专题11 平面解析几何大题强化训练(省赛试题汇编)(原卷版)

合集下载

最新版精编2020高考数学专题训练《平面解析几何初步》考核题完整版(含标准答案)

最新版精编2020高考数学专题训练《平面解析几何初步》考核题完整版(含标准答案)

2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.直线1x y +=与圆2220(0)x y ay a +-=>没有公共点,则a 的取值范围是( )A .1)B .1)C .(1)D .1) (2006安徽文)2.已知直线1:30l Ax y C ++=与2:2340l x y -+=,若12l l 、的交点在y 轴上,则C 的值为A、4 B、-4 C、4或-4 D、与A 的取值有关二、填空题3.圆221x y +=在矩阵100⎡⎢⎣⎦对应的变换作用下的曲线方程为___________. 4.直线1l :013=++y ax 与2l :()0112=+++y a x 互相平行,则a 的值是 .5. 已知,AC BD 为圆22:4O x y +=的两条互相垂直的弦,,AC BD 交于点(M ,则四边形ABCD 面积的最大值为___________________6.经过点)2,3(且与直线023=+y x 垂直的直线方程为 .7. 圆012222=+-++y x y x 关于直线0x y -=对称的圆的方程为_____________8.直线053=+-y x 的倾斜角是 .9.圆222210x y x y ++-+=关于直线30x y -+=对称的圆的方程为______________10.已知圆22x y m +=与圆2268110x y x y ++--=相交,则实数m 的取值范围是 .11. 已知O 为坐标原点,点(2,1),(1,2)A B ,对于k N *∈有向量k OP kOB OA =+,(1)试证明k P 都在同一条直线23y x =-上;(2)是否在存在k N *∈使k P 在圆22(2)5x y +-=上或其内部,若存在求出k ,若不存在说明理由. (本题满分12分)第1小题满分5分,第2小题满分7分.12.过直线l :2y x =上一点P 作圆C :()()22812x y -+-=的切线12,l l ,若12,l l 关于直线l 对称,则点P 到圆心C 的距离为 ▲ .13.点),(y x P 在直线04=-+y x 上,则22y x +的最小值是 .14.若斜率为2的直线过点(2,3),(21,1)A B k -+,则k 的值是___________15.点P 在直线04=-+y x 上,O 是坐标原点,则||OP 的最小值是_________.16.过定点(1,2)作两直线与圆2222150x y kx y k ++++-=相切,则k 的所有的值组成的集合A=三、解答题17.(本大题满分16分)某市某棚户区改造建筑用地平面示意图如图所示.经规划调研确定,棚改规划建筑用 地区域是半径为R 的圆面.该圆面的内接四边形ABCD 是原棚户建筑用地,测量可知边 界4==AD AB 千米,6=BC 千米,2=CD 千米,(1)求原棚户区建筑用地ABCD 中对角线AC 的长度;(2)请计算原棚户区建筑用地ABCD 的面积及圆面的半径R 的值.18.(本小题满分16分)已知ABC △的三个顶点(1,0)A -,(1,0)B ,(3,2)C ,其外接圆为H ⊙.(1)若直线l 过点C ,且被H ⊙截得的弦长为2,求直线l 的方程;(2)对于线段BH 上的任意一点P ,若在以C 为圆心的圆上都存在不同的两点M ,N ,使得点M 是线段PN 的中点,求C ⊙的半径r 的取值范围.19.1 .(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分.如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l ,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围.20.(本题满分17分)已知圆M :()2244x y +-=,直线l 的方程为20x y -=,点P 是直线l 上一动点,过点P 作圆的切线PA 、PB ,切点为A 、B .(Ⅰ)当P 的横坐标为165时,求∠APB 的大小; (Ⅱ)求证:经过A 、P 、M 三点的圆N 必过定点,并求出所以定点的坐标. (Ⅲ)求线段AB 长度的最小值.21.已知⊙22:16,C x y +=,直线:220l mx y m -+-=(1)求证:对R m ∈,直线l 与⊙C 总有两个不同的交点;(2)求直线l 与圆⊙C 相交所得弦长为整数的弦的条数.22.已知平面直角坐标系)4,4(),2,324(,B A xOy +中,圆C 是△OAB 的外接圆。

高考数学压轴专题专题备战高考《平面解析几何》真题汇编含答案解析

高考数学压轴专题专题备战高考《平面解析几何》真题汇编含答案解析

【最新】《平面解析几何》专题一、选择题1.已知抛物线22(0)y px p =>交双曲线22221(0,0)x y a b a b-=>>的渐近线于A ,B 两点(异于坐标原点OAOB ∆的面积为32,则抛物线的焦点为( ) A .(2,0) B .(4,0)C .(6,0)D .(8,0)【答案】B 【解析】 【分析】由题意可得2ba=,设点A 位于第一象限,且(),A m n ,结合图形的对称性列出方程组确定p 的值即可确定焦点坐标. 【详解】2222222215c a b b e a a a+===+=,∴2b a =, 设点A 位于第一象限,且(),A m n ,结合图形的对称性可得:22322nm mn n pm ⎧=⎪⎪=⎨⎪=⎪⎩,解得:8p =,∴抛物线的焦点为()4,0,故选B . 【点睛】本题主要考查圆锥曲线的对称性,双曲线的渐近线,抛物线焦点坐标的求解等知识,意在考查学生的转化能力和计算求解能力.2.抛物线y 2=8x 的焦点为F ,设A ,B 是抛物线上的两个动点, AF BF +=, 则∠AFB 的最大值为( ) A .3π B .34π C .56π D .23π 【答案】D 【解析】 【分析】设|AF |=m ,|BF |=n ,再利用基本不等式求解mn 的取值范围,再利用余弦定理求解即可. 【详解】设|AF |=m ,|BF |=n ,∵233AF BF AB +=,∴2323AB mn≥,∴213mn AB≤,在△AFB中,由余弦定理得22222()2cos22m n AB m n mn ABAFBmn mn+-+--∠==212213222AB mn mn mnmn mn--=≥=-∴∠AFB的最大值为23π.故选:D【点睛】本题主要考查了抛物线的焦半径运用,同时也考查了解三角形与基本不等式的混合运用,属于中等题型.3.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y=+恰好是四叶玫瑰线.给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于4π;④方程()223221)60(x y x y xy+=<表示的曲线C在第二象限和第四象限其中正确结论的序号是( )A.①③B.②④C.①②③D.②③④【答案】B【解析】【分析】利用基本不等式得224x y+≤,可判断②;224x y+=和()3222216x y x y+=联立解得222x y==可判断①③;由图可判断④.【详解】()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点,(,(,,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.4.已知双曲线2222:1(0)x y E a b a b-=>>的左、右焦点分别为1F ,2F ,P 是双曲线E 上的一点,且212||PF PF =.若直线2PF 与双曲线E 的渐近线交于点M ,且M 为2PF 的中点,则双曲线E 的渐近线方程为( )A .13y x =±B .12y x =±C .2y x =±D .3y x =±【答案】C 【解析】 【分析】由双曲线定义得24PF a =,12PF a =,OM 是12PF F △的中位线,可得OM a =,在2OMF △中,利用余弦定理即可建立,a c 关系,从而得到渐近线的斜率.【详解】根据题意,点P 一定在左支上.由212PF PF =及212PF PF a -=,得12PF a =,24PF a =, 再结合M 为2PF 的中点,得122PF MF a ==,又因为OM 是12PF F △的中位线,又OM a =,且1//OM PF , 从而直线1PF 与双曲线的左支只有一个交点.在2OMF △中22224cos 2a c aMOF ac+-∠=.——① 由2tan b MOF a ∠=,得2cos aMOF c∠=. ——②由①②,解得225c a=,即2b a =,则渐近线方程为2y x =±.故选:C. 【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.5.已知O 为平面直角坐标系的原点,2F 为双曲线()222210,0x y a b a b-=>>的右焦点,E 为2OF 的中点,过双曲线左顶点A 作两渐近线的平行线分别与y 轴交于C ,D 两点,B 为双曲线的右顶点,若四边形ACBD 的内切圆经过点E ,则双曲线的离心率为( )A .2 BCD.3【答案】B 【解析】 【分析】由对称性可得四边形ACBD 为菱形,其内切圆圆心为坐标原点O ,求出圆心O 到BC 的距离d ,由四边形ACBD 的内切圆经过点E ,可得212d OF =,化简得出双曲线的离心率. 【详解】由已知可设()0A a -,,()0B a ,,AC b k a =, 有直线点斜式方程可得直线AC 方程为()by x a a=+,令0x =,可得()0C b ,, 由直线的截距式方程可得直线BC 方程为1x ya b+=,即0bx ay ab +-=, 由对称性可得四边形ACBD 为菱形,其内切圆圆心为坐标原点O ,设内切圆的半径为r , 圆心O 到BC的距离为abd r c===, 又∵四边形ACBD 的内切圆经过点E , ∴2122ab cOF r c ===, ∴22ab c =, ∴()22244aca c -=,同除以4a 得,42440e e -+=,∴()2220e -=,∴22e =, ∴2e =或2-(舍),∴2e =.故选:B. 【点睛】本题考查求双曲线离心率的问题,通过对称的性质得出相关的等量关系,考查运算求解能力和推理论证能力,是中档题.6.过抛物线212x y =的焦点F 的直线交抛物线于点A 、B ,交抛物线的准线于点C ,若3AF FB =uu u r uu r,则BC =( )A .4B .43C .6D .8【答案】D 【解析】 【分析】作出图象,作BM CP ⊥,AN CP ⊥,BH AN ⊥,设BF x =,根据抛物线的性质可得BM BF HN x ===,3AN AF x ==,进而得到1sin 2ACN ∠=,则可求出x 的值,进而得到BC 的值. 【详解】作BM CP ⊥,AN CP ⊥,BH AN ⊥,如图,因为3AF FB =uu u r uu r,不妨设BF x =,所以33AF BF x ==,4AB x =, 根据抛物线的定义可得BM BF HN x ===,3AN AF x ==,6FP p ==, 则32AH AN HN x x x =-=-=, 所以1sin sin 2AH ABH ACN AB ∠=∠==,则212CF FP ==,2CB x =, 则312CF CB BF x =+==,所以4x =,则28BC x ==,故选:D . 【点睛】本题考查抛物线的性质,涉及抛物线定义的应用,考查数形结合思想,属于中档题.7.在平面直角坐标系中,已知双曲线的中心在原点,焦点在轴上,实轴长为8,离心率为,则它的渐近线的方程为( ) A . B .C .D .【答案】D 【解析】试题分析:渐近线的方程为,而,因此渐近线的方程为,选D.考点:双曲线渐近线8.当点P 在圆221x y +=上变动时,它与定点(3,0)Q 的连结线段PQ 的中点的轨迹方程是( )A .22(3)4x y ++=B .22(23)41x y -+=C .22(3)1x y -+=D .22(23)41x y ++=【答案】B 【解析】 【分析】根据已知条件可设()00,P x y ,线段PQ 的中点为(),M x y ,再利用中点坐标公式可得到0023,2x x y y =-=,再代入圆的方程221x y +=即可得到线段PQ 的中点的轨迹方程.【详解】设()00,P x y ,线段PQ 的中点为(),M x y ,(如图)则00322x x y y +⎧=⎪⎪⎨⎪=⎪⎩即00232x x y y =-⎧⎨=⎩,Q 点()00,P x y 在圆221x y +=上变动,即22001x y +=()()222321x y ∴-+=即()222341x y -+=故选:B 【点睛】本题考查了中点坐标公式,动点轨迹方程求法,属于一般题.9.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A .2B .2C .3D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】 根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-.所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =,所以AF u u u v ===故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.10.已知曲线C 的方程为22121x y m m+=-,现给出下列两个命题:p :102m <<是曲线C 为双曲线的充要条件,q :12m > 是曲线C 为椭圆的充要条件,则下列命题中真命题的是( )A .()()p q ⌝∧⌝B .()p q ⌝∧C .()p q ∧⌝D .p q ∧【答案】C 【解析】 【分析】根据充分必要条件及双曲线和椭圆定义,分别判定命题p 与命题q 的真假,进而判断出复合命题的真假. 【详解】若曲线C 为双曲线,则()210m m -< ,可解得102m << 若102m <<,则()210m m -<,所以命题p 为真命题 若曲线C 为椭圆,则12m >且m≠1,所以命题q 为假命题 因而()p q ∧⌝为真命题 所以选C 【点睛】本题考查了椭圆与双曲线的标准方程,充分必要条件的判定,属于基础题.11.已知抛物线2:4C y x =,过其焦点F 的直线l 交抛物线C 于,A B 两点,若3AF FB =uu u r uu r,则AOF V 的面积(O 为坐标原点)为( )A .3 B .3C .43D .23【答案】B 【解析】 【分析】首先过A 作111AA A B ⊥,过B 作111BB A B ⊥(11A B 为准线),1BM AA ⊥,易得30ABM ∠=o ,60AFH ∠=o .根据直线AF :3(1)y x =-与抛物线联立得到12103x x +=,根据焦点弦性质得到163AB =,结合已知即可得到sin 6023AH AF ==o ,再计算AOF S V 即可.【详解】 如图所示:过A 作111AA A B ⊥,过B 作111BB A B ⊥(11A B 为准线),1BM AA ⊥. 因为3AF BF =uuu r uu u r,设BF k =,则3AF k =,11BB A M k ==. 所以2AM k =. 在RT ABM V 中,12AM AB =,所以30ABM ∠=o . 则60AFH ∠=o .(1,0)F ,直线AF 为3(1)y x =-.223(1)310304y x x x y x⎧=-⎪⇒-+=⎨=⎪⎩,12103x x +=.所以121016233AB x x p =++=+=,344AF AB ==.在RT AFH V 中,sin 60AH AF ==o所以112AOF S =⨯⨯=V 故选:B 【点睛】本题主要考查抛物线的几何性质,同时考查焦点弦的性质,属于中档题.12.O 为坐标原点,F 为抛物线2:4C y x =的焦点,P 为C 上一点,若4PF =,则POF V 的面积为A B C .2 D .3【答案】B 【解析】 【分析】由抛物线的标准方程24y x =可得抛物线的焦点坐标和准线方程,设出(,)P x y ,由PF =4以及抛物线的定义列式可得(1)4x --=,即3x =,再代入抛物线方程可得点P 的纵坐标,再由三角形的面积公式1||2S y OF =可得. 【详解】由24y x =可得抛物线的焦点F (1,0),准线方程为1x =-,如图:过点P 作准线1x =- 的垂线,垂足为M ,根据抛物线的定义可知PM =PF =4,设(,)P x y ,则(1)4x --=,解得3x =,将3x = 代入24y x =可得y =±,所以△POF 的面积为1||2y OF ⋅=112⨯= 故选B .【点睛】本题考查了抛物线的几何性质,定义以及三角形的面积公式,关键是①利用抛物线的定义求P 点的坐标;②利用OF 为三角形的底,点P 的纵坐标的绝对值为高计算三角形的面积.属中档题.13.已知1F ,2F 是双曲线22221x y a b-=(0a >,0b >)的左、右焦点,点A 是双曲线上第二象限内一点,且直线1AF 与双曲线的一条渐近线by x a=平行,12AF F ∆的周长为9a ,则该双曲线的离心率为( )A .2B 5C .3D .23【答案】A 【解析】 【分析】根据双曲线的定义,结合三角形的周长可以求出1AF 和2AF 的表达式,根据线线平行,斜率的关系,结合余弦定理进行求解即可. 【详解】由题意知212AF AF a -=,2192AF AF a c +=-, 解得21122a c AF -=,1722a cAF -=, 直线1AF 与by x a =平行,则12tan b AF F a ∠=,得12cos a AF F c∠=,222121214cos 22AF c AF a AF F c AF c+-∠==⋅, 化简得22280c ac a +-=,即2280e e +-=,解得2e =. 故选:A 【点睛】本题考查求双曲线的离心率,考查了双曲线的定义的应用,考查了余弦定理的应用,考查了数学运算能力.14.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.已知抛物线22(0)y px p =>的焦点为F ,过点F 作互相垂直的两直线AB ,CD 与抛物线分别相交于A ,B 以及C ,D ,若111AF BF+=,则四边形ACBD 的面积的最小值为( ) A .18 B .30C .32D .36【答案】C 【解析】 【分析】 【详解】由抛物线性质可知:112AF BF p +=,又111AF BF+=,∴2p =, 即24y x =设直线AB 的斜率为k (k≠0),则直线CD 的斜率为1k-. 直线AB 的方程为y=k (x ﹣1), 联立214y k x y x=⎧⎨=⎩(﹣),消去y 得k 2x 2﹣(2k 2+4)x+k 2=0, 从而242A B x x k+=+,A B x x =1 由弦长公式得|AB|=244k+, 以1k-换k 得|CD|=4+4k 2, 故所求面积为()22221141AB CD 4448222k k k k ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭≥32(当k 2=1时取等号),即面积的最小值为32. 故选C16.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过2F 且斜率为247的直线与双曲线在第一象限的交点为A ,若()21210F F F A F A +⋅=u u u u v u u u u v u u u v,则此双曲线的标准方程可能为( )A .22143x y -=B .22134x y -=C .221169x y -=D .221916x y -=【答案】D 【解析】 【分析】先由()21210F F F A F A +⋅=u u u u r u u u u r u u u r 得到1222F F F A c ==,根据2AF 的斜率为247,求出217cos 25AF F ∠=-,结合余弦定理,与双曲线的定义,得到c a ,求出ab ,进而可得出结果. 【详解】由()21210F F F A F A +⋅=u u u u r u u u u r u u u r,可知1222F F F A c ==,又2AF 的斜率为247,所以易得217cos 25AF F ∠=-,在12AF F ∆中,由余弦定理得1165AF c =, 由双曲线的定义得16225c c a -=, 所以53c e a ==,则:3:4a b =, 所以此双曲线的标准方程可能为221916x y -=.故选D 【点睛】本题考查双曲线的标准方程,熟记双曲线的几何性质与标准方程即可,属于常考题型.17.椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:221169x y +=,点A 、B 是它的两个焦点,当静止的小球放在点A 处,从点A 沿直线出发,经椭圆壁反弹后,再回到点A 时,小球经过的最短路程是( ). A .20 B .18C .16D .以上均有可能【答案】C 【解析】 【分析】根据椭圆的光学性质可知,小球从点A 沿直线出发,经椭圆壁反弹到B 点继续前行碰椭圆壁后回到A 点,所走的轨迹正好是两次椭圆上的点到两焦点距离之和,进而根据椭圆的定义可求得答案. 【详解】依题意可知小球经两次椭圆壁后反弹后回到A 点,根据椭圆的性质可知所走的路程正好是4a=4×4=16 故选:C . 【点睛】本题主要考查了椭圆的应用.解题的关键是利用了椭圆的第一定义,是基础题.18.已知F 是抛物线24x y =的焦点,P 为抛物线上的动点,且A 的坐标为()0,1-,则PF PA的最小值是( )A .14B .12C .2D .2【答案】C 【解析】由题意可得,抛物线24x y =的焦点(0,1)F ,准线方程为1y =-.过点P 作PM 垂直于准线,M 为垂足,则由抛物线的定义可得PF PM =,则sin PF PM PAM PAPA==∠,PAM ∠为锐角.∴当PAM ∠最小时,PF PA 最小,则当PA 和抛物线相切时,PFPA最小.设切点)P a ,由214y x =的导数为12y x '=,则PA的斜率为12⋅==.∴1a =,则(2,1)P . ∴2PM =,PA =∴sin 2PM PAM PA∠==故选C .点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化, 这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题.19.已知12,F F 分别双曲线22233(0)x y a a -=>的左右焦点,是P 抛物线28y ax =与双曲线的一个交点,若1212PF PF += ,则抛物线的准线方程为( ) A .4x =- B .3x =-C .2x =-D .1x =-【答案】C 【解析】由题得双曲线的方程为222213x y a a-=,所以222234,2c a a a c a =+=∴=.所以双曲线的右焦点和抛物线的焦点重合.由题得1221212,62PF PF PF a PF PF a⎧+=⎪∴=-⎨+=⎪⎩. 联立双曲线的方程和抛物线的方程得223830,(33ax ax a x x a --=∴=-=舍)或. 由抛物线的定义得6-a=3a-(-2a),所以a=1,所以抛物线的准线方程为x=-2,故选C.点睛:本题的难点在于如何找到关于a 的方程,本题利用的就是抛物线的定义得到6-a=3a-(-2a).在解析几何里,看到曲线上的点到焦点的距离,要联想到圆锥曲线的定义解题,这个技巧大家要理解掌握并做到灵活运用.20.已知椭圆1C :22113x y +=,双曲线2C :22221(,0)x y a b a b-=>,若以1C 的长轴为直径的圆与2C 的一条渐近线交于A 、B 两点,且椭圆1C 与该渐近线的两交点将线段AB 三等分,则2C 的离心率是( ) AB .3CD .5【答案】A 【解析】由已知得OA =OA 的方程为()00,0y kx k x =>>,∴可设()00,A x kx ,进一步0=,A AB ⎛⎫∴的一个三分点坐标为,该点在椭圆上,21+=,即()2211391k k+=+,解得22k =,从而有,222222b b a a==,解得c e a ===,故选A. 【 方法点睛】本题主要考查双曲线的渐近线及椭圆的离心率,属于难题. 求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系;离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.。

最新版精选2020高考数学专题训练《平面解析几何初步》完整版考核题(含参考答案)(最新整理)

最新版精选2020高考数学专题训练《平面解析几何初步》完整版考核题(含参考答案)(最新整理)

2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知直线0=++C By Ax 在x 轴的截距大于在y 轴的截距,则A 、B 、C应满足条件.....................................(D)A.B A > B.B A < C.0>+B C A C D.0<-BC A C 2.三条直线0155,02,0321=--=-+=-ky x l y x l y x l :::构成一个三角形,则k 的范围是( )A .Rk ∈B .R k ∈且0,1≠±≠k k C .R k ∈且10,5-≠±≠k k D .R k ∈且1,15≠±≠k k 二、填空题3.设M 是圆上的点,则M 点到直线的最短距离是 .222(5)(3)9x y -+-=3420x y +-=4.已知圆C 的圆心与点关于直线对称.直线(2,1)P -1y x =+34110x y +-=与圆C 相交于两点,且,则圆C 的方程为__________________.B A ,6=AB (天津卷15)22(1)18x y ++=5.在平面直角坐标系中,正方形ABCD 的中心坐标为(3,2),其一边AB 所在直线的方程为x-y+1=0,则边AB 的对边CD 所在直线的方程为 。

6.已知直线与圆1ax by +=224x y +=有交点,且交点为“整点”(即交点的横坐标、纵坐标均为整数),则满足条件的有序数对的个数为 8(),a b 7.若直线在轴上、轴上的截距分别是和4,则=_____,120mx ny ++=x y 3-m n =____8.若直线通过第一、二、四象限,则圆y ax b =+222()()x a y b r -+-=的圆心落在第____象限。

解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。

历年全国高中数学联赛《解析几何》专题真题汇编

历年全国高中数学联赛《解析几何》专题真题汇编

历年全国高中数学联赛《解析几何》专题真题汇编1、已知点A 为双曲线x 2-y 2=1的左顶点,点B 和点C 在双曲线的右分支上,△ABC 是等边三角形,则△ABC 的面积是 ( C )(A) 33 (B) 233 (C) 33 (D) 633、若实数x, y 满足(x+5)2+(y12)2=142,则x 2+y 2的最小值为( )(A) 2 (B) 1 (C) 3 (D)2 【答案】B【解析】利用圆的知识结合数形结合分析解答,22x y +表示圆上的点(x,y )到原点的距离。

4、直线134=+yx 椭圆191622=+y x 相交于A ,B 两点,该圆上点P ,使得⊿PAB 面积等于3,这样的点P 共有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个【答案】B5、设a ,b ∈R ,ab ≠0,那么直线ax -y +b=0和曲线bx 2+ay 2=ab 的图形是( )【答案】B6、过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于( ) (A)163 (B) 83 (C) 1633 (D) 8 3 【答案】A【解析】抛物线的焦点为原点(0,0),弦AB 所在直线方程为y=3x ,弦的中点yxO Ox yO xyyx O A. B. C.D.在y=pk =43上,即AB中点为(43,43),中垂线方程为y=-33(x-43)+43,令y=0,得点P的坐标为163.∴PF=163.选A.7、已知M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对于所有的m∈R,均有M∩N≠∅,则b的取值范围是( )A.[-62,62] B.(-62,62) C.(-233,233] D.[-233,233] 【答案】A【解析】点(0,b)在椭圆内或椭圆上,⇒2b2≤3,⇒b∈[-62,62].选A.8、方程13cos2cos3sin2sin22=-+-yx表示的曲线是()A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线【答案】C9、设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是()【答案】A【解析】设圆O1和圆O2的半径分别是r1、r2,|O1O2|=2c,则一般地,圆P的圆心轨迹是焦点为O1、O2,且离心率分别是212rrc+和||221rrc-的圆锥曲线(当r1=r2时,O1O2的中垂线是轨迹的一部份,当c=0时,轨迹是两个同心圆)。

高考数学平面解析几何专项训练(100题-含答案)

高考数学平面解析几何专项训练(100题-含答案)

高考数学平面解析几何专项训练(100题-含答案)1.在平面直角坐标系xOy 中,已知点12(1,0),(1,0)F F -,点M 满足12MF MF +=记点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)点T 在直线2x =上,过T 的两条直线分别交C 于,A B 两点和,P Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)2212x y +=(2)0【解析】【分析】(1)根据122MF MF +=,利用椭圆的定义求解;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立,利用参数的几何意义求解.(1)解:因为122MF MF +=,所以点M 的轨迹是以12(1,0),(1,0)F F -为焦点的椭圆,则21,1a c b ===,所以椭圆的方程是2212x y +=;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立()()2222cos 2sin 4cos 4sin 420t m t m θθθθ+++++=,由参数的几何意义知:12,TA t TB t ==,则22122224242cos 2sin 2cos m m t t θθθ++⋅=-=-+-,设直线PQ 的参数方程为:()2cos ,sin x y m λαλλα=+⎧⎨=+⎩为参数,则12,TP TQ λλ==,则22122224242cos 2sin 2cos m m λλααα++⋅=-=-+-,由题意得:222242422cos 2cos m m θα++-=---,即22cos cos θα=,因为αθ≠,所以cos cos θα=-,因为0,0θπαπ<<<<,所以θαπ+=,所以直线AB 的斜率tan θ与直线PQ 的斜率tan α之和为0.2.设n S 是数列{}n a 的前n 项和,13a =,点(),N n S n n n *⎛⎫∈ ⎪⎝⎭在斜率为1的直线上.(1)求数列{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)21n a n =+(2)152522n n n T ++=-【解析】【分析】(1)根据斜率公式可得出()222n S n n n =+≥,可知13S =满足()222n S n n n =+≥,可得出22n S n n =+,再利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式;(2)求得1212n n n c ++=,利用错位相减法可求得n T .(1)解:由13a =,点,n S n n ⎛⎫ ⎪⎝⎭在斜率为1的直线上,知1111n S S n n -=-,即()222n S n n n =+≥.当1n =时,113S a ==也符合上式,故22n S n n =+.当2n ≥时,()()221212121n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦;13a =也满足上式,故21n a n =+.(2)解:112122n n n n a n c +++==.则2341357212222n n n T ++=++++ ,所以,3412135212122222n n n n n T ++-+=++++ ,上式-下式得1232211113111213214212422224212n n n n n n n T -++⎛⎫- ⎪++⎛⎫⎝⎭=++++-=+- ⎝⎭- 252542n n ++=-,因此,152522n n n T ++=-.3.椭圆2222:1(0)x y C a b a b +=>>的离心率为3,且过点(3,1).(1)求椭圆C 的方程;(2)A ,B ,P 三点在椭圆C 上,O 为原点,设直线,OA OB 的斜率分别是12,k k ,且1213k k ⋅=-,若OP OA OB λμ=+,证明:221λμ+=.【答案】(1)221124x y +=(2)证明见解析【解析】【分析】(1)由条件可得c a22911a b +=,222c b a +=,解出即可;(2)设()()()112200,,,,,A x y B x y P x y ,由条件可得012012x x x y y y λμλμ=+⎧⎨=+⎩,12123x x y y =-,然后将01212x x x y y y λμλμ=+⎧⎨=+⎩代入椭圆方程可得2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后可得答案.(1)因为ca=22911a b +=,222c b a +=所以可解得2a b ⎧=⎪⎨=⎪⎩所以椭圆C 的方程221124x y +=.(2)设()()()112200,,,,,A x y B x y P x yOP OA OB λμ=+ ,012012x x x y y y λμλμ=+⎧∴⎨=+⎩()()222212120011124124x x y y x y λμλμ+++=∴+= 即2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222112211124124x y x y +=+= ,,即22121221124x x y y λμλμ⎛⎫+++= ⎪⎝⎭又1212121133y y k k x x ⋅=-∴=- ,即12123x x y y =-,221λμ∴+=4.已知椭圆()2222:10x y C a b a b+=>>,A 、B 分别为椭圆C 的右顶点、上顶点,F 为椭圆C的右焦点,椭圆C 的离心率为12,ABF 的面积为32.(1)求椭圆C 的标准方程;(2)点P 为椭圆C 上的动点(不是顶点),点P 与点M ,N 分别关于原点、y 轴对称,连接MN 与x 轴交于点E ,并延长PE 交椭圆C 于点Q ,则直线MP 的斜率与直线MQ 的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)22143x y +=(2)是定值,定值为32-【解析】【分析】(1)根据椭圆的离心率可得到a,b,c 的关系,再结合ABF 的面积可得到()a c b -=,由此解得a,b ,可得答案.(2)设直线方程,并联立椭圆方程,得到根与系数的关系式,结合直线MP 的斜率与直线MQ 的斜率之积,代入化简可得答案.(1)由题意得12c a =,则2a c =,b =.ABF 的面积为()1322a cb -=,则()a c b -将2a c =,b =代入上式,得1c =,则2a =,b =,故椭圆C 的标准方程为22143x y +=.(2)由题意可知直线PQ 的斜率一定存在,设直线PQ 的方程为y kx m =+,设()11,P x y ,()22,Q x y ,则()11,M x y --,()11,N x y -,()1,0E x -,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,得()2223484120k x kmx m +++-=,∴122834kmx x k +=-+,∴()12122286223434km m y y k x x m k m k k ⎛⎫+=++=-+= ⎪++⎝⎭,∴21212263348434MQmy y k k km x x kk ++===-+-+,112PEPQ y k k k x ===,∵11112222MP PE y yk k k x x ====,∴33242MP MQ k k k k ⋅=-⨯=-∴MP MQ k k ⋅为定值32-.【点睛】本题考查了椭圆方程的求法以及直线和椭圆的位置关系,综合考查了学生分析问题,解决问题以及计算方面的能力和综合素养,解答的关键是理清解决问题的思路,并能正确地进行计算.5.已知圆M 过点()1,0,且与直线1x =-相切.(1)求圆心M 的轨迹C 的方程;(2)过点()2,0P 作直线l 交轨迹C 于A 、B 两点,点A 关于x 轴的对称点为A '.问A B '是否经过定点,若经过定点,求出定点坐标;若不经过,请说明理由.【答案】(1)24y x =(2)()2,0-【解析】【分析】(1)根据抛物线的定义计算可得;(2)设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y ,则()11,A x y '-,联立直线与抛物线方程,消元、列出韦达定理,再表示出直线A B '的方程,将12y y +、12y y 代入整理即可得解;(1)解:由题意知动点M 的轨迹C 是以(0,0)O 为顶点,()1,0为焦点,1x =-为准线的抛物线,所以动圆圆心M 的轨迹方程为:24y x =;(2)解:设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y 不妨令21y y >,则()11,A x y '-,联立直线l 与抛物线方程得224x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则124y y t +=、128y y =-,则直线A B '的方程为()()211121y y y y x x x x +--=--,即()()21212121x x y x y y y x y x -+=+-,则()()()()2121212122ty ty y ty y y y x y ty -++=+-+,()()()2121211222t y y y y y x ty y y y -=+--+,即()()21211222y y y x ty y y y =+--+,所以()42824y tx t t ⋅=-⨯--⨯,即()2y t x =+,令200x y +=⎧⎨=⎩解得20x y =-⎧⎨=⎩,所以直线A B '恒过定点()2,0-;6.已知1F ,2F 是椭圆C :()222104x yb b+=>的左、右焦点,过1F 的直线与C 交于A ,B两点,且22::3:4:5AF AB BF =.(1)求C 的离心率;(2)设M ,N 分别为C 的左、右顶点,点P 在C 上(P 不与M ,N 重合),证明:MPN MAN ∠≤∠.【答案】(2)见解析【解析】【分析】(1)由题意设223,4,5AF m AB m BF m ===,由勾股定理的逆定理可得290BAF ∠=︒,再根据椭圆的定义可求出m 的值,从而可求出12,AF AF 的值,则可得点A 是椭圆短轴的一个端点,进而可求出离心率,(2)由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则可得0000tan ,tan 22y y x x αβ==+-,然后求出tan tan αβ+,tan tan αβ,再利用正切的两角和公式可得02tan()y αβ+=,由正切函数可求出αβ+的最小值,从而可求出()MPN παβ∠=-+的最大值,进而可证得结论(1)由()222104x y b b+=>,得24a =,得2a =,由题意设223,4,5AF m AB m BF m ===,则22222AF AB BF +=,所以290BAF ∠=︒,因为223451248AF AB BF m m m m a ++=++===,所以23m =,所以22AF =,所以122422AF a AF =-=-=,所以12AF F △为等腰直角三角形,所以点A 是椭圆短轴的一个端点,所以b c =,因为222224b c b a +===,得b c =所以椭圆的离心率为2c e a ==(2)由(1)可得椭圆方程为22142x y +=,则(2,0),(2,0)M N -,因为点A是椭圆短轴的一个端点,所以不妨设A ,由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则0000tan ,tan 22y y x x αβ==+-,2200142x y +=,所以2200002200001tan tan 22422y y y y x x x y αβ⋅=⋅===+--,00002200000442tan tan 2242y y y y x x x y y αβ+=+===+--,所以0tan tan 4tan()1tan tan y αβαβαβ++==-,所以当0y =tan()αβ+取得最小值由(1)可知290BAF ∠=︒,所以()0,2παβ⎛⎫+∈ ⎪⎝⎭,所以当tan()αβ+取得最小值时,αβ+取得最小值,即点P 与点A 重合时,αβ+取得最小值,此时()MPN παβ∠=-+取得最大,所以MPN MAN∠≤∠7.已知椭圆()2222:10x y C a b a b+=>>的长轴长为,且过点)P(1)求C 的方程:(2)设直线()0y kx m m =+>交y 轴于点M ,交C 于不同两点A ,B ,点N 与M 关于原点对称,BO AN ⊥,Q 为垂足.问:是否存在定点M ,使得·NQ NA 为定值?【答案】(1)221102x y +=(2)存在【解析】【分析】(1)利用待定系数法求方程;(2)联立方程组,结合韦达定理可得直线恒过定点,进而求解.(1)依题意知2a =a =所以C 的方程可化为222110x y b+=,将点)P代入C 得251110b +=,解得22b =,所以椭圆方程为221102x y +=;(2)设点()11,A x y ,()22,B x y ,联立221102x y y kx m ⎧+=⎪⎨⎪=+⎩得,()22215105100k x kmx m +++-=,()()()222104155100km k m ∆=-+->,解得22210m k <+,1221015km x x k -+=+,212251015m x x k -=+,注意到Q ,N ,A 三点共线,NQ NA NQ NA ⋅=⋅,又()NQ NA NB BQ NA NB NA ⋅=+⋅=⋅()()()()1212121222x x y m y m x x kx m kx m =+++=+++()()()()222222212122215102012441515k m k mkx xmk x x mm kk+-=++++=-+++()222221510510415k m m m k--+-=++当()2215105510m m --=-,解得1m =±,因为0m >,所以1m =,此时1NQ NA ⋅=-,满足0∆>,故存在定点()0,1M ,使得1NQ NA ⋅=-等于定值1.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.8.已知椭圆C :22221(0)x y a b a b +=>>,4a M b ⎛⎫ ⎪⎝⎭为焦点是22y x =的抛物线上一点,H 为直线y a =-上任一点,A ,B 分别为椭圆C 的上,下顶点,且A ,B ,H 三点的连线可以构成三角形.(1)求椭圆C 的方程;(2)直线HA ,HB 与椭圆C 的另一交点分别交于点D ,E ,求证:直线DE 过定点.【答案】(1)2214x y +=(2)证明见解析【解析】【分析】(1)由椭圆的离心率求出,a c 的关系式,再由,4a M b ⎛⎫⎪⎝⎭为抛物线22=y x 上的点,结合222a b c =+,即可求出椭圆C 的方程.(2)设点()(),20H m m -≠,求得HA ,HB 的方程,与椭圆联立求得,D E 坐标,写出直线DE 的方程,即可求出DE 恒过的定点.(1)由题意知,222224c aa b a b c⎧=⎪⎪⎪=⨯⎨⎪=+⎪⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为2214x y +=.(2)设点()(),20H m m -≠,易知()0,1A ,()0,1B -,∴直线HA 的方程为31y x m =-+,直线HB 的方程为11y x m=--.联立223114y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得22362410x x m m ⎛⎫+-= ⎪⎝⎭,∴22436D m x m =+,223636D m y m -=+,同理可得284E m x m -=+,2244E m y m -=+,∴直线DE 的斜率为21216m k m-=,∴直线DE 的方程为222241284164m m m y x m m m --⎛⎫-=+ ⎪++⎝⎭,即2121162m y x m -=-,∴直线DE 过定点10,2⎛⎫- ⎪⎝⎭.9.已知点(1,2)M -在抛物线2:2(0)E y px p =>上.(1)求抛物线E 的方程;(2)直线12,l l 都过点12(2,0),,l l 的斜率之积为1-,且12,l l 分别与抛物线E 相交于点A ,C 和点B ,D ,设M 是AC 的中点,N 是BD 的中点,求证:直线MN 恒过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)将点坐标代入求解抛物线方程;(2)设出直线方程,表达出,M N 的坐标,求出直线MN 的斜率,利用直线斜率之积为-1,求出直线MN 恒过的定点,从而证明出结论.(1)∵点(1,2)M -在抛物线2:2E y px =上,∴2(2)2p -=,∴解得:2p =,∴抛物线E 的方程为:24y x =.(2)由12,l l 分别与E 相交于点A ,C 和点B ,D ,且由条件知:两直线的斜率存在且不为零.∴设1122:2,:2l x m y l x m y =+=+由214,2y x x m y ⎧=⎨=+⎩得:21480y m y --=设()()1122,,,A x y C x y ,则1214y y m +=,∴12M y m =,又2122M x m =+,即()21122,2M m m +同理可得:()22222,2N m m +∴()()212212212212222MN m m k m m m m -==++-+,∴()211121:222MN y m x m m m -=--+即MN :()1212121y x m m m m =--⎡⎤⎣⎦+,∵12,l l 的斜率之积为1-,∴12111m m ⋅=-,即121m m =-,∴121:(4)MN y x m m =-+,即直线MN 过定点(4,0).10.已知抛物线()20x ay a =>,过点0,2a M ⎛⎫ ⎪⎝⎭作两条互相垂直的直线12,l l ,设12,l l 分别与抛物线相交于,A B 及,C D 两点,当A 点的横坐标为2时,抛物线在点A 处的切线斜率为1.(1)求抛物线的方程;(2)设线段,AB CD 的中点分别为,E F ,O 为坐标原点,求证直线EF 过定点.【答案】(1)24x y =;(2)证明见解析.【解析】【分析】(1)结合导数知识,利用切线斜率构造方程可得a ,由此可得抛物线方程;(2)将直线AB 方程代入抛物线方程中,结合韦达定理可确定中点坐标,同理可得CD中点坐标,利用直线方程两点式可得直线EF 方程,化简可知其过定点()0,4.(1)由2x ay =得:21y ax =,则2y x a '=,241x y a=∴==',解得:4a =,∴抛物线方程为:24x y =;(2)由题意知:直线12,l l 的斜率都存在且都不为零,由(1)知:()0,2M ,设直线:2AB y kx =+,代入24x y =得:2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,()21212444y y k x x k ∴+=++=+,AB ∴中点()22,22E k k +;12l l ⊥ ,1:2CD y x k ∴=-+,同理可得:CD 中点222,2F k k ⎛⎫-+ ⎪⎝⎭;EF ∴的方程为:()()222222222222k k y k x k k k ⎛⎫+-+ ⎪⎝⎭-+=-+,化简整理得:14y k x k ⎛⎫=-+ ⎪⎝⎭,则当0x =时,4y =,∴直线EF 恒过定点()0,4.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.11.在直角坐标系xOy 中,曲线:C 221x y +=经过伸缩变换x xy '='=⎧⎪⎨⎪⎩后的曲线为1C ,以x 轴正半轴为级轴,建立极坐标系.曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)若1C 上的一点P 到2C 的距离的最大,求距离的最大值及P 点的坐标.【答案】(1)1C :2213y x +=,2C :40x y +-=;(2)max d =,1322P ⎛⎫-- ⎪⎝⎭,.【解析】【分析】()1直接利用转换关系,把参数方程,直角坐标方程和极坐标方程之间进行转换;()2利用三角函数关系式的变换和点到直线的距离公式的应用求出结果.(1)解:由伸缩变换x xy '='=⎧⎪⎨⎪⎩得,代入曲线:C 221x y +=得:1C 的普通方程为2213y x +=,由极坐标方程sin 4πρθ⎛⎫+= ⎪⎝⎭sin y ρθ=,cos x ρθ=可得:2C 的直角坐标方程为40x y +-=.(2)解:直线2C 的普通方程为40x y +-=,设1C上的为点()cos P θθ,到2C 的距离为d =当且仅当()223k k Z πθπ=-+∈时,取得max d =,又因为1cos 23y 2x θθ⎧==-⎪⎪⎨⎪==-⎪⎩,即点P 的坐标为1322⎛⎫-- ⎪⎝⎭.12.已知椭圆C :2222+x y a b=1(a >b >0)经过点A (0,1),且右焦点为F (1,0).(1)求C 的标准方程;(2)过点(0,12)的直线l 与椭圆C 交于两个不同的点P .Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .证明:以MN 为直径的圆过y 轴上的定点.【答案】(1)2212x y +=(2)证明见解析【解析】【分析】(1)由已知得,c b ,再求得a ,即得椭圆方程;(2)由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,由直线,AP AQ 方程求出,M N 坐标,求出以MN 为直径的圆的方程,然后代入1212,x x x x +求得圆方程的常数项,从而可得y 的定点坐标.(1)由题意可得1,1c b ==从而22a =.所以椭圆的标准方程为2212x y +=.(2)证明:由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,将直线l 代入椭圆方程得()2242430k x kx ++-=,所以12122243,,4242k x x x x k k --+==++,直线AP 的方程为1111y y x x -=+,直线AQ 的方程为2211y y x x -=+.可得1212,0,,011x x M N y y ⎛⎫⎛⎫--⎪ ⎪--⎝⎭⎝⎭,以MN 为直径的圆方程为,21212011x x x x y y y ⎛⎫⎛⎫+++= ⎪⎪--⎝⎭⎝⎭,即()()221212121201111x x x x x y x y y y y ⎛⎫++++= ⎪----⎝⎭.①因为()()()1212122121212124111142122x x x x x x y y k x x k x x kx kx ==---++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭22212612842k k k -==--+++.所以在①中令0x =,得26y =,即以MN 为直径的圆过y轴上的定点(0,,13.已知抛物线C :()220y px p =>,过点()2,0R 作x 轴的垂线交抛物线C 于G ,H 两点,且OG OH ⊥(O 为坐标原点).(1)求p ;(2)过()2,1Q 任意作一条不与x 轴垂直的直线交抛物线C 于A ,B 两点,直线AR 交抛物线C 于不同于点A 的另一点M ,直线BR 交抛物线C 于不同于点B 的另一点N .求证:直线MN 过定点.【答案】(1)1p =(2)证明见解析【解析】【分析】(1)由题意知2RG OR ==,不妨设()2,2G ,代入抛物线方程中可求出p 的值,(2)设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫⎪⎝⎭,则可表示出直线AB ,AM ,BN 的方程,再由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-,再表示出直线MN 的方程,结合前面的式子化简可得结论(1)由题意知,2RG OR ==.不妨设()2,2G ,代入抛物线C 的方程,得44p =解得1p =.(2)由(1)知,抛物线C 的方程为22y x =.设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫ ⎪⎝⎭,则直线AB 的斜率为12221212222AB y y k y y y y -==+-.所以直线AB 的方程为2111222y y x y y y ⎛⎫=-+ ⎪+⎝⎭,即()121220x y y y y y -++=.同理直线AM ,BN ,MN 的方程分别为()131320x y y y y y -++=,()242420x y y y y y -++=,()343420x y y y y y -++=,由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-.又直线MN 的方程为()343420x y y y y y -++=,即1212441620x y y y y y ⎛⎫+++= ⎪⎝⎭.所以直线MN 的方程为()1212280y y x y y y +++=.把()121240y y y y -++=代入()1212280y y x y y y +++=,得()12122480y y x y y y +++=,()122)880(y y x y y +++=,所以由20x y +=,880y +=可得2x =,1y =-.所以直线MN 过定点()2,1-.14.已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于P ,A 两点,且PF λFA = .(1)若λ=4,求直线l 的方程;(2)设点E (a ,0),直线PE 与抛物线C 的另一个交点为B ,且PE EB μ=.若λ=4μ,求a的值.【答案】(1)4340x y --=或4340x y +-=(2)4【解析】【分析】(1)由4PF FA =得014y y =-,设直线l :1x my =+,与抛物线C :24y x =联立,结合韦达定理,即得解;(2)由PF λFA = 得01y y λ=-,结合014y y =-,可得204y λ=,再由PE EB μ= 得02y y μ=-,设直线PB :x ny a =+,与抛物线C :24y x =联立由韦达定理可得024y y a =-,故204y aμ=,又4λμ=,代入运算即得解(1)易知焦点F (1,0),设P (0x ,0y ),A (1x ,1y )由4PF FA =得014y y =-设直线l :1x my =+,与抛物线C :24y x =联立得2440y my --=,其中216160m ∆=+>,所以014y y =-由①②可得0141y y =⎧⎨=-⎩或0141y y =-⎧⎨=⎩又014y y m +=,所以34m =或34m =-所以直线l 的方程为314x y =+或314x y =-+.化简得4340x y --=或4340x y +-=(2)由PF λFA =得01y y λ=-又014y y =-可得204y λ=设点B (2x ,2y ),由PE EB μ= 得02y y μ=-设直线PB :x ny a =+,与抛物线C :24y x =联立得2440y ny a --=.所以216()0n a ∆=+>,024y y a=-故204y aμ=又4λμ=,所以2200444y y a=⋅,考虑到点P 异于原点,所以00y ≠,解得4a =此时2216()16(4)0n a n ∆=+=+>所以a 的值为415.平面直角坐标系xOy 中,双曲线22:136x y C -=的右焦点为F ,T 为直线:1l x =上一点,过F 作TF 的垂线分别交C 的左、右支于P 、Q 两点,交l 于点A .(1)证明:直线OT 平分线段PQ ;(2)若3PA QF =,求2TF 的值.【答案】(1)证明见解析(2)12+【解析】【分析】(1)设直线PQ 的方程为3x ty =+,设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与双曲线的方程联立,列出韦达定理,求出线段PQ 的中点N 的坐标,计算得出ON OT k k =,证明出O 、T 、N 三点共线,即可证得结论成立;(2)由3PA QF =得3PA QF = ,可得出1238x x -+=,变形可得出()()12212184384x x x x x x ⎧++=⎪⎨+-=⎪⎩,两式相乘结合韦达定理可求得2t 的值,再利用两点间的距离公式可求得2TF 的值.(1)解:依题意,3F x ==,即()3,0F ,设()1,2T t ,则直线PQ 的方程为3x ty =+,由22326x ty x y =+⎧⎨-=⎩得()222112120t y ty -++=,设()11,P x y 、()22,Q x y ,则()222210Δ14448210t t t ⎧-≠⎪⎨=-->⎪⎩,故212t ≠,由韦达定理可得1221221t y y t +=--,1221221y y t =-,所以()121226621x x t y y t +=++=--,又直线PQ 分别交C 的左、右支于P 、Q 两点,所以()()()22121212122963339021t x x ty ty t y y t y y t +=++=+++=-<-,故212t >所以PQ 中点为2236,2121t N t t ⎛⎫-- ⎪--⎝⎭,所以2ON OT k t k ==,故O 、T 、N 三点共线,即直线OT 平分线段PQ .(2)解:依题意,由3PA QF =得3PA QF =,则()12133x x -=-,即1238x x -+=,所以()12284x x x ++=,①,()121384x x x +-=,②①×②得()()21212123166416x x x x x x +++-=,所以()22222366963166416212121t t t t+⨯-⨯-=-⨯---,解得28374t +=,或28374t -=(舍去),此时,224412t TF =+=+【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.16.已知抛物线2:4E y x =,F 为其焦点,O 为原点,A ,B 是E 上位于x 轴两侧的不同两点,且5OA OB ⋅=.(1)求证:直线AB 恒过一定点;(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等;(3)在(2)的条件下,当F 为ABC 的内心时,求ABC 重心的横坐标.【答案】(1)证明见解析(2)见解析(3)173【解析】【分析】(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x =+⎧⎨=⎩,消x 得:2440y my n --=,124y y m +=,124y y n =-,结合向量的数量积,转化求解直线AB 的方程,推出结果.(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等即CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,根据斜率和为零,从而可得结果;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,由题意可得32AC CF AN NF ==,坐标化,结合点在抛物线上可得点的坐标,从而得到结果.(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x=+⎧⎨=⎩,消x 得:2440y my n --=,则124y y m +=,124y y n =-,由5OA OB ⋅= 得:21212()516y y y y +=,所以:1220y y =-或124y y =(舍去),即4205n n -=-⇒=,所以直线AB 的方程为5x my =+,所以直线AB 过定点(5,0)P .(2)由(1)知,直线AB 过定点(5,0)P 可设直线AB 的方程为5x my =+,此时124y y m +=,1220y y =-,设x 轴上定点C 坐标为(,0)t ,要使F 到直线AC 和BC 的距离相等,则CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,故0AC BC k k +=,即21210y yx t x t+=--,∴()()21120y x t y x t -+-=,∴()()1212250my y t y y +-+=,∴()40450m m t -+-=对任意m 恒成立,∴510t -=,5t =-,故在x 轴上有一定点C (5,0)-,使F 到直线AC 和BC 的距离相等;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,∵F 为ABC 的内心,∴32AC CF AN NF ==,32=,即2211126250x y x +-+=,又2114y x =,∴21122250x x -+=,同理22222250x x -+=,∴12,x x 是方程222250x x -+=的两个根,∴1222x x +=,∴三角形重心的横坐标为1251733x x +-=.17.已知椭圆C 的两个顶点分别为()2,0A -,()2,0B ,焦点在x (1)求椭圆C 的方程;(2)若直线()()10y k x k =-≠与x 轴交于点P ,与椭圆C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于Q ,求MN PQ的取值范围.【答案】(1)2214x y +=;(2)(4,【解析】【分析】(1)由顶点和离心率直接求,,a b c 即可;(2)先联立直线和椭圆方程,借助弦长公式表示出弦长MN ,再求出垂直平分线和Q 坐标,表示出PQ ,最后分离常数求取值范围即可.(1)由题意知2222,a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩可得1,2a b ==,故椭圆C 的方程为2214x y +=.(2)由()22114y k x x y ⎧=-⎪⎨+=⎪⎩,可得()2222418440k x k x k +-+-=,设()()1122,,,M x y N x y ,则22121222844,4141k k x x x x k k -+=⋅=++,()121222241k y y k x x k -+=+-=+,线段MN 的中点为2224,4141k k k k ⎛⎫- ⎪++⎝⎭,线段MN 的垂直平分线方程为22214()4141k k y x k k k --=--++,令0y =,得22341kx k =+,所以223,041k Q k ⎛⎫ ⎪+⎝⎭,又(1,0)P ,则22223114141k k PQ k k +=-=++,又12MN x x =-=所以2241141MN k k PQk +==++220,1331k k ≠∴<-<+ ,故MN PQ的取值范围为(4,.【点睛】(1)关键在于建立,,a b c 的关系式求解;(2)关键在于联立直线和椭圆方程,依次求出垂直平分线和弦长MN 、PQ ,转化成关于k 的代数式求范围即可.18.定义平面曲线的法线如下:经过平面曲线C 上一点M ,且与曲线C 在点M 处的切线垂直的直线称为曲线C 在点M 处的法线.设点()()000,0M x y y >为抛物线2:2(0)C y px p =>上一点.(1)求抛物线C 在点M 处的切线的方程(结果不含0x );(2)求抛物线C 在点M 处的法线被抛物线C 截得的弦长||AB 的最小值,并求此时点M 的坐标.【答案】(1)002y py x y =+(2);()p 【解析】【分析】(1)先化简求导确定切线斜率,再按照在点处的切线方程进行求解;(2)先联立法线和抛物线方程,借助弦长公式表示弦长,最后换元构造函数,求导确定最小值.(1)因为点()()000,0M x y y >在抛物线上方,所以由2:2(0)C y px p =>得y =py y'=,所以在点M 处的切线斜率0y y pk y y ='==,所求切线方程为000()py y x x y -=-,又202y x p=,故切线方程为2000()2y p y y x y p -=-,即002y p y x y =+.(2)点M 处的法线方程为2000()2y y y y x p p-=--,即220022y p p x y y p +=-+.联立抛物线2:2(0)C y px p =>,可得()2232000220y y p y y p y +-+=,可知0∆>,设()()1122,,,A x y B x y ,()2221212002,2p y y y y y p y +=-⋅=-+,所以322212202()y p AB y y y +⋅-=.令200t y =>,则3222()(0)t p AB t t +=>,令3222()()(0)t p f t t t +=>,1312222222223()()()(2)2()2t p t t p t p t p f t t t +⋅-++⋅-'=⨯=,所以()f t 在()20,2p 单调递减,在()22,p +∞单调递增,所以()2min ()2f t f p ==,即min AB =,此时点M的坐标为()p .【点睛】(1)关键在于化简出0y >时的抛物线方程,借助求导确定切线斜率;(2)写出法线方程,联立抛物线求弦长是通用解法,关键在于换元构造函数之后,借助导数求出最小值.19.已知点()11,0F -,()21,0F ,M 为圆22:4O x y +=上的动点,延长1F M 至N ,使得1MN MF =,1F N 的垂直平分线与2F N 交于点P ,记P 的轨迹为Γ.(1)求Γ的方程;(2)过2F 的直线l 与Γ交于,A B 两点,纵坐标不为0的点E 在直线4x =上,线段OE 分别与线段AB ,Γ交于,C D 两点,且2OD OC OE =⋅,证明:AC BC =.【答案】(1)22143x y +=;(2)证明见解析.【解析】【分析】(1)由线段垂直平分线和三角形中位线性质可证得12124PF PF F F +=>,可知P 点轨迹为椭圆,由此可得轨迹方程;(2)由已知可知24D C x x =;当l 斜率不存在时显然不成立;当l 斜率存在时,设l 方程,将其与椭圆方程联立,结合韦达定理可得AB 中点横坐标;设():0OE y k x k ''=≠,与直线l 和椭圆方程联立可求得34k k'=-,由此可整理得到C x ,与AB 中点横坐标相同,由此可得结论.(1)连接1,MO PF,PM 是1NF 的垂直平分线,1PF PN ∴=,1222PF PF PN PF NF ∴+=+=;,M O 分别为112,NF F F 中点,224NF MO ∴==,12124PF PF F F ∴+=>,P ∴点轨迹是以12,F F 为焦点,长轴长为4的椭圆,即2a =,1c =,23b ∴=,P ∴点轨迹Γ的方程为:22143x y +=;(2)2OD OC OE =⋅ ,即OD OE OC OD =,D EC Dx x x x ∴=,由题意知:0C x >,4E x =,24D C x x ∴=,①当直线l 斜率不存在时,即:1l x =,此时1C x =,2D x <,此时24D C x x =不成立;②当直线l 斜率存在时,设():1l y k x =-,()11,A x y ,()22,B x y ,由()221431x y y k x ⎧+=⎪⎨⎪=-⎩得:()22223484120k x k x k +-+-=,2122212283441234k x x k k x x k ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,AB ∴中点的横坐标为21224234x x k k +=+;设直线OE 的方程为:()0y k x k ''=≠,由()1y k x y k x ='=⎧⎨-⎩得:kx k k ='-,即C k x k k ='-;由22143y k xx y =⎧='⎪⎨+⎪⎩得:221234x k ='+,即221234D x k ='+;由24D C x x =得:212434k k k k =''+-,整理可得:34k k '=-,2122434324C x x kk x k k k+∴===++,C ∴为线段AB 的中点,AC BC ∴=.【点睛】关键点点睛:本题考查定义法求解轨迹方程、直线与椭圆综合应用问题;本题证明C 为AB 中点的关键是能够通过已知等式得到,C D 两点横坐标之间满足的等量关系,进而表示出AB 中点横坐标和C 点横坐标,证明二者相等即可.20.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F ,2F,离心率2e =,P为椭圆上一动点,12PF F △面积的最大值为2.(1)求椭圆E 的方程;(2)若C ,D 分别是椭圆E 长轴的左、右端点,动点M 满足MD CD ⊥,连结CM 交椭圆于点N ,O 为坐标原点.证明:OM ON ⋅为定值;(3)平面内到两定点距离之比是常数()1λλ≠的点的轨迹是圆.椭圆E 的短轴上端点为A ,点Q 在圆228x y +=上,求22QA QP PF +-的最小值.【答案】(1)22142x y +=;(2)见解析;4.【解析】【分析】(1)结合离心率和12PF F △面积的最大值列出关于,,a b c 的方程,解方程即可;(2)设直线CM 方程,写出点M 坐标,联立椭圆方程,求点N 坐标,通过向量数量积计算即可;(3)设点R 坐标,借助点Q 在圆228x y +=上,将2QA 转化成RA ,再借助椭圆定义将2PF 转化成14PF -,最后通过1,,R P F 三点共线求出最小值.(1)当P 为短轴端点时,12PF F △的面积最大,2bc =,222222,c a bc a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,a b c ===,故椭圆E 的方程为22142x y +=.(2)由(1)知,()2,0,(2,0)C D -,设直线():2CM y k x =+,11(,)N x y ,,(2,4)MD CD M k ⊥∴ ,联立221,42(2)x y y k x ⎧+=⎪⎨⎪=+⎩整理得()22222218840k x k x k +++-=,由21284221k x k --=+得2122421k x k -=+,1124(2)21ky k x k =+=+,222244(,)2121k k N k k -∴++,2222442442121k kOM ON k k k -⋅=⨯⨯++ ,故OM ON ⋅为定值4.(3)由题意(A ,设()(0,),,R m Q x y ,使2QA QR =,()()22222,4QR x y m QAx y +-==+,整理得222282833m m x y y --++=,又点Q 在圆228x y +=上,20,883m =∴⎨-⎪=⎪⎩解得m =,(0,R 由椭圆定义得124PF PF =-,2112(4)4QA QP PF QR QP PF QR QP PF +-=+--∴=++-,当1,,R P F三点共线时,(10,,(R F 22QA QP PF +-∴4.【点睛】(1)关键在于建立,,a b c 的方程;(2)关键在于设出直线方程,联立得出点N 坐标;(3)关键在于利用题目中给出的圆的定义将2QA 转化成RA ,再结合椭圆定义,将问题简化成共线问题.21.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知O 为坐标原点,P 为椭圆C 上的一个动点,过点E0)作OP 的平行线交椭圆C 于M ,N 两点,问:是否存在实数t (t >0),使得||,||,||EM t OP EN 构成等比数列?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,12t =【解析】【分析】(1)由题意可得2a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程中可求出2b ,从而可求得椭圆的方程,(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =,将直线方程代入椭圆方程中可求出22,x y ,则可得2OP ,设直线MN的方程为()()1122(,,,y k x M x y N x y =,将直线方程代入椭圆方程消去y ,利用根与系数的关系,再利用两点间的距离公式表示出||,||EM EN ,再计算||||EM EN 与2OP 比较可求出t 的值,②当OP 的斜率不存在时,可得||OP =MN的方程为x ||||EM EN 的值,进而可求出t (1)由题意可得24a =,所以2a =.因为点(1,32)在椭圆C 上,所以221914a b +=,解得23b =.所以椭圆C 的标准方程为22143x y +=.(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =.联立方程,得22143y kxx y =⎧⎪⎨+=⎪⎩解得221234x k =+,2221234k y k =+.解得()2222221211212||343434k k OP k k k+=+=+++,设直线MN的方程为()()1122(,,,y k x M x y N x y =-.联立方程,得(22143y k x x y ⎧=-⎪⎨⎪+=⎩化简,得()22223412120k x x k +=+-=.因为点E0)在椭圆内部,所0∆>,221213221212,3434k x x x x k k-+=⋅=++,所以1||EM x =-.同理可得2||EN x =所以()(())22121212||||113EM EN kx xk x x x x ⋅=+=+⋅++()()22222223112122413343434k k kk k k k +-=+⋅-+=+++,假设存在实数(0)t t >),使得||,||,||EM t OP EN 构成等比数列,则22||||||EM EN t OP ⋅=.所以()()22222311213434k k tk k ++=⋅++.解得214t=.四为1t >,所以12t =,②当OP 的斜率不存在时,||OP =MN 的方程为x =x =22143x y +=,得234y =.所以||||2EM EN ==,当||,||,||EM t OP EN 构成等比数列时,22||||||EM EN t OP ⋅=,即2334t =.因为0t >,所以12t =.综上所述,存在实数12t =,使得||,||,||EM t OP EN 构成等比数列.22.在平面直角坐标系xOy 中,曲线C 的参数方程为x y αααα⎧=-⎪⎨=+⎪⎩(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为()cos sin 3m m ρθθ++=l 与曲线C 交于A ,B 两点.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若AB =CD .【答案】(1)2212x y +=,30mx y m ++=;(2)4.【解析】【分析】(1)消参法求曲线C 的普通方程,公式法求直线l 的直角坐标方程.(2)由(1)所得普通方程,结合圆中弦长、半径、弦心距的几何关系求圆心到直线l 的距离,再利用点线距离公式列方程求参数m ,即可得直线的倾斜角大小,由AB 、CD 的关系求CD 即可.(1)由题意,消去参数α,得曲线C 的普通方程为2212x y +=.将cos x ρθ=,sin y ρθ=代入()cos sin 3m m ρθθ++得直线l的直角坐标方程为30mx y m ++=.(2)设圆心到直线l:30mx y m ++=的距离为d,则AB =3d =.3=,解得3m =-.所以直线l的方程为60x +=,则直线l 的倾斜角为30θ=︒.所以4cos30AB CD ==︒.23.在平面直角坐标系xOy中,已知直线340x y ++=与圆1C :222x y r +=相切,另外,椭圆2C :()222210x y a b a b +=>>的离心率为32,过左焦点1F 作x 轴的垂线交椭圆于C ,D 两点.且1CD =.(1)求圆1C 的方程与椭圆2C 的方程;(2)经过圆1C 上一点P 作椭圆2C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆1C 相交于M ,N 两点(异于点P ),求△OAB 的面积的取值范围.【答案】(1)225x y +=,2214x y +=;(2)4,15⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)由直线与圆的相切关系及点线距离公式求参数r ,即可得圆1C 的方程,根据椭圆离心率、22b CD a=及椭圆参数关系求出a 、b 、c ,即可得椭圆2C 的方程.(2)设()11,A x y 、()22,B x y 、()00,P x y ,讨论直线PA ,PB 斜率存在性,则直线PA 为()111y k x x y =-+、直线PB 为()222y k x x y =-+,联立椭圆方程并结合所得一元二次方程0∆=求1k 、2k ,进而得直线PA 为1114x x y y +=、直线PB 为2214x xy y +=,结合P 在直线PA ,PB 上有AB 为0014x xy y +=,联立椭圆方程,应用韦达定理、弦长公式、点线距离公式,结合三角形面积公式得0OAB S = .(1)由题设,圆1C :222x y r +=的圆心为()0,0,因为直线340x y ++=与圆1C相切,则r ==所以圆1C 的方程为225x y +=,因为椭圆2Cc e a ==c =,由221b CD a==,则22a b =,又222a b c =+,所以22324a a a =+,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=.综上,圆1C 为225x y +=,椭圆2C 为2214x y +=.(2)设点()11,A x y ,()22,B x y ,()00,P x y .当直线PA ,PB 斜率存在时,设直线PA ,PB 的斜率分别为1k ,2k ,则直线PA 为()111y k x x y =-+,直线PB 为()222y k x x y =-+.由()11122440y k x x y x y ⎧=-+⎨+-=⎩,消去y 得:()()()22211111111148440k x k y k x x y k x ++-+--=.所以()()()2222111111116441444k y k x k y k x ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()2221111114210x k x y k y -++-=,则11111122111444x y x y x k x y y --=-==-,所以直线PA 为()11114x y x x y y -=-+,化简得:22111144x x y y y x +=+,即1114x x y y +=.经验证,当直线PA 斜率不存在时,直线PA 为2x =或2x =-也满足1114x xy y +=.同理,可得直线PB 为2214x xy y +=.因为()00,P x y 在直线PA ,PB 上,所以101014x x y y +=,202014x xy y +=.综上,直线AB 为0014x xy y +=.由00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,消去y 得:()22200035816160y x x x y +-+-=.所以01220835x x x y +=+,21220161635y x x y -=+.所以12AB x =-=)20203135y y +==+.又O 到直线AB的距离d ==所以)20200311235OABy S y +=⋅+ t =,[]1,4t ∈,则24444OAB t S t t t∆==++,又[]44,5t t+∈,所以△OAB 的面积的取值范围为4,15⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:第二问,设点及直线PA ,PB 的方程,联立椭圆结合相切关系求参数关系,进而确定PA ,PB 的方程,由P 在直线PA ,PB 上求直线AB 的方程,再联立椭圆并应用韦达定理、弦长公式、点线距离公式求三角形面积的范围.24.已知点A ,B 是抛物线x 2=2py (p 为常数且p >0)上不同于坐标原点O 的两个点,且0OA OB ⋅= .(1)求证:直线AB 过定点;(2)过点A 、B 分别作抛物线的切线,两切线相交于点M ,记 OMA 、 OAB 、 OMB 的面积分别为S 1、S 2、S 3;是否存在定值λ使得22s =λS 1S 3?若存在,求出λ值;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,4λ=【解析】【分析】(1)设11(,)A x y ,22(,)B x y ,设直线AB 方程为y kx t =+,代入抛物线方程中,消去y ,。

高考平面解析几何试题汇编(新课标)

高考平面解析几何试题汇编(新课标)

平面解析几何(新课标)一、选择题1.(07)已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132x x x =+, 则有( )A.123FP FP FP += B.222123FP FP FP += C.2132FP FP FP =+D.2213FP FP FP =·2. (08)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为A. (41,-1)B. (41,1) C. (1,2) D. (1,-2)3.(09)双曲线24x -212y =1的焦点到渐近线的距离为(A )(B )2 (C (D )14.(10)已知双曲线E 的中心为原点,)0,3(F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A) 22136x y -= (B) 22145x y -= (C) 22163x y -= (D) 22154x y -= 5.(11)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )36.(12)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点, ∆21F PF 是底角为30的等腰三角形,则E 的离心率()A 12 ()B 23 ()C 34()D 457.(12)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =;则C 的实轴长为( )()A ()B ()C 4 ()D 88.(13I )已知双曲线C :)0,0(12222>>=-b a by a x 的离心率为25,则C 的渐近线方程为(A )x y 41±= (B )x y 31±= (C ) x y 21±= (D )x y ±=9.(13I )已知椭圆E :)0(12222>>=+b a by a x 的右焦点为)03(,F ,过点F 的直线交椭圆E 于A 、B 两点.若AB 的中点坐标为)11(-,,则E 的方程为(A )1364522=+y x (B )1273622=+y x (C)1182722=+y x (D )191822=+y x 10.(13II )设抛物线C :)0(22>=p px y 的焦点为,F 点M 在C 上,,5=MF 若以MF 为直径的圆过点),2,0(E 则C 的方程为(A )x y x y 8,422== (B)x y x y 8,222==(C )x y x y 16,422== (D )x y x y 16,222==11.(13II )已知点)1,0(,0,1(),0,1(C B A )-直线)0(>+=a b ax y 将ABC ∆分割为面积相等的两部分,则b 的取值范围是(A ) )1,0( (B)211,22⎛⎫- ⎪ ⎪⎝⎭ ( C) 211,23⎛⎤- ⎥ ⎦⎝(D) 11,32⎡⎫⎪⎢⎣⎭ 12.(14I)已知F 为双曲线C :)0(322>=-m m my x 的一个焦点,则点F 到C 的一条渐近线的距离为( )A. 3B. 3C. m 3D. m 313.(14I)已知抛物线C :x y 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 得一个交点,若FQ PF 4=,则=QF ( )A. 27B. 3C. 25D. 214.(14II )设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )3393 C. 6332 D. 9415. (15I)已知()00,y x M 是双曲线C :2212x y -=上的一点,F 1、F 2是C 的两个焦点,若1MF •2MF <0,则0y 的取值范围是(A )((B )(-(C )(3-,3) (D )(3-,3) 16.(15II )已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )AB .2 CD二、填空题1. (07)已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 .2.(08)双曲线221916x y -=的右顶点为A ,右焦点为F.过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为___3. (09)设已知抛物线C 的顶点在坐标原点,焦点为F(1,0),直线l 与抛物线C 相交于A ,B 两点.若AB 的中点为(2,2),则直线ι的方程为_____________.4.(10)过点A(4,1)的圆C 与直线01=--y x 相切于点B (2,1),则圆C 的方程为____5.(11)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x过1F 的直线L 交C 于,A B 两点,且2ABF 的周长为16,那么C 的方程为6.(15I)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴上,则该圆的标准方程为 .三、解答题1.(07)在平面直角坐标系xOy中,经过点(0且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P 和Q . (I )求k 的取值范围;(II )设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A B ,,是否存在常数k ,使得向量OP OQ +与AB 共线?假如存在,求k 值;假如不存在,请说明理由.2.(08)在直角坐标系xOy 中,椭圆C 1:22221(0)x y a b a b+=>>的左、右焦点分别为F 1、F 2.F 2也是抛物线C 2:24y x =的焦点,点M 为C 1与C 2在第一象限的交点,且25||3MF =.(1)求C 1的方程;(2)平面上的点N 满意12MN MF MF =+,直线l ∥MN ,且与C 1交于A 、B 两点,若OA ·OB =0,求直线l 的方程.3.(09)已知椭圆C 的中心为直角坐标系xoy 的原点,焦点在s 轴上,它的一个顶点到两个焦点的距离分别是7和1.(Ⅰ)求椭圆C 的方程;(Ⅱ)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,OPOM =λ,求点M 的轨迹方程,并说明轨迹是什么曲线. 4.(10)设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线与E相交于,A B 两点,且22,,AF AB BF 成等差数列.(1)求E 的离心率;(2) 设点(0,1)P -满意PA PB =,求E 的方程.5.(11) 在平面直角坐标系xoy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满意,,//BA MB AB MA OA MB ⋅=⋅M 点的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.6.(12)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点.(1)若090=∠BFD ,ABD ∆的面积为24;求p 的值及圆F 的方程;(2)若,,A B F 三点在同始终线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.7.(13I)已知圆M :1)1(22=++y x ,圆N :9)1(22=+-y x ,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求AB .8.(13II)平面直角坐标系xoy 中,过椭圆M :22221x y a b+=()0>>b a 右焦点的直线03=-+y x 交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12(Ι)求M 的方程;(Ⅱ)C,D 为M 上的两点,若四边形ACBD 的对角线CD⊥AB,求四边形ACBD 面积的最大值.9. (14I)已知点A (0,2),椭圆E:22221(0)x y a b a b+=>>的离心率为32;F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (I )求E 的方程;(II )设过点A 的动直线l 与E 相交于P,Q 两点.当OPQ ∆的面积最大时,求l 的直线方程.10. (14II)设1F ,2F 分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求.,b a 11. (15I)在直角坐标系xoy 中,曲线C :y =24x 与直线y kx a =+(a >0)交与M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.12.(15II)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值;(Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.。

新版精编2020高考数学专题训练《平面解析几何初步》考核题完整版(含参考答案)

新版精编2020高考数学专题训练《平面解析几何初步》考核题完整版(含参考答案)

2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.将圆x 2+y 2 -2x-4y+1=0平分的直线是( )A .x+y-1=0B .x+y+3=0C .x-y+1=0D .x-y+3=0(2012辽宁文)2.圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(2006江苏)3.从圆x 2-2x+y 2-2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为( )A .21B .53C .23D .0(2004)4.如果直线ax+2y+2=0与直线3x -y -2=0平行,那么系数a 等于( )A .-3B .-6C .-23D .32(1997全国2) 二、填空题5. 直线l 经过点P (3,2)且与x ,y 轴的正半轴分别交于A 、B 两点.若△OAB 的面积为12(O 是坐标原点),则直线l 的方程为 .6.在空间直角坐标系中,已知定点(1,2,1)A -,(2,2,2)B .点P 在z 轴上,且满足||||PA PB =,则P 点的坐标为__________________7.如果直线0Ax By C ++=的斜率为1-,那么有关系式__________8.已知||8,||15==a b ,那么||+a b 的取值范围是__________________9.20m y -+=与圆221x y +=相切,若n N *∈,且5,n m -<则满足条件的有序实数对(),m n 共有 对10.已知圆22x y m +=与圆2268110x y x y ++--=相交,则实数m 的取值范围为 ▲ (1,121).11.若直线y =x +m 与曲线x m 的取值范围是 .12. 已知直线()1:3250l a x y ++-=与()2:180l a x y -+-=平行,则a 的值是 。

2022年全国高考数学真题及模拟题汇编:平面解析几何(附答案解析)

2022年全国高考数学真题及模拟题汇编:平面解析几何(附答案解析)

2022年全国高考数学真题及模拟题汇编:平面解析几何一.选择题(共12小题)1.(2021秋•房山区期末)圆心为(﹣2,3)且与y轴相切的圆的方程为()A.(x﹣2)2+(y+3)2=9B.(x+2)2+(y﹣3)2=9C.(x﹣2)2+(y+3)2=4D.(x+2)2+(y﹣3)2=42.(2021秋•成都期末)设直线l1:ax+(a﹣2)y+1=0,l2:x+ay﹣3=0.若l1⊥l2,则a 的值为()A.0或1B.0或﹣1C.1D.﹣13.(2021秋•唐山期末)圆C1:x2+y2﹣4x+2y﹣4=0与圆C2:x2+y2+4x﹣4y+4=0的位置关系为()A.内切B.相交C.外切D.外离4.(2021秋•白云区期末)已知圆C的方程为x2+y2+2x﹣4y﹣4=0,则圆心C的坐标为()A.(﹣1,2)B.(1,﹣2)C.(﹣2,4)D.(2,﹣4)5.(2021秋•河南月考)已知A(﹣1,2),B(3,5),则与直线AB平行且距离为2的直线方程为()A.3x﹣4y+21=0B.3x﹣4y﹣1=0C.3x﹣4y+21=0或3x﹣4y+1=0D.3x﹣4y﹣21=0或3x﹣4y﹣1=06.(2021秋•嫩江市期末)已知直线l1:(a﹣2)x+ay+2=0,l2:x+(a﹣2)y+a=0,则“a =﹣1”是“l1⊥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(2021秋•平房区校级期末)若直线l:y=kx﹣3与直线2x+3y﹣6=0的交点位于第一象限,则直线l的倾斜角的取值范围是()A.B.C.D.8.(2021秋•河东区期末)已知抛物线y2=4x的焦点为F,P为抛物线上一点,过点P向准线作垂线,垂足为Q,若∠FPQ=60°,则|PF|=()A.1B.2C.3D.49.(2021秋•海淀区期末)若双曲线﹣=1(a>0,b>0)的一条渐近线经过点(,1),则双曲线的离心率为()A.B.C.D.210.(2021秋•重庆月考)已知椭圆的一个焦点坐标为(2,0),则m=()A.1B.2C.5D.911.(2021秋•榆林期末)已知直线l:mx﹣3y﹣4m+9=0与圆C:x2+y2=100相交于A、B 两点,则|AB|的最小值为()A.5B.5C.10D.1012.(2021秋•重庆月考)已知椭圆的左、右焦点分别为F1、F2,上顶点为A,抛物线E的顶点为坐标原点,焦点为F2,若直线F1A与抛物线E交于P,Q两点,且|P A|+|QA|=4a,则椭圆C的离心率为()A.B.C.D.二.填空题(共4小题)13.(2021秋•宜春期末)已知直线的倾斜角α=30°,且过点A(4,3),则该直线的方程为.14.(2021秋•滨海新区校级期末)在圆M:x2+y2﹣4x﹣4y﹣1=0中,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为.15.(2021秋•南岗区校级期末)已知等边三角形的一个顶点位于原点,另外两个顶点在抛物线y2=上,则这个等边三角形的边长为.16.(2021秋•工农区校级期末)已知F1,F2为双曲线C:(a>0,b>0)的左、右焦点,双曲线的离心率为2,点P在双曲线C的右支上,且PF1的中点N在圆O:x2+y2=c2上,其中c为双曲线的半焦距,则sin∠F1PF2=.三.解答题(共6小题)17.(2021秋•房山区期末)在平面直角坐标系中,△ABC三个顶点坐标分别为A(2,﹣2)、B(6,6)、C(0,6).(Ⅰ)设线段AB的中点为M,求中线CM所在直线的方程;(Ⅱ)求边AB上的高所在直线的方程.18.(2021秋•房山区期末)已知圆M:x2+y2﹣2x=0与圆N:x2+y2﹣8x+a=0外切.(Ⅰ)求实数a的值;(Ⅱ)若直线x﹣y﹣2=0与圆M交于A,B两点,求弦AB的长.19.(2021秋•重庆月考)已知双曲线的一条渐近线斜率为,且双曲线C经过点M(2,1).(1)求双曲线C的方程;(2)斜率为的直线l与双曲线C交于异于M的不同两点A、B,直线MA、MB的斜率分别为k1、k2,若k1+k2=1,求直线l的方程.20.(2021秋•西固区校级期末)已知两定点A(﹣2,0),B(1,0),若动点P满足条件|P A|=2|PB|.(1)求动点P的轨迹C的方程;(2)求直线l:y=x被轨迹C所截得的线段长.21.(2021秋•让胡路区校级期末)以椭圆的中心O为圆心,为半径的圆称为该椭圆的“准圆”.已知椭圆C的长轴长是短轴长的倍,且经过点,椭圆C的“准圆”的一条弦AB所在的直线与椭圆C交于M、N两点.(1)求椭圆C的标准方程及其“准圆”的方程;(2)当时,证明:弦AB的长为定值.22.(2021秋•1月份月考)如图所示,已知抛物线C:y2=2x,过点A(2,0)的直线l与抛物线C有两个交点,若抛物线C上存在不同的两点M,N关于直线l对称,记MN的中点为T.(1)求点T的轨迹方程;(2)求S△AMT的最大值.2022年全国高考数学真题及模拟题汇编:平面解析几何参考答案与试题解析一.选择题(共12小题)1.(2021秋•房山区期末)圆心为(﹣2,3)且与y轴相切的圆的方程为()A.(x﹣2)2+(y+3)2=9B.(x+2)2+(y﹣3)2=9C.(x﹣2)2+(y+3)2=4D.(x+2)2+(y﹣3)2=4【考点】直线与圆的位置关系.【专题】计算题;对应思想;综合法;直线与圆;数学运算.【分析】由所求圆与y轴相切可得,圆心P到y轴的距离等于半径,根据P点坐标求出P到y轴的距离,得到圆的半径,由圆心坐标和半径写出圆的标准方程即可.【解答】解:点(﹣2,3)到y轴的距离为2,所以圆的半径为2,所以圆心为(﹣2,3)且与y轴相切的圆的方程为(x+2)2+(y﹣3)2=4.故选:D.【点评】此题考查了圆的标准方程,要求学生会根据圆心坐标和半径写出圆的标准方程.由圆与y轴相切,根据P点横坐标的绝对值求出P到y轴的距离得到圆的半径是解本题的关键.2.(2021秋•成都期末)设直线l1:ax+(a﹣2)y+1=0,l2:x+ay﹣3=0.若l1⊥l2,则a 的值为()A.0或1B.0或﹣1C.1D.﹣1【考点】直线的一般式方程与直线的垂直关系.【专题】方程思想;定义法;直线与圆;数学运算.【分析】利用直线与直线垂直的性质直接求解.【解答】解:∵直线l1:ax+(a﹣2)y+1=0,l2:x+ay﹣3=0,l1⊥l2,∴a×1+(a﹣2)×a=0,解得a=0或a=1.故选:A.【点评】本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,是基础题.3.(2021秋•唐山期末)圆C1:x2+y2﹣4x+2y﹣4=0与圆C2:x2+y2+4x﹣4y+4=0的位置关系为()A.内切B.相交C.外切D.外离【考点】圆与圆的位置关系及其判定.【专题】转化思想;综合法;直线与圆;数学运算.【分析】求出两个圆的圆心与半径,通过圆心距与半径的关系判断选项即可.【解答】解:圆C1:x2+y2﹣4x+2y﹣4=0,即(x﹣2)²+(y+1)²=9的圆心(2,﹣1),半径为3;圆C2:x2+y2+4x﹣4y+4=0,即(x+2)²+(y﹣2)²=4的圆心(﹣2,2),半径为2;圆心距为=5,因为5=3+2,所以两个圆的位置关系是外切,故选:C.【点评】本题考查圆的位置关系的判断,求解圆的圆心与半径,两个圆的圆心距与半径的关系是解题的关键,属于基础题.4.(2021秋•白云区期末)已知圆C的方程为x2+y2+2x﹣4y﹣4=0,则圆心C的坐标为()A.(﹣1,2)B.(1,﹣2)C.(﹣2,4)D.(2,﹣4)【考点】圆的一般方程.【专题】转化思想;转化法;直线与圆;数学运算.【分析】根据已知条件,将圆的一般式方程转化为标准方程,即可求解.【解答】解:∵圆C的方程为x2+y2+2x﹣4y﹣4=0,∴(x+1)2+(y﹣2)2=9,∴圆心C的坐标为(﹣1,2).故选:A.【点评】本题主要考查圆心的求解,属于基础题.5.(2021秋•河南月考)已知A(﹣1,2),B(3,5),则与直线AB平行且距离为2的直线方程为()A.3x﹣4y+21=0B.3x﹣4y﹣1=0C.3x﹣4y+21=0或3x﹣4y+1=0D.3x﹣4y﹣21=0或3x﹣4y﹣1=0【考点】两条平行直线间的距离.【专题】转化思想;综合法;直线与圆;逻辑推理;数学运算.【分析】直接利用平行线间的距离公式的应用求出结果.【解答】解:已知A(﹣1,2),B(3,5),所以直线AB的斜率k=,所以直线AB的方程为,整理得3x﹣4y+11=0,设与直线AB平行的直线方程为3x﹣4y+c=0,利用平行线间的距离公式:,解得c=1或21.故直线的方程为3x﹣4y+21=0或3x﹣4y+1=0.故选:C.【点评】本题考查的知识要点:平行线间的距离公式,主要考查学生的运算能力和数学思维能力,属于基础题.6.(2021秋•嫩江市期末)已知直线l1:(a﹣2)x+ay+2=0,l2:x+(a﹣2)y+a=0,则“a =﹣1”是“l1⊥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】充分条件、必要条件、充要条件;直线的一般式方程与直线的垂直关系.【专题】转化思想;综合法;简易逻辑;逻辑推理;数学运算.【分析】直接利用直线垂直的充要条件的应用和充分条件和必要条件的应用求出结果.【解答】解:当a=﹣1时,则直线l1:﹣3x﹣y+2=0,直线l2:x﹣3y﹣1=0,则l1⊥l2,当l1⊥l2时,则(a﹣2)+a(a﹣2)=0,整理得a2﹣a﹣2=0,解得a=﹣1或2,故“a=﹣1”是“l1⊥l2”的充分不必要条件;故选:A.【点评】本题考查的知识要点:直线垂直的充要条件,充分条件和必要条件,主要考查学生的运算能力和数学思维能力,属于基础题.7.(2021秋•平房区校级期末)若直线l:y=kx﹣3与直线2x+3y﹣6=0的交点位于第一象限,则直线l的倾斜角的取值范围是()A.B.C.D.【考点】直线的图象特征与倾斜角、斜率的关系.【专题】转化思想;综合法;直线与圆;数学运算.【分析】联立两直线方程到底一个二元一次方程组,求出方程组的解集即可得到交点的坐标,根据交点在第一象限得到横纵坐标都大于0,联立得到关于k的不等式组,求出不等式组的解集即可得到k的范围,然后根据直线的倾斜角的正切值等于斜率k,根据正切函数图象得到倾斜角的范围.【解答】解:联立两直线方程得:,将①代入②得:x=③,把③代入①,求得y=,所以两直线的交点坐标为(,),因为两直线的交点在第一象限,所以得到>0,且>0,解得:k>1,设直线l的倾斜角为θ,则tanθ>1,所以θ∈(,).故选:C.【点评】本题主要考查根据两直线的方程求出交点的坐标,掌握象限点坐标的特点,掌握直线倾斜角与直线斜率的关系,是一道综合题.8.(2021秋•河东区期末)已知抛物线y2=4x的焦点为F,P为抛物线上一点,过点P向准线作垂线,垂足为Q,若∠FPQ=60°,则|PF|=()A.1B.2C.3D.4【考点】抛物线的性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程;数学运算.【分析】根据题意作出简图,可得△FPQ为等边三角形,在Rt△QNF中求解可得|QF|=4,从而得解.【解答】解:根据题意作出简图,如图所示:根据抛物线的定义可知|PF|=|PQ|,结合∠FPQ=60°,可得△FPQ为等边三角形,所以∠PQF=∠QFN﹣60°,在RtΔQNF中,因为|NF|=2,所以|QF|=4,所以|PF|=4.故选:D.【点评】本题考查了抛物线的定义及其简单几何性质,属于基础题.9.(2021秋•海淀区期末)若双曲线﹣=1(a>0,b>0)的一条渐近线经过点(,1),则双曲线的离心率为()A.B.C.D.2【考点】双曲线的性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程;逻辑推理;数学运算.【分析】求出渐近线方程,代入点的坐标,推出a,b关系,然后求解离心率即可.【解答】解:因为双曲线﹣=1(a>0,b>0)的一条渐近线经过点(,1),所以渐近线y=x经过点(,1),所以,从而e==.故选:A.【点评】本题考查双曲线的性质,考查运算求解能力.是基础题.10.(2021秋•重庆月考)已知椭圆的一个焦点坐标为(2,0),则m=()A.1B.2C.5D.9【考点】椭圆的性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程;逻辑推理;数学运算.【分析】利用椭圆方程求解a,结合焦点坐标,列出方程求解m即可.【解答】解:椭圆,可知a=,b=,因为椭圆的一个焦点坐标为(2,0),所以=2,解得m=1.故选:A.【点评】本题考查椭圆的简单性质的应用,是基础题.11.(2021秋•榆林期末)已知直线l:mx﹣3y﹣4m+9=0与圆C:x2+y2=100相交于A、B 两点,则|AB|的最小值为()A.5B.5C.10D.10【考点】直线与圆的位置关系.【专题】计算题;转化思想;综合法;直线与圆;数学运算.【分析】求出直线恒过定点D,定点D在圆内,故当弦AB与CD垂直时,弦|AB|长度最小.【解答】解:依题意,直线mx﹣3y﹣4m+9=0恒过定点D(4,3),∵D在圆C内部,故弦|AB|长度的最小时,直线AB与直线CD垂直,又|CD|==5,此时|AB|=2=10.故选:D.【点评】本题考查了直线恒过定点的求法,考查了圆的弦长问题.考查逻辑思维能力和计算能力,本题属于中档题.12.(2021秋•重庆月考)已知椭圆的左、右焦点分别为F1、F2,上顶点为A,抛物线E的顶点为坐标原点,焦点为F2,若直线F1A与抛物线E交于P,Q两点,且|P A|+|QA|=4a,则椭圆C的离心率为()A.B.C.D.【考点】椭圆的性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程;数学运算.【分析】由题设可得抛物线E为y2=4cx,直线F1A为x=y﹣c,联立方程应用韦达定理,弦长公式求,由=,求,结合|P A|+|QA|=|PQ|+2|P A|=4a,得到•+﹣2a=4a,化简可求离心率.【解答】解:由题设知:A(0,b),F1(﹣c,0),F2(c,0),且抛物线方程为y2=4cx,直线F1A为x=y﹣c,联立抛物线方程有y2=,整理得by2﹣4c2y+4bc2=0,则Δ=16c2(c2﹣b2)≥0,即c≥b,令P(x1,y1),Q(x2,y2)且y2>y1>0,则y2+y1=,y2y1=4c2,所以y1=,=•=•,令d=,如图可知=,即=,可得d=y1﹣a,所以d=﹣a,又|P A|+|QA|=|PQ|+2d=4a,所以•+﹣2a=4a,整理得2c2=3b2,又b2=a2﹣c2,所以3a2=5c2,所以e==,故选:C.【点评】本题考查椭圆的离心率问题,属中档题.二.填空题(共4小题)13.(2021秋•宜春期末)已知直线的倾斜角α=30°,且过点A(4,3),则该直线的方程为x﹣3y+9﹣4=0.【考点】直线的点斜式方程.【专题】方程思想;定义法;直线与圆;数学运算.【分析】根据直线的倾斜角求出斜率,再根据点斜式写出直线方程,化为一般式方程.【解答】解:直线的倾斜角α=30°,所以直线的斜率为k=tan30°=,又因为直线过点A(4,3),所以直线的方程为y﹣3=(x﹣4),x﹣3y+9﹣4=0.故答案为:x﹣3y+9﹣4=0.【点评】本题考查了直线方程的应用问题,是基础题.14.(2021秋•滨海新区校级期末)在圆M:x2+y2﹣4x﹣4y﹣1=0中,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为12.【考点】直线与圆的位置关系.【专题】计算题;整体思想;演绎法;直线与圆;逻辑推理;数学运算.【分析】首先将圆的方程配成标准式,即可得到圆心坐标与半径,从而可得点E(0,1)在圆内,即可得到过点E的最长弦、最短弦弦长,即可求出四边形的面积.【解答】解:圆M:x2+y2﹣4x﹣4y﹣1=0,即(x﹣2)2+(y﹣2)2=9,圆心M(2,2),半径r=3,点E(0,1),则(0﹣2)2+(1﹣2)2=5<9,所以点E(0,1)在圆内,所以过点E(0,1)的最长弦|AC|=2r=6,又,所以最短弦,所以.故答案为:12.【点评】本题主要考查直线与圆的位置关系,圆中四边形的面积问题等知识,属于基础题.15.(2021秋•南岗区校级期末)已知等边三角形的一个顶点位于原点,另外两个顶点在抛物线y2=上,则这个等边三角形的边长为6.【考点】抛物线的性质.【专题】整体思想;综合法;圆锥曲线的定义、性质与方程;逻辑推理;数学运算.【分析】由抛物线的对称性及等边三角形的性质可得另外两点关于x轴对称,即横坐标相同,设三角形的边长,可得顶点O到底边AB的距离,即A,B的横坐标,代入抛物线的方程可得其纵坐标,可得三角形的边长.【解答】解:由抛物线的对称性可得另两个顶点关于x轴对称,设A,B两点,△OAB 为等边三角形,设边长为2a,则O到AB的距离为a,即A的横坐标为a,代入抛物线y2=的方程可得y A2=•a,所以|y A|=,由题意可得2=2a,解得a=3,所以三角形的边长2a=6,故答案为:6.【点评】本题考查抛物线的对称性的性质的应用及等边三角形的性质的应用,属于基础题.16.(2021秋•工农区校级期末)已知F1,F2为双曲线C:(a>0,b>0)的左、右焦点,双曲线的离心率为2,点P在双曲线C的右支上,且PF1的中点N在圆O:x2+y2=c2上,其中c为双曲线的半焦距,则sin∠F1PF2=.【考点】双曲线的性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程;数学运算.【分析】由题意可得在△F1PF2中,|PF1|=6a,|PF2|=|F1F2|=4a,利用sin∠F1PF2=即可求解.【解答】解:如图,由题意可得|OF1|=|ON|=c,因为O为F1F2的中点,所以|ON|=|PF2|,所以|PF2|=2c,|PF1|=2a+2c,∵双曲线C:(a>0,b>0)的离心率为2,∴c=2a,故在△F1PF2中,|PF1|=6a,|PF2|=|F1F2|=4a,∵PF1的中点N,∴F2N⊥PF1,∴∠PNF2=90°∴sin∠F1PF2===.故答案为:.【点评】本题考查圆与双曲线的综合、三角形中位线定理,考查数形结合的解题思想方法,考查双曲线定义的应用,是中档题.三.解答题(共6小题)17.(2021秋•房山区期末)在平面直角坐标系中,△ABC三个顶点坐标分别为A(2,﹣2)、B(6,6)、C(0,6).(Ⅰ)设线段AB的中点为M,求中线CM所在直线的方程;(Ⅱ)求边AB上的高所在直线的方程.【考点】直线的一般式方程与直线的性质.【专题】转化思想;综合法;直线与圆;数学运算.【分析】(Ⅰ)先求出线段AB的中点为M的坐标,再利用两点式求出中线CM所在直线的方程.(Ⅱ)先求出AB的斜率,可得AB边上的高所在直线的斜率,再利用点斜式求出边AB 上的高所在直线的方程.【解答】解:(Ⅰ)∵△ABC三个顶点坐标分别为A(2,﹣2),B(6,6),C(0,6),∴线段AB的中点为M(4,2),求中线CM所在直线的方程为:=,即x+y﹣6=0,(Ⅱ)由于直线AB的斜率为:=2,故边AB上的高所在直线的斜率为﹣,故边AB上的高所在直线的方程为y﹣6=﹣(x﹣0),即x+2y﹣12=0.【点评】本题主要考查中点公式、斜率公式、两直线垂直的性质,用点斜式、两点式求直线的方程,属于基础题.18.(2021秋•房山区期末)已知圆M:x2+y2﹣2x=0与圆N:x2+y2﹣8x+a=0外切.(Ⅰ)求实数a的值;(Ⅱ)若直线x﹣y﹣2=0与圆M交于A,B两点,求弦AB的长.【考点】直线与圆的位置关系.【专题】方程思想;转化法;直线与圆;数学运算.【分析】(Ⅰ)由圆的方程求得圆心坐标与半径,再由圆心距等于半径和列式求解a值;(Ⅱ)求出M到直线的距离,再由垂径定理求弦长.【解答】解:(Ⅰ)由圆M:x2+y2﹣2x=0,得(x﹣1)2+y2=1,则M(1,0),半径r1=1,由圆N:x2+y2﹣8x+a=0,得(x﹣4)2+y2=16﹣a,则N(4,0),半径.∵两圆外切,∴|4﹣1|=1+,即a=12;(Ⅱ)M(1,0)到直线x﹣y﹣2=0的距离d=,∴弦AB的长为.【点评】本题考查直线与圆、圆与圆位置关系的应用,考查运算求解能力,是基础题.19.(2021秋•重庆月考)已知双曲线的一条渐近线斜率为,且双曲线C经过点M(2,1).(1)求双曲线C的方程;(2)斜率为的直线l与双曲线C交于异于M的不同两点A、B,直线MA、MB的斜率分别为k1、k2,若k1+k2=1,求直线l的方程.【考点】双曲线的性质.【专题】计算题;整体思想;综合法;圆锥曲线的定义、性质与方程;数学运算.【分析】(1)根据条件列出关于a,b的方程组,求解a,b可得双曲线方程;(2)设出直线l的方程并与双曲线方程联立,由韦达定理结合条件可求直线方程.【解答】解:(1)由题意可得,,∴,(2)设,A(x1,y1),B(x2,y2),联立,因为直线l与双曲线C交于异于M的不同两点A、B,所以Δ=16t2+16(t2+1)>0,x1+x2=﹣4t,,因为k1+k2=1,所以,整理得,解得t=1,所以直线.【点评】本题考查了双曲线的方程,直线与双曲线的位置关系,属于基础题.20.(2021秋•西固区校级期末)已知两定点A(﹣2,0),B(1,0),若动点P满足条件|P A|=2|PB|.(1)求动点P的轨迹C的方程;(2)求直线l:y=x被轨迹C所截得的线段长.【考点】轨迹方程.【专题】计算题;转化思想;综合法;直线与圆;数学运算.【分析】(1)设P点的坐标为(x,y),用坐标表示|P A|、|PB|,代入等式|P A|=2|PB|,整理即得点P的轨迹方程;(2)求出圆心到直线的距离,利用垂径定理可求弦长.【解答】解:(1)已知两定点A(﹣2,0),B(1,0),由动点P满足|P A|=2|PB|,设P 点的坐标为(x,y),则(x+2)2+y2=4[(x﹣1)2+y2],即(x﹣2)2+y2=4;(2)由(1)知轨迹C为圆,圆心为(2,0),半径r=2,圆心到直线l:y=x的距离d==,由垂径定理可得弦长为2,所以直线l:y=x被轨迹C所截得的线段长为2.【点评】本题考查轨迹方程的求法与弦长的求法,属中档题.21.(2021秋•让胡路区校级期末)以椭圆的中心O为圆心,为半径的圆称为该椭圆的“准圆”.已知椭圆C的长轴长是短轴长的倍,且经过点,椭圆C的“准圆”的一条弦AB所在的直线与椭圆C交于M、N两点.(1)求椭圆C的标准方程及其“准圆”的方程;(2)当时,证明:弦AB的长为定值.【考点】椭圆的标准方程;直线与椭圆的综合.【专题】方程思想;消元法;圆锥曲线的定义、性质与方程;数学运算.【分析】(1)由题意解得a,b,则可写出椭圆的方程,进而可得椭圆C的“准圆”方程.(2)分两种情况:①当弦AB⊥x轴时,设得,进而可得原点O到弦AB的距离d,进而可得|AB|.②当弦AB不垂直于x轴时,设直线AB的方程为y=kx+m,M(x1,y1)、N(x2,y2),联立直线AB与椭圆的方程,结合韦达定理可得x1+x2,x1x2,y1y2,由得,再求出原点O到弦AB的距离d,即可得出答案.【解答】解:(1)由题意解得a=2,所以椭圆的标准方程为椭圆C的“准圆”方程为x2+y2=6.(2)证明:①当弦AB⊥x轴时,交点M、N关于x轴对称,又,则OM⊥ON,可设得,此时原点O到弦AB的距离,因此.②当弦AB不垂直于x轴时,设直线AB的方程为y=kx+m,且与椭圆C的交点M(x1,y1)、N(x2,y2),联列方程组,代入消元得:(2k2+1)x2+4kmx+2m2﹣4=0,Δ=32k2﹣8m2+16=8(4k2﹣m2+2)>0,由,可得,由得x1x2+y1y2=0,即,所以,此时Δ>0成立,则原点O到弦AB的距离,则,综上得,因此弦AB的长为定值.【点评】本题考查直线与椭圆的相交的问题,解题中需要一定的计算能力,属于中档题.22.(2021秋•1月份月考)如图所示,已知抛物线C:y2=2x,过点A(2,0)的直线l与抛物线C有两个交点,若抛物线C上存在不同的两点M,N关于直线l对称,记MN的中点为T.(1)求点T的轨迹方程;(2)求S△AMT的最大值.【考点】直线与抛物线的综合.【专题】转化思想;综合法;圆锥曲线中的最值与范围问题;直观想象;数学运算.【分析】(1)设直线l:y=k(x﹣2),T(x,y),M(x1,y1),N(x2,y2),将M,N的坐标代入抛物线方程得到y=﹣k,再代入直线方程化简即可;(2)联立直线MN的方程和抛物线方程,将△ANM在面积表示出来,再利用S△AMT=S求解即可.△AMN【解答】解:(1)由题意可得直线l的斜率存在且不为0,设直线l:y=k(x﹣2),T(x,y),M(x1,y1),N(x2,y2),由可得:(y1+y2)(y1﹣y2)=2(x1﹣x2),所以====﹣,所以y=﹣k,代入直线方程得:x=1,又当x=1时,由y2=2x得y=,∵T在抛物线开口方向内,∴﹣<y<,∴点T的轨迹方程为:x=1(﹣<y<);(2)由(1)可知直线MN:y=﹣x﹣k+,由,可得:y2+2ky+2k2﹣2=0,∵直线MN与抛物线交于M,N两点,∴Δ=﹣4k2+8>0,解得:k,y1+y2=﹣2k,y1y2=2k2﹣2,∴|y1﹣y2|==,|MN|=,又因为|AT|=,∴S△AMT=S△AMN=|MN||AT|==,令t=k2,y=﹣t3+3t+2(t∈(0,2)),∴y'=﹣3t2+3,令y'=0,得t=1(负根舍去),当t∈(0,1)时,y随t增大而增大,当t∈(1,2)时,y随t增大而减小,∴当t=1时,y取最大值4,∴k=±1时,(S△AMT)max=1.【点评】本题考查了直线和抛物线相交所产生的问题及最值问题、转化思想等,属于中档题.。

高考数学压轴专题专题备战高考《平面解析几何》真题汇编含答案

高考数学压轴专题专题备战高考《平面解析几何》真题汇编含答案

【最新】《平面解析几何》专题解析一、选择题1.已知曲线()2222:100x y C a b a b-=>,>的左、右焦点分别为12,,F F O 为坐标原点,P是双曲线在第一象限上的点,MO OP =u u u u v u u u v,直线2PF 交双曲线C 于另一点N ,若122PF PF =,且2120MF N ∠=︒则双曲线C 的离心率为( )A .23B .7C .3D .2【答案】B 【解析】 【分析】由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PF F 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可. 【详解】由题意,122PF PF =,由双曲线的定义可得,122PF PF a -= ,可得124,2PF a PF a == ,由四边形12PF MF 为平行四边形,又2120MF N ∠=︒,可得12120F PF ∠=︒, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-⋅⋅⋅︒ , 即有2224208c a a =+,即227c a =,可得7c a =,即7ce a==.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).2.抛物线y 2=8x 的焦点为F ,设A ,B 是抛物线上的两个动点, 233AF BF AB +=, 则∠AFB 的最大值为( ) A .3π B .34π C .56π D .23π 【答案】D 【解析】 【分析】设|AF |=m ,|BF |=n ,再利用基本不等式求解mn 的取值范围,再利用余弦定理求解即可. 【详解】设|AF |=m ,|BF |=n , ∵233AF BF AB +=, ∴2323AB mn≥,∴213mn AB ≤, 在△AFB 中,由余弦定理得22222()2cos 22m n ABm n mn ABAFB mnmn+-+--∠==212213222AB mnmn mn mn mn --=≥=-∴∠AFB 的最大值为23π. 故选:D 【点睛】本题主要考查了抛物线的焦半径运用,同时也考查了解三角形与基本不等式的混合运用,属于中等题型.3.已知双曲线2221(0)2x y b b-=>的左右焦点分别为12,F F ,其一条渐近线方程为y x =,点0(3,)P y 在该双曲线上,则12PF PF ⋅u u u r u u u u r=( )A .12-B .2-C .0D .4【答案】C 【解析】 由题知,故,∴12(23,1)(23,1)3410PF PF ⋅=-±⋅±=-+=u u u r u u u u r,故选择C .4.过抛物线212x y =的焦点F 的直线交抛物线于点A 、B ,交抛物线的准线于点C ,若3AF FB =uu u r uu r,则BC =( )A .4B .43C .6D .8【答案】D 【解析】 【分析】作出图象,作BM CP ⊥,AN CP ⊥,BH AN ⊥,设BF x =,根据抛物线的性质可得BM BF HN x ===,3AN AF x ==,进而得到1sin 2ACN ∠=,则可求出x 的值,进而得到BC 的值. 【详解】作BM CP ⊥,AN CP ⊥,BH AN ⊥,如图,因为3AF FB =uu u r uu r,不妨设BF x =,所以33AF BF x ==,4AB x =, 根据抛物线的定义可得BM BF HN x ===,3AN AF x ==,6FP p ==, 则32AH AN HN x x x =-=-=, 所以1sin sin 2AH ABH ACN AB ∠=∠==,则212CF FP ==,2CB x =, 则312CF CB BF x =+==,所以4x =,则28BC x ==, 故选:D . 【点睛】本题考查抛物线的性质,涉及抛物线定义的应用,考查数形结合思想,属于中档题.5.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( )A .125 B .65C .2D .55【答案】A【解析】试题分析:根据抛物线的定义可知抛物线24y x =上的点P 到抛物线的焦点距离1PF d =,所以122d d MF d +=+,其最小值为()1,0F 到直线3490x y -+=的距离,由点到直线的距离公式可知()()122min min223912534d d MF d ++=+==+,故选A. 考点:抛物线定义的应用.6.在平面直角坐标系中,已知双曲线的中心在原点,焦点在轴上,实轴长为8,离心率为,则它的渐近线的方程为( ) A . B .C .D .【答案】D 【解析】试题分析:渐近线的方程为,而,因此渐近线的方程为,选D.考点:双曲线渐近线7.已知点P 是椭圆22221(0,0)x y a b xy a b+=>>≠上的动点,1(,0)F c -、2(,0)F c 为椭圆的左、右焦点,O 为坐标原点,若M 是12F pF ∠的角平分线上的一点,且F 1M ⊥MP ,则|OM|的取值范围是( ) A .(0,)c B .(0,)aC .(,)b aD .(,)c a【答案】A 【解析】 【分析】 【详解】解:如图,延长PF 2,F 1M ,交与N 点,∵PM 是∠F 1PF 2平分线,且F 1M ⊥MP , ∴|PN|=|PF 1|,M 为F 1F 2中点,连接OM ,∵O 为F 1F 2中点,M 为F 1F 2中点 ∴|OM|=|F 2N|=||PN|﹣|PF 2||=||PF 1|﹣|PF 2|| ∵在椭圆中,设P 点坐标为(x 0,y 0)则|PF 1|=a+ex 0,|PF 2|=a ﹣ex 0,∴||PF 1|﹣|PF 2||=|a+ex 0+a ﹣ex 0|=|2ex 0|=|ex 0|∵P 点在椭圆上,∴|x 0|∈(0,a],又∵当|x 0|=a 时,F 1M ⊥MP 不成立,∴|x 0|∈(0,a ) ∴|OM|∈(0,c ). 故选A .8.已知椭圆1C :22113x y +=,双曲线2C :22221(,0)x y a b a b-=>,若以1C 的长轴为直径的圆与2C 的一条渐近线交于A 、B 两点,且椭圆1C 与该渐近线的两交点将线段AB 三等分,则2C 的离心率是( ) A 3B .3C 5D .5【答案】A 【解析】由已知得13OA =OA 的方程为()00,0y kx k x =>>,∴可设()00,A x kx ,进一步20113k x +=221313,11kA AB k k ⎛⎫∴++的一个三分点坐标为2213133131k k k ++,该点在椭圆上,22221313111k k k ⎛⎫⎪+⎝⎭+=+,即()2211391k k+=+,解得22k =,从而有,222222b b a a==,解得2223c a b e a a+===,故选A. 【 方法点睛】本题主要考查双曲线的渐近线及椭圆的离心率,属于难题. 求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系;离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.9.如图所示,已知双曲线C :()222210,0x y a b a b-=>>的右焦点为F ,双曲线的右支上一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=︒,且3BF AF =,则双曲线C 的离心率是( )A .27B .52C .7 D .7【答案】C 【解析】 【分析】利用双曲线的性质,推出AF ,BF ,通过求解三角形转化求解离心率即可. 【详解】解:双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,双曲线C 的右支上一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=︒,且||3||BF AF =,可得||||2BF AF a -=,||AF a =,||3BF a =,60F BF ∠'=︒,所以2222cos60F F AF BF AF BF '=+-︒g ,可得222214962c a a a =+-⨯,2247c a =,所以双曲线的离心率为:72e =. 故选:C .【点睛】本题考查双曲线的简单性质的应用,三角形的解法,考查转化思想以及计算能力,属于中档题.10.在圆M :224410x y x y +---=中,过点(0,1)E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .6B .12C .24D .36【答案】B 【解析】 【分析】先将圆M 的方程化为标准方程,得到其圆心坐标与半径,再结合直线与圆的位置关系可得AC 、BD 的值,进而求出答案. 【详解】圆M 的标准方程为:22(2)(2)9x y -+-=,其圆心为(2,2)M ,半径3r =, 过点E 最长的弦长是直径,故6AC =,最短的弦是与ME 垂直的弦,又ME ==所以122BD ===,即4BD =, 所以四边形的面积11641222S AC BD =⋅⋅=⨯⨯=, 故选:B. 【点睛】本题考查直线与圆相交的性质,解题关键是明确AC 和BD 的位置关系,难度不大.11.已知P 是双曲线2221(0)8x y a a -=>上一点,12,F F 为左、右焦点,且19PF =,则“4a =”是“217PF =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】化简得到229PF a =+或292PF a =-,故当4a =时,217PF =或21PF =;当217PF =时,4a =,得到答案.【详解】P 是双曲线2221(0)8x y a a -=>上一点,12,F F 为左、右焦点,且19PF =, 则229PF a =+或292PF a =-,当4a =时,217PF =或21PF =;当217PF =时,4a =.故“4a =”是“217PF =”的必要不充分条件. 故选:B . 【点睛】本题考查了必要不充分条件,意在考查学生的推断能力.12.倾斜角为45︒的直线与双曲线22214x y b-=交于不同的两点P 、Q ,且点P 、Q 在x轴上的投影恰好为双曲线的两个焦点,则该双曲线的焦距为( )A .2B .2C 1D 1【答案】B 【解析】 【分析】方法一;由双曲线的对称性可知直线过原点,可得2Rt QOF △为等腰三角形且245QOF ∠=︒,根据勾股定理及双曲线的定义可得:1c =.方法二:等腰2Rt QOF △中,可得22b QF a=,且2b c a =.又根据222b a c =-,联立可解得1c =. 【详解】方法一;由双曲线的对称性可知直线过原点,在等腰2Rt QOF △中,245QOF ∠=︒,则122F F c =,2QF c =,1QF =.由双曲线的定义可得:122QF QF a-=,41c c -==,,故22c =.方法二:等腰2Rt QOF △中,22bQF a=,∴2b c a=. 又222b a c =-, ∴2240c c --=,得1c =.∴22c =. 故选:B . 【点睛】本题考查双曲线的性质,解题关键是将题目条件进行转化,建立等量关系求解,属于中等题.13.过坐标轴上的点M 且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为M 的个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】设出直线方程,根据弦长公式,转化为圆心到直线的距离建立等量关系求解. 【详解】由直线的斜率为tan 60k ︒==y b =+. 圆2240x y y +-=可化为22(2)4x y +-=,圆心为(0,2),半径为2r =, 则由弦长公式得:圆心(0,2)到直线y b =+的距离为1d ===,即|2|12b -+=,解得0b =,4b =,故直线的方程为y =或4y =+.直线y =过坐标轴上的点(0,0),直线4y =+过坐标轴上的点()0,4与3⎛⎫- ⎪ ⎪⎝⎭,故点M 的个数为3.故选:C. 【点睛】此题考查直线与圆的位置关系,根据弦长公式将弦长问题转化为圆心到直线的距离求解.14.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,若船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs (已知电磁波在空气中的传播速度约为0.3km/μs ,1海里 1.852km =),则点P 的坐标(单位:海里)为( )A .903211,7⎛±⎝⎭B .135322,7⎛⎝⎭C .3217,3⎛⎫±⎪⎝⎭D .(45,162±【答案】B 【解析】 【分析】根据双曲线的定义求出点P 所在的双曲线的标准方程()2211522564x y x -=>,将方程与()222713664x y --=联立,求解即可. 【详解】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥,因为船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs ,则船P 到B 台和到A 台的距离差为185.20.32301.852a PB PA ⨯===-海里,故15a =,又=17c ,故8b =,故由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>,联立()()()222227121366411522564x y x x y x ⎧--=<⎪⎪⎨⎪-=>⎪⎩, 解得135322,77P ⎛⎫± ⎪ ⎪⎝⎭, 故选:B . 【点睛】本题考查了双曲线的定义、圆锥曲线在生活中的应用,考查了理解转化能力,属于中档题.15.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,根据船P 接收到A 台和B 台电磁波的时间差,计算出船P 到B 发射台的距离比到A 发射台的距离远30海里,则点P 的坐标(单位:海里)为( )A .9011,77⎛⎫± ⎪ ⎪⎝⎭B .135322,77⎛⎫± ⎪ ⎪⎝⎭C .3217,3⎛⎫±⎪⎝⎭D .(45,162±【答案】B 【解析】 【分析】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥,根据双曲线的定义得出15a =,再得出由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>,与双曲线()222713664x y --=联立,即可得出点P 坐标. 【详解】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥由于船P 到B 台和到A 台的距离差为30海里,故15a =,又=17c ,故8b =故由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>联立()()()222227121366411522564x y x x y x ⎧--=<⎪⎪⎨⎪-=>⎪⎩,解得135322,77P ⎛⎫± ⎪ ⎪⎝⎭ 故选:B 【点睛】本题主要考查了双曲线的应用,属于中档题.16.已知直线1:(1)(1)20l a x a y -++-=和2:(1)210l a x y +++=互相垂直,则a 的值为( ) A .-1 B .0C .1D .2【答案】A 【解析】分析:对a 分类讨论,利用两条直线相互垂直的充要条件即可得出.详解:1a =-时,方程分别化为:10210x y +=+=,, 此时两条直线相互垂直,因此1a =-满足题意.1a ≠-时,由于两条直线相互垂直,可得:11()112a a a -+-⨯-=-+, 解得1a =-,舍去. 综上可得:1a =-. 故选A .点睛:本题考查了两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题17.已知(cos ,sin )P αα,(cos ,sin )Q ββ,则||PQ 的最大值为( )A B .2C .4D .【答案】B 【解析】 【分析】由两点的距离公式表示PQ ,再运用两角差的余弦公式化简,利用余弦函数的值域求得最值. 【详解】∵(cos ,sin )P αα,(cos ,sin )Q ββ,∴||PQ ====∵cos()[1,1]αβ-∈-,∴||[0,2]PQ ∈. 故选B . 【点睛】本题综合考查两点的距离公式、同角三角函数的平方关系、两角差的余弦公式和余弦的值域,属于中档题.18.已知1F ,2F 分别为双曲线C :22221(0,0)x y a b a b-=>>的左,右焦点,点P 是C 右支上一点,若120PF PF ⋅=u u u v u u u u v ,且124cos 5PF F ∠=,则C 的离心率为( ) A .257B .4C .5D .57【答案】C 【解析】 【分析】在12PF F △中,求出1PF ,2PF ,然后利用双曲线的定义列式求解.【详解】在12PF F △中,因为120PF PF ⋅=u u u r u u u u r ,所以1290F PF ∠=o, 1121248cos 255c PF F F PF F c =⋅∠=⋅=,2121236sin 255cPF F F PF F c =⋅∠=⋅=, 则由双曲线的定义可得128622555c c ca PF PF =-=-= 所以离心率5ce a==,故选C. 【点睛】本题考查双曲线的定义和离心率,解题的关键是求出1PF ,2PF ,属于一般题.19.已知椭圆22198x y +=的一个焦点为F ,直线220,220x y x y -+=--=与椭圆分别相交于点A 、B 、C 、D 四点,则AF BF CF DF +++=( )A .12B .6+C .8D .6【答案】A 【解析】 【分析】画出图像,根据对称性得到()()224AF BF CF DF AF AF DF DF a +++=+++=,得到答案. 【详解】画出图像,如图所示:直线220,220x y x y -+=--=平行,根据对称性知:()()22412AF BF CF DF AF AF DF DF a +++=+++==. 故选:A .【点睛】本题考查了椭圆的性质,意在考查学生对于椭圆知识的灵活运用.20.如图所示,点F 是抛物线24y x =的焦点,点,A B 分别在抛物线24y x =及圆22(1)4x y -+=的实线部分上运动,且AB 总是平行于x 轴,则FAB ∆的周长的取值范围( )A .(4,6)B .[4,6]C .(2,4)D .[2,4]【答案】A 【解析】由题意知抛物线24y x =的准线为1x =-,设A B 、两点的坐标分别为1,0()A x y ,2,0()B x y ,则1||1AF x =+.由()222414y xx y ⎧=⎪⎨-+=⎪⎩ 消去y 整理得2230x x +-=,解得1x =, ∵B 在图中圆()2214x y -+=的实线部分上运动, ∴213x <<.∴FAB ∆的周长为1212(1)2()3(4,6)AF FB BA x x x x ++=+++-=+∈. 选A .点睛:解决与抛物线有关的问题时,要注意抛物线定义的运用.特别是对于焦点弦的问题更是这样,利用定义可将抛物线上的点到焦点的距离(两点间的距离)转化成该点到准线的距离(点到直线的距离),然后再借助几何图形的性质可使问题的解决变得简单.。

解析几何大题精选题,共四套(答案)

解析几何大题精选题,共四套(答案)

解析几何大题精选四套(答案)解析几何大题训练(一)1. (2011年高考江西卷) (本小题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OB OA OC λ+=,求λ的值.2. (2011年高考福建卷)(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。

(1) 求实数b 的值;(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.3. (2011年高考天津卷)(本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =. (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22(1)(16x y ++=相交于M,N 两点,且|MN|=58|AB|,求椭圆的方程.4.(2010辽宁)(本小题满分12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B两点,直线l 的倾斜角为60o ,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =u u u u r u u u u r ,求椭圆C 的方程.解析几何大题训练(二)1.(2010辽宁)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =u u u r u u u r . (I) 求椭圆C 的离心率;(II)如果|AB|=154,求椭圆C 的方程.2.(2010北京)(本小题共14分)已知椭圆C 的左、右焦点坐标分别是(,y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P ,圆心为P 。

(完整版)新高考真题平面解析几何大题专题训练最新

(完整版)新高考真题平面解析几何大题专题训练最新

平面解析几何1.【2021·北京高考真题】已知椭圆2222:1(0)x y E a b a b+=>>过点(0,2)A -,以四个顶点围成的四边形面积为(1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M 、N ,直线AC 交y =-3于点N ,若|PM |+|PN |≤15,求k 的取值范围.2.【2021·全国高考真题】在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.3.【2021·浙江高考真题】如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RN PN QN =⋅,求直线l 在x 轴上截距的范围.4.【2021·全国高考真题(理)】在直角坐标系xOy 中,C 的圆心为()2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点()4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.5.【2021·全国高考真题(理)】已知抛物线()2:20C x py p =>的焦点为F ,且F与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.6.【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.7.【2020年高考全国Ⅱ卷理数】已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且43CD AB =.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.8.【2020年高考全国Ⅲ卷理数】已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.9.【2020年高考北京】已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.10.【2020年高考浙江】如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ).(Ⅰ)若116p =,求抛物线2C 的焦点坐标;(Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.11.【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.12.【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.13.【2020年新高考全国Ⅱ卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.14.【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB =,求|AB |.15.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形;(ii )求PQG △面积的最大值.16.【2019年高考全国Ⅲ卷理数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.17.【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.18.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55.(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.19.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.20.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S .(1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G的坐标.。

精编2020高考数学专题训练《平面解析几何初步》考核题完整版(含参考答案)

精编2020高考数学专题训练《平面解析几何初步》考核题完整版(含参考答案)

2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下列说法正确的是 . [答]( ) (1)若直线l 的倾斜角为α,则0απ≤<;(2)若直线l 的一个方向向量为(,)d u v =,则直线l 的斜率v k u=; (3)若直线l 的方程为220(0)ax by c a b ++=+≠,则直线l 的一个法向量为(,)n a b =. A .(1)(2) B. (1)(3) C.(2)(3) D.(1)(2)(3)2.圆O 1:0222=-x y x +和圆O 2: 0422=-y y x +的位置关系是B A .相离B .相交C .外切D .内切(重庆卷3)二、填空题3.在圆422=+y x 上,与直线01234=-+y x 的距离最小的点的坐标....为 . 4. 过点(1,0)且倾斜角是直线x -2y -1=0的倾斜角的两倍的直线方程是 ▲ .5.已知一条直线经过点P(1,2),且斜率与直线y= 2x +3的斜率相同,则该直线的方程是_________.6.圆0422=-+x y x 在点)3,1(P 处的切线方程为_________________________7. 若直线m my x m y mx 21=++=+与平行,则m =_____.8.经过点)1,2(-,且与直线0132=--y x 垂直的直线方程是 .9.已知圆x 2+y 2=R 2与直线y =2x +m 相交于A 、B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则tan(α+β)的值为________.解析:如右图,过O 作OM ⊥AB 于M ,则∠AOM =∠BOM =12∠AOB =12(β-α),∴∠xOM =α+∠AOM =α+β2,∴tan α+β2=k OM =-1k AB =-12,∴tan(α+β)=2tanα+β21-tan 2α+β2=-43.10.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为__________ .1133y x =-+11.已知线段AB 两个端点A ()23,-,B ()--32,,直线l 过点)2,1( P 且过线段AB 相交,则l 的斜率k 的取值范围为 ▲12.已知点)3,2(-A 、(3,2),B --直线l 过点)1,1(P ,且与线段AB 相交,则直线l 的斜率k 的取值范围是 .13. 若点(5,b )在两条平行直线6x -8y +1=0与3x -4y +5=0之间,则整数b 的值为14.已知点P 在直线x+2y-1=0上,点Q 在直线x+2y+3=0上,PQ 的中点为0(M x 0)y ,,且002y x >+,则0y x 的取值范围为 .15.若直线0=++m y x 与圆m y x =+22相切,则m 为 。

高考数学专题知识点系列复习训练题及答案解析(珍藏版):11平面解析几何大题强化训练(省赛试题汇编)

高考数学专题知识点系列复习训练题及答案解析(珍藏版):11平面解析几何大题强化训练(省赛试题汇编)

专题11平面解析几何大题强化训练(省赛试题汇编)1.【2018年广西预赛】已知中心在原点O,焦点在x轴上,离心率为的椭圆过点设不过原点O的直线l与该椭圆交于P,Q两点,且直线OP,PQ,OQ的斜率依次成等比数列,求面积的取值范围.2.【2018年安徽预赛】设O是坐标原点,双曲线C:上动点M处的切线,交C的两条渐近线于A、B两点.⑴求证:△AOB的面积S是定值;⑵求△AOB的外心P的轨迹方程.3.【2018年湖南预赛】已知抛物线的顶点,焦点,另一抛物线的方程为在一个交点处它们的切线互相垂直.试证必过定点,并求该点的坐标. 4.【2018年湖南预赛】如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD.分别过点C、D作边BC、AD的垂线,设两条垂线的交点为P.过点P作与Q.求证:.5.【2018年湖北预赛】已知为坐标原点,,点为直线上的动点,的平分线与直线交于点,记点的轨迹为曲线.(1)求曲线的方程;(2)过点作斜率为的直线,若直线与曲线恰好有一个公共点,求的取值范围.6.【2018年甘肃预赛】已知椭圆过点,且右焦点为.(1)求椭圆的方程;(2)过点的直线与椭圆交于两点,交轴于点.若,求证:为定值;(3)在(2)的条件下,若点不在椭圆的内部,点是点关于原点的对称点,试求三角形面积的最小值.7.【2018年吉林预赛】如图,已知抛物线过点P(-1,1),过点Q(,0)作斜率大于0的直线l交抛物线与M、N两点(点M在Q、N之间),过点M作x轴的平行线,交OP于A,交ON于B.△PMA 与△OAB的面积分别记为,比较与3的大小,说明理由.8.【2018年山东预赛】已知圆与曲线为曲线上的两点,使得圆上任意一点到点的距离与到点的距离之比为定值,求的值.9.【2018年天津预赛】如图,是双曲线的两个焦点,一条直线与双曲线的右支相切,且分别交两条渐近线于A、B.又设O为坐标原点,求证:(1);⑵、A、B四点在同一个圆上.10.【2018年河南预赛】已知方程平面上表示一椭圆.试求它的对称中心及对称轴.11.【2018年河北预赛】如图,椭圆(a>b>0)的左焦点为F,过点F的直线交椭圆于A、B两点.当直线AB经过椭圆的一个顶点时,其倾斜角恰为60°.(1)求该椭圆的离心率;(2)设线段AB的中点为G,AB的中垂线与x轴、y轴分别交于D、E两点.记△GDF的面积为,△OE D(O坐标原点)的面积为.求的取值范围.12.【2018年四川预赛】已知双曲线,设其实轴端点为,点是双曲线上不同于的一个动点,直线分别与直线交于两点.证明:以线段为直径的圆必经过定点. 13.【2018年浙江预赛】已知动直线l与圆O:相切,与椭圆相交于不同的两点A,B.求原点到AB的中垂线的最大距离.14.【2018年辽宁预赛】如图所示,在平面直角坐标系,设点是椭圆上一点,左右焦点分别是,从原点O向圆M:作两条切线分别与椭圆C交于点P、Q,直线OP、OQ的斜率分别记为.(1)设直线分别与圆交于A、B两点,当,求点A的轨迹方程;(2)当为定值时,求的最大值.15.【2018年江西预赛】若椭圆上不同的三点到椭圆右焦点的距离顺次成等差数列,线段的中垂线轴于点,求直线的方程.16.【2018年湖南预赛】设曲线所围成的封闭区域为D.(1)求区域D的面积;(2)设过点的直线与曲线C交于两点P、Q,求的最大值.17.【2018年福建预赛】已知分别为椭圆的左、右焦点,点在椭圆上,且的垂心为.(1)求椭圆的方程;(2)设为椭圆的左顶点,过点的直线交椭圆两点.记直线的斜率分别为,若,求直线的方程.18.【2016年吉林预赛】已知椭圆的右顶点为C,A为第一象限内的椭圆周上任意一点,点A关于原点的对称点为B,过点A作x轴的垂线,与BC交于点D,比较的大小,并给出证明. 19.【2016年浙江预赛】已知椭圆,经过点,离心率为。

高考数学压轴专题专题备战高考《平面解析几何》真题汇编附解析

高考数学压轴专题专题备战高考《平面解析几何》真题汇编附解析

新高考数学《平面解析几何》练习题一、选择题1.已知0mn ≠,则方程是221mx ny +=与20mx ny +=在同一坐标系内的图形可能是( )A .B .C .D .【答案】A 【解析】方程20mx ny +=即2my x n=-,表示抛物线,方程()2210mx ny mn +=≠表示椭圆或双曲线,当m 和n 同号时,抛物线开口向左,方程()2210mx ny mn +=≠表示椭圆,无符合条件的选项,当m 和n 异号时,抛物线2my x n=-开口向右,方程221mx ny +=表示双曲线,故选A.2.设抛物线E :26y x =的弦AB 过焦点F ,||3||AF BF =,过A ,B 分别作E 的准线的垂线,垂足分别是A ',B ',则四边形AA B B ''的面积等于( ) A .3B .3C .163D .3【答案】C 【解析】 【分析】由抛物线的方程可得焦点坐标及准线方程,设直线AB 的方程,与抛物线联立求出两根之和及两根之积,进而求出弦长AB ,由抛物线的性质可得梯形的上下底之和求出,求出A ,B 的纵坐标之差的绝对值,代入梯形的面积公式即可求出梯形的面积. 【详解】解:由抛物线的方程 可得焦点3(2F ,0),准线方程:32x =-,由题意可得直线AB 的斜率存在且不为0,设直线AB 的方程为:32x my =+,1(A x ,1)y ,2(B x ,2)y ,联立直线与抛物线的方程:2326x my y x⎧=+⎪⎨⎪=⎩,整理可得:2690y my --=,所以126y y m +=,129y y =-,21212()363x x m y y m +=++=+,因为||3||AF BF =,所以3AF FB =uu u r uu r,即13(2x -,123)3(2y x -=-,2)y ,可得:123y y =-, 所以可得:2222639y m y -=⎧⎨-=-⎩即213m =, 由抛物线的性质可得: 21233166668223AA BB AB x x m ''+==+++=+=+=g , 221212121||()436363636433y y y y y y m -=+-=+=+=g ,由题意可知,四边形AA B B ''为直角梯形,所以1211()||84316322AA B B S AA BB y y ''''=+-==gg g , 故选:C .【点睛】本题考查抛物线的性质及直线与抛物线的相交弦长,梯形的面积公式,属于中档题.3.已知直线(3)(0)y k x k =+>与抛物线2:4C y x =相交于A ,B 两点,F 为C 的焦点.若5FA FB =,则k 等于( ) A .23B .12C .23D .22【答案】B 【解析】 【分析】由2(3)4y k x y x=+⎧⎨=⎩,得()22226490k x k x k +-+=,()22464360k k ∆=-->,得213k <,129x x =①,再利用抛物线的定义根据5FA FB =,得到1254x x =+②,从而求得21x =,代入抛物线方程得到(1,2)B ,再代入直线方程求解. 【详解】设()11,A x y ,()22,B x y ,易知1 0x >,20x >,10y >,20y >,由2(3)4y k x y x=+⎧⎨=⎩,得()22226490k x k x k +-+=,()22464360k k ∆=-->, 所以213k <,129x x =①.因为1112p FA x x =+=+,2212pFB x x =+=+,且5FA FB =, 所以1254x x =+②. 由①②及20x >得21x =, 所以(1,2)B ,代入(3)y k x =+,得12k =. 故选:B 【点睛】本题考查抛物线的定义,几何性质和直线与抛物线的位置关系,还考查了运算求解的能力,属于中档题.4.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,10【答案】D 【解析】 【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解. 【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=,又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C ,当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =,再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10. 故选:D. 【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.5.已知双曲线22:1124x y C -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,P Q .若POQ ∆为直角三角形,则PQ =( ) A .2 B .4C .6D .8【答案】C 【解析】 【分析】由题意不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒,解三角形即可. 【详解】不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒.则易知30POF ∠=︒,4OF =,∴OP =POQ n 中,60POQ ∠=︒,90OPQ ∠=︒,OP =∴6PQ ==. 故选C 【点睛】本题主要考查双曲线的性质,根据双曲线的特征设出P ,Q 位置,以及POQ V 的直角,即可结合条件求解,属于常考题型.6.已知抛物线24y x =上有三点,,A B C ,,,AB BC CA 的斜率分别为3,6,2-,则ABC ∆的重心坐标为( )A .14,19⎛⎫⎪⎝⎭B .14,09⎛⎫⎪⎝⎭C .14,027⎛⎫⎪⎝⎭D .14,127⎛⎫⎪⎝⎭【答案】C 【解析】 【分析】设()()()112233,,,,,A x y B x y C x y ,进而用坐标表示斜率即可解得各点的纵坐标,进一步可求横坐标,利用重心坐标公式即可得解. 【详解】设()()()112233,,,,,,A x y B x y C x y 则1212221212124344ABy y y y k y y x x y y --====-+-,得1243y y +=, 同理234263y y +==,31422y y +==--,三式相加得1230y y y ++=, 故与前三式联立,得211231241,2,,3349y y y y x =-==-==,22214y x ==,233449y x ==,则12314327x x x ++=.故所求重心的坐标为14,027⎛⎫⎪⎝⎭,故选C. 【点睛】本题主要考查了解析几何中常用的数学方法,集合问题坐标化,进而转化为代数运算,对学生的能力有一定的要求,属于中档题.7.在矩形ABCD 中,已知3AB =,4=AD ,E 是边BC 上的点,1EC =,EF CD ∥,将平面EFDC 绕EF 旋转90︒后记为平面α,直线AB 绕AE 旋转一周,则旋转过程中直线AB 与平面α相交形成的点的轨迹是( )A .圆B .双曲线C .椭圆D .抛物线【答案】D 【解析】 【分析】利用圆锥被平面截的轨迹特点求解 【详解】由题将平面EFDC 绕EF 旋转90︒后记为平面α,则平面α⊥平面ABEF ,,又直线AB 绕AE 旋转一周,则AB 直线轨迹为以AE 为轴的圆锥,且轴截面为等腰直角三角形,且面AEF 始终与面EFDC 垂直,即圆锥母线AF ⊥平面EFDC 则 则与平面α相交形成的点的轨迹是抛物线 故选:D【点睛】本题考查立体轨迹,考查圆锥的几何特征,考查空间想象能力,是难题8.过抛物线212x y =的焦点F 的直线交抛物线于点A 、B ,交抛物线的准线于点C ,若3AF FB =uu u r uu r,则BC =( )A .4B .43C .6D .8【答案】D 【解析】 【分析】作出图象,作BM CP ⊥,AN CP ⊥,BH AN ⊥,设BF x =,根据抛物线的性质可得BM BF HN x ===,3AN AF x ==,进而得到1sin 2ACN ∠=,则可求出x 的值,进而得到BC 的值. 【详解】作BM CP ⊥,AN CP ⊥,BH AN ⊥,如图,因为3AF FB =uu u r uu r,不妨设BF x =,所以33AF BF x ==,4AB x =, 根据抛物线的定义可得BM BF HN x ===,3AN AF x ==,6FP p ==, 则32AH AN HN x x x =-=-=,所以1sin sin 2AH ABH ACN AB ∠=∠==,则212CF FP ==,2CB x =, 则312CF CB BF x =+==,所以4x =,则28BC x ==, 故选:D . 【点睛】本题考查抛物线的性质,涉及抛物线定义的应用,考查数形结合思想,属于中档题.9.已知椭圆22:12y C x +=,直线:l y x m =+,若椭圆C 上存在两点关于直线l 对称,则m 的取值范围是( )A .⎛ ⎝⎭B .⎛ ⎝⎭C .⎛ ⎝⎭D .⎛ ⎝⎭【答案】C 【解析】 【分析】设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y ,根据椭圆C 上存在两点关于直线:l y x m =+对称,将A ,B 两点代入椭圆方程,两式作差可得002y x =,点M 在椭圆C 内部,可得2221m m +<,解不等式即可.【详解】设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y , 则1202x x x +=,1202y y y +=,1AB k =-.又因为A ,B 在椭圆C 上,所以221112y x +=,222212y x +=,两式相减可得121212122y y y y x x x x -+⋅=--+,即002y x =. 又点M 在l 上,故00y x m =+,解得0x m =,02y m =.因为点M 在椭圆C 内部,所以2221m m +<,解得m ⎛∈ ⎝⎭. 故选:C 【点睛】本题考查了直线与椭圆的位置关系以及在圆锥曲线中“设而不求”的思想,属于基础题.10.已知椭圆1C :22113x y +=,双曲线2C :22221(,0)x y a b a b-=>,若以1C 的长轴为直径的圆与2C 的一条渐近线交于A 、B 两点,且椭圆1C 与该渐近线的两交点将线段AB 三等分,则2C 的离心率是( ) AB .3CD .5【答案】A 【解析】由已知得OA =OA 的方程为()00,0y kx k x =>>,∴可设()00,A x kx ,进一步0=,A AB ∴的一个三分点坐标为,该点在椭圆上,21+=,即()2211391k k+=+,解得22k =,从而有,222222b b a a==,解得c e a ===,故选A. 【 方法点睛】本题主要考查双曲线的渐近线及椭圆的离心率,属于难题. 求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系;离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.11.已知椭圆()2222:10x y C a b a b+=>>的右焦点()(),0F c c b >,O 为坐标原点,以OF 为直径的圆交圆222x y b +=于P 、Q 两点,且PQ OF =,则椭圆C 的离心率为( ) A.3B .12C.2D.3【答案】D 【解析】 【分析】设点P 为两圆在第一象限的交点,利用对称性以及条件PQ OF =可得出点P 的坐标为,22c c ⎛⎫ ⎪⎝⎭,再将点P 的坐标代入圆222x y b +=的方程,可得出2b 与2c 的等量关系,由此可得出椭圆的离心率的值. 【详解】如下图所示,设点P 为两圆在第一象限的交点,设OF 的中点为点M ,由于两圆均关于x轴对称,则两圆的交点P 、Q 也关于x 轴对称,又PQ OF c ==,则PQ 为圆M 的一条直径,由下图可知,PM x ⊥轴,所以点P 的坐标为,22c c ⎛⎫⎪⎝⎭,将点P 的坐标代入圆222x y b +=得22222c c b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,可得2222222c b a c ==-,所以,2223a c =,因此,椭圆的离心率为22263c c e a a ==== D. 【点睛】本题考查椭圆离心率的计算,根据题意得出a 、b 、c 的等量关系是解题的关键,考查运算求解能力,属于中等题.12.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( ) A .752B .732C 53-D .312【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r ,可得2212302x y x y +-+=,所以原问题等价于,圆2212302x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为22=. 故选:A. 【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.13.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F = )A .2213x y +=B .22132x y +=C .22196x y +=D .221129x y +=【答案】C 【解析】 【分析】利用椭圆的性质,根据4AB =,12F F =c =22 4b a=,求解a ,b 然后推出椭圆方程. 【详解】椭圆2222 10x y a b a b +=>>()的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F =c =,22 4b a=,222c a b =-,解得3a =,b =,所以所求椭圆方程为:22196x y +=,故选C .【点睛】本题主要考查椭圆的简单性质的应用,椭圆方程的求法,是基本知识的考查.14.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =, 所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b = 所以双曲线的渐近线方程为23by x x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.15.已知点M 是抛物线24x y =上的一动点,F 为抛物线的焦点,A 是圆C :22(1)(4)1x y -+-=上一动点,则||||MA MF +的最小值为( )A .3B .4C .5D .6【答案】B 【解析】 【分析】根据抛物线定义和三角形三边关系可知当,,M A P 三点共线时,MA MF +的值最小,根据圆的性质可知最小值为CP r -;根据抛物线方程和圆的方程可求得CP ,从而得到所求的最值. 【详解】如图所示,利用抛物线的定义知:MP MF =当,,M A P 三点共线时,MA MF +的值最小,且最小值为1CP r CP -=-Q 抛物线的准线方程:1y =-,()1,4C415CP ∴=+= ()min 514MA MF ∴+=-=本题正确选项:B 【点睛】本题考查线段距离之和的最值的求解,涉及到抛物线定义、圆的性质的应用,关键是能够找到取得最值时的点的位置,从而利用抛物线和圆的性质来进行求解.16.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n+的最小值为( ) A .92B .9C .6D .3【答案】D 【解析】 【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=,又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=.Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立.12m n ∴+的最小值为3. 故选:D . 【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.17.已知双曲线2219x y m-=的一个焦点在直线x +y =5上,则双曲线的渐近线方程为( )A .34y x =? B .43y x =±C.3y x =±D.4y x =±【答案】B 【解析】根据题意,双曲线的方程为2219x y m-=,则其焦点在x 轴上,直线5x y +=与x 轴交点的坐标为()5,0, 则双曲线的焦点坐标为()5,0, 则有925m +=, 解可得,16m =,则双曲线的方程为:221916x y -=,其渐近线方程为:43y x =±, 故选B.18.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,若船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs (已知电磁波在空气中的传播速度约为0.3km/μs ,1海里 1.852km =),则点P 的坐标(单位:海里)为( )A .9011,77⎛⎫±⎪⎪⎝⎭B .135322,77⎛⎫±⎪⎪⎝⎭C .3217,3⎛⎫±⎪⎝⎭D .(45,162±【答案】B 【解析】 【分析】根据双曲线的定义求出点P 所在的双曲线的标准方程()2211522564x y x -=>,将方程与()222713664x y --=联立,求解即可. 【详解】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥,因为船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs ,则船P 到B 台和到A 台的距离差为185.20.32301.852a PB PA ⨯===-海里,故15a =,又=17c ,故8b =,故由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>,联立()()()222227121366411522564x yxx yx⎧--=<⎪⎪⎨⎪-=>⎪⎩,解得135322,7P⎛⎫±⎪⎪⎝⎭,故选:B.【点睛】本题考查了双曲线的定义、圆锥曲线在生活中的应用,考查了理解转化能力,属于中档题. 19.已知椭圆22198x y+=的一个焦点为F,直线220,220x y x y-+=--=与椭圆分别相交于点A、B、C、D四点,则AF BF CF DF+++=()A.12 B.642+C.8 D.6【答案】A【解析】【分析】画出图像,根据对称性得到()()224AF BF CF DF AF AF DF DF a+++=+++=,得到答案.【详解】画出图像,如图所示:直线220,220x y x y-+=--=平行,根据对称性知:()()22412AF BF CF DF AF AF DF DF a+++=+++==.故选:A.【点睛】本题考查了椭圆的性质,意在考查学生对于椭圆知识的灵活运用.20.已知,A B 两点均在焦点为F 的抛物线()220y px p =>上,若4AF BF +=,线段AB 的中点到直线2px =的距离为1,则p 的值为 ( ) A .1 B .1或3C .2D .2或6【答案】B 【解析】4AF BF +=1212442422p px x x x p x p ⇒+++=⇒+=-⇒=-中 因为线段AB 的中点到直线2px =的距离为1,所以121132px p p -=∴-=⇒=中或 ,选B. 点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理. 2.若00(,)P x y 为抛物线22(0)y px p =>上一点,由定义易得02pPF x =+;若过焦点的弦AB AB 的端点坐标为1122(,),(,)A x y B x y ,则弦长为1212,AB x x p x x =+++可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题11平面解析几何大题强化训练(省赛试题汇编)
1.【2018年广西预赛】已知中心在原点O,焦点在x轴上,离心率为的椭圆过点设不过原点O的直线l与该椭圆交于P,Q两点,且直线OP,PQ,OQ的斜率依次成等比数列,求面积的取值范围.
2.【2018年安徽预赛】设O是坐标原点,双曲线C:上动点M处的切线,交C的两条渐近线于
A、B两点.
⑴求证:△AOB的面积S是定值;
⑵求△AOB的外心P的轨迹方程.
3.【2018年湖南预赛】已知抛物线的顶点,焦点,另一抛物线的方程为
在一个交点处它们的切线互相垂直.试证必过定点,并求该点的坐标. 4.【2018年湖南预赛】如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD.分别过点C、D作边BC、AD的垂线,设两条垂线的交点为P.过点P作与Q.求证:.
5.【2018年湖北预赛】已知为坐标原点,,点为直线上的动点,的平分线与直线
交于点,记点的轨迹为曲线.
(1)求曲线的方程;
(2)过点作斜率为的直线,若直线与曲线恰好有一个公共点,求的取值范围. 6.【2018年甘肃预赛】已知椭圆过点,且右焦点为.
(1)求椭圆的方程;
(2)过点的直线与椭圆交于两点,交轴于点.若,求证:为定值;(3)在(2)的条件下,若点不在椭圆的内部,点是点关于原点的对称点,试求三角形面积的最小值.
7.【2018年吉林预赛】如图,已知抛物线过点P(-1,1),过点Q(,0)作斜率大于0的直线l 交抛物线与M、N两点(点M在Q、N之间),过点M作x轴的平行线,交OP于A,交ON于B.△PMA 与△OAB的面积分别记为,比较与3的大小,说明理由.
8.【2018年山东预赛】已知圆与曲线为曲
线上的两点,使得圆上任意一点到点的距离与到点的距离之比为定值,求的值.9.【2018年天津预赛】如图,是双曲线的两个焦点,一条直线与双曲线的右支相切,且分别交两条渐近线于A、B.又设O为坐标原点,求证:(1);⑵、A、B四点在同一个圆上.
10.【2018年河南预赛】已知方程平面上表示一椭圆.试求它的对称中心及对称轴.
11.【2018年河北预赛】如图,椭圆(a>b>0)的左焦点为F,过点F的直线交椭圆于A、B两点.当直线AB经过椭圆的一个顶点时,其倾斜角恰为60°.
(1)求该椭圆的离心率;
(2)设线段AB的中点为G,AB的中垂线与x轴、y轴分别交于D、E两点.记△GDF的面积为,△OE D(O坐标原点)的面积为.求的取值范围.
12.【2018年四川预赛】已知双曲线,设其实轴端点为,点是双曲线上不同于的一个动点,直线分别与直线交于两点.证明:以线段为直径的圆必经过定点. 13.【2018年浙江预赛】已知动直线l与圆O:相切,与椭圆相交于不同的两点A,B.求原点到AB的中垂线的最大距离.
14.【2018年辽宁预赛】如图所示,在平面直角坐标系,设点是椭圆上一点,左右焦点分别是,从原点O向圆M:作两条切线分别与椭圆C交于点P、Q,直线OP、OQ的斜率分别记为.
(1)设直线分别与圆交于A、B两点,当,求点A的轨迹方程;
(2)当为定值时,求的最大值.
15.【2018年江西预赛】若椭圆上不同的三点到椭圆右焦点的距离顺次成等差数列,线段的中垂线轴于点,求直线的方程.
16.【2018年湖南预赛】设曲线所围成的封闭区域为D.
(1)求区域D的面积;
(2)设过点的直线与曲线C交于两点P、Q,求的最大值.
17.【2018年福建预赛】已知分别为椭圆的左、右焦点,点在椭圆
上,且的垂心为.
(1)求椭圆的方程;
(2)设为椭圆的左顶点,过点的直线交椭圆两点.记直线的斜率分别为,若
,求直线的方程.
18.【2016年吉林预赛】已知椭圆的右顶点为C,A为第一象限内的椭圆周上任意一点,点A关于原点的对称点为B,过点A作x轴的垂线,与BC交于点D,比较的大小,并给出证明. 19.【2016年浙江预赛】已知椭圆,经过点,离心率为。

过椭圆的右焦点作斜率为的直线,与椭圆交于两点,记的斜率分别为。

(1)求椭圆的标准方程;
(2)若,求实数。

20.【2016年新疆预赛】设过原点且斜率为正值的直线与椭圆交于点,点. 求四边形面积的最大值.
21.【2016年四川预赛】已知拋物线过定点C(l,2),在抛物线上任取不同于点C的一点A,直线AC与直线y=x+3交于点P,过点P作x轴的平行线,与抛物线交于点B.
(1)证明:直线AB过定点;
(2)求△ABC面积的最小值.
22.【2016年江苏预赛】在平面直角坐标系xOy中,点在椭圆上,不经过坐标原点O的直线l与椭圆C交于A、B两点,且线段AB的中点为D,直线OD的斜率为1.记直线PA、PB的斜率分别为
,证明:为定值.
23.【2016年湖南预赛】设椭圆经过点,离心率为,直线经过椭圆的右焦点,与椭圆交于点在直线上的射影依次为.
(1)求椭圆的方程.
(2)联结,当直线的倾斜角变化时,直线是否交于定点?若是,求出定点的坐标并给予证明;否则,说明理由.
24.【2016年湖北预赛】过抛物线外一点P向抛物线作两条切线,切点为M、N,F为抛物线的焦点.证明:
(1);
(2).
25.【2016年河南预赛】如图,已知为椭圆在左、右顶点,直线与椭圆交于点。

设的斜率分别为,且=1:9。

(1)证明:直线过定点;
(2)记的面积分别为,求的最大值。

26.【2016年甘肃预赛】已知F为椭圆的右焦点,分别为x轴、y轴上的动点,且满足.设点P满足.
(1)求点P的轨迹C.
(2)过点F任作一直线与轨迹C交于A、B两点,直线OA、OB与直线分别交于S、T(O为坐标原点),试判断是否为定值?若是,求出此定值;若不是,请说明理由.
27.【2016年福建预赛】如图,F1、F2为双曲线C:的左、右焦点,动点P(x0,y0)(y0≥1)在双曲线C的右支上.设∠F1PF2的平分线与x轴、y轴分别交于点M(m,0)、N.
(1)求m的取值范围;
(2)设过点F1、N的直线l与双曲线C交于D、E两点,求△F2DE面积的最大值.
28.【2016年陕西预赛】已知直线l:y=x+4,动圆⊙O:x2+y2=r2(1<r<2),菱形ABCD的一个内角为60°,顶点A、B在直线l上,顶点C、D在⊙O上.当r变化时,求菱形ABCD的面积S的取值范围. 29.【2016年吉林预赛】已知椭圆的右顶点为C,A为第一象限内的椭圆周上任意一点,点A关于原点的对称点为B,过点A作x轴的垂线,与BC交于点D,比较的大小,并给出证明. 30.【2016年山东预赛】已知椭圆E:,过椭圆左焦点F(-c,0)的直线l与椭圆交于A、B两点,线段AB的垂直平分线与椭圆交于C、D两点.若,求直线l的方程.
31.【2016年天津预赛】设a为实数,两条抛物线有四个交点
(1)求a的取值范围;
(2)证明这四个交点共圆,并求该圆圆心的坐标.
32.【2016年山西预赛】设直线与椭圆交于点M、N,且OM⊥ON(O为原点).
若,求椭圆的方程.。

相关文档
最新文档