工程流体力学22流体平衡微分方程

合集下载

工程流体力学第2章流体静力学

工程流体力学第2章流体静力学

① 沿任意方向 ② 沿外法线方向
有切向分力 流体受拉力
都将破坏流体平衡。
这与静止前提不符,故假设不成立,则原命题成立。


4
第2章 流体静力学
特性二、静止流体中任何一点上各个方向的静压力大小相等,与作用面方位无关。
证明:采用微元体分析法 ① 取微单元体
在静止流体中,在O点附近取出各边长分别 为dx、dy、dz的微小四面体OABC。相应坐标 轴为x、y、z。
第2章 流体静力学
流体静力学:研究流体在静止状态下的平衡规律及其应用。 静止:流体质点相对于参考系没有运动,质点之间也没有相对运动。 静止状态包括两种情况: 1、绝对静止:流体整体对地球没有相对运动。
2、相对静止:流体整体对地球有运动,但流体各质点之间没有相对运动。
举例:
绝对静止
等加速水平直线运动 等角速定轴转动
2
第2章 流体静力学
§2.1 流体静压力及其特性
1、静压力的概念
(1)静压力:静止流体作用在单位面积上的压力,称为静压力,或静压强。记作“p”
一点的静压力表示方法:
设静止流体中某一点m,围绕该点取一微小作用面积A,其上压力为P,则: 平均静压力: p P
A
m点的静压力:p lim P
单位:
A0 A
m
国际单位:Pa
物理单位:dyn/cm2
工程单位:kgf/m2
混合单位:1大气压(工程大气压) = 1kgf/cm2
(2)总压力:作用在某一面积上的总静压力,称为总压力。记作“P”
单位:N
3
第2章 流体静力学
2、静压力的两个重要特性
特性一、静压力方向永远沿着作用面内法线方向。

工程流体力学2

工程流体力学2

§2-1 流体静压强及其特性
静压强:当流体处于平衡或者相对平衡状态时, 作用在流体单位面积上的力。
p lim Fn
A 0
A
pn

特性一:
流体静压强的作用方向沿着
作用面的内法线方向。
静止流体对容器的作用一定垂直于固体壁面。
§2-1 流体静压强及其特性

特性二:
静止流体中的任一点上,来自任意方向上的静压强都是相等的。
三、流体静压强的测量和液柱式测压计
常见的测压仪器有:液柱式测压计;金属式压强计(利用
金属的变形来测量压强);电测式仪表(将压强变化转化
为电信号的变化)等。
液柱式测压计的测量原理是以流体静力学基本方程 为依据的。
§2-3 重力场中流体的平衡
1、测压管
p pa
p p a gh
p pa
计。通常采用双U形管或三U形管测压计。
§2-3 重力场中流体的平衡
3. U形管差压计 用于测量两个容器或管 道流体中不同位置两点 的压强差。
p p A p B 2 gh 1 gh 2 1 gh 1 2 1 gh
§2-3 重力场中流体的平衡
§2-3 重力场中流体的平衡
水头:单位重量流体所具有的能量用液柱高度来表示。 静水头:位置水头和压强水头之和。
方程的几何意义:
在重力作用下,静止的不可压缩流体中各点的静水头都相等。

§2-3 重力场中流体的平衡
有自由液面的静压强公式: p0 p z z h g g
p p 0 gh
h 为任意点在自由液面下的深
度,即淹深。
流体内部的静压强包含两部分:

《工程流体力学》PPT课件

《工程流体力学》PPT课件
第二章 流体静力学
本章学习要求:
流体静力学主要研究流体平衡时,其内部的压强分布规律 及流体与其他物体间的相互作用力。它以压强为中心,主要 阐述流体静压强的特性、静压强的分布规律、欧拉平衡微分 方程,作用在平面上或曲面上静水总压力的计算方法,潜体 与浮体的稳定性,并在此基础上解决一些工程实际问题。
无论是静止的流体还是相对静止的流体,流体之间没有相 对运动,因而粘性作用表现不出来,故切应力为零。
• 2.3.3 静止液体中的等压面 • 由于等压面与质量力正交,在静止液体中只有重
力存在,因此,在静止液体中等压面必为水平面。
• 对于不连续的液体或者一个水平面穿过了两种不 同介质连续液体,则位于同一水平面上各点压强 并不一定相同,即水平面不一定是等压面。
2.3 流体静力学的基本方程
2.3.4 绝对压强、相对压强、真空度
(z A (g p A )W ) (z B (g p B )W ) (( (g g ) ) H W g2 1 ) h 1 2 .6 h
2.4 压强单位和测压仪器
2、U形水银测压计
p1=p+ρ1gh1 p2=pa+ρ2gh2 所以 : p+ρ1gh1=pa+ρ2gh2
M点的绝对压强为: p=pa+ρ2gh2-ρ1gh1
具有的压强势能,简称压能(压强水头)。
测压管水头( z+p/g):单位重量流体的总势能。
物理意义: 1. 仅受重力作用处于静止状态的流体中,任意点对同一基准面 的单位势能为一常数,即各点测压管水头相等,位头增高,压 头减小。
2. 在均质(g=常数)、连通的液体中,水平面(z1 = z2=常数)
必然是等压面(p1 = p2 =常数)。

工程流体力学知识点

工程流体力学知识点

(3)边界上可有力的作用和能量的交换,但不能有质量的交换。
4
《工程流体力学》------精品学习资料
f = 1 p ρ
该方程的物理意义:当流体处于平衡状态时,作用在单位质量流体上的质量
力与压力的合力相平衡。 其中: 称为哈密顿算子, i j k ,它本身为一个矢量,同时对
x y z
其右边的量具有求导的作用。
4.静力学基本方程式的适用条件及其意义。
牛顿内摩擦定律中的比例系数 μ 称为流体的动力粘度或粘度,它的大小可以
反映流体粘性的大小,其数值等于单位速度梯度引起的粘性切应力的大小。单位
1
《工程流体力学》------精品学习资料
为 Pa·s,常用单位 mPa·s、泊(P)、厘泊(cP),其换算关系: 1 厘泊(1cP)=1 毫帕斯卡·秒(1mPa.s) 100 厘泊(100cP)=1 泊(1P) 1000 毫帕斯卡·秒(1mPa·s)=1 帕斯卡.秒(1Pa·s)
5.膨胀性
指在压力不变的条件下,流体的体积会随着温度的变化而变化的性质。其大
小用体积膨胀系数 βt 表示,即
βt
=
1 V
dV dt
6.粘性
流体所具有的阻碍流体流动,即阻碍流体质点间相对运动的性质称为粘滞性,
简称粘性。
7.牛顿流体和非牛顿流体
符合牛顿内摩擦定律的流体称为牛顿流体,否则称为非牛顿流体。
8.动力粘度
《工程流体力学》------精品学习资料
《工程流体力学》知识点
第一章 流体的物理性质
一、学习引导
1.连续介质假设
流体力学的任务是研究流体的宏观运动规律。在流体力学领域里,一般不考
虑流体的微观结构,而是采用一种简化的模型来代替流体的真实微观结构。按照

工程流体力学复习题

工程流体力学复习题

⼯程流体⼒学复习题第⼀章⼩结1、流体的特征与固体的区别:静⽌状态下,只能承受压⼒,⼀般不能承受拉⼒与抵抗拉伸变形。

在任意剪切⼒作⽤下,流体将发⽣连续的剪切变形(流动),剪切⼒⼤⼩正⽐于剪切变形速率。

固体所受剪切⼒⼤⼩则正⽐于剪切变形量。

液体与⽓体的区别:难于压缩;有⼀定的体积,存在⼀个⾃由液⾯;2、连续介质连续介质模型:把流体视为没有间隙地充满它所占据的整个空间的⼀种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的⼀种假设模型。

流体质点:⼏何尺⼨同流动空间相⽐是极⼩量,⼜含有⼤量分⼦的微元体。

3、粘性流体在运动(流动)的状态下,产⽣内摩擦⼒以抵抗流体变形的性质。

粘性是流体的固有属性。

⽜顿内摩擦定律(粘性定律):液体运动时,相邻液层间所产⽣的切应⼒与剪切变形的速率成正⽐。

动⼒粘性系数:反映流体粘滞性⼤⼩的系数。

国际单位:⽜·秒/⽶2, N.s/m2 或:帕·秒运动粘性系数ν:ν=µ/ρ国际单位:⽶2/秒, m2/s粘度的影响因素:温度是影响粘度的主要因素。

当温度升⾼时,液体的粘度减⼩,⽓体的粘度增加。

粘滞性是流体的主要物理性质,它是流动流体抵抗剪切变形的⼀种性质,不同的流体粘滞性⼤⼩⽤动⼒粘度或运动粘度v来反映。

其中温度是粘度的影响因素:随温度升⾼,⽓体粘度上升、液体粘度下降。

复习题1. 连续介质假设意味着。

(A)流体分⼦互相紧连 (B) 流体的物理量是连续函数(C) 流体分⼦间有空隙 (D) 流体不可压缩2. 流体的体积压缩系数k 是在条件下单位压强变化引起的体积变化率。

(A) 等压 (B) 等温 (C) 等密度3. ⽔的体积弹性模数空⽓的弹性模数。

(A) ⼩于 (B) 近似等于 (C) ⼤于4. 静⽌流体剪切应⼒。

(A) 不能承受 (B) 可以承受 (C) 能承受很⼩的 (D)具有粘性时可承受5. 温度升⾼时,空⽓的粘性系数。

(A) 变⼩ (B) 变⼤ (C) 不变6. 运动粘性系数的单位是。

工程流体力学第二章

工程流体力学第二章

pxdydz pnds • sin dz 0
p y dxdz
pnds

cos
dz
1 2
dxdydz
g
0
所以:
px pn 0

py
pn
1 2
dyg
0
y b
pxdy
o
px pn py pn
pnds
G x a
p y dx
得证
微元体分析法的步骤: 1 取合适的微元体 2 受力分析 3 建立方程
F pcg A ghc A
y D
y C
J cx yA
c
常见几何形状的惯性矩(表2-2)
矩形 圆型
c
l
J cx
1 12
bl 3
b
cR
J cx
1 R4
4
¼圆
xc c yc
xc
yc
4R
3
J cx
(1 4
16
9 2
R4
) 4
例2-5 设矩形闸门的宽为6米,长10米,铰链到低水面的 距离为4米。按图示方式打开该闸门,求所需要的力 R。
z
p0
o
B
z
p0
o
B
R
(a)
pg
2
2r2
R
(b)
pg
2
2(r2
R2)
例2-4 设内装水银的U型管绕过D点的铅垂线等角速度旋 转,求旋转角速度和D点的压强。设水银密度为
13600kg/m3 且不计液面变化带来的影响。
ω
关键:
10cm 5cm
1 写出所有的体积力
20c m
z
12cm 2 根据压力差公式写出压强

流体力学公式总结

流体力学公式总结

工程流体力学公式总结第二章 流体的主要物理性质 流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。

1.密度 ρ = m /V2.重度 γ = G /V3.流体的密度和重度有以下的关系: γ = ρ g 或 ρ = γ/ g 4.密度的倒数称为比体积,以 υ表示 υ = 1/ ρ = V/m 5.流体的相对密度: d = γ流 /γ水 = ρ流 /ρ 水6.热膨胀性1V VT7.压缩性 . 体积压缩率 κ1V Vp8.体积模量9.流体层接触面上的内摩擦力10.单位面积上的内摩擦力(切应力) (牛顿内摩擦定律)dv dn11. .动力粘度μ:dv/dn12.运动粘度 ν :ν = μ /ρ 13.恩氏粘度° E :°E = t 1 / t 2第三章 流体静力学 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学 基本方程意义及其计算、 压强关系换算、 相对静止状态流体的压强计算、流体 静压力的计算(压力体) 。

1.常见的质量力:重力 ΔW = Δ mg 、 直线运动惯性力 ΔFI = Δm ·a 离心惯性力 ΔFR = Δm ·r ω2 .FAd dn2.质量力为 F 。

:F = m ·am = m(fxi+fyj+fzk) am = F/m = fxi+fyj+ fzk 为单位质量力,在数值上就等于加速度 实例:重力场中的流体只受到地球引力的作用, 取 z 轴铅垂向上, xoy 为水平面, 则单位质量力在 x 、y 、 z 轴上的分量为fx= 0 , fy= 0 , fz= -mg/m = -g 式中负号表示重力加速度 g 与坐标轴 z 方向相反 3流体静压强不是矢量,而是标量,仅是坐标的连续函数 得静压强的全微分为 : p pd p p dxpdyxy4.欧拉平衡微分方程式pf y ρdxd ydz dxd ydz 0y pf z ρdxd ydz dxd ydz 0z单位质量流体的力平衡方程为:1p1pyρy1p0 ρz5.压强差公式(欧拉平衡微分方程式综合形式)ρ(f x dx f y dy f z dz) pdx pdy pdz xyz d p ρ( f x dx f y d y f z dz)6.质量力的势函数dp ρ( f x dx f y dy f z dz)dU7.重力场中平衡流体的质量力势函数UUUdU dx d y dz= f x dx f y dy f z dz xyz gdz。

工程流体力学 第二章 流体静力学201012

工程流体力学 第二章 流体静力学201012
Y = ω 2 r sin α = ω 2 y Z = −g
z ω
1.等压面方程 1.等压面方程
dp = ω 2 xdx + ω 2 ydy − gdz = 0
⇓ 积分
ω 2 x2
2 +
p0
o
m
h z
zs y
ω 2 y2
2
− gz = C
ω 2r 2
2
− gz = C
等压面是一簇绕z轴的旋转抛物面。 等压面是一簇绕z轴的旋转抛物面。 自由液面: 自由液面: x=0 z=0 C=0
z g p0
2

dp = ρ(Xdx +Ydy + Zdz)
dp = −ρgdz
p2
p1
1

dp dz + =0 ρg
z1
z2
积分得: 积分得:
p z+ =C ρg
o
p p z1 + 1 = z2 + 2 ρg ρg
基准面
x
2.物理意义 2.物理意义
z+ p =C ρg
总 势 能
3.几何意义 3.几何意义
o y
αr
y x ω2y ω2r

zs =
ω 2r 2
2g
x
ω2x
二、等角速旋转容器中液体的相对平衡
2. 静压强分布规律
dp = ρ (ω 2 xdx + ω 2 ydy − gdz )
z ω
⇓ 积分
p = ρ(
ω 2x2
2
+
ω 2 y2
2
− gz ) + C
p = ρg (
ω 2r 2

工程流体力学

工程流体力学

§1.1 流体的定义
一、流体特征(续)
液体与气体的区别 液体的流动性小于气体; 液体具有一定的体积,并取容器的形状; 气体充满任何容器,而无一定体积。
流体的定义
流体是一种受任何微小的剪切力作用时,都 会产生连续变形的物质。 流动性是流体的主要特征。
§1.2 连续介质假说
微观:流体是由大量作无规则热运动的分子所组成, 分子间存有空隙,在空间上是不连续的。
在通常情况下,一个很小的体积内流体的分子数量极多;
例如,在标准状态下,1mm3体积内含有2.69×1016个气体分 子,分子之间在10-6s内碰撞1020次。
宏观:流体力学研究流体的宏观机械运动,研究的是 流体的宏观特性,即大量分子的平均统计特性。 结论:不考虑流体分子间的间隙,把流体视为由无 数连续分布的流体微团组成的连续介质。
1686年牛顿(Newton,I.)发表了名著《自然哲学的数学原理》 对普通流体的黏性性状作了描述,即现代表达为黏性切应力 与速度梯度成正比—牛顿内摩擦定律。为了纪念牛顿,将黏 性切应力与速度梯度成正比的流体称为牛顿流体。 18世纪~ 19世纪,流体力学得到了较大的发展,成为独立的一门学科。 古典流体力学的奠基人是瑞士数学家伯努利(Bernoulli,D.) 和他的亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了 著名的伯努利方程,欧拉于17 55年建立了理想流体运动微分 方程,以后纳维(Navier,C .-L.-M.-H.)和斯托克斯(Stokes, G.G.)建立了黏性流体运动微分方程。拉格朗(Lagrange)、 拉普拉斯(Laplace)和高斯(Gosse)等人,将欧拉和伯努利所 开创的新兴的流体动力学推向完美的分析高度。但当时由于 理论的假设与实际不尽相符或数学上的求解困难,有很多疑 不能从理论上给予解决。

工程流体力学公式

工程流体力学公式

pg2r 22gzC外加边界条件确定 C 如:r 0,z 0, p p 0自由液面上某点的铅直坐标:Zs2r2g第二章 流体的主要物理性质 1.密度 ρ = m /VV V1 V P 7.压缩系数 V V体积模量 Kp T V6.体胀系数V V V VT Pdv x9.牛顿内摩擦定律 F Av/h dy动力黏度: 运动黏度重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学 基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体 静压力的计算(压力体)2. 压强差公式 dp( f x dx f y dy f z dz)等压面: dp=03. 重力场中流体的平衡4. 帕斯卡定理p p 0 g z 0 z p 0 gh5. 真空度 p v p a p6. 等加速直线运动容器内液体的相对平衡7. 等角速度旋转容器中液体的相对平衡8. 静止液体作用在平面上的总压力 9. 静止液体作用在曲面上的总压力第三章流体静力学1.1p xp0水平方向的作用力:dF x dF cos ghdAcos ghdA z垂直方向的作用力dF z dF sin ghdAsin ghdA x总压力F F x2F y2tg F F x Fz第四章流体运动学基础1. .欧拉法加速度场简写为当地加速度:迁移加速度( )2. 拉格朗日法:流体质点的运动速度的拉格朗日描述为3. 流线微分方程:4.流量计算:单位时间内通过dA 的微小流量为d qv=udA 通过整个过流断面流量q v dq v udAA平均流速A5. 水力半径:总流的有效截面积与湿周之比R hN dV6.V连续性方程对于定常流动1A1 1= 2A2 2 对于不可压缩流体,1 = 2 =c A1 1=A2 2= qv 7. 动量方程8. 能量方程:. 不考虑与外界热量交换,质量力只有重力的情况定常流动:v n uCSgz p dA9. 伯努利方程(微流):2v gz p常数10. 皮托管测速:v B 不可压缩理想流体在与外界无热交换的条件下)1/22gh1/211.黏性流体总流的伯努利方程1v12a 2gp1z1 p g12v22a z p22g2ghw(不可压缩黏性流体总流伯努利方程)应用范围:重力作用下,不可压粘性流体定常流动任意缓变流截面11.. 总流的动量方程第六章管内流动和水力计算1.沿程能量损失hfl v2d 2g2.局部能量损失h jv22g3.总能量损失h f h j4.对直径为d 的圆截面管道的雷诺数Revd vd临界雷诺数Re cr =2000,小于2000,流动为层流;大于2000,流动为湍流。

工程流体力学课后习题答案(杨树人)

工程流体力学课后习题答案(杨树人)

工程流体力学目录第一章流体的物理性质 (1)一、学习引导 (1)二、难点分析 (2)习题详解 (3)第二章流体静力学 (5)一、学习引导 (5)二、难点分析 (5)习题详解 (7)第三章流体运动学 (13)一、学习引导 (13)二、难点分析 (13)习题详解 (16)第四章流体动力学 (22)一、学习引导 (22)习题详解 (24)第五章量纲分析与相似原理 (34)一、学习引导 (34)二、难点分析 (34)习题详解 (36)第六章粘性流体动力学基础 (40)一、学习引导 (40)二、难点分析 (40)习题详解 (42)第七章压力管路孔口和管嘴出流 (50)一、学习引导 (50)二、难点分析 (50)习题详解 (51)主要参考文献 (59)第一章流体的物理性质一、学习引导1.连续介质假设流体力学的任务是研究流体的宏观运动规律。

在流体力学领域里,一般不考虑流体的微观结构,而是采用一种简化的模型来代替流体的真实微观结构。

按照这种假设,流体充满一个空间时是不留任何空隙的,即把流体看作是连续介质。

2.液体的相对密度是指其密度与标准大气压下4℃纯水的密度的比值,用δ表示,即=ρδρ水3.气体的相对密度是指气体密度与特定温度和压力下氢气或者空气的密度的比值。

4.压缩性在温度不变的条件下,流体的体积会随着压力的变化而变化的性质。

压缩性的大小用体积压缩系数βp表示,即1 =p dVβV dp5.膨胀性指在压力不变的条件下,流体的体积会随着温度的变化而变化的性质。

其大小用体积膨胀系数βt表示,即1 = t dVβV dt6.粘性流体所具有的阻碍流体流动,即阻碍流体质点间相对运动的性质称为粘滞性,简称粘性。

7.牛顿流体和非牛顿流体符合牛顿内摩擦定律的流体称为牛顿流体,否则称为非牛顿流体。

8.动力粘度牛顿内摩擦定律中的比例系数μ称为流体的动力粘度或粘度,它的大小可以反映流体粘性的大小,其数值等于单位速度梯度引起的粘性切应力的大小。

工程流体力学

工程流体力学
解: p0= -ρHg ghp = -0.2 × 13600 × 9.807= -26675.04Pa p=p0+ρ 水 ghp= -26675.04+1000×9.807 × 3.5 =7649.46Pa
2.3.4 水头、液柱高度和能量守恒(略)
2.3.5 压强的计量单位
法定单位:
帕斯卡,简称帕。1Pa = 1 N/m2。1MPa = 106 Pa
2 流体静力学
2.1 静止流体中压强的特性
2.1.1 静压强定义
静止流体中的压强。平衡状态 F 2(Pa) p lim N/m A 0 A
2.2.2 静压强特性
a.静压强方向沿作用面的内法线方向 b.任一点静压强的大小与作用面的方位无关
从平衡状态下的流体中 取一微元四面体OABC,如 图所示取坐标轴。
绕铅垂轴等速旋转流体特点: 等压面为旋转抛物面,在同一水平面上,轴心 处压强最低,边缘处压强最高。
其它单位:
1atm(标准大气压)=101325 Pa = 1.034kgf/cm 2 = 760 mmHg 1at(工程大气压)=1kgf/cm2=98070 Pa 1mH2O(米水柱)=9807 Pa 1bar(巴) = 105 Pa≈1.02kgf/cm2
2.4 流体的相对平衡
相对平衡:指各流体质点彼此之间及流体与 器皿之间无相对运动的相对静止或相对平衡 状态。 相对平衡流体中,质量力除重力外,还受到 惯性力的作用。
帕斯卡(Pascal,Blaise 1623—1662),是法国著 名的数学家、物理学家、 哲学家和散文家。在物理 学方面作出的突出贡献是, 于1653年首次提出了著名 的帕斯卡定律,为此写成 了《液体平衡的论述》的 著名论文,详细论述了液 体压强的传递问题。应用 这个定律制造的各式各样 的液压机械,为人类创造 了无数的奇迹,他建立的 直觉主义原则对于后来一 些哲学家,如卢梭和柏格 森等都有影响。

南京理工大学工程流体力学基础 流体静力学

南京理工大学工程流体力学基础 流体静力学

增量。
f 1 p 0
§2-2 欧拉平衡微分方程
等压面
等压面:流体中压强相等的点组成的面。
px, y, z const. dp 0
f dl fxdx f ydy fzdz 0
dp fxdx f ydy fzdz
压强差公式
重要性质:静止流体中,质量力垂直于等压面。
f 1 p 0
x
p p dx x 2
z
fx a
p p dx
o x 2
dx
y
§2-2 欧拉平衡微分方程
流体平衡微分方程
微元体在静压强和质量力的作用下平衡。 微元体上的力在x方向的平衡方程:
p
p x
dx dydz
2
p
p x
dx dydz 2
fx dxdydz 0
p p dx
化简:
fx
1
p x
0
同理:
由压强差公式
dp fxdx f ydy fzdz
dp gdz
dz dp 0
g
设不可压缩,积分 z p C
g
流体静力学 基本方程
对图中1、2点
z1
p1
g
z2
p2
g
适用条件:同一容器、同种不可 压缩重力流体。 §2-3 重力场中流体的平衡
流体静力学基本方程
物理意义
z p C
g
单位重量流体 单位重量流体 单位重量流体
第二章 流体静力学
第一节 流体静压强
流体静压强
流体平衡,则作用在流体上的应力只有法向应 力,而没有切向应力。流体作用面上负的法向 应力就是静压强。
pn
dF dA
pnn
§2-1 流体静压强

工程流体力学知识点总结

工程流体力学知识点总结

速度场
u=u(x,y,z,t) v=v(x,y,z,t) w=w(x,y,z,t)
流体运动质点的空间坐标随时间变化 x=x(t) y=y(t) z=z(t)
速度 u=dx/dt v=dy/dt w=dz/dt
加速度 a=a(x,y,z,t)(重点)
a x ut流 u体ux 运 v 动uy 学w 基uz 础
ay
v t
u
v x
v
v y
w
v z
az
w t
u
w x
v
w y
w
w z
局部(时变) av(v)v t
对流(迁ቤተ መጻሕፍቲ ባይዱ)
若用矢量表示,则有
为哈密尔顿矢性微分算子。
同理,其他运动参数流可体表运示为动:学基础
Dp p u p v p wp t t x y z
u v w
t t x y z
第二节 几个基本概念
ax= 2x/t2 ay= 2y/t2
w=z/t az= 2z/t2
二、 Euler法(欧拉流法体)运(重动点学)基础
基本思想:考察空间每一点上的物理量及其变化。着眼于 运动流体所充满的空间。 独立变量:空间点坐标 (x, y, z)
vv(x,y,z,t) pp(x,y,z,t) (x,y,z,t)
dpgdz
流体静力学
对于不可压缩流体 con,st对上式在流体连续区域
内进行积分,可得:
z p C g
该式为重力场中不可压缩流体的静压强基本方程式。
积分常数C可以由平衡液体自由表面边界条件确定:
zz0, pp0
z0
p0 g
C
所以 即
z p g
z0

工程流体力学第三章

工程流体力学第三章

fx、fy、fz,则作用在微元四面体上的总质量力为:
W 1 dxdydz f
6
它在三个坐标轴上的分量为:
Wx
1 dxdydz
6
fx
Wy
1 dxdydz
6
fy
Wz
1 dxdydz
6
fz
由于流体的微元四面体处于平衡状态,故作用在其上的一切力在任意
轴上投影的总和等于零。
在x轴方向上力的平衡方程为:
d
p
f xdx
f ydy
f z dz
上式的左边是全微分,它的右边也必须是某个函数 (x, y, z) 的
全微分。
由于
d dx dy dz
x y z
(2-5)
所以
fx x
fy
y
fz
z
(2-6)
即质量力的分量等于函数 (x, y, z) 的偏导数,因此, (x, y, z) 称为力势函数(若某一坐标函数对个坐标的偏导数分别等于力 场的力在对应坐标轴上的投影,则称该坐标函数为力的势函数)。 存在力势函数的质量力称为有势力,重力、电磁力、(惯性力) 等是有势力。
px
1 2
dydz
pndAn
cos
1 6
dxdydzf x
0
(2-1)
因为:
dAn
cos
1 dydz 2
则上式变成
px
1 2
dydz
pn
1 2
dydz
1 6
dxdydzf
x
0

px
pn
1 3
f xdx
0
dx趋于0时,第三项为无穷小,可以略去,故得:

第二章流体静力学

第二章流体静力学

二、液体随容器作等角速度旋转运动
z 建立如图所示动坐标系 ω
X = ω 2 x, Y = ω 2 y , Z = − g
p0
dp = ρ (ω xdx + ω ydy − gdz )
2 2
y
o
A g
x
p = ρ( = ρ(
ω 2 x2
2
+
ω 2 y2
2
− gz ) + C
o x y
x
y r A
ω y
p / ρg
能;
C 表示单位重量流体所具有的总势能,简称总能。 表示单位重量流体所具有的总势能,简称总能。
在重力作用下, 在重力作用下,静止流体中各点的单位重量流体的总 势能是相等的。 势能是相等的。
三、流体静力学基本方程的几何意义
单位重量流体具有的能量用液柱高度来表示称为水头。 单位重量流体具有的能量用液柱高度来表示称为水头。 水头 表示该点到基准面的高度,称为位置水头, z 表示该点到基准面的高度,称为位置水头,简称位水
hC 平面形心点的淹没深度
A
PyD = ∫ ydP =ρ g sin α ∫ y 2 dA = ρ g sin α I x
∂p dx pA = p − ∂x 2 ∂p dx pB = p + ∂x 2
1 ∂p p− dx dydz 2 ∂x
A
C p
B
1 ∂p p+ dx dydz 2 ∂x
½ dx
图2-4
由于微六面体处于平衡状态, 由于微六面体处于平衡状态,所以由平衡条件得
一、流体平衡微分方程
在静止的流体中取一微六面体,如图2-4所示。取六面 在静止的流体中取一微六面体,如图2 所示。 体内中心点C点,设C点的静压强为 p ,过C点作轴的平行线 体内中心点C 交左右侧面分别为A 将静压强按泰勒级数展开, 交左右侧面分别为A、B点,将静压强按泰勒级数展开,并略 去高阶微量, 去高阶微量,则

杜广生工程流体力学思考题答案

杜广生工程流体力学思考题答案

精心整理牛顿流体 作用在流体上的切向应力与它所引起的角变形速度之间的关系符合牛顿内摩擦定律的流体,1-2: 什么是连续介质模型?为什么要建立?1) 将流体作为由无穷多稠密、没有间隙的流体质点构成的连续介质,于是可将流体视为在时间和空间连续分布的函数。

2) ①可以不考虑流体复杂的微观粒子运动,只考虑在外力作用下的微观运动;②可以用连续函数的解析方法等数学工具去研究流体的平衡和运动规律。

1-3:流体密度、相对密度概念,它们之间的关系?1) 密度:单位体内流体所具有的质量,表征流体的质量在空间的密集程度。

相对密度:在标准大气压下流体的密度与4℃时纯水的密度的比值。

2) 性质:在静止流体中,作用于任意点的质量力垂直于经过该点的等压面。

水头:单位重量流体所具有的能量也可以用液柱高来表示帕斯卡原理:施于在重力作用下不可压缩流体表面上的压强,将以同样大小传到液体内部任意点上2-4:写出流体静力学基本方程的几种表达式。

说明流体静力学基本方程的适用范围以及物理意义、几何意义。

1c g p z =+ρ;gp z g p z ρρ2211+=+适用于不可压缩重力流体的平衡状态;物理意义:当连续不可压缩的重力流体处于平衡状态时,在流体中的任意点上,单位重量流体的总势能为常数。

几何意义:不可压缩的重力流体处于平衡状态时,静水头线或者计示静水头线为平行于基准面的水平线。

2-5:什么是绝对压强、计时压强和真空?它们之间有什么关系?1)绝对压强:以完全真空为基准计量的压强。

2)计示压强:(相对压强,表压强)以当地大气压强为基准计量的压强。

3)大气压强体处于真空状态。

1)迹线是同一流体质点在不同时刻的位移曲线,流线是同一时刻、不同流体质点速度向量的包络线,流线是流场中某一顺势的光滑曲线,该曲线上的流体质点的运动方向和该曲线相切。

1流线不能彼此相交和转折,只能平滑过渡。

2流线越密集流速越大。

3在定常流动中,流线不随时间改变其位置和形状,流线和迹线重合。

工程流体力学2.3重力作用下的流体平衡

工程流体力学2.3重力作用下的流体平衡

绝对压强、大气压强、计示压强、真空之间的关系图 p
绝对压强
p 真空 绝对压强
p pa
完全真空p=0
流体静压强的计量单位有许多种,为了便于换算,现将 常遇到的几种压强单位及其换算系数列于表2-1中。
根据
z1

p1
g

z2

p2
g
p0
p
A
h
z0 z
A点与自由液面之间有
O
Y
z

p
g

z0

p0
g
p p0 g(z0 z) gh
p p0 gh
h=z0-z

止流体中任意点在自
由液面下的深度
4. 静力学基本方程的另一种形式(续) p p0 gh
三个重要结论

问题:
f

1
p

0

dp ( f xdx f ydy fzdz)
求解的是偏微分方程,复杂 实际工程中要求得出静止状态下流体静压强的大小,
以便于进行结构设计

简便的方法求解静压强大小
第三节 重力作用下的流体平衡
一、重力作用下的静力学基本方程式
1. 方程推导
静止容器上取直角坐标系 假设
积分,ρ=const z p c
g
适用范围
流体静力学 基本方程
重力作用下的平衡状态 均质不可压缩流体
2. 物理意义
z p c
g
在重力作用下静止流体中各点的单位重量流体的 总势能是相等的。
z
p / g
c
单位重量流体对某一基准面的位势能 单位重量流体的压强势能 位势能和压强势能之和称为单位重量流体的总势能

§2.2平衡微分方程、§2.3重力作用下流体平衡、§2.4相对平衡流体静压强分布

§2.2平衡微分方程、§2.3重力作用下流体平衡、§2.4相对平衡流体静压强分布

p = ρ (ax gz ) + C
在自由液面上,有:x=z=0; p=p0=0
C = p0 = 0
a p = ρg( x + z) g
等压面微分方程:
z a h pa xB O
dp = ρ( adx gdz) 0 =
adx gdz = 0 a z = x + C 表示一斜面 g
p ---测压管水头:单位重量流体的总势能。 z+ ρg
三、压强的表示方法及单位 1、压强的表示方法 a. 绝对压强(Absolute Pressure):用pabs表示,pabs≥0 。 b. 相对压强(Relative Pressure):又称“表压强”,用p表示, p=pabs–pa , p可“+”可“– ”,也可为“0”。 c. 真空(Vacuum):是指绝对压强小于一个大气压的受压状态。 真空值pv:pv=pa –pabs 真空高度hv:hv=(pa –pabs )/ρg
§2-2 流体平衡微分方程
一、流体平衡微分方程式 流体平衡微分方程式 在静止流体中任取一边长为 dx,dy和dz的微元平行六面体的流体微团 z
p dx p x 2
M dy
O`
dz
N
p dx p+ x 2
dx o 微元平行六面体x方向的受力分析 x
y
z
以x方向为例 表面力:
p
p pM dydz p N dydz = dxdydz x f x ρdxdydz
z
p p0 = const ρg
ω r
2 2
2g
z=
ω
等压面簇是一簇具有中心轴的旋转抛物面 自由表面方程: ∵ p=pa=p0
p0
y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
1 6
3 p x 3
dx 2
3
p
p x
dx 2
1 2
2 p x 2
dx 2
2
1 6
3 p x 3
dx 2
3
略去二阶以上无穷小量后,分别等于
p 1 p dx 2 x
p 1 p dx 2 x
第二节 流体平衡微分方程
一、流体平衡微分方程式(推导)
垂直于x轴的左、右两微元面上的总压力分别为
第二节 流体平衡微分方程
静压强是空间坐标的连续函数
p p(x, y, z)
求静压强分布规律 研究平衡状态的一般情况 推导平衡微分方程式
流体静力学基本方程
第二节 流体平衡微分方程
一、流体平衡微分方程式(推导)
在静止流体中任取一平行六面体的流体微团, 边长为 dx,dy,dz的微元,中心点静压强为p(x,y,z)
1 p
f x x 0
第二节 流体平衡微分方程
一、流体平衡微分方程式(推导)
同理得
fx
1
p x
0
1 p
f y y 0
fz
1
p z
0
写成矢量形式
f
1
p
0
流体平衡微分方程式 欧拉平衡微分方程式
第二节 流体平衡微分方程
f
1
p
0
物理意义
在静止流体中,某点单位质量流体的质量力
与静压强的合力相平衡。
第二节 流体平衡微分方程
四、等压面 1. 定义
在流体中,压强相等的各点所组成的面称为等压面
等压面可以用p(x,y,z)=常数来表示。 dp=0
几点说明 对不同的等压面,其常数值是不同的 流体中任意一点只能有一个等压面通过。
第二节 流体平衡微分方程
举例说明
液体与气体的分界面,即液体的自由液面就 是等压面,其上各点的压强等于在分界面上各点 气体的压强。
第二节 流体平衡微分方程
3.
f y fz z y
fz f x x z
f x f y y x
理论力学中,上式是 fx、fy、fz 具有力的势函数 ( x, y, z) 的充分必要条件
力的势函数与单位质量力的关系
f x x
fy
y
fz
z
第二节 流体平衡微分方程
3. 既然 f x , f y , fz 能满足下式
适用范围
静止或相对静止状态的可压缩和不可压缩流体。
它是流体静力学最基本的方程组,流体静力学的其 他计算公式都是从此方程组推导出来的。
第二节 流体平衡微分方程
二、压强差公式
1 p
f x x 0
乘以dx
1 p
f xdx x dx 0
1 p
f y y 0
1 p
fz z 0
乘以dy 乘以dz
第二节 流体平衡微分方程
2. 等压面微分方程式
f xdx f ydy fzdz 0
f ds 0
物理含义: 单位质量流体中的质量力沿等压面移动微 小距离所做的功等于0
dp p dx p dy p dz x y z
所以 dp ( fxdx f ydy fzdz)
在静止流体中,空间点的坐标增 量为dx、dy、dz时,相应的流体
静压强增加dp,压强的增量取决
于质量力。
压强差公式
第二节 流体平衡微分方程
三、流体平衡条件
1. 例:
1 p
f x x 0
1 p
x方向受力分析
质量力—— f x dxdydz
表面力—— 只有静压强
如何求解是关键
p 1 p dxdydz
2 x
A
C
p
p 1 p dxdydz
B
2 x
½ dx
图2-3 微元平行六面体x方向的受力分析
第二节 流体平衡微分方程
一、流体平衡微分方程式(推导)
作用在六个平面中心点上的静压强可按泰勒级数展开
互不掺混的两种液体的分界面也是等压面。
p p0
等压面
p p0
油 水
等压面
第二节 流体平衡微分方程
证明
分界面上取两点1和2 点1——点2的压强增量
dp 1( f xdx f ydy fzdz) dp 2( f xdx f ydy fzdz)
p p0
1油2 水
两式相减
dp
1
f y y 0
1 p
fz z 0
f x 1 2 p 0
y xy
f y 1 2 p 0
x yx
对y、对z求导 对x、对z求导 对x、对y求导
相减
f x f y
y x
第二节 流体平衡微分方程
2. f x f y y x f y fz z y fz f x x z
仍然是流体平衡微分方程 平衡时,数学上质量力满足左式 是质量力存在势函数的充要条件
f x x
f y y
fx, fy, fz
就是有势的力
fz z
代入压强差公式,得
dp
f xdx
f ydy
f z dz
x
dx
y
dy
பைடு நூலகம்
z
dz
d
第二节 流体平衡微分方程
4. 有势函数存在的力称为有势的力 流体平衡条件:
只有在有势的质量力作用下,不可压缩均质流体 才能处于平衡状态,这就是流体平衡的条件。
p
1
p
dx dydz
2 x
p 1 p dx dydz 2 x
因为流体平衡
Fx 0
第二节 流体平衡微分方程
一、流体平衡微分方程式(推导)
将质量力和表面力代入上式,则
p
1 2
p x
dx dydz
p
1 2
p x
dx dydz
f x dxdydz
0
整理上式,并把各项都除以ρdxdydz,则得
1 p
f ydy y dy 0
1 p
fzdz z dz 0
三式相加,整理
(
f xdx
f ydy
fzdz)
p dx x
p dy y
p dz z
第二节 流体平衡微分方程
二、压强差公式
(
f xdx
f ydy
fzdz)
p dx x
p dy y
p dz z
流体静压强是空间坐标的连续函数,它的全微分为
dp
2
1
1
1
2
dp
0
因为 1 2 0
dp=0
等压面
第二节 流体平衡微分方程
2. 等压面微分方程式
由压差公式 dp ( fxdx f ydy fzdz)
在等压面上各处的压强都一样,即dp=0
f xdx f ydy fzdz 0
矢量形式 f ds 0
平衡流体的 等压面微分方程
f (x)
f ( x0 )
f ( x0 )( x x0 )
f
( x0 2!
)
(
x
x0
)2
......
f
n ( x0 n!
)
(
x
x0
)n
第二节 流体平衡微分方程
一、流体平衡微分方程式(推导)
在垂直于x轴的左、右两个平面中心点上的静压强分别为
p
p x
dx 2
1 2
2 p x 2
dx 2
相关文档
最新文档