物理化学第12章胶体化学资料
物理化学第十二章 胶体化学
2.固溶胶 将固体作为分散介质所形成的溶胶。
A.固-固溶胶 如有色玻璃,不完全互溶的合金 B.固-液溶胶 如珍珠,某些宝石 C.固-气溶胶 如泡沫塑料,沸石分子筛
3.气溶胶 将气体作为分散介质所形成的溶胶。当分散
相为固体或液体时,形成气-固或气-液溶胶,但 没有气-气溶胶,因为不同的气体混合后是单相均 一体系,不属于胶体范围。
1. 布朗运动(Brown motion)
1827 年植物学家布朗(Brown)用显微镜观察到 悬浮在液面上的花粉粒子不断地作无规则的运动。
后来又发现凡是线度小于4μm的粒子,在分散 介质中皆呈现这种运动。人们称微粒的这种运动为 布朗运动。
用超显微镜观察到溶胶粒子不断地做无规则 运动,能够测出在一定时间内粒子的平均位移。
引言
把一种或几种物质 分散在另一种物质中所 构成的系统称为分散系 统。被分散的物质称为 分散相(dispersed phase),而另一种呈 连续分布的物质称为分 散介质(dispersing medium)。
例如:云,牛奶,珍珠
分散体系通常有三种分类方法: •真溶液
按分散相粒子的大小分类: •胶体分散体系 •粗分散体系
1905年爱因斯坦 (Einstein) 阐述了Brown运 动的本质,推导出爱因斯 坦-布朗平均位移公式。
1/ 2
x
RTt
3L r
爱因斯坦用概率的概念和分子运动论的观点,创立了布 朗运动的理论。认为Brown运动是分散介质分子以不同大小 和不同方向的力对胶体粒子不断撞击而产生的,由于受到的 力不平衡,所以连续以不同方向、不同速度作不规则运动。
梯度、单位时间内通过单位截面积的质量。
最新第十二章 胶体化学
分散介质(dispersing medium):另一种连续分布 的物质
上一内容 下一内容 回主目录
返回
2021/1/11
12.0 概述
表 12.0.1 分散系统按分散相粒子大小分类
系统 真溶液 胶体系统 粗分散系统
分散相粒子 直径 d
实例
各种分子、原子、离子溶液
d < 1 nm 如乙醇水溶液、NaCl 水溶液、
(1)分散法 用机械、化学等方法使固体的粒子变小。
(2)凝聚法 使分子或离子聚结成胶粒。
上一内容 下一内容 回主目录
返回
2021/1/11
溶胶的制备--研磨法
1.研磨法 用机械粉碎的方法将固体磨细。 这种方法适用于脆而易碎的物质,对于柔
韧性的物质必须先硬化后再粉碎。例如,将废 轮胎粉碎,先用液氮处理,硬化后再研磨。
胶体系统中的分散相可以是一种物质,也可以是多种物质, 可以是由许多原子或分子组成的粒子,也可以是一个大分子。
胶体系统通常还可分为三类:
1)溶胶 — 分散相不溶于分散介质,有很大的相界面,很高的 界面能,因此是热力学不稳定系统;
2)高分子溶液— 以分子形式溶于介质,没有相界面,为均相 热力学稳定系统;
物理化学电子教案—第十二章
上一内容 下一内容 回主目录
返回
2021/1/11
第十二章 胶体化学
12.0 概述 12.1 溶胶的制备 12.2 溶胶的光学性质 12.3 溶胶的动力学性质 12.4 溶胶的电学性质 12.5 溶胶的稳定和聚沉
上一内容 下一内容 回主目录
返回
2021/1/11
第十二章 胶体化学
12.6 乳状液 12.7 泡沫 12.8 悬浮液 12.9 气溶胶 12.10 高分子化合物的渗透压和粘度
大学《物理化学》12.溶胶
若按分散相的大小来分类, 若按分散相的大小来分类,可将分散体系分成三大类 类型
粗分散体系 (悬浮液) 悬浮液) 胶体分散系 (溶胶、高分 溶胶、 子溶液) 子溶液)
颗粒 大小 > 10-7 m
例子
泥浆 牛奶 Fe(OH)3溶
特
性
粒子不能透过滤纸,不扩散, 粒子不能透过滤纸,不扩散, 在一般显微镜下可见, 在一般显微镜下可见,多相 态。 粒子能透过滤纸, 粒子能透过滤纸,不能透过
可见光的波长范围为 : 450 nm ~ 700 nm ,
4 .5 × 10 −7 ~ 即
胶粒的大小范围大致为: 胶粒的大小范围大致为
7 ×10
~
−7
m m
10
−7
10
−9
由于胶粒的大小小于入射光的波长, 因此, 由于胶粒的大小小于入射光的波长 因此 观察 光的散射作用引起的。 到的光锥是由光的散射作用引起的 到的光锥是由光的散射作用引起的。
2) 对粗分散体系,由于粒子较大,来自四面八方的撞 ) 对粗分散体系,由于粒子较大, 击力大致相互抵消,因此,布朗运动不明显; 击力大致相互抵消,因此,布朗运动不明显; 3) 对分子分散系,由于分子剧烈的热运动,无法观察 ) 对分子分散系,由于分子剧烈的热运动, 到分子的运动轨迹,因此,也没有布朗运动。 到分子的运动轨迹,因此,也没有布朗运动。 在超显微镜下能够清楚看出粒子走过的路径, 在超显微镜下能够清楚看出粒子走过的路径,因此 能够测出在一定时间内粒子的平均位移。粒子越小, 能够测出在一定时间内粒子的平均位移。粒子越小,布 朗运动越激烈,其激烈程度不随时间而改变, 朗运动越激烈,其激烈程度不随时间而改变,但随温度 的升高而加剧。 的升高而加剧。
光源 光源
物理化学下册第五版天津大学出版社第十二章胶体化学习题答案
物理化学下册第五版天津大学出版社第十二章胶体化学习题答案12.1 如何定义胶体系统?总结交替的主要特征。
解:分散相粒子在某方向上的线度在1~100nm范围内的高度分散系统成为胶体系统。
胶体系统的主要特征是高度分散、多相性和热力学不稳定性。
12.2 丁铎尔效应的实质及其产生的条件?解:丁铎尔效应实质是光的散射作用引起的。
粒子的半径小于入射光的波长时才能观察到丁铎尔效应。
12.3 简述斯特恩双电层模型的要点指出热力学电势、斯特恩(stern)电势和ζ电势的区别?解:Stern 模型:固定层+扩散层、三个面、三个电势。
具体如下:1924年斯特恩提出扩散双电层:离子有一定的大小;部分反离子被牢固吸附,形成固定吸附层或斯特恩固体面;Stern面:Stern层中反离子电性中心所形成的假想面;滑动面:固液两相发生相对移动时界面。
热力学电势0:固体面—溶液本体;Stern电势:Stern面—溶液本体;电势:滑动面—溶液本体12.4 溶胶能在一定时间内稳定存在的主要原因?解:分散相粒子的带电、溶剂化作用以及布朗运动是溶胶系统相当长得时间范围内可以稳定存在的主要原因。
12.5 破坏胶体最有效的办法是什么?说明原因。
解:破坏胶体最有效的办法是在溶胶中加入过量的含有高价相反号离子的电解质。
这主要是因为电解质的浓度或价数增加时,都会压缩扩散层,是扩散层变薄,电势降低,斥力势能降低,当电解质的浓度足够大时就会使溶胶发生聚沉;若加入的反号离子发生吸附,斯特恩层内的反离子数目增加,使胶体粒子的带电量降低,而导致碰撞聚沉。
过量的电解质加入,还将使胶体粒子脱水,失水化外壳而聚沉。
12.6 K、Na等碱金属的皂类作为乳化剂时,易于形成O/W型的乳状液;Zn、Mg等高价金属的皂类作为乳化剂时,易于形成W/O 型的乳状液。
解:乳化剂分子具有一端亲水而另一端亲油的特性,其两端的横截面不等。
当它吸附在乳状液的界面面层时,常呈现“大头”朝外,“小头”向里的几何构型,就如同一个个的锲子密集的钉在圆球上。
第十二章胶体化学ppt课件
如油在水中的分散
油滴
二、分散体系分类 (一)按分散相的线度大小分类
1. 分子分散体系 分散相粒子线度:<10-9 m 电子显微镜看不见,能透过半透膜
如:混合气体,真溶液
2.胶体分散体系(固-液溶胶,憎液溶胶)
分散相粒子线度:10-9~10-7m 电子显微镜能看见,不能透过半透膜
散作用和渗透压。实验中可观测到胶粒是从高浓度区→低浓度区迁 移——扩散
扩散:在有浓度梯度存在时,物质粒子因热运动而发生宏观上的定向迁移 现象
原因:粒子热运动
扩散与布朗运动的异同点:
相同点:粒子热运动
不同点:布朗运动
扩散
无规则
定向运动
任何时刻都存在 有浓度梯度时存在
3. 沉降和沉降平衡
粒子
介质
x
双 电 层 的 Stern 模 型
当溶胶相对静止时,整个溶胶体系是电中性的,但当分散相粒子和液 体介质相对运动时,就会产生电位差,这种电位差叫电动电势。
胶粒是带电的,由于静电引力使反粒子在表面周围,又由于分子热运动, 使反粒子在表面附近呈扩散分布。
离表面近的一层——紧密层(内层),厚度(约几个水分子直径大小, 因为离子的水化所致),当固体(胶粒)移动时,紧密层随固体一起移动。 外层——扩散层,紧密层与扩散层的界面叫切动面(滑动面)。
所加入的可溶性物质—胶溶剂 胶溶法一般只适用于新鲜沉淀。
如:Fe(OH)3(新鲜沉淀)
3. 凝聚法
加FeCl3
Fe(OH)3(溶胶)
化学凝聚法: 如AgNO3稀溶液滴入KBr溶液中可制AgBr溶胶; FeCl3(稀溶液)滴入沸水中可制得Fe(OH)3溶胶。
物理化学:第十二章 胶体化学(定稿)
(水)相。
(2)稀释法:将乳状液滴入水中或油中,若乳状 液在水中能稀释,即为O/W型;在 油中能稀释,即为W/O型。
(3)导电法:O/W型乳状液的导电性能远好于 W/O型乳状液,通过测电导可区别 两者。
2. 乳状液的稳定
(1) 降低界面张力
(a) 加入表面活性剂, ,G表,稳定性
(b) 表面活性剂的HLB值可决定形成乳状液 的类型: HLB 3-6: 形成W/O型乳状液; HLB 12-18: 形成O/W型乳状液。
(2)形成定向楔的界面
一价碱金属皂类, 形成O/W型乳状液:
二价碱金属皂类, 形成W/O型乳状液:
大头朝外,小头向内,表面活性剂可紧密排列, 形成厚壁,使乳状液稳定。
(3)形成扩Leabharlann 双电层离子型表面活性剂可形成扩散双电层,使乳状液稳定。
(4)界面膜的稳定作用
增强界面膜的强度,可增加乳状液的稳定性。
第十二章 胶体化学
§12.6 乳状液
由两种不互溶或部分互溶的液体所形成的粗 分散系统,称为乳状液。
水包油,O/W,油分散在水中 类型
油包水,W/O,水分散在油中
O + W + 乳化剂
乳状液
乳化剂 表面活性剂 固体粉末
1. 乳状液类型的鉴别
(1)染色法:将油(水)溶性染料滴入乳状液, 在显微镜下观察,染色的一相为油
固体大部分在水中,油水界面向油弯曲, 形成O/W乳状液。
油水
如 so < sw :
cos 为负, > 90 o,油能润湿固体,
固体大部分在油中,油水界面向水弯曲, 形成W/O乳状液。
水油
3. 乳化剂的选择
物理化学 第十二章 胶体化学
2 9π V C n2 n0 1 cos2 I 0 I= 2 2 24 l 2 n 2 n 0 2 2
2
3) I n
可以此来区分 胶体溶液 分散相与分散介质有相界面,n大 高分子溶液 均相溶液, n小
4) I C 同一种溶胶,仅C不同时,有:
9π V C I= 4 2 2 l
2 2
2 n n0 2 n2 2n0
2
1 cos2 I 0
2
由 Rayleigh 公式可知: 1) I V 2 可用来鉴别小分子真溶液与胶体溶液; 如已知 n 、n0 ,可测 I 求粒子大小V 。
2) I 1/4 波长越短的光,散射越强。 例:用白光照射溶胶,散射光呈蓝色, 透射光呈橙红色。
dn dc DAS dt dx
AS
c大
c小
在一定温度下,在浓差作用下,单位时间内向 x 方 向扩散,通过截面积AS的物质的量 dn/dt 正比于浓度梯度 dc/dx 与AS 的乘积,比例系数D 称边有 - 号。
x
dn dc DAS dt dx
第十二章
胶体化学
(6h)
同界面化学一样,胶体化学也是一门古老 而又年轻的科学。 有史以前,我们的祖先就会制造陶器;汉 朝已能利用纤维造纸;后汉时又发明了墨; 其他像做豆腐、面食以及药物的制剂等等在 我国都有悠久的历史,这些成品及其制作过 程都与胶体化学密切相关。 1809年,俄国化学家Scheele发现了土粒 的电泳现象; 1829年英国植物学家Brown观察到花粉的 布朗运动。次后,许多人相继制备了各种溶 胶,并研究了它们的性质。
§12.4 胶体系统的电学性质
物理化学第十二章胶体化学课件演示文稿
实例
云,雾,喷雾 烟,粉尘
肥皂泡沫 牛奶,含水原油 金溶胶,油墨,泥浆
泡沫塑料 珍珠,蛋白石 有色玻璃,某些合金
7
§12-1 溶胶的制备
分散法 粗分散系统 大变小
胶体系统
聚集法 小变大
d >1000nm
1 < d <1000nm
分子分散系统
d < 1nm
1.分散法:
(1)胶体磨 (2)气流粉碎机(又称喷射磨) (3)电弧法—用于制备贵金属的水溶胶
2. 凝结法
(1)物理凝聚法
①蒸气凝聚法 ②过饱和法
将蒸气状态的物质或溶解状态的物质凝聚为胶体状态
蒸 气 凝 聚 法
1—被抽空容器 2、4—盛有溶剂的和
需要分散的物质容器
3—盛溶胶是容器 5—液态空气冷凝器
示
意
图
10
(2)化学凝聚法
利用生成不溶性物质的化学反应,通过控制析晶过程得 到溶胶的方法
Fe (OH)3溶胶:
3
胶体化学主要研究对象是多相分散系统
分散系统:一种或几种物质分散在另一种物质之中所构 成的系统 分 散 相:被分散的物质
分散介质:另一种连续分布的物质
4
根据分散相粒子的大小,分散系统可分为:
真溶液 d < 1nm 胶体分散系统 1 < d <1000nm
溶胶 高分子溶液 缔合胶体
粗分散系统 d >1000nm
胶体粒子
多相,热力学不稳定系统,扩 散慢、不能透过半透膜,成胶 体
金溶胶,氢氧化铁 溶胶
体
分 散 系
高分子溶液
1 < d <1000nm
高(大)分 子
物理化学:第十二章 胶体化学(2)
总作用势能:E = ER + EA
粒子的平动能=(3/2) RT <Emax时,溶胶稳定; >Emax时,溶胶不稳定
ER 势 能
E
Emax
0
x
第二最小值
EA 第一最小值
EA曲线的形状由粒子本性决定,不受电解质影响; ER曲线的形状、位置强烈地受电解质浓度的影响。 电解质浓度对胶体粒子势能的影响:
2. 扩散双电层理论
常用名词: 双电层: 质点表面电荷与周围介质中的反离子
构成的电层;
表面电势0:带电质点表面与液体的电势差: 电势: 固、液两相发生相对运动的边界处与液
体内部的电势差。
1) 亥姆霍兹平板电容器模型
0
1879年,亥姆霍兹 首先提出在固液两相之 间的界面上形成双电层 的概念。
0
x
电泳或电渗实验证明:溶胶的分散质和分散 介质都带电,且所带的电性是不同的。
在电泳实验中,当溶胶粒子向负极迁移时,说 明胶粒带正电,此溶胶称为正溶胶;当溶胶粒子向 正极迁移时,说明胶粒带负电,此溶胶称为负溶胶
在电渗实验中,则正好相反。当介质向负极迁移 时,说明胶粒带负电,此溶胶称为负溶胶;当介质向 正极迁移时,说明胶粒带正电,此溶胶称为正溶胶。
本体之间的电势差
Stern 模型:固定 层+扩散层
固体表面 Stern面 滑动面
电势
0
0
--- 热力学电势,固体 表面与溶液本体的电
势差与溶液中电位离
子的浓度有关。
---- Stern电势。 Stern面与溶液本体的
电势差
距离
---- 电动电势(Zata电 势)滑动面与溶液本 体的电势差其值取决 于可动层的厚度
第十二章 胶体化学
胶体系统
粗分散系 统
透明或不透 明,均可发 生光散射;
光反射;
胶粒扩散速度 不稳;稳;稳; 慢,不能透过 半透膜;
同胶体。
热力学不稳定系 统;
2020/3/20
9
表 12.0.1 分散系统按聚集状态分类
分散介质 分散相
气
液 固
气
液
液
固
气
固
液
固
名称
实例
气溶胶
云、雾、喷雾 烟、粉尘
泡沫 乳状液 液溶胶或悬浮液
2020/3/20
(氢原子半径 0.05 nm)
5
胶 体 系 统
2020/3/20
(1)溶胶: 分散相不溶于分散介质,有很大相 界面,是热力学不稳定系统。(憎液溶胶)
(2)高分子溶液: 高分子以分子形式溶于 介质,分散相与分散介质间无相界面, 是热力学稳定系统。(亲液溶胶)
(3)缔合胶体: 分散相为表面活性分子缔合形 成的胶束,在水中,表面活性剂分子的亲油 基团向里,亲水基团向外,分散相与分散介 质亲和性良好,是热力学稳定系统。
2020/3/20
34
将上式与(12.3.1) 式结合,可得:
x2 RTt RT 2t 2Dt 12.3.2a
3Lπrη 6Lπrη
D x2 12.3.2b
2t
由测量一定时间间隔t内的粒子平均位移 x ,
可求出 D 。
2020/3/20
35
结合式(11.10.2)球形粒子扩散系数计算式:
D RT 6 Lπ ηr
21
I9 2 πλ 2V 4l2C 2 n n 22 2 n n 0 2 0 2 21co 2αsI0
12.2.
物理化学之胶体化学PPT课件
§12-9 乳状液
• 一.什么是乳状液 • 1.乳状液 • 一种或几种液体以液珠的形式分散在另一种不相溶的液体中构成的分散系统
称为乳状液。 • 乳状液属于粗分散系统。
第27页/共41页
二.乳状液的分类
• 按分散相与分散介质的类型将乳状液分为两类: • ⑴油分散在水中(O/W)
• 如牛奶、农药、日用雪花膏等。
第38页/共41页
第39页/共41页
第40页/共41页
感谢您的观看!
第41页/共41页
第3页/共41页
§12-2 胶体系统的制备
• 一.分散法——将大颗粒变小 • 胶体磨,超声法,胶溶法,电弧法等。 • 二.凝聚法——将小颗粒变大 • 过饱和溶液(改变溶剂或冷却),化学凝聚法 • 三.溶胶的净化
第4页/共41页
§13-3 胶体系统的光学性质
• 一、Tyndall效应 • 一束光通过分散系统时产生吸收、散射和反射等现象。其中散射和反射的强
第9页/共41页
• 3.Einstein-Brown平均位移公式 • 的计算值与实验值一致 • 4.意义 • ⑴说明了分子运动论完全可以用于胶体分散系统; • ⑵布朗运动是胶体分散系统稳定的原因之一。
第10页/共41页
• 二.扩散 • 1.粒子从浓度高的区域自动向浓度低的区域移动的
现象称为扩散。 • 2.扩散是热力学第二定律的必然结果。 • 3.扩散是布朗运动的宏观表现,而布朗运为Stern层(即 紧密层),Stern面之外至溶液本体称为扩散层。
• 与表面结合得相当牢固的反离子为紧密层,在表 面附近做热运动的其它反离子构成双点层中的扩 散层。
第20页/共41页
§憎液溶胶的胶团结构
第12章胶体化学2ppt课件
外加电场引 起相对运动
电渗
(固相不动,液体移动)
相对运动产 生电位差
流动电势
说明:溶胶粒子和分散介质带有不同性质的电荷 溶胶粒子为什么带电? 溶胶粒子周围的分散介质中,反离子(与胶粒所带电荷 符号相反的离子)是如何分布的? 电解质是如何影响电动现象的? ——双电层理论
9
2. 扩散双电层理论
溶胶粒子带电原因: ①离子吸附:固体表面从溶液中有选择性地吸附某种离 子而带电。如AgI溶胶:
界面法移动法电泳装置
实验测出在一定时间内界面 移动的距离,可求得粒子的电 泳速度
Fe(OH)3溶胶粒子带正电
2
电势梯度 100V m1 时溶胶粒子与普通离子的运动速度
粒子的种类
H+ OH- Na+ K+ Cl- C3H7COO- C8H17COO- 溶胶粒子
运动速度 v 106 m s1
--
-
-
-
-
-
-
-
-
+ +
+ +
-- -
- ---
扩散层 斯特恩层(紧密层)
固体表面 斯特恩面 滑动面
φo
表面电势φ0 (热力学电势) 斯特恩电势φ
电势(滑动面
与溶液本体之间 的电位差)
φδ
16
电势的大小,反映了胶粒带电的程度, 电势越大,表明:
✓胶粒带电 , ✓滑动面与溶液本体之间的电势差 ✓扩散层厚度 电解质的影响: 溶液中电解质浓度增加时,介质中反 离子的浓度加大,将压缩扩散层使其 变薄,把更多的反离子挤进滑动面以
斥力势能
引力势能
27
除胶粒带电是溶胶稳定的主要原因外,溶剂化作用和布朗 运动也是溶胶稳定的有利因素。 所以溶胶稳定的原因: 1)胶粒带电 增加胶粒间的排斥作用; 2)溶剂化作用 形成弹性水化外壳,增加溶胶聚合的阻力 3)Brown运动 使胶粒克服受重力影响而不下沉
天津大学物理化学第五版-第十二章-胶体化学
van der Waals 吸引力:EA -1/x2 双电层引起的静电斥力:ER ae-x
总作用势能:E = ER + EA
EA曲线的形状由粒子本
性决定,不受电解质影响;
ER曲线的形状、位置强
烈地受电解质浓度的影响。
ER 势 能
E
n : 分散相的折射率; n0:分散介质的折射率;
:散射角;
l : 观测距离
I= 9 2V 2C 2 4 l 2
n 2 n02 n2 2n02
2
1 cos 2
I0
由 Rayleigh 公式可知:
1) I V 2
可用来鉴别小分子真溶液与胶体溶液;
如已知 n 、n0 ,可测 I 求粒子大小V 。
2. 憎液溶胶的聚沉 溶胶粒子合并、长大,进而发生沉淀的现
象,称为聚沉。
(1) 电解质的聚沉作用 聚沉值使溶胶发生明显的聚沉所需电解质的最小浓度 聚沉能力聚沉值的倒数
EA 曲线的形状由粒子本性决定,不受电解质影响; ER 曲线的形状、位置强烈地受电解质浓度的影响。
电解质浓度与价数增加,使胶体粒子间势垒的高度 与位置发生变化。
分散系统:一种或几种物质分散在另一种物质之中
分散相:被分散的物质 (dispersed phase) 分散介质:另一种连续分布的物质
medium)
(dispersing
分子分散系统
胶体分散系统
粗分散系统
例如:云,牛奶,珍珠
按分散相粒子的大小分类
类型
粒子大小
特性
举例
低分子溶 液(分子分
散系统)
<1nm
天津大学物理化学教研室《物理化学》(第6版)笔记和课后习题详解(胶体化学)【圣才出品】
第12章胶体化学12.1 复习笔记分散系统:把一种或几种物质分散在一种介质中构成的系统称为分散系统,包括分散相和分散介质。
分散相:被分散的物质。
分散介质:分散系统中呈连续分布的物质。
根据分散相粒子的大小,将分散系统分为三类:①真溶液(被分散物质以分子、原子或离子即质点直径d<1nm形式均匀分散,不存在相界面);②胶体系统(分散相粒子直径d 介于1~1000nm之间);③粗分散系统(分散相粒子直径d>1000nm,包括悬浮液、乳状液等,存在明显的相界面)。
一、胶体系统分散相粒子粒径d在1~1000nm范围之间的高度分散系统称为胶体系统。
可分溶胶(分散相为由许多原子或分子组成的有界面的粒子,热力学不稳定系统)、高分子溶液(分散相是没有相界面的大分子,均相热力学稳定系统)和缔合胶体(分散相是由表面活性剂缔合形成的胶束)。
特点:可发生光散射;胶体粒扩散速率慢;不能透过半透膜;具有较高的渗透压;高度分散性。
二、溶胶的光学性质 在暗室中当将点光源发出的一束经聚集的光照射到胶体系统时,在垂直于入射光的方向上可观察到一个发亮的光锥,此现象称为丁铎尔效应。
丁铎尔效应是胶体粒子粒径小于可见光的波长而发生光的散射的结果。
单位体积液溶胶的散射光强度I 可由瑞利公式计算()2222200422209π1cos 2λ2V C n n I αI l n n ⎛⎫-=+ ⎪+⎝⎭式中:I 0及λ表示入射光的强度与波长;n 及n 0分别为分散相及分散介质的折射率;α为散射角,即观察方向与入射光之间的夹角;V 为单个分散相粒子的体积;C 为分散相的数浓度即单位体积中的粒子数;l 为观察者与散射中心的距离。
此式适用于粒子尺寸远小于入射光波长时,可将粒子看成点光源;粒子不导电;粒子相距较远,不考虑各粒子散射光之间的相互干涉。
由公式可知:(1)单位体积的散射光强度与每个粒子体积的平方成正比;(2)散射光强度与入射光波长的4次方成反比,即波长愈短其散射光愈强;(3)分散相与介质的折射率相差愈大,散射光愈强;(4)散射光强度与粒子的数浓度成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
2018/11/24
1 溶胶的制备
制备溶胶必须使分散相粒子的大小落在胶体分
散体系的范围之内,并加入适当的稳定剂。制备方
法大致可分为两类:
(1)分散法
用机械、化学等方法使固体的粒子变小。
(2)凝聚法
使分子或离子聚结成胶粒
上一内容 下一内容 回主目录
返回
上一内容
下一内容
回主目录
返回
2018/11/24
§ 12.0 胶体及其基本特性
分散相与分散介质
分散体系分类
(1)按分散相粒子的大小分类 (2)按分散相和介质的聚集状态分类 (3)按胶体溶液的稳定性分类
憎液溶胶的特性
胶粒的结构
胶粒的形状
上一内容 下一内容 回主目录
返回
2018/11/24
这种方法适用于脆而易碎的物质,对于柔
韧性的物质必须先硬化后再粉碎。例如,将废 轮胎粉碎,先用液氮处理,硬化后再研磨。 胶体磨的形式很多,其分散能力因构造和 转速的不同而不同。
上一内容
下一内容
回主目录
返回
2018/11/24
1 溶胶的制备--研磨法
盘式胶体磨
上一内容
下一内容
回主目录
返回
1 分散相与分散介质
把一种或几种物 质分散在另一种物质 中就构成分散体系。 其中,被分散的物质 称为分散相 (dispersed phase), 另一种物质称为分散 介质(dispersing medium)。
上一内容 下一内容 回主目录
例如:云,牛奶,珍珠
返回
2018/11/24
2 分散体系分类
2018/11/24
1 溶胶的制备--研磨法
转速约每分钟1万∼2万转。 A为空心转轴,与C盘相连, 向一个方向旋转,B盘向另一方 向旋转。 分散相、分散介质和稳定剂 从空心轴A处加入,从C盘与B盘的 狭缝中飞出,用两盘之间的应切 力将固体粉碎,可得1000 nm左右 的粒子。
3 憎液溶胶的特性
(1)特有的分散程度
粒子的大小在10-9~10-7 m之间,因而扩散较慢,不能透 过半透膜,渗透压低但有较强的动力稳定性 和乳光现象。
(2)多相不均匀性
具有纳米级的粒子是由许多离子或分子聚结而成,结构 复杂,有的保持了该难溶盐的原有晶体结构,而且粒子大小 不一,与介质之间有明显的相界面,比表面很大。
物理化学电子教案—第十二章
上一内容
下一内容
回主目录
返回
2018/11/24
12.0 胶体及其基本特性
12.1 溶胶的制备与净化
12.2 溶胶的光学性质 12.3 溶胶的动力性质
12.4 溶胶的电学性质
12.5 溶胶的稳定与聚沉 *12.6 乳状液、悬浮液、气溶胶 12.7 高分子溶液的渗透压与唐南平衡
返回
2018/11/24
(2)按分散相和介质聚集状态分类
2.固溶胶 将固体作为分散介质所形成的溶胶。当分散相为
不同状态时,则形成不同的固溶胶: A.固-固溶胶 B.固-液溶胶 C.固-气溶胶 如有色玻璃,不完全互溶的合金 如珍珠,某些宝石 如泡沫塑料,沸石分子筛
上一内容
下一内容
回主目录
返回
(3)热力学不稳定性
因为粒子小,比表面大,表面自由能高,是热力学不 稳定体系,有自发降低表面自由能的趋势,即小粒子会自 动聚结成大粒子。
上一内容 下一内容 回主目录
返回
2018/11/24
§ 12.1 溶胶的制备与净化
溶胶的制备 溶胶的净化 (1)渗析法 (2)超过滤法
(1)分散法 1.研磨法 2.胶溶法 3.超声波分散法 4.电弧法 (2)凝聚法 1.化学凝聚法 2.物理凝聚法
分类体系通常有三种分类方法: 按分散相粒子的大小分类:
•分子分散体系 •胶体分散体系 •粗分散体系
•液溶胶 按分散相和介质的聚集状态分类: •固溶胶 •气溶胶
•憎液溶胶 按胶体溶液的稳定性分类: •亲液溶胶
上一内容
下一内容
回主目录
返回
2018/11/24
(1)按分散相粒子的大小分类
1.分子分散体系 分散相与分散介质以分子或离子形式彼此混溶, 没有界面,是均匀的单相,分子半径大小在10-9 m以 下 。通常把这种体系称为真溶液,如CuSO4溶液。 2.胶体分散体系 分散相粒子的半径在1 nm~100 nm之间的体系。目 测是均匀的,但实际是多相不均匀体系。也有的将1 nm ~ 1000 nm之间的粒子归入胶体范畴。 3.粗分散体系 当分散相粒子大于1000 nm,目测是混浊不均匀体 系,放置后会沉淀或分层,如黄河水。
上一内容 下一内容 回主目录
返回
2018/11/24
(2)按分散相和介质聚集状态分类
1.液溶胶 将液体作为分散介质所形成的溶胶。当分散 相为不同状态时,则形成不同的液溶胶: A.液-固溶胶 如油漆,AgI溶胶
B.液-液溶胶
C.液-气溶胶
上一内容 下一内容
如牛奶,石油原油等乳状液
如泡沫
回主目录
返回
2018/11/24
(3)按胶体溶液的稳定性分类
1.憎液溶胶
半径在1 nm~100 nm之间的难溶物固体粒子
分散在液体介质中,有很大的相界面,易聚沉,是
热力学上的不稳定体系。
一旦将介质蒸发掉,再加入介质就无法再形成
溶胶,是 一个不可逆体系,如氢氧化铁溶胶、碘
化银溶胶等。 这是胶体分散体系中主要研究的内容。
上一内容 下一内容 回主目录
返回
2018/11/24
(3)按胶体溶液的稳定性分类
2.亲液溶胶 半径落在胶体粒子范围内的大分子溶解在 合适的溶剂中,一旦将溶剂蒸发,大分子化合物凝 聚,再加入溶剂,又可形成溶胶,亲液溶胶是热力
学上稳定、可逆的体系。
上一内容
ห้องสมุดไป่ตู้
下一内容
回主目录
返回
2018/11/24
2018/11/24
(2)按分散相和介质聚集状态分类
3.气溶胶 将气体作为分散介质所形成的溶胶。当分散相为 固体或液体时,形成气-固或气-液溶胶,但没有
气-气溶胶,因为不同的气体混合后是单相均一
体系,不属于胶体范围.
A.气-固溶胶
B.气-液溶胶
上一内容 下一内容
如烟,含尘的空气
如雾,云
回主目录
2018/11/24
1 溶胶的制备
用这两种方法直接制出的粒子称为原级粒子。 视具体制备条件不同,这些粒子又可以
聚集成较大的次级粒子。
通常所制备的溶胶中粒子的大小不是均一 的,是一个多级分散体系。
上一内容
下一内容
回主目录
返回
2018/11/24
1 溶胶的制备--研磨法
1.研磨法 用机械粉碎的方法将固体磨细。