初三中考数学 反比例函数52页PPT
合集下载
反比例函数-ppt课件
解
读 范围.
27.1 反比例函数
归纳总结
考
点
由于反比例函数表达式中只有一个待定系数 k,因此求
清
单 反比例函数的表达式只需一组对应值或一个条件即可.
解
读
27.1 反比例函数
对点典例剖析
考
点
典例2 已知 y 是 x 的反比例函数,当 x=-3 时,y=4
清
单 .
解
读
(1)求 y 与 x 之间的函数表达式;
重
难
题 反比例函数→表示出组合函数→列方程组求解→写出函数
型 表达式.
突
破
27.1 反比例函数
重 ■题型二 实际问题中的反比例函数模型
难
例 2 某公司将特色农副产品运往邻市市场进行销售,
题
型 设汽车的行驶时间为 t h,平均速度为 v km/h(汽车行驶
突
破 速度不超过 110 km/h).根据经验,v,t 的部分对应值
(2)求当 x=6 时 y 的值;
(3)求当 y=
时 x 的值.
27.1 反比例函数
[答案]解:(1)设 y 与 x 之间的函数表达式为 y=
考
点
清 (k≠0),把 x=-3,y=4 代入,得 k=-3×4=-12,∴y 与
单
解
读 x 之间的函数表达式是 y=- ;
(2)当 x=6 时,y=(3)当 y=
∴y 关于 x 的函数表达式为 y=2(x-1)+
.
��
Hale Waihona Puke =2x-2+27.1 反比例函数
变式衍生1 已知 y=y1-y2,y1与 x 成正比例,y2 与
读 范围.
27.1 反比例函数
归纳总结
考
点
由于反比例函数表达式中只有一个待定系数 k,因此求
清
单 反比例函数的表达式只需一组对应值或一个条件即可.
解
读
27.1 反比例函数
对点典例剖析
考
点
典例2 已知 y 是 x 的反比例函数,当 x=-3 时,y=4
清
单 .
解
读
(1)求 y 与 x 之间的函数表达式;
重
难
题 反比例函数→表示出组合函数→列方程组求解→写出函数
型 表达式.
突
破
27.1 反比例函数
重 ■题型二 实际问题中的反比例函数模型
难
例 2 某公司将特色农副产品运往邻市市场进行销售,
题
型 设汽车的行驶时间为 t h,平均速度为 v km/h(汽车行驶
突
破 速度不超过 110 km/h).根据经验,v,t 的部分对应值
(2)求当 x=6 时 y 的值;
(3)求当 y=
时 x 的值.
27.1 反比例函数
[答案]解:(1)设 y 与 x 之间的函数表达式为 y=
考
点
清 (k≠0),把 x=-3,y=4 代入,得 k=-3×4=-12,∴y 与
单
解
读 x 之间的函数表达式是 y=- ;
(2)当 x=6 时,y=(3)当 y=
∴y 关于 x 的函数表达式为 y=2(x-1)+
.
��
Hale Waihona Puke =2x-2+27.1 反比例函数
变式衍生1 已知 y=y1-y2,y1与 x 成正比例,y2 与
反比例函数 初中九年级数学教学课件PPT 人教版
3
-2
-4
4
2
4 3
1
y=-4 1 x
4 3
2
4
-4
-2
-
4 3
-1
描点、连线,如图 D54.
图 D54 (1)其两个分支关于原点对称. (2)在同一坐标系中,反比例函数 y=4x与 y=-4x的图象关于 x 轴对称,也关于 y 轴对称.
画图象时注意:①双曲线的两支是断开的, 因为 x≠0;②双曲线的两端呈“无限接近坐标轴”但永远不与 坐标轴相交;③一般分别在每支曲线上取四到五个点,取的点 越多,图象越精确.
知识点 1 反比例函数的定义 【例 1】判别下列式子是否表示 y 是关于 x 的反比例函数? 如果是,请指出相应的 k 值是多少? ①y=4x;②y=-5x;③y=6x+1;④yx=3; ⑤xy=123;⑥y=-kx;⑦y=-x;⑧y=πx; ⑨y=3x-1.
思路点拨:根据定义进行判断. 解:②⑤⑨是反比例函数,k 值分别为-5,123,3.
第2课时 反比例函数的图象和性质
1.反比例函数的图象 探究:y=kx(k≠0)可变形为 k=______x_y___.
(1)当 k>0 时,由于___x_y__得正,因此可以判断 x,y 的符号 ___相__同___,所以点(x,y)在__第__一__或__第__三__象限,所以函数图象位 于___一__、__三___象限.
知识点 1 反比例函数的图象及画法(重点) 【例 1】在同一坐标系中画出反比例函数 y=4x与 y=-4x的 图象. (1)函数 y=4x图象的两个分支存在什么关系; (2)y=4x与 y=-4x的图象存在什么样的关系?
思路点拨: 列表 ―→ 描点 ―→ 连线 解:列表:
-2
-4
4
2
4 3
1
y=-4 1 x
4 3
2
4
-4
-2
-
4 3
-1
描点、连线,如图 D54.
图 D54 (1)其两个分支关于原点对称. (2)在同一坐标系中,反比例函数 y=4x与 y=-4x的图象关于 x 轴对称,也关于 y 轴对称.
画图象时注意:①双曲线的两支是断开的, 因为 x≠0;②双曲线的两端呈“无限接近坐标轴”但永远不与 坐标轴相交;③一般分别在每支曲线上取四到五个点,取的点 越多,图象越精确.
知识点 1 反比例函数的定义 【例 1】判别下列式子是否表示 y 是关于 x 的反比例函数? 如果是,请指出相应的 k 值是多少? ①y=4x;②y=-5x;③y=6x+1;④yx=3; ⑤xy=123;⑥y=-kx;⑦y=-x;⑧y=πx; ⑨y=3x-1.
思路点拨:根据定义进行判断. 解:②⑤⑨是反比例函数,k 值分别为-5,123,3.
第2课时 反比例函数的图象和性质
1.反比例函数的图象 探究:y=kx(k≠0)可变形为 k=______x_y___.
(1)当 k>0 时,由于___x_y__得正,因此可以判断 x,y 的符号 ___相__同___,所以点(x,y)在__第__一__或__第__三__象限,所以函数图象位 于___一__、__三___象限.
知识点 1 反比例函数的图象及画法(重点) 【例 1】在同一坐标系中画出反比例函数 y=4x与 y=-4x的 图象. (1)函数 y=4x图象的两个分支存在什么关系; (2)y=4x与 y=-4x的图象存在什么样的关系?
思路点拨: 列表 ―→ 描点 ―→ 连线 解:列表:
初三反比例函数ppt课件ppt
详细描述
根据反比例函数的定义和性质,利用已知条件建立方程式,通过解方程式得到函数解析式。
最大值和最小值的求解
总结词
求解反比例函数的最大值和最小 值
详细描述
根据反比例函数的性质,通过求 导或单调性等方法,求出函数的 最大值和最小值。
04 练习题
基础题
总结词
反比例函数的概念理解
详细描述
提供一些与反比例函数定义相关的简单题目, 例如求反比例函数的表达式等。
总结词
反比例函数的综合题
详细描述
提供一些涉及多个知识点,如 一次函数和反比例函数的综合
题目。
拓展题
总结词
反比例函数与其他知识的结合
详细描述
提供一些涉及其他知识点,如 一次函数、二次函数等与反比 例函数结合的题目。
总结词
实际生活中的反比例函数应用
详细描述
提供一些与实际生活相关的题 目,如电力消耗与时间的反比
感谢您的观看
$y = \frac{k}{x}$(k为常数,k≠0)
确定x的取值范围
x可以为任意实数,但为了方便作图,通常取x的取值范围为x≠0
绘制图像
通过描点法,在坐标系上绘制出反比例函数的图像
图像的平移和伸缩变换
平移
反比例函数的图像在坐标系上可以进行平移,当自变量x的值增加或减少时, 函数值y也会相应地增加或减少,因此可以将反比例函数的图像沿x轴或y轴平 移,使图像更加直观和易于理解
单调递减区间
当k<0时,函数在区间$(-\infty,0)$和 $(0,+\infty)$上单调递增
03 反比例函数的应用
实际问题的转化
总结词
将实际问题转化为数学模型
详细描述
根据反比例函数的定义和性质,利用已知条件建立方程式,通过解方程式得到函数解析式。
最大值和最小值的求解
总结词
求解反比例函数的最大值和最小 值
详细描述
根据反比例函数的性质,通过求 导或单调性等方法,求出函数的 最大值和最小值。
04 练习题
基础题
总结词
反比例函数的概念理解
详细描述
提供一些与反比例函数定义相关的简单题目, 例如求反比例函数的表达式等。
总结词
反比例函数的综合题
详细描述
提供一些涉及多个知识点,如 一次函数和反比例函数的综合
题目。
拓展题
总结词
反比例函数与其他知识的结合
详细描述
提供一些涉及其他知识点,如 一次函数、二次函数等与反比 例函数结合的题目。
总结词
实际生活中的反比例函数应用
详细描述
提供一些与实际生活相关的题 目,如电力消耗与时间的反比
感谢您的观看
$y = \frac{k}{x}$(k为常数,k≠0)
确定x的取值范围
x可以为任意实数,但为了方便作图,通常取x的取值范围为x≠0
绘制图像
通过描点法,在坐标系上绘制出反比例函数的图像
图像的平移和伸缩变换
平移
反比例函数的图像在坐标系上可以进行平移,当自变量x的值增加或减少时, 函数值y也会相应地增加或减少,因此可以将反比例函数的图像沿x轴或y轴平 移,使图像更加直观和易于理解
单调递减区间
当k<0时,函数在区间$(-\infty,0)$和 $(0,+\infty)$上单调递增
03 反比例函数的应用
实际问题的转化
总结词
将实际问题转化为数学模型
详细描述
初中数学反比例函数ppt课件ppt课件
深化对反比例函数的理解和应用
详细描述
在基础练习题的基础上,设计一些难度稍高的练习题,如计算题、作图题等,引导学生运用反比例函 数解决实际问题,提高解题能力和思维灵活性。
综合练习题
总结词
全面考察学生对反比例函数的掌握程度 和应用能力
VS
详细描述
设计一些综合性的练习题,涉及反比例函 数的多个知识点,要求学生综合运用所学 知识解决问题。通过这类题目,可以检验 学生对反比例函数的整体理解和应用水平 。
反比例函数在实际问题中的拓展应用
经济领域
在经济学中,反比例函数可以用于描 述一些经济现象,如供需关系、边际 效用等。
物理领域
在物理学中,反比例函数可以用于描 述一些物理量之间的关系,如电荷与 电场、电流与电阻等。
反比例函数与其他数学领域的联系
与几何学的联系
反比例函数的图像是双曲线,双曲线 在平面几何中有重要的应用,如面积 计算、角度计算等。
通过观察图像的形状、趋势和 特点,可以直观地理解函数的 性质和特点,从而快速找到解 决问题的方法。
图象法适用于解决一些较为复 杂的问题,例如求函数的极值 、判断函数的奇偶性等。
反比例函数的代数法
代数法是通过代数运算和方程求解来解决问题的方法。
在解题过程中,需要熟练掌握代数运算的规则和方法,能够根据问题的具体情况建 立方程并求解。
与一次函数的结合
反比例函数与一次函数常 常一起出现在问题中,例 如在研究速度与距离的关 系时。
与二次函数的结合
在解决一些实际问题时, 反比例函数可能会与二次 函数一起出现,例如在研 究物体的运动轨迹时。
与三角函数的结合
在物理学和工程学中,反 比例函数可能会与三角函 数一起出现,例如在研究 振动和波动时。
详细描述
在基础练习题的基础上,设计一些难度稍高的练习题,如计算题、作图题等,引导学生运用反比例函 数解决实际问题,提高解题能力和思维灵活性。
综合练习题
总结词
全面考察学生对反比例函数的掌握程度 和应用能力
VS
详细描述
设计一些综合性的练习题,涉及反比例函 数的多个知识点,要求学生综合运用所学 知识解决问题。通过这类题目,可以检验 学生对反比例函数的整体理解和应用水平 。
反比例函数在实际问题中的拓展应用
经济领域
在经济学中,反比例函数可以用于描 述一些经济现象,如供需关系、边际 效用等。
物理领域
在物理学中,反比例函数可以用于描 述一些物理量之间的关系,如电荷与 电场、电流与电阻等。
反比例函数与其他数学领域的联系
与几何学的联系
反比例函数的图像是双曲线,双曲线 在平面几何中有重要的应用,如面积 计算、角度计算等。
通过观察图像的形状、趋势和 特点,可以直观地理解函数的 性质和特点,从而快速找到解 决问题的方法。
图象法适用于解决一些较为复 杂的问题,例如求函数的极值 、判断函数的奇偶性等。
反比例函数的代数法
代数法是通过代数运算和方程求解来解决问题的方法。
在解题过程中,需要熟练掌握代数运算的规则和方法,能够根据问题的具体情况建 立方程并求解。
与一次函数的结合
反比例函数与一次函数常 常一起出现在问题中,例 如在研究速度与距离的关 系时。
与二次函数的结合
在解决一些实际问题时, 反比例函数可能会与二次 函数一起出现,例如在研 究物体的运动轨迹时。
与三角函数的结合
在物理学和工程学中,反 比例函数可能会与三角函 数一起出现,例如在研究 振动和波动时。
《反比例函数》PPT课件 (共19张PPT)
问题1:若每天背10个单词,那么所掌握的 单词总y(个)与时间x(天)之间的 关系函数式为 。
问题2:小明原来掌握了150个单词,以后每 天背10个单词,那么他所掌握单词总 量y(个)与时间x(天)之间的关系式为
问题3: 九年级英语全册约有单词1200个,小 明同学计划用x(天)全部掌握,那么平 均每天需要记忆的单词量y(个)与时 间x(天)之间的关系式为 。 问题4: 一个面积为6400㎡的长方形,那么花坛
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。 2、从善如登,从恶如崩。 3、现在决定未来,知识改变命运。 4、当你能梦的时候就不要放弃梦。 5、龙吟八洲行壮志,凤舞九天挥鸿图。 6、天下大事,必作于细;天下难事,必作于易。 7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。 8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。 9、永远不要逃避问题,因为时间不会给弱者任何回报。 10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。 11、明天是世上增值最快的一块土地,因它充满了希望。 12、得意时应善待他人,因为你失意时会需要他们。 13、人生最大的错误是不断担心会犯错。 14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。 15、不管怎样,仍要坚持,没有梦想,永远到不了远方。 16、心态决定命运,自信走向成功。 17、第一个青春是上帝给的;第二个的青春是靠自己努力的。 18、励志照亮人生,创业改变命运。 19、就算生活让你再蛋疼,也要笑着学会忍。 20、当你能飞的时候就不要放弃飞。 21、所有欺骗中,自欺是最为严重的。 22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。 23、天行健君子以自强不息;地势坤君子以厚德载物。 24、态度决定高度,思路决定出路,细节关乎命运。 25、世上最累人的事,莫过於虚伪的过日子。 26、事不三思终有悔,人能百忍自无忧。 27、智者,一切求自己;愚者,一切求他人。 28、有时候,生活不免走向低谷,才能迎接你的下一个高点。 29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。 30、经验是由痛苦中粹取出来的。 31、绳锯木断,水滴石穿。 32、肯承认错误则错已改了一半。 33、快乐不是因为拥有的多而是计较的少。 34、好方法事半功倍,好习惯受益终身。 35、生命可以不轰轰烈烈,但应掷地有声。 36、每临大事,心必静心,静则神明,豁然冰释。 37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。 38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。 39、人的价值,在遭受诱惑的一瞬间被决定。 40、事虽微,不为不成;道虽迩,不行不至。 41、好好扮演自己的角色,做自己该做的事。 42、自信人生二百年,会当水击三千里。 43、要纠正别人之前,先反省自己有没有犯错。 44、仁慈是一种聋子能听到、哑巴能了解的语言。 45、不可能!只存在于蠢人的字典里。 46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。 47、小事成就大事,细节成就完美。 48、凡真心尝试助人者,没有不帮到自己的。 49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。 50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。 51、对于最有能力的领航人风浪总是格外的汹涌。 52、思想如钻子,必须集中在一点钻下去才有力量。 53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。 54、最伟大的思想和行动往往需要最微不足道的开始。 55、不积小流无以成江海,不积跬步无以至千里。 56、远大抱负始于高中,辉煌人生起于今日。 57、理想的路总是为有信心的人预备着。 58、抱最大的希望,为最大的努力,做最坏的打算。 59、世上除了生死,都是小事。从今天开始,每天微笑吧。 60、一勤天下无难事,一懒天下皆难事。 61、在清醒中孤独,总好过于在喧嚣人群中寂寞。 62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。 63、彩虹风雨后,成功细节中。 64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。 65、只要有信心,就能在信念中行走。 66、每天告诉自己一次,我真的很不错。 67、心中有理想 再累也快乐 68、发光并非太阳的专利,你也可以发光。 69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。 70、当你的希望一个个落空,你也要坚定,要沉着! 71、生命太过短暂,今天放弃了明天不一定能得到。 72、只要路是对的,就不怕路远。 73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。 74、先知三日,富贵十年。付诸行动,你就会得到力量。 75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 76、好习惯成就一生,坏习惯毁人前程。 77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。 78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。 79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。 80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。
11、反比例函数PPT课件
(1)求点 B 的坐标和线段 PB 的长; (2)当∠PDB=90°时,求反比例函数的解析式.
【考查内容】反比例函数与几何图形的综合,一次函数与反比例函数的交点问 题,待定系数法,相似三角形的判定与性质,勾股定理.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
10
(2)作 AD⊥y 轴于 D,AE⊥x 轴于 E,BF⊥x 轴于 F,BG⊥y 轴于 G,AE、BG
交于 H,
则 AD∥BG∥x 轴,AE∥BF∥y 轴,
∴CODC=AODP,PPFE=BAFE=PPAB,
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
3
【注意】a.反比例函数的图象是两支双曲线,而且双曲线无限接近于坐标轴,但 永不与坐标轴相交;b.反比例函数的图象位置及图象的曲折程度都与k有关;c.反比 例函数图象的增减性必须强调在每一个分支上比较,不能认为在整个自变量取值范 围内增大(或减小);d.反比例函数的图象关于原点呈中心对称,即在反比例函数图象 的一支曲线上找一点A(a,b),那么点A关于原点的对称点A′(-a,-b)也必在该反比 例函数的另一支曲线上;e.反比例函数的图象是轴对称图形,当k>0或k<0时,都有 两条对称轴,即y=x和y=-x.
的值.
用待定系数法求反比例函数解析式的一般步骤:
(1)设:设所求反比例函数为 y=kx(k≠0); (2)列:根据已知条件(自变量与函数的对应值)列出含 k 的方程; (3)解:解方程得待定的系数 k 的值; (4)代:把 k 的值代入反比例函数 y=kx,得出答案.
【考查内容】反比例函数与几何图形的综合,一次函数与反比例函数的交点问 题,待定系数法,相似三角形的判定与性质,勾股定理.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
10
(2)作 AD⊥y 轴于 D,AE⊥x 轴于 E,BF⊥x 轴于 F,BG⊥y 轴于 G,AE、BG
交于 H,
则 AD∥BG∥x 轴,AE∥BF∥y 轴,
∴CODC=AODP,PPFE=BAFE=PPAB,
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
3
【注意】a.反比例函数的图象是两支双曲线,而且双曲线无限接近于坐标轴,但 永不与坐标轴相交;b.反比例函数的图象位置及图象的曲折程度都与k有关;c.反比 例函数图象的增减性必须强调在每一个分支上比较,不能认为在整个自变量取值范 围内增大(或减小);d.反比例函数的图象关于原点呈中心对称,即在反比例函数图象 的一支曲线上找一点A(a,b),那么点A关于原点的对称点A′(-a,-b)也必在该反比 例函数的另一支曲线上;e.反比例函数的图象是轴对称图形,当k>0或k<0时,都有 两条对称轴,即y=x和y=-x.
的值.
用待定系数法求反比例函数解析式的一般步骤:
(1)设:设所求反比例函数为 y=kx(k≠0); (2)列:根据已知条件(自变量与函数的对应值)列出含 k 的方程; (3)解:解方程得待定的系数 k 的值; (4)代:把 k 的值代入反比例函数 y=kx,得出答案.
中考数学总复习第一部分基础知识复习函数及其图象反比例函数PPT
★考点2 ★考点2 ★知识点2 ★考点2 ★考点2 ★知识点2 ★考点2 ★知识点2 ★知识点2 ★知识点2 ★知识点2 ★知识点2 ★考点2 ★考点2 ★考点2 ★考点2
★考点3 ★考点3 ★知识点3 ★考点3 ★考点3 ★知识点3 ★考点3 ★知识点3 ★知识点3 ★知识点3 ★知识点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★考点3
★知识点3 ★知识点3 ★考点3 ★知识点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★知识点3 ★考点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★知识点3
★知识点4 ★知识点4 ★知识点4 ★知识点4
★知识点4 ★知识点4
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
反比例函数ppt课件
有42人,各班平均每人的金额分别是多少元?
每班人数(x)人
平均每人所得金
额(y)元
40
50
42
在以上问题中什么不变,什么在变,你能
否用所学过的式子表示y与x的关系?
情境导入
95%
(2)在操场上,学校给每个班计划定一个活动区域,其中
给杜老师班安排了一个面积为1002 的矩形区域,其中矩
=∙
=
= ��−
其他形式
下列哪些关系式中的是的
反比例函数
游戏时长:30秒
游戏难度:★☆☆
下列哪些关系式中的是的反比例函数
例题讲解
待定系数法:
一设二代三解四回
例1:已知是的反比例函数,并且当 = 2时, = 6.
(1)写出关于的函数解析式;
(2)当 = 2时,求的值.
一次函数: = + (、为常数,且 ≠ 0)
正比例函数: = (为常数,且 ≠ 0)
●
●
●
●
情境导入
72%
(1)在第十三周,我们学校即将举行校运动会,学校计划
给每班发200元的活动经费,如果九年级(1)班有40人,
平均每人所得金额是多少元?若(2)班有50人,(3)班
已知y与
x 2 成反比例,并且当x = 3时, y = 4.
(1)写出关于的函数解析式;
(2)当 = 1.5时,求的值;
(3)当 = 6时,求的值.
(
x2
36
1.5时, = 2
1.5
36
6时,6 = 2 ,
x
解:(1)设 =
每班人数(x)人
平均每人所得金
额(y)元
40
50
42
在以上问题中什么不变,什么在变,你能
否用所学过的式子表示y与x的关系?
情境导入
95%
(2)在操场上,学校给每个班计划定一个活动区域,其中
给杜老师班安排了一个面积为1002 的矩形区域,其中矩
=∙
=
= ��−
其他形式
下列哪些关系式中的是的
反比例函数
游戏时长:30秒
游戏难度:★☆☆
下列哪些关系式中的是的反比例函数
例题讲解
待定系数法:
一设二代三解四回
例1:已知是的反比例函数,并且当 = 2时, = 6.
(1)写出关于的函数解析式;
(2)当 = 2时,求的值.
一次函数: = + (、为常数,且 ≠ 0)
正比例函数: = (为常数,且 ≠ 0)
●
●
●
●
情境导入
72%
(1)在第十三周,我们学校即将举行校运动会,学校计划
给每班发200元的活动经费,如果九年级(1)班有40人,
平均每人所得金额是多少元?若(2)班有50人,(3)班
已知y与
x 2 成反比例,并且当x = 3时, y = 4.
(1)写出关于的函数解析式;
(2)当 = 1.5时,求的值;
(3)当 = 6时,求的值.
(
x2
36
1.5时, = 2
1.5
36
6时,6 = 2 ,
x
解:(1)设 =
反比例函数ppt课件
数学
返回目录
▶▶ 典型例题
【例2】已知y是x的反比例函数,且当x=3时,y=8.
(1)求出y与x之间的函数关系式;
(2)当y=-12时,求x的值.
数学
返回目录
▶▶ 典型例题
思路点拨:(1)利用反比例函数的定义,设y= ,然后把x=3,y=8代入求出k.从
而得到反比例函数解析式;
(2)把y=-12代入(1)中的解析式中计算出x的值即可.
1.下列函数是反比例函数的是 (
2
A.y=
)
B.y=2
2.函数y=xk-1是反比例函数,则k=(
A.0
A
B.1
A
2
C.y= 2
2
D.y=
+2
C.2
D.3
)
数学
返回目录
▶▶ 对应练习
3.下列关系式中,y是x的反比例函数的是
A.y=
1
B.y= 2
1
C.y=
2+1
D.-2xy=1
(
D
)
(2)解:∵其中一个菱形的一条对角线长为6 cm,
48
∴另一条对角线长为 =8(cm),
6
∴这个菱形的边长为
6 2
2
+
8 2
=5(cm),
2
∴这个菱形的边长为5 cm.
返回目录
谢谢观看
This is the last of the postings.
Thank you for watching.
北师大版 九年级数学上册
1
解析:A项,y= (k≠0),不符合题意;B项,y= 2 ,是y与x2成反比例,不符合题意;
初三反比例函数ppt课件
揭示本质
从函数形式上,我们可以将反比例函 数表示为y=k/x,其中k为常数,且 k≠0。这表明函数的输出y与输入x成 反比关系。
反比例函数的表达形式基本源自式y=k/x,其中k为常数,且k≠0。
变形形式
当k>0时,函数图像位于第一、三象限,y随x的增大而减小;当k<0时,函数图 像位于第二、四象限,y随x的增大而增大。
交点与函数图像的关系
01
当两个函数有交点时,交点的横 纵坐标分别对应两个函数在某一 点处的函数值。
02
通过交点,可以观察两个函数在 某一点处的相互关系及其变化趋 势。
利用交点解决实际问题
路程问题
01
在两个物体以不同速度相对运动的问题中,交点的横坐标表示
相遇的时间,纵坐标表示相遇的地点。
工程问题
02
满足奇偶性定义
由于反比例函数满足奇函数的定义 ,即$f( - x) = - f(x)$,因此它是奇 函数。
反比例函数的凹凸性
二阶导数判定
通过求二阶导数判断函数的凹凸 性。如果二阶导数大于0,则函 数是凹函数;如果二阶导数小于 0,则函数是凸函数。对于反比 例函数,可以通过求导再求二阶
导数来判断凹凸性。
在工程进度问题中,交点的横坐标表示完成工程所需的总时间
,纵坐标表示完成工程量。
经济问题
03
在投入产出问题中,交点的横坐标表示投资额,纵坐标表示产
值。
06
CATALOGUE
复习与巩固
反比例函数的概念与性质复习
总结词:掌握基础
详细描述:通过图表和实例,复习反 比例函数的概念和性质,包括定义、 表达式、图像等。
凹函数
通过计算二阶导数发现,反比例 函数是凹函数。这意味着函数图
从函数形式上,我们可以将反比例函 数表示为y=k/x,其中k为常数,且 k≠0。这表明函数的输出y与输入x成 反比关系。
反比例函数的表达形式基本源自式y=k/x,其中k为常数,且k≠0。
变形形式
当k>0时,函数图像位于第一、三象限,y随x的增大而减小;当k<0时,函数图 像位于第二、四象限,y随x的增大而增大。
交点与函数图像的关系
01
当两个函数有交点时,交点的横 纵坐标分别对应两个函数在某一 点处的函数值。
02
通过交点,可以观察两个函数在 某一点处的相互关系及其变化趋 势。
利用交点解决实际问题
路程问题
01
在两个物体以不同速度相对运动的问题中,交点的横坐标表示
相遇的时间,纵坐标表示相遇的地点。
工程问题
02
满足奇偶性定义
由于反比例函数满足奇函数的定义 ,即$f( - x) = - f(x)$,因此它是奇 函数。
反比例函数的凹凸性
二阶导数判定
通过求二阶导数判断函数的凹凸 性。如果二阶导数大于0,则函 数是凹函数;如果二阶导数小于 0,则函数是凸函数。对于反比 例函数,可以通过求导再求二阶
导数来判断凹凸性。
在工程进度问题中,交点的横坐标表示完成工程所需的总时间
,纵坐标表示完成工程量。
经济问题
03
在投入产出问题中,交点的横坐标表示投资额,纵坐标表示产
值。
06
CATALOGUE
复习与巩固
反比例函数的概念与性质复习
总结词:掌握基础
详细描述:通过图表和实例,复习反 比例函数的概念和性质,包括定义、 表达式、图像等。
凹函数
通过计算二阶导数发现,反比例 函数是凹函数。这意味着函数图
反比例函数ppt免费课件
与一次函数的结合
一次函数和反比例函数结合可以 形成复合函数,这种复合函数在 解决实际问题中具有广泛的应用
。
与二次函数的结合
在解决最值问题时,可以利用反比 例函数和二次函数的性质进行求解 。
与对数函数的结合
在解决增长率问题时,可以利用反 比例函数和对数函数的性质进行求 解。
CHAPTER 03
反比例函数的性质和特点
CHAPTER 02
反比例函数的应用
反比例函数在实际问题中的应用
01
02
03
物理问题
电流与电阻的关系、压强 与压力的关系等都可以用 反比例函数表示。
经济问题
例如,商品销售量与价格 的关系,当价格一定时, 销售量与价格成反比。
地理问题
例如,人口密度与土地面 积的关系,在一定条件下 ,人口密度与土地面积成 反比。
反比例函数的单调性
01
反比例函数在各自象限内单调递 减,随着x的增大,y值逐渐减小 。
02
在第一象限和第三象限,当x增大 时,y值减小;在第二象限和第四 象限,当x增大时,y值也减小。
反比例函数的奇偶性
反比例函数是奇函数,满足f(-x)=-f(x)。 在坐标系中,反比例函数的图像关于原点对称。
反比例函数的周期性和对称性
探讨两者图像的交点、单调性以及函数值的变化规律。
反比例函数与二次函数的结合
研究如何利用反比例函数的性质解决二次函数问题,如求最值等。
反比例函数在微积分中的应用
导数与反比例函数
理解反比例函数的导数形式,掌 握利用导数研究函数的单调性、 极值等问题。
积分与反比例函数
掌握对反比例函数进行积分的计 算方法,理解积分在解决实际问 题中的应用。
初中数学反比例函数ppt课件ppt
难点
如何理解反比例函数的实际应用,以及如何利用反比例函数解决实际问题。
THANKS
感谢观看
高难度练习
综合应用
给出一些多个反比例函数的问题,让学生综合运用所学知识 解决。
探索性题目
让学生自己探索反比例函数的性质和表达式的规律,提出自 己的猜想并加以验证。
06
总结与回顾
反比例函数的主要内容
定义和表达式
应用和实际意义
图像和性质
重点和难点回顾
重点
反比例函数的图像和性质,特别是当k>0和k<0时函数的图像和性质的变化。
04
反比例函数的难点与易错 点
反比例函数的难点
函数表达式理解
理解反比例函数的表达式 和系数含义,区分正比例 函数和反比例函数。
图像绘制
掌握反比例函数的图像绘 制方法,理解图像的形状 、趋势和与坐标轴的交点 。
实际问题应用
能够将实际问题转化为反 比例函数问题,并利用反 比例函数解决实际问题。
反比例函数的易错点
奇偶性
由于反比例函数是奇函数,因此 其图像关于原点对称。
单调性
在某个区间内,如果函数的导数大 于0,则函数是单调递增的;如果 函数的导数小于0,则函数是单调 递减的。
曲线的渐近线
反比例函数的图像没有水平渐近线 ,但有垂直渐近线。当函数趋向于 无穷大时,函数值会趋向于0。
反比例函数的单调性
单调递增区间
定义域和值域:x≠0,y≠0
反比例函数的基本形式
y=k/x(k为常数,k≠0)
图像:双曲线
变化规律:当k>0时,图像在第一、三象限,y值随x的增大而减小;当k<0时,图像在第二 、四象限,y值随x的增大而增大。
如何理解反比例函数的实际应用,以及如何利用反比例函数解决实际问题。
THANKS
感谢观看
高难度练习
综合应用
给出一些多个反比例函数的问题,让学生综合运用所学知识 解决。
探索性题目
让学生自己探索反比例函数的性质和表达式的规律,提出自 己的猜想并加以验证。
06
总结与回顾
反比例函数的主要内容
定义和表达式
应用和实际意义
图像和性质
重点和难点回顾
重点
反比例函数的图像和性质,特别是当k>0和k<0时函数的图像和性质的变化。
04
反比例函数的难点与易错 点
反比例函数的难点
函数表达式理解
理解反比例函数的表达式 和系数含义,区分正比例 函数和反比例函数。
图像绘制
掌握反比例函数的图像绘 制方法,理解图像的形状 、趋势和与坐标轴的交点 。
实际问题应用
能够将实际问题转化为反 比例函数问题,并利用反 比例函数解决实际问题。
反比例函数的易错点
奇偶性
由于反比例函数是奇函数,因此 其图像关于原点对称。
单调性
在某个区间内,如果函数的导数大 于0,则函数是单调递增的;如果 函数的导数小于0,则函数是单调 递减的。
曲线的渐近线
反比例函数的图像没有水平渐近线 ,但有垂直渐近线。当函数趋向于 无穷大时,函数值会趋向于0。
反比例函数的单调性
单调递增区间
定义域和值域:x≠0,y≠0
反比例函数的基本形式
y=k/x(k为常数,k≠0)
图像:双曲线
变化规律:当k>0时,图像在第一、三象限,y值随x的增大而减小;当k<0时,图像在第二 、四象限,y值随x的增大而增大。
2020年九年级数学中考复习课件:12 反比例函数的图像与性质 (共58张PPT)
2.如图 1.12-13,已知动点 A 在反比例函数 y =6x(x>0)的图像上,直线 PQ 与 x 轴、y 轴分别交于 P,Q 两点,过点 A 作 CD∥x 轴,交 y 轴于点 C, 交直线 PQ 于点 D,过点 A 作 EB∥y 轴交 x 轴于点 B,交直线 PQ 于点 E,若 CE∥BD 且 CA∶AE=1∶ 2,QE∶DP=1∶9,则阴影部分的面积为__1__0____.
∴OC=33-aa,同理可得 OD=33-bb, ∴S△COD=12·OC·DO=12·(3-a)9a(b 3-b)= 12·9-3a9-ab3b+ab=12·-129aabb+ab=9.
(3)△AOB 的面积是否存在最大值?若存在,求 出最大面积;若不存在,请说明理由.
解:设 OA=a,OB=b,则 AM=AH=3-a, BN=BH=3-b,
D.5
图 1.12-11
跟踪训练
1.如图 1.12-12,函数 y=1x(x>0)和 y=3x (x>
0)的图像分别是 l1 和 l2.设点 P 在 l2 上,PA∥y 轴交
l1 于点 A,PB∥x 轴,交 l1 于点 B,△PAB 的面积为
(B )
A.12
B.23
C.13
D.34
图 1.12-12
D.-2<x<0 或 x>4
图1.122
重难点3 反比例函数与几何的综合
【例 3】 (2019·重庆 A)如图 1.12-3,在平面直
角坐标系中,矩形 ABCD 的顶点 A,D 分别在 x 轴、
y 轴上,对角线 BD∥x 轴,反比例函数 y=kx(k>0,
x>0)的图像经过矩形对角线的交点 E.若点 A(2,0),
B.不变
C.减小
初三反比例函数ppt课件ppt课件
反比例函数是具有极限的函数,当x趋 近于无穷大或无穷小时,y的值趋近于 0。
反比例函数的图像是关于原点对称的 。
02CHBiblioteka PTER反比例函数的应用生活中的反比例现象
总结词
生活中常见的反比例现象
详细描述
在日常生活中,许多现象可以用反比例函数来描述。例如,当两个量之间的比例保持恒定时,其中一个量增加, 另一个量会相应减少,形成反比例关系。这种现象在很多场合都可以观察到,如物体的质量和体积、电路中的电 流和电阻等。
提高练习题解析
总结词
提升解题能力
详细描述
提高练习题相对于基础练习题难度有所增加,题目设计更加灵活,需要学生具备一定的数学思维和解 题技巧。这些题目通常涉及到反比例函数与其他数学知识的综合运用,如与一次函数、二次函数等知 识的结合。
竞赛练习题解析
总结词
挑战高难度
详细描述
竞赛练习题是针对数学竞赛和数学特长生设计的题目,难度较大,题目设计更加复杂和 综合。这些题目不仅要求学生掌握反比例函数的知识,还需要具备较高的数学素养和解 题能力。通过解答这些题目,学生可以挑战自己的数学思维和解题能力,提升数学学习
对未来学习的展望
学生可以在反比例函数的基础上,进一 步学习其他类型的函数,如幂函数、对 数函数等,以拓展数学知识的广度和深
度。
学生可以尝试将反比例函数与其他学科 的知识点进行结合,例如与物理中的电 流、电压等概念进行联系,加深对相关
概念的理解。
学生可以通过参加数学竞赛、科研项目 等活动,进一步提高自己的数学素养和 解决问题的能力,为未来的学习和职业
总结词
掌握实际应用题的解题技巧是提高解 题效率的关键。
详细描述
在解决反比例函数实际应用题时,需 要将问题转化为数学模型,并运用适 当的解题技巧,如排除法、比较法等 ,以简化问题并快速找到答案。
九年级数学反比例函数的图象优秀课件
05
利用反比例函数图像解决 实际问题
面积问题中反比例关系建立及求解
矩形面积问题
01
通过给定矩形的面积和一边的长度,利用反比例关系求解另一
边的长度。
三角形面积问题
02
通过给定三角形的面积和底边长度,利用反比例关系求解高。
平行四边形面积问题
03
通过给定平行四边形的面积和一组对边的长度,利用反比例关
系求解另一组对边的长度。
九年级数学反比例函数的图 象优秀课件
汇报人:XXX
汇报时间:2024-01-28
目录
• 反比例函数基本概念与性质 • 反比例函数图像绘制方法 • 反比例函数图像变换规律
目录
• 反比例函数与直线交点问题探讨 • 利用反比例函数图像解决实际问题 • 课堂小结与课后作业布置
01
反比例函数基本概念与性 质
求解直线与双曲线交点坐标步骤
01
02
03
联立方程
将直线方程和双曲线方程 联立起来,得到一个关于 未知数的方程组。
求解方程组
通过解方程组,可以得到 交点的坐标。
检验解的合理性
将求得的解代入原方程进 行检验,确保解的合理性 。
典型例题解析及思路拓展
例题
已知反比例函数$y = frac{k}{x}$和直线$y = ax + b$相交于点$A(x_1, y_1)$和$B(x_2, y_2)$,求$x_1x_2$和$y_1y_2$的值。
图像关于原点对称,即如果点(x, y)在图 像上,则点(-x, -y)也在图像上。
反比例函数性质总结
比例系数k决定图像位置
当k>0时,图像位于第一、三象限; 当k<0时,图像位于第二、四象限。
反比例函数数学PPT课件
第9题图
重难点精讲优练
类型 1 反比例函数图象与性质
m 练习1 已知函数y= x 的图象如图所示,以下结论:① m<0;②在每个分支 上,y随x的增大而增大;③若点A(-1,a)、点B(2,b)在图象上,则a<b;④ 若点P(x,y)在图象上,则点P1(-x,-y)也在图象上.其中正确的个数是( )
x
基础点巧练妙记
2.在具体问题中间根据k的几何意义通过求出相应三角形或四边形的面积求出 k的值,从而求得表达式.
提分必练
8.已知点P(-4,-3)在反比例函数y= k (k≠0)的图象上,
则k=__1__2____.
x
提分必练
k 例如函图数,的反解比析例式函为数__y_=___yx_=__的_-.图4x象经过点M,矩形OAMB的面积为4,则此反比
A. 4个 B. 3个 C. 2个 D. 1个
重难点精讲优练
【解析】①根据反比例函数的图象的两个分支分别位于二、四象限,
可得m<0,故正确;②在每个分支上y随x的增大而增大,故正确; ③若点A(-1,a)、点B(2,b)在图象上,结合图象可知a>b,故错 误;④若点P(x,y)在图象上,则点P1(-x,-y)也在图象上,故正 确.故选B.
提分必练
3.如果反比例函数y= m+1 在各自象限内,y随x的增大而减小,那么m
的取值范围是( D ) x
A. m<0 B. m>0 C. m<-1 D. m>-1
失分点
反比例函数值的大小比较
4.在函数y=- a2+1 (a为常数)的图象上有三点(-3,y1),(-1,y2),(2,
x
y3),则函数值y1,y2,y3的大小关系是
y
-2 0
3
重难点精讲优练
类型 1 反比例函数图象与性质
m 练习1 已知函数y= x 的图象如图所示,以下结论:① m<0;②在每个分支 上,y随x的增大而增大;③若点A(-1,a)、点B(2,b)在图象上,则a<b;④ 若点P(x,y)在图象上,则点P1(-x,-y)也在图象上.其中正确的个数是( )
x
基础点巧练妙记
2.在具体问题中间根据k的几何意义通过求出相应三角形或四边形的面积求出 k的值,从而求得表达式.
提分必练
8.已知点P(-4,-3)在反比例函数y= k (k≠0)的图象上,
则k=__1__2____.
x
提分必练
k 例如函图数,的反解比析例式函为数__y_=___yx_=__的_-.图4x象经过点M,矩形OAMB的面积为4,则此反比
A. 4个 B. 3个 C. 2个 D. 1个
重难点精讲优练
【解析】①根据反比例函数的图象的两个分支分别位于二、四象限,
可得m<0,故正确;②在每个分支上y随x的增大而增大,故正确; ③若点A(-1,a)、点B(2,b)在图象上,结合图象可知a>b,故错 误;④若点P(x,y)在图象上,则点P1(-x,-y)也在图象上,故正 确.故选B.
提分必练
3.如果反比例函数y= m+1 在各自象限内,y随x的增大而减小,那么m
的取值范围是( D ) x
A. m<0 B. m>0 C. m<-1 D. m>-1
失分点
反比例函数值的大小比较
4.在函数y=- a2+1 (a为常数)的图象上有三点(-3,y1),(-1,y2),(2,
x
y3),则函数值y1,y2,y3的大小关系是
y
-2 0
3
2023年中考数学专项突破之函数的图象与性质课件 52张PPT
(5)与二次函数有关的还有二次三项式,二次三项式ax2+bx+c﹙a≠0﹚本身
就是含有字母x的二次函数.
返回子目录
例题3
已知,点M为二次函数y=-(x-b)2+4b+1图象的顶点,直线y=mx+5分别交x轴、y轴于点
A,B.
(1)判断顶点M是否在直线y=4x+1上,并说明理由;
(2)如图1,若二次函数图象也经过点A,B,且mx+5>-(x-b)2+
即为所求;(3)根据反函数的图象和性质,当点P在第一象限时,p>0;当点P在第三象限
时,p≤-2.
解析:(1)把A(2,m),B(n,-2)代入y= 得k2=2m=-2n,即m=-n,则A(2,-n),
如图,过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE,BF交于D,
∵A(2,-n),B(n,-2),
方法点拨
解答此类问题需要掌握二次函数的概念、图象和性质,画出草图观察分析,将函数
的平移、最值、增减性等贯穿在草图中,此类问题就会迎刃而解.
解题技巧
解决这类问题一般遵循这样的方法:
(1)求二次函数的图象与x轴的交点坐标,需将二次函数转化为一元二次方
程;
(2)求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶
点入口.两车距学校的路程s(单位:km)和行驶时间t(单位:min)之间的函数关系如
图所示.
请结合图象解决下面问题:
(1)学校到自然保护区的路程为 40 km,大客车途中停留了
5min, a=
;15
(2)在小轿车司机驶过自然保护区入口时,大客车离景点入口还有多远?
(3)小轿车司机到达自然保护区入口时发现本路段限速80 km/h,请你帮助小轿车司
就是含有字母x的二次函数.
返回子目录
例题3
已知,点M为二次函数y=-(x-b)2+4b+1图象的顶点,直线y=mx+5分别交x轴、y轴于点
A,B.
(1)判断顶点M是否在直线y=4x+1上,并说明理由;
(2)如图1,若二次函数图象也经过点A,B,且mx+5>-(x-b)2+
即为所求;(3)根据反函数的图象和性质,当点P在第一象限时,p>0;当点P在第三象限
时,p≤-2.
解析:(1)把A(2,m),B(n,-2)代入y= 得k2=2m=-2n,即m=-n,则A(2,-n),
如图,过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE,BF交于D,
∵A(2,-n),B(n,-2),
方法点拨
解答此类问题需要掌握二次函数的概念、图象和性质,画出草图观察分析,将函数
的平移、最值、增减性等贯穿在草图中,此类问题就会迎刃而解.
解题技巧
解决这类问题一般遵循这样的方法:
(1)求二次函数的图象与x轴的交点坐标,需将二次函数转化为一元二次方
程;
(2)求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶
点入口.两车距学校的路程s(单位:km)和行驶时间t(单位:min)之间的函数关系如
图所示.
请结合图象解决下面问题:
(1)学校到自然保护区的路程为 40 km,大客车途中停留了
5min, a=
;15
(2)在小轿车司机驶过自然保护区入口时,大客车离景点入口还有多远?
(3)小轿车司机到达自然保护区入口时发现本路段限速80 km/h,请你帮助小轿车司