差者失败;倘若不能形成同一质量层次的对抗,处于劣势的一方纵有再多的飞机、坦克、大炮,也可能失去还手之力。假定A的单位战斗力是B的一半,但是数量是B的三倍。假定B有1000人,A有3000人。如果是面对面的战斗,A方损失264人即可消灭掉B方的1000人。现在A需要先接近B在进行面对面的战斗,按兰切斯特线性律,A付出1000人的代价歼灭B500人以后接近,在2000对500的近战中,付出187人的代价歼灭B方500人,总损失1187人对1000人。兰切斯特方程没有考虑战场上的许多要素,并不完全,对局部的战役有参考价值,对整个战争的结局无能为力。兰切斯特方程在战争摸拟的时候会被经常使用,恩格尔曾经使用兰切斯特方程摸拟硫磺岛战役,计算结果与事实非常接近.
兰彻斯特的战斗力方程是:战斗力=参战单位总数×单位战斗效率。它表明:在数量达到最大饱和的条件下,提高质量才可以增强部队的战斗力,而且是倍增战斗力的最有效方法。在高新科学技术的影响下,军队的数量、质量与战斗力之间的关系已经发生了根本性变化:质量居于主导地位,数量退居次要地位,质量的优劣举足轻重,质量占绝对优势的军队将取得战争的主动权。一般说来,高技术应用在战场上形成的信息差、空间差、时间差和精度差,是无法以增加普通兵器和军队数量来弥补的;相反,作战部队数量的相对不足,却可以高技术武器装备为基础的质量优势来弥补,即通过提高单位战斗效率来提升战斗力。