电路分析答案第二章
电路分析第二章练习题答案
电路分析第二章练习题答案电路分析是电气工程专业的一门基础课程,通过学习电路分析,可以帮助我们理解和解决电路中的各种问题。
在电路分析的学习过程中,练习题是非常重要的一环,通过解答练习题,可以巩固所学的知识,提高解决问题的能力。
本文将给出电路分析第二章练习题的答案,希望对大家的学习有所帮助。
第一题:根据题目给出的电路图,我们可以看到有一个电阻R1和一个电源V1。
根据欧姆定律,电流I1等于电压V1除以电阻R1,即I1=V1/R1。
第二题:根据题目给出的电路图,我们可以看到有一个电阻R2和一个电源V2。
根据欧姆定律,电流I2等于电压V2除以电阻R2,即I2=V2/R2。
第三题:根据题目给出的电路图,我们可以看到有一个电源V3和两个电阻R3和R4。
根据欧姆定律,电流I3等于电压V3除以电阻R3,即I3=V3/R3。
同样地,电流I4等于电压V3除以电阻R4,即I4=V3/R4。
第四题:根据题目给出的电路图,我们可以看到有一个电源V4和两个电阻R5和R6。
根据欧姆定律,电流I5等于电压V4除以电阻R5,即I5=V4/R5。
同样地,电流I6等于电压V4除以电阻R6,即I6=V4/R6。
第五题:根据题目给出的电路图,我们可以看到有一个电源V5和三个电阻R7、R8和R9。
根据欧姆定律,电流I7等于电压V5除以电阻R7,即I7=V5/R7。
同样地,电流I8等于电压V5除以电阻R8,即I8=V5/R8。
还有电流I9等于电压V5除以电阻R9,即I9=V5/R9。
通过以上的练习题,我们可以看到电路分析中的一些基本概念和计算方法。
在解答这些练习题的过程中,我们需要熟练掌握欧姆定律和串并联电路的计算方法。
同时,我们也需要注意电流的方向和电压的极性,以确保计算的准确性。
电路分析是一门需要理论和实践相结合的学科,通过解答练习题,我们可以将理论知识与实际问题相结合,提高解决问题的能力。
在学习电路分析的过程中,我们还可以借助电路模拟软件进行实验,以加深对电路的理解。
电路分析(中国石油大学(华东))智慧树知到课后章节答案2023年下中国石油大学(华东)
电路分析(中国石油大学(华东))智慧树知到课后章节答案2023年下中国石油大学(华东)中国石油大学(华东)绪论单元测试1.学好《电路》课的意义()答案:《电路》是电类专业(自动化、电气工程、电子与信息工程、通信等专业)的第一门专业基础课,有着非常重要的地位。
;《电路》课程的掌握程度对于后续专业课程的学习,有着举足轻重的作用。
;《电路》也是多数电类专业研究生入学考试课。
第一章测试1.电流的参考方向为()。
答案:沿电路任意选定的某一方向2.图示电路,求u:()。
答案:-4V3.基尔霍夫电流定律应用于()。
答案:节点4.在有n个节点,b条支路的连通电路中,可以列出独立KCL方程的个数为()。
答案:n-15.图示电路中,直流电压表和电流表的读数分别为4V及1A,则电阻R为()。
答案:76.图示电路中电压U为()。
答案:2V7.图示电路中电压U AB为()。
答案:-16V8.电路中b、c两点间的电压U bc为()。
答案:2V9.图示为某电路中的一个回路,其KCL方程为()。
答案:R1I1-R2I2-R3I3+R4I4=U S1+U S2-U S3-U S410.图示电路中电压U S为()。
答案:4V第二章测试1.图示电路中的I为()。
答案:2A2.电路如图所示,短路线中的电流I为()。
答案:10A3.图示直流电路中,已知a点电位为5V,则参考点为()。
答案:c点4.图示电路中的电流I为()。
答案:0A5.图示电阻串联电路中,U=U1-U2+U3,再根据欧姆定律,可求出等效电阻R为()。
答案:R1+R2+R36.在下列各图中,与图(N)所示伏安特性相对应的电路是()。
答案:(B)7.图示电路的开路电压Uoc为()。
答案:-2V8.图示电路中电位VA为()。
答案:4V9.如图所示电路中I1为()。
答案:2A10.图示电路的电压U与电流I的关系为()。
答案:U=-1-3I第三章测试1.各点电位的高低是()的,而两点之间的电压值是()的。
电路的基本分析方法 练习题及答案第2章
第2章 电路的基本分析方法习题答案2-1 在8个灯泡串联的电路中,除4号灯不亮外其它7个灯都亮。
当把4号灯从灯座上取下后,剩下7个灯仍亮,问电路中有何故障?为什么?解:4号灯灯座短路。
如开路则所有灯泡都不亮。
2-2 额定电压相同、额定功率不等的两个白炽灯能否串联使用,那并联呢? 解:不能串联使用,因其电阻值不同,串联后分压不同,导致白炽灯无法正常工作。
在给定的电压等于额定电压的前提下,可以并联使用。
2-3 如图2-34所示,R 1=1Ω,R 2=5Ω,U =6V ,试求总电流强度I 以及电阻R 1、R 2上的电压。
图2-34 习题2-3图解:A 151621=++=R R U I=,V 551= V 111=2211=⨯==⨯=IR U IR U2-4 如图2-35所示,R 1=3Ω,R 2=6Ω,U =6V ,试求总电流I ;以及电阻R 1,R 2上的电流。
图2-35 习题2-4图解:总电阻为:Ω263632121=+⨯+=R R R R R=A 326=∴=R U I=由分流公式得:A 13633A 2363621122121=⨯++=⨯++I=R R R =I I=R R R =I2-5 电路如图2-36(a)~(f)所示,求各电路中a 、b 间的等效电阻R ab 。
(a) (b) (c)(d) (e) (f)2-36 习题2-5图解:(a) Ω4.3)6//4()2//2(ab =+=R(b) Ω2)33//()66//4ab =++(=R (c)Ω2)]6//3()6//3//[(13ab =++)(=R(d) Ω2)6//1)6//3(ab =+)(=R (e) Ω7)10//10(}6//6//]2)8//8{[(ab =++=R (f) Ω6}6//]64)4//4{[()4//4(ab =+++=R2-6 求图2-37所示电路中的电流I 和电压U 。
图2-37 习题2-6电路图解:图2-37等效变换可得:由上图可得;Ω8)816//)]}99//(6[5.7{=+++(总=RA 5.1812==总I 则根据并联电路分流作用可得:A 5.05.1)816()]99//(6[5.7)]99//(6[5.7=1=⨯++++++I则A 15.05.1=13=-=-I I I 总 I 3再次分流可得:A 75.0169999=4=⨯+++IA 25.016996=2=⨯++I所以I =0.75A ,U = U +-U - =9×I 2-8×I 1 = 9×0.25-8×0. 5=-1.75V2-7 电路如图2-38(a)~(g)所示,请用电源等效变换的方法进行化简。
《电路分析基础》第二章电阻电路的基本分析方法练习题
第二章电阻电路的基本分析方法一、填空题学号:姓名:1、对外只有两个端纽的网络称为,其内部电路若不包含电源的称为网络。
2、若两个单口网络N1和N2具有完全相同的,则称N1和N2相互等效。
单口网络的等效是对外特性而言,并不等效。
3、串联电阻电路可起作用,并联电阻电路可起作用。
4、电阻串联电路的特点是各电阻流过的相同,电阻并联电路的特点是各电阻两端的相同。
5、串联电阻电路中,电阻值越大,电阻两端的端电压就;并联电阻电路中,电阻值越大,流过电阻的分电流就。
6、若某网络有b 条支路,n 个节点,则可以列个KCL 独立方程、个KVL 独立方程。
7、电压源u s与电阻R 的串联组合可等效变换成电流源i s与电阻R 的并联组合。
其中,变换后的电流源i s其方向为从u s的极指向极。
8、网孔分析法的待求变量是,节点分析法的待求变量是。
9、网孔方程本质上是网孔的方程,节点方程本质上是节点的方程。
10、用网孔分析法或节点分析法分析含有受控源的电路,在列写方程时,可先把受控源当做看待来列方程,最后再增加用网孔电流或节点电压表示的辅助方程即可。
二、选择题1、电路如图所示,电流i 等于()。
A 、1AB 、2AC 、3AD 、4A2、电路如图所示,电压u 等于()。
A、-2VB、2VC、-4V D 、4V3、电路如图所示,电流I 等于()。
A、1AB、2AC、3A D 、4A4、电路如图所示,电流i 等于()。
A、1AB、2AC、3A D 、4A5、电路如图所示,a、b 端的等效电阻R ab等于()。
A、4ΩB、6ΩC、8Ω D 、9Ω6、电路如图所示,a、b 端的等效电阻R ab等于()。
A、1ΩB、2ΩC、3Ω D 、4Ω7、电路如图所示,a、b 端的等效电阻R ab等于()。
A、3ΩB、4ΩC、5Ω D 、6Ω8、电路如图所示,a、b 端的等效电阻R ab等于()。
A、6ΩB、7ΩC、8Ω D 、9Ω9、电路如图所示,当开关S 打开和闭合时其单口网络的等效电阻R ab分别为()。
电工学-第二章习题答案
第二章 电路的分析方法2.1.1 在图2.01的电路中,V 6=E ,Ω=61R ,Ω=32R ,Ω=43R ,Ω=34R ,Ω=15R 。
试求3I 和4I 。
4I ↓图2.01解:图2.01电路可依次等效为图(a )和图(b )。
R 3R 1R(b)Ω=+×=+×=23636414114R R R R R Ω=+++×=+++×=2243)24(3)(14321432R R R R R R R A 22165=+=+=R R E IA 322363)(214323=×+=++=I R R R R IA 943263631414−=×+−=+−=I R R R I2.3.3 计算图2.12中的电流3I 。
Ω=1R A2S =图2.12解:根据电压源与电流源的等效变换,图2.12所示电路可依次等效为图(a )和图(b ),由图(b )可求得A 2.15.023=+=I由图(a )可求得:A 6.02.121213=×==I IΩ=1R V22=Ω=14R(b)Ω=12R2.6.1 在图2.19中,(1)当将开关S 合在a 点时,求电流1I ,2I 和3I ;(2)当将开关S 合在b 点时,利用(1)的结果,用叠加定理计算电流321,I I I 和 。
I图2.19I (a)I (b)解:(1)当将开关S 合在a 点时,图2.19所示电路即为图(a ),用支路电流法可得:=+=+=+12042130423231321I I I I I I I 解得:===A 25A 10A 15321I I I(2)开关S 合在b 点时,利用叠加原理图2.19所示电路可等效为图(a )和图(b ),其中图(a )电路中130V 和120V 两个电压源共同作用时所产生的电流已在(1)中求得,即:A 151=,I A 102=,I A 253=,I由图3(b )可求得:A 642422202=+×+=,,I A 464241−=×+−=,,IA26422=×+=则:A 11415111=−=+=,,,I I IA 16610,222=+=+=,,I I IA 27225333=+=+=,,,I I I2.6.2 电路如图2.20(a )所示,V 10ab ,,V 124321=====U R R R R E 。
电路分析试题及答案(第二章)
电路分析试题及答案(第⼆章)节点、回路、⽀路分析法:1、如下图所⽰,应⽤节点电压法计算。
已知U s 1=60V ,U s 2=40V ,R 1=6Ω, 23456Ω,求I 1,I 2,I 3,I 4,I 5,I 6的值。
解:114432111111R U U R U R R R R s b a =-+++ 6246541111R U U R U R R R s a b =-???? ??++ U a =U b =24V ;I 1=6A ;I 2=2A ;I 3=4A ;I 4=0A ;I 5=4A ;I 6=-4A ;2、求下图电路的电压U.解:利⽤戴维南等效做,先求ab 两端开路电压:只有24V 的电压源⼯作时: U ‘ab =24/(6+3)=8V ;只有4A 的电流源⼯作时: U ‘‘ab =4×4=16V ; U ab = U ‘ab +U ‘‘ab =24V ;等效电阻R 0=6Ω;U= U ab /(6+2)×2=6V3、计算下图电路中的电压U 1与U 2.解:U 1=8×[4+(6//3)]/[18+4+(6//3)] ×18=36V; U 2=8×18/[18×4+(6//3)] ×3=12V .4、已知下图电路的回路⽅程为2I 1+I 2=4V 和4I 2=8V ,式中各电流的单位为安培。
求:(1)各元件的参数;(2)各电压源供出的功率;(3)改变U和U 的值,使各电阻的功率增加⼀倍。
解:(1)1+ R 3)I 1+R 3I 2+k U 1=Us 1 1+ R 3-k R 1)I 1+R 3I 2 =Us 1-k Us 1R 3I 1 + (R 2+ R 3)I 2+k U 1=Us 2U 1=Us 1- R 1I 1 3-k R 1) I 1+ (R 2+ R 3)I 2+k U 1=Us 2-k Us 1R 1=2Ω, R 2=3Ω, R 3=1Ω, Us 1=8V , Us 1=12V , k =0.5 (2)求解⽅程式,得到:I 1=1A, I 2=2A ,计算各电源功率:Us 1:P 1= Us 1 I 1=8W ; (发出) Us 2:P 2= Us 2 I 2=24W ;(发出) Ucs :Pcs= Ucs (I 1+I 2)=9W ;(吸收)(3)各电源增加2倍,则各电阻上的电流相应增加2倍,即可实现⽬的。
电路分析知到章节答案智慧树2023年上海电力大学
电路分析知到章节测试答案智慧树2023年最新上海电力大学第一章测试1.图示电路中,节点A和B之间的电压UAB为()V。
参考答案:-162.图示电路中I= 0 时,电位UA=()V。
参考答案:603.通常所说负载增加,是指负载()增加。
参考答案:功率4.图示电路中S断开时I1= 0A,I=2A。
S闭合时I1=( )A,I=( )A。
()参考答案:0;65.图示电路中,当IS=10A 时,电压U为()V,当IS=8A时电压U为()V。
()参考答案:12;166.电路理论分析的对象是电路模型而不是实际电路。
()参考答案:对7.欧姆定律可表示成U=RI,也可表示成U=-RI,这与采用的参考方向有关。
()参考答案:对8.在节点处各支路电流的方向不能均设为流向节点,否则将只有流入节点的电流而无流出节点的电流。
()参考答案:错9.在电压近似不变的供电系统中,负载增加相当于负载电阻减少。
()参考答案:对10.理想电压源的端电压是由它本身确定的,与外电路无关,因此流过它的电流则是一定的,也与外电路无关。
()参考答案:错第二章测试1.图示电路AB间的等效电阻为()。
参考答案:14Ω2.电路如图所示,A、B端的等效电阻R=()。
参考答案:4Ω3.电路如图所示,可化简为()参考答案:3Ω电阻4.如图所示电路中,当电阻R2增加时电流I将()。
参考答案:增加5.图示电路中,就其外特性而言,()。
参考答案:b、c等效6.两只额定电压为110V的电灯泡串联起来总可以接到220V的电压源上使用。
()参考答案:错7.电流相等的两个元件必属串联,电压相等的两个元件必属并联。
()参考答案:错8.一个不含独立源的电阻性线性二端网络(可以含受控源)总可以等效为一个线性电阻。
()参考答案:对9.一个含独立源的电阻性线性二端网络(可以含受控源)总可以等效为一个电压源与一个电阻串联或一个电流源与一个电阻并联。
()参考答案:对10.已知图示电路中A、B两点电位相等,则AB支路中必然电流为零。
电路分析基础第四版课后习题第一章第二章第三章第四章答案
+ 42V
−
i1
18Ω
i2 3Ω
i3
gu
2−5
解
设网孔电流为 i1, i2 , i3 ,则 i3 = −guA = −0.1uA ,所以只要列出两个网孔方程
27i1 −18i2 = 42 −18i1 + 21i2 − 3(−0.1uA ) = 20
因 uA = 9i1 ,代入上式整理得
−15.3i1 + 21i2 = 20
⎪⎩i3 = 4A
第二章部分习题及解答
2-1 试用网孔电流法求图题所示电路中的电流 i 和电压 uab 。
4Ω
1Ω
i2
+
7V
−
i1
2Ω
i3 i
+ 3V
−
解
设网孔电流为 i1, i2 ,i3 ,列网孔方程
⎪⎨⎧3−ii11
− i2 − 2i3 = 7 + 8i2 − 3i3 = 9
⎪⎩−2i1 − 3i2 + 5i3 = −12
解得
i1 = 4.26A uA = (9× 4.26)V = 38.34V i3 = −0.1uA = −3.83A
2-8 含 CCVS 电路如图题 2-6 所示,试求受控源功率。
1Ω i3
5Ω
+
i 4Ω
+
50V i1 −
20Ω i2
15i −
2−6
解
标出网孔电流及方向,
⎧⎪⎨2−52i01i−1 +202i42i−2 −5i43 i=3
50 = −15i
⎪⎩−5i1 − 4i2 +10i3 = 0
又受控源控制量 i 与网孔电流的关系为 i = i1 − i2
电路分析第五版答案 (2)
电路分析第五版答案第一章:基本概念和电路定律练习题答案a.看图1.1.CircuitCircuitb.从图中可以看出,电流I分为两个路径,通过电阻R1和R2。
根据欧姆定律,我们可以计算出电流I的值。
从电源V1开始,沿着电流的流向,电流经过电阻R1,其电压降为V1 - I R1。
然后经过电阻R2,其电压降为(V1 - I R1) - I * R2。
根据基尔霍夫电压定律,这个电压降等于电源的电压V1。
所以我们可以得到方程(V1 - I*R1) - I * R2 = V1。
通过解这个方程,我们可以计算出电流I的值。
a.如果电流经过电阻R1和电流源I1,那么根据欧姆定律,我们可以得到电流I1的值为I1 = V1 / R1。
b.如果电流经过电流源I2,则根据欧姆定律,我们可以得到电流I2的值为I2 = V2 / R2。
c.根据基尔霍夫电流定律,两个电流源的总和等于流入节点的电流总和。
所以我们可以得到I1 + I2 = I。
综上所述,我们得到了电路中的电流和电阻之间的关系。
第二章:电路简化技术练习题答案a.直接串联与并联等效电阻的计算公式为:–直接串联:R = R1 + R2 + R3 + ...–直接并联:1 / R = 1 / R1 + 1 / R2 + 1 / R3 + ...b.根据以上公式,我们可以计算出串联和并联电路的等效电阻。
a.并联电路等效电阻的计算公式为:1 / R = 1/ R1 + 1 / R2。
b.代入R1=4欧姆和R2=5欧姆的值,我们可以计算得到1 / R = 1 / 4 + 1 / 5。
进一步计算可得1 / R = 0.45。
最后,通过倒数运算可以得到R= 2.22欧姆。
所以,电路中的等效电阻为2.22欧姆。
实验题答案a.看图2.1.Simplified CircuitSimplified Circuitb.根据电路简化技术,我们可以将电感L1和L2合并,并求得等效电感L。
通过串联和并联电感的公式,我们可以得到等效电感的计算公式:L = L1 + L2。
电路分析基础(周围主编)第二章答案
2-2(1).求图示电路在开关K 断开和闭合两种状态下的等效电阻ab R 。
解:先求开关K 断开后的等效电阻:()()Ω=++=9612//126ab R再求开关K 闭合后的等效电阻:()()Ω=+=86//1212//6ab R2-2(2).求图示电路在开关K 断开和闭合两种状态下的等效电阻ab R 。
解:先求开关K 断开后的等效电阻:()Ω=+=384//4ab R再求开关K 闭合后的等效电阻:Ω==24//4ab R2-3.试求题图2-3所示电路的等效电阻ab R 。
(a )解:题图2-3(a )aΩ400ΩaΩΩa题图2-2(1)题图2-2(2)abΩ4Ω8240//360144ab R =ΩΩ=Ω(b )解:40ab R =Ω题图2-3(b )abab20Ω60Ωab40Ωab 20Ω60Ωab20ΩΩabΩΩabaabΩ2-25(1). 求图示电路a 、b 两点间的等效电阻ab R 。
解:在图中画一条垂线,使左右两边对称,参见图中虚线所示。
显然虚线为等位线,没有电流流过,故图中电阻0R 可去掉,其等效电阻为:()()[]Ω=++=48//88//88ab R2-25(2). 求图示电路a 、b 两点间的等效电阻ab R 。
解:此题与上题相同,只是其中电阻的阻值不同,但仍保持其对称性。
采用同样的方法处理,有:()()[]Ω=++=7124//22//66abR2-25(3). 求图示电路a 、b 两点间的等效电阻ab R 。
解:在图中画一条垂线,使左右两边对称,参见图中虚线所示。
显然虚线为等位线,没有电流流过,故可将图中c 点分开,参见其等效图(题图2-25(3-1))所示,其等效电阻为:()[]R R R R R R R ab 9102//2//2//2=+=2-8.求图示电路的等效电压源模型。
(1)解:等效电压源模型如题图2-8(1-1)所示。
题图2-25(1)题图2-25(2)题图2-8(1) abV10题图2-8(1-1)题图2-25(3)题图2-25(3-1) R(2)解:等效电压源模型如题图2-8(2-1)和2-8(2-2)所示。
电路分析第二章习题解答
i1
=
50 =5A R总
i2
=
−5 × 15 15 + 10
=
−3A
6.化简图题 2-6 所示各二端电路。
a
- 7Ω
3Ω
5V
+ 3A
1A b
(a)
a
3A
-
5V
+
+
2V
15Ω
-
b
(b)
a
a
-
5Ω
18Ω
5V
7Ω 12Ω
+
1A
10Ω
7A
+ 2A
10V -
20Ω
b
b
(c)
解: a) 电路等效为
图题 2-6
(d)
R
4Ω
25V
15Ω
6Ω 24Ω
4Ω
4Ω
图题 2-4
解: 原电路可等效为
R
I +
25V
i
+
u 15Ω
10Ω
Q P = 15 = i 2 ×15
根据分流公式
∴i = 1A u = 15V i = I × 10 = 2 I
15 + 10 5
∴ I = 5 i = 2.5A 2
R = 25 −15 = 4Ω 2.5
5.求图题 2-5 所示电路的i1和i2。
32Ω
6Ω
i1 4Ω
12Ω
50V 解: 原电路可等效为
15Ω i2 2Ω
图题 2-5
40Ω 30Ω 6Ω
i1
4Ω
50V
4Ω
15Ω
i2 2Ω
72Ω 5Ω
i1 4Ω
02电工学(电工技术)第二版魏佩瑜第二章电路的分析方法答案
02电工学(电工技术)第二版魏佩瑜第二章电路的分析方法答案第二章 电路的分析方法P39 习题二 2-1题2-1图 题2-1等效图 解:334424144I R R I R I R R I ⋅=⋅+⎪⎪⎭⎫⎝⎛+⋅ ①33341445I R E I I R R I R ⋅-=⎥⎦⎤⎢⎣⎡++ ② 344443363I I I I =+⎪⎭⎫⎝⎛+,344215I I = 34815I I =①3R 2R4R 5R 3I1I5I4IE + -1R2I33444621I I I I -=⎪⎭⎫⎝⎛++,345623I I -=3410123I I -=,34506015I I -=,A 2930,302933==I I 代入 ①A 2916,293081544=⨯=⨯I I 另外,戴维南等效图A 29549296I 5==回归原图 3355I R I R E ⋅=⋅-,所以 A 293042954163=⨯-=I 2-2答 由并联输出功率400w 所以每个R获得功率RU P 2,W 1004400==)(484,2201002Ω==R R改串联后:W 25422220P P 222=⨯===总消耗输出R U 2-36V + - Ω1 Ω920 5I题2-4 △-Y 变换(二)图题2-4 △-Y 变换(三)图题2-4 等效星型图2-5 解:bcR 92R 92R 92aR 31 R 31R 31 bacR 95 R 95 R 95+-10V Ω2Ω25A题2-5 (a)图2-6 用两种电源等效互换的方法,求电路中5Ω电阻上消耗的功率。
10AΩ2+-20V Ω2题2-5 (b )图+ -5V Ω23+-5V Ω2Ω22.题2-5 Ω25A5AΩ2Ω3+ - 10Ω2题2-5习题2-6图解:由两源互换,原图可变为下图A 194215=--,所以:W 551252=⨯=⋅=R I P 2-7题2-7 图Ω22 Ω515V + - 12V + +--4V 1I解:① II I I II I 44.01164.0120102121=-=-=++II I I I I I 102905150102121=-=-=++ I I I 15)(44021=+-,I 16450=A 8225A 16450==I 1622501501=-I 所以 :A 875A 1615016225024001==-=I164500292=-I A 435161401645004640164500401162==-=-⨯=I② isg iR I R E U 12∑∑+∑=V 2225418.0310290150414.018.01104.01168.0120=+++=++++=U所以:A 8225414450=⨯==R U IW 31641622548225222R ≈=⨯⎪⎭⎫⎝⎛==R I P 2-8 试用支路电流法和节点电压法求如图所示各支路的电流。
电路分析第2章习题解析
2-1求图示电路(a)中的电流i和(b)中的i1和i2。
题2-1图
解根据图(a)中电流参考方向,由KCL,有
i=(2 – 8)A= –6A
对图(b),有
i1=(5 – 4)mA = 1mA
i2=i1+ 2 = 3mA
2-2图示电路由5个元件组成。其中u1=9V,u2=5V,u3=4V,u4=6V,u5=10V,i1=1A,i2=2A,i3=1A。试求:
题2-20图
解(a)由KVL,得
u= 2(ii1) + 2i1
又i1= ,代入上式,有
u= 2(i ) + 2( )
即
u= 2i
得
Rab= = 2
(b)由KCL,流过Re的电流为(i1+i1),故
u=Rbi1+ (i1+i1)Re
= [Rb+ ( 1 +)Re]i1
所以等效电阻
Rab= =Rb+ ( 1 +)Re
题2-10图
解由图中R1和R3并联,R2与R4并联关系,可求出电流I
I= = A=0.08A
再由分流关系,得
I3= I=0.04A
I4= I=0.064A
由KCL,得
IAB=I3I4=()A=24mA
2-11在图示电路中,如US= 30V,滑线电阻R=200,电压表内阻很大,电流表内阻很小,它们对测量的影响可忽略不计。已知当不接负载RL时,电压表的指示为15V。求
2-21如图所示为一种T形解码网络。它具有将二进制数字量转换为与之成正比的模拟电压的功能,故常称之为数字模拟转换器。
(1)求网络的输入电阻Rin;
(2)求输入电压u1和电位uA、uB、uC、uD及输出电压u2。
电路分析第2章习题解析
2.2 第2章习题解析2-1 求图示电路(a)中的电流i和(b)中的i1和i2。
题2-1图解根据图(a)中电流参考方向,由KCL,有i = (2 – 8 )A= – 6A对图(b),有i1 = (5 – 4) mA = 1mAi2 = i1 + 2 = 3mA2-2 图示电路由5个元件组成。
其中u1 = 9V,u2 = 5V,u3 = -4V,u4 = 6V,u5 = 10V,i1 = 1A,i2 = 2A,i3 = -1A。
试求:(1)各元件消耗的功率;(2)全电路消耗功率为多少?说明什么规律?题2-2图解(1)根据所标示的电流、电压的参考方向,有P1 = u1 i1 = 9 × 1 W= 9WP2 = u2( -i1)= 5 × ( -1 )W = -5WP 3 = u 3 i 2 = ( -4 ) × 2W = -8WP 4 = u 4 i 3 = 6 × ( -1 ) W= -6WP 5 = u 5 ( - i 3) = 10 × 1W = 10W(2)全电路消耗的功率为P = P 1 + P 2 + P 3 + P 4 + P 5 = 0该结果表明,在电路中有的元件产生功率,有的元件消耗功率,但整个电路的功率守恒。
2-3 如图示电路,(1)求图(a)中电压u AB ;(2)在图(b)中,若u AB = 6V ,求电流i 。
题2-3图解 对于图(a),由KVL ,得u AB =( 8 + 3 × 1 - 6 + 2 × 1)V = 7V对于图(b),因为u AB = 6i - 3 + 4i + 5 = 6V 故i = 0.4A2-4 如图示电路,已知u = 6V ,求各电阻上的电压。
题2-4图解 设电阻R 1、R 2和R 3上的电压分别为u 1、u 2和u 3,由分压公式得u 1 = 3211R R R R ++·u = 122× 6 V= 1Vu 2 = 3212R R R R ++·u = 124× 6 V= 2V u 3 = 3213R R R R ++·u = 126× 6V = 3V2-5 某收音机的电源用干电池供电,其电压为6V ,设内阻为1Ω。
《电路分析基础》第2章指导与解答
第2章电路的基本分析方法电路的基本分析方法贯穿了整个教材,只是在激励和响应的形式不同时,电路基本分析方法的应用形式也不同而已。
本章以欧姆定律和基尔霍夫定律为基础,寻求不同的电路分析方法,其中支路电流法是最基本的、直接应用基尔霍夫定律求解电路的方法;回路电流法和结点电压法是建立在欧姆定律和基尔霍夫定律之上的、根据电路结构特点总结出来的以减少方程式数目为目的的电路基本分析方法;叠加定理则阐明了线性电路的叠加性;戴维南定理在求解复杂网络中某一支路的电压或电流时则显得十分方便。
这些都是求解复杂电路问题的系统化方法。
本章的学习重点:●求解复杂电路的基本方法:支路电流法;●为减少方程式数目而寻求的回路电流法和结点电压法;●叠加定理及戴维南定理的理解和应用。
2.1 支路电流法1、学习指导支路电流法是以客观存在的支路电流为未知量,应用基尔霍夫定律列出与未知量个数相同的方程式,再联立求解的方法,是应用基尔霍夫定律的一种最直接的求解电路响应的方法。
学习支路电流法的关键是:要在理解独立结点和独立回路的基础上,在电路图中标示出各支路电流的参考方向及独立回路的绕行方向,正确应用KCL、KVL列写方程式联立求解。
支路电流法适用于支路数目不多的复杂电路。
2、学习检验结果解析(1)说说你对独立结点和独立回路的看法,你应用支路电流法求解电路时,根据什么原则选取独立结点和独立回路?解析:不能由其它结点电流方程(或回路电压方程)导出的结点(或回路)就是所谓的独立结点(或独立回路)。
应用支路电流法求解电路时,对于具有m条支路、n个结点的电路,独立结点较好选取,只需少取一个结点、即独立结点数是n-1个;独立回路选取的原则是其中至少有一条新的支路,独立回路数为m-n+1个,对平面电路图而言,其网孔数即等于独立回路数。
2.图2.2所示电路,有几个结点?几条支路?几个回路?几个网孔?若对该电路应用支路电流法进行求解,最少要列出几个独立的方程式?应用支路电流法,列出相应的方程式。
电路分析第二章习题答案
K解:)(6A=闭合时: 总电阻Ω=+⨯+=463632R)(5.7430301ARI===此时电流表的读数为:)(55.7326361AII=⨯=+=2-2 题2-2图示电路,当电阻R2=∞时,电压表12V;当R2=10Ω时,解:当∞=2R时可知电压表读数即是电源电压SU..12VUS=∴当Ω=102R时,电压表读数:41210101212=⨯+=+=RURRRuS(V)Ω=∴201R2-3 题2-3图示电路。
求开关K打开和闭合情况下的输入电阻R i。
解:K )(18.60//(10Ω+=∴i RK)(8//30//(10Ω==∴i R2-4 求题2-3图示电路的等效电阻R ab 、R cd 。
解:电路图可变为:)(154882.214882.2148//82.21)4040//10//(80//30)(08.1782.294082.294082.29//40)80//3040//10//(40)(4020800)(8010800)(402080020201020202010123123Ω=+⨯==+=Ω=+⨯==+=Ω==Ω==Ω==⨯+⨯+⨯=cdab R R R R R 2-5 求题2-5图示电路的等效电阻 R ab 。
题2-59ΩΩΩ解:(a)图等效为:)(73.35687)25//(8Ω==⨯=+=∴ab R (b))(96325150Ω=+=+=∴ab R(c)图等效为:ΩΩ注意到10电阻可断去)(67.127147148)25//()410(8Ω=+⨯+=+++=∴ab R(d)图等效为:181818912+⨯=R)(2272//)36//1436//54()(722)(3612311223Ω=+=Ω==Ω==ab R R R R R2-6 题2-6图示电路中各电阻的阻值相等,均为R ,求等效R ab .(b)(a)解:e 、f 、g 电位点,所以 (a)图等效为:)]//()(//[)(R R R R R R R R R R R ab +++++++=R R R R R R R 45310//2]4//22//[2==+=(b)图等效为:])//()(//[)//()(R R R R R R R R R R R ab ++++++=RRR R R R R R R R 75.0433//)2//22//(2//22===+=2-7 化简题2-7图示各电路.245V 1028-836-解: (注:与电流源串联的元件略去,与电压源并联的元件略去)(a)图等效为:234-(b)图等效为:15-(d)图等效为:76-(e)图等效为:872- (f)图等效为:226V-2-8 用电源等效变换法求题2-8图示电路中负载R L 上的电压U .+ -14-2解:电路等效为:+ -7U+ -55-U+ -15-U+ -5+ -13+ -U+ -2.5)(3105.725.22V U =⨯+=2-9 题2-9图示电路.用电源等效变换法求电流i .3解:31A1A 55-)(412051055105A i -=-=++-=∴2-10 若题2-10图示电路中电流i 为1.5A,问电阻R 的值是多少?6-题2-10图解:流过R 的电流为i R =i -2=1.5-2= -0.5(A ),再利用电源等效变换,原电路等效为:21R其中3Ω//4Ω=Ω712,i ’=-1+0.5= -0.5(A ),)(712Ω=∴R 2-11 化简题2-11图示电路.12-u S-图解:(a)图等效为:4ba48-2a8-4ba2ba224-iab2 ab-11 ab(b)图:设端口电流为i ,则01=++i gu R u x x i gR R u x 111+-=∴ 原电路变为:aa1112111)1(gR R gR gR R +=+-+2-12 求题2-12图示电路中电流源和电压源提供的功率分别是多少?2Ω解:电流源发出功率为)(20102w P =⨯=原图可变为:ΩΩ2A2.21Ω2A)(21.221.11)9141142//(9141)2//76//221//(7//21)(7),(221),(73323233231312Ω=+=++=++=∴Ω=Ω=Ω=⨯+⨯+⨯=总R R R R)(32.452w R U P ==∴总总∴电压源发出的功率P =45.32-20=25.32(w ) 2-13 求题2-13图示电路a 、b 端的等效电阻R ab .Ω解:原电路等效为:1ΩΩ0.5ΩΩ)(35.22047)67//21(2Ω==+=∴ab R。
电路分析基础知到章节答案智慧树2023年桂林电子科技大学
电路分析基础知到章节测试答案智慧树2023年最新桂林电子科技大学绪论单元测试1.同一型号的灯泡,单个灯泡接220V电源与两个灯泡串联接220V电源,灯泡的亮度有什么变化?()参考答案:变暗第一章测试1.下图为连接甲乙两地的输电线路,若甲地工作于800kV,电流为1.8kA,则功率由( )地输送至( )地,其值为 ( )MW。
参考答案:甲,乙,14402.电压电流参考方向如图中所标,有关A、B两部分电路电压电流参考方向是否关联描述正确的是()。
参考答案:A部分电压、电流参考方向非关联;B部分电压、电流参考方向关联。
3.电路如图所示, 其中电阻的值应分别为( ) Ω。
参考答案:100 , 1004.在集总假设条件下,对实际电路元件加以理想化,只能用一个表征该元件主要性质的模型来表示该元件。
参考答案:错5.在非关联的参考方向下,欧姆定律可以写成u=-iR。
其中R表示电阻,u为电阻两端的电压,i为流过电阻两端的电流。
参考答案:对6.电流和电压的参考方向可任意选定,选定后,在电路的分析和计算过程中也能改变。
参考答案:错7.对于集总参数电路中的任一节点,在任一瞬间,流向该节点的电流的代数和恒等于零。
参考答案:对8.独立电源可能产生功率,也可能吸收功率。
参考答案:对9.理想电压源的端电压u与外接电路有关。
参考答案:错10.理想电流源的端电压u由外电路确定。
参考答案:对11.实验中可以把电压源短路。
参考答案:错12.受控源是描述电子器件中某一支路对另一支路控制作用的理想模型,本身不直接起“激励”作用。
参考答案:对13.图示电路中,i1=i2。
参考答案:对14.图中所示电路中电流I等于_____A。
参考答案:null15.试求图中U AC为_____V。
参考答案:null16.图中 R1=500Ω,R3=200Ω, R2为500Ω的电位器。
输入电压为U1=12V , 输出电压U2的变化范围为{ }V~{ }V。
参考答案:null17.电路如图所示,电压US等于_____V 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章习题2.1 如题2.1图所示有向拓扑图,试选2种树,并标出2种树所对应的基本(a) 树一1T 如图所示。
基本割集为:c1{1,2,4}, c2{1,3,7}, c3{1,3,6,8}, c4{1,3,6,5,4} 基本回路为:l1{5,6,8}, l2{2,4,5}, l3{3,5,8,7}, l4{1,2,5,8,7}(b) 树二2T 如图所示。
基本割集为:c1{4,5,8}, c2{5,7,8}, c3{1,3,7}, c4{4,2,3,7} 基本回路为:l1{2,4,5}, l2{5,6,8}, l3{1,2,3}, l4{1,2,6,7}2.2 题2.2图示电路,求支路电流1I 、2I 、3I解:列两个KVL 回路方程:051)54211=-+++I I I ( 021)510212=-+++I I I (整理为: 45921=+I I 115521=+I I 解得:A I 5.01= A I 1.02-=而 A I I I 4.0)213-=+-=(2.3 如题2.3图所示电路,已知电流A I 21=解:可列KVL 回路方程: 2I+2+(i-3)R=3已知 i=2A ,代入上式可得: R=3Ω2.4 如题2.4图所示电路,试选一种树,确定基本回路,仅用一个基本回路方程求解电流i 。
解:10(i-6)+5(0.4i+i)+13i=0 解得: i=2A2.5 如题2.5图所示电路,试选一种树,确定基本割集,仅用一个基本割集方程求解电压u 。
若用节点法,你将选择哪一个节点作参考点?试用一个节点方程求电压u 。
解:①② 选3为参考节点,列方程如下: 52018120124-=-+u u )(已知V u 122-=,代入上式,有: 52012812014-=++u )(解得节点点位: V u 324-=又可知 0124=++u u 得: V u u 201232124=-=--=2.6 如题2.6图所示电路,已知电流A i 21=,A i 12=,求电压bc u 、电阻R 及电压源S u 。
解:列三个网孔方程28)6=-+B A Ri i R(①33)43(-=-+++-C B A i i R Ri ②S C B u i i -=++3)323-( ③ 可知: 12==i i B 21==-i i i B A 可得: 32=+=B A i i由①式可得: 283)6=-+R R ( 解得: Ω=5R 由②式有: 33)57(35-=-++⨯-C i 解得: 0=C i 由③式有: S u -=33- 解得: V u S 6= 根据KVL 有: V i u bc 7432-=--=2.7 如题2.7图所示平面电路,各网孔电流如图中所标,试列写出可用来求解该电路的网孔方程。
解:各网孔方程如下:471414)4141--=-+++C B A i i i ( 5725)5214(14--=++++C B A i i i 354)354(54+-=++++-C B A i i i整理得:1041419-=-+C B A i i i 1052114-=++C B A i i i 21254=++-C B A i i i2.8 如题2.8图所示电路,设节点1、2的电位分别为1u 、2u ,试列写出可用来求解该电路的节点方程。
节点方程为: 45131)312131(21-+=-++u u124)4131(3121--=++-u u2.9 如题2.9图所示电路,求电压ab u 。
解:将电压源变换为电流源,列节点 方程如下:2411)3111(-=-+b a u u422)2111(11-+=++-b a u u整理得: 634=-b a u u032=+-b a u u 联解得: V u a 3= V u b 2= 所以有: V u u u b a ab 1=-=2.10 如题2.10图所示电路中,负载电阻L R 是阻值可变的电气设备。
它由一台直流发电机和一串联蓄电池组并联供电。
蓄电组常接在电路内。
当用电设备需要大电流(L R 值变小)时蓄电池组放电;当用电设备需要小电流时(L R 值变大)时,蓄电池组充电。
设V U S 401=,内阻Ω=5.01S R ,V U S 322=,内阻Ω=2.02S R⑴ 如果用电设备的电阻Ω=1L R 时,求负载吸收的功率和蓄电池组所在支路的电流1I 。
这时蓄电池组是充电还是放电?⑵ 如果用电设备的电阻Ω=17L R 时,求负载吸收的功率和蓄电池组所在支路的电流1I 。
这时蓄电池组是充电还是放电?解:⑴ 当Ω=1L R ,设发电机支路电流为2I ,可列两个回路方程:1212120S S S S U I R U I R --+= 21212()0S S LU I R I I R --+=代入数据整理有:210.50.28I I -= 121.232I I +=联立求解得: 110I A = 220I A =所以有: 212()900L L P I I R W =+= 此时蓄电池组放电⑵ 当Ω=17L R ,代入上面方程,可得: 210.50.28I I -= 1217.21732I I +=联立求解得: 110I A =- 212I A =所以有: 212()68L L P I I R W =+= 此时蓄电池组充电2.11 如题2.11图所示电路,求图中受控源产生的功率P 受。
解:如图所示,有三个网孔①、②、③,设定 网孔电流巡回方向一致,列网孔方程:注意到网孔电流 3222A i i i ==,应而只需列网 孔①和②两个方程。
123(100100200)200100142i i i ++--=+ 12200(200300)2i i -++=- 1240040016i i -= 122005002i i -+=-解得: 22100i A =16100i A =受控源两端的电压为: 312146()100(2)100()1002100100u i i i i V =-=-=-=- 所以产生的功率为: 42(2)0.08100A P i u W =⨯=⨯-=受2.12 求如题2.12图所示电路中负载电阻R L 上吸收的功率P L 。
解:由于网孔3的网孔电流已知,为0.5i mA =-3 所以只需列两个网孔方程:123(1.53)3 1.56i i i +--=1233(113)0i i i -+++-= 将0.5i mA =-3代入,整理有:124.53 5.25i i -= 12350.5i i -+=- 联解得: 21i m A =可得: 221L L P i R mW =⨯=2.13 题2.13图示电路为晶体管等效电路,电路中各电阻及β均为已知,求电流放大系数i A (21/i A i i =),电压放大系数u A (21/u A u u =)。
解:设流过b R 的电流为/i ,则有: /1i i i b += 而 bfb be b R R i r i i )1(/β++=所以有: ])1(1[1bfbe b R R r i i β+++=而2i 是b i β的分流,为: LC Cb R R R i i +-=β2可得: fbe b b L C C i R r R R R R R i i A )1(12ββ+++⋅+-==又 LC LC b R R R R i u +-=β2 f b be b s R i r i u )1(β++=可得: fbe L C L C s u R r R R R R u u A )1(12ββ++⋅+-==2.14 如题2.14图所示电路,求电流i 1、i 2。
解:将电压源支路变换为电流源形式, 列一个节点方程:1111()103051110.5u +++=--- 解得 9u V =- 因而有: 291ui m Ak ==-Ω154411u Vi mA k k +-===-ΩΩ2.15 求如题2.15图所示电路中电压U 、电流I 和电源U S 产生的功率P S 。
解:将电压源支路变换为电流源形式, 列两个节点方程:12111()22131U U +-=+ 12111()322112U U-++=-+ 联立求解得: 19U V = 28U V = 电压源支路电流为: 222S S U U I A -==- 可得: 28U U V ==1/33I U A== 4(2)8S S s P U I W ==⨯-=-2.16 如题2.16图所示电路,求电压U 。
解:将电压源支路变换为电流源形式, 列节点方程,有:1211111()()6132636U U ++-+=+ 1211111()()2136236U U -++++=-整理有:12214U U -=1222U U -+= 解得: 110U V = 26U V = 所以: 121064U U U V V V =-=-=2.17求如题2.17图所示电路中负载电阻R L 解:选三个节点如图所示,显然有:37U V = 列两个节点方程:1231111()71331U U U +--=- 12311111()033212U U U -+++-= 将37U V =代入,整理有:1241033U U -= 121117362U U -+=联立求解可得: 22U V =所以有: 22/4L L P U R W ==2.18 试设计一个电路,使其节点方程为如下方程: 12331u u u --=123531u u u -+-=- 123351u u u --+=-式中,u 1、u 2、u 3分别为节点1、2、3的电位。
解:如图,节点4为参考节点。
2.19 如题2.19图所示电路中。
若/8i i =x ,试求电阻R x 的值。
解:该电路有三个网孔,已知有一个 网孔电流i i A =,所以列网孔方程为:0)15(10=-++-C x B x A i R i R i 0)10(5=++--C x B x A i R i R i已知: C B x i i i -= 和 )(88C B x A i i i i i -=== 带入方程,有0158080=-+++-C x B x B C B i R i R i i i ① 0104040=++-+-C x C B x C B i R i i R i i ②两式相加,得: 0130105=+-C B i i 可有: 2126105130==C B i i 上面①式可变为: 0)(8065=-++-C B x C B i i R i i 进一步有: 0)1(8065=-++-CB xC B i iR i i 带入2126=C B i i ,解得 Ω=2x R2.20 如题2.20图所示电路,求电压u x 、电流i x2.21 求如题2.21图所示电路中的电流I解:该电路有四个网孔,如图所示, 已知网孔电流A 2=C i ,设1A 电流源上 的电压为/u ,方向与电流方向一致,可 列如下网孔方程:u i i C A -=-12 ① /2u u i B -+= ② 52/+=+-u i i D C ③由②式和③式消去/u ,可得 : u i i i D C B +=+-72 ④ 又已知: 2=C i 代入上式可得:u i A -=32 ⑤ u i i D +=+92 ⑥由⑤式和⑥式消去u ,可得: 1222=++D B A i i i ⑦ 又已知: 3=-A B i i ⑧ 1=-D B i i ⑨ 联解⑦、⑧、⑨式,可得: A i A 1-= A i B 4= A i D 3= 显然有: A i i D 3==V i u A 523=-=2.22 求如题2.22图所示电路中的电压u x 。