列代数式找规律专题练习
重难点01 代数式规律题与代数式求值(原卷版)
重难点01代数式求值与代数式规律题考点一:代数式求值代数式核心考点:1、整式中:同类项与合并同类项、同底数幂的乘除法计算公式、乘法公式、整式的混合运算等;2、分式中:分式的意义、分式的基本性质、分式的化简求值;题型01整式及其运算易错点01:幂的各公式记背⎪⎩⎪⎨⎧∙===∙∙+底数分别乘方的积)(积的乘法,等于各个,指数相乘)(幂的乘方,底数不变数不变,指数相加)(同底数幂的乘法,底n n n n m n m nm n m b a ab a a a a a )()(易错点02:乘法公式的记背与区别完全平方公式:()2222222)(2bab a b a b ab a b a +-=-++=+;首先,需注意公式中ab 乘积项的符号与两数和或差的一致性;其次,公式也是等式,从右往左也可以应用,故应用时要注意两平方项符号的一致性,如:();2222y x y xy x --=-+-特别注意:当完全平方公式未知项为“中间项”时,答案一般会有两种情况,即正负皆可。
平方差公式:();22)(b a b a b a -=-+平方差公式从左往右应用,只要一项系数相同,一项系数互为相反数即可,不需要都和公式长的一模一样,而结果特征为符号相同项的平方-符号相反项的平方;如:();22)(x y y x y x -=---【中考真题练】1.(2023•黑龙江)下列运算正确的是()A.2x+3y=5xy B.(a+b)2=a2+b2C.(xy2)3=x3y6D.(a5)2÷a7=a2.(2023•南充)关于x,y的方程组的解满足x+y=1,则4m÷2n的值是()A.1B.2C.4D.83.(2023•江西)化简:(a+1)2﹣a2=.4.(2023•凉山州)已知y2﹣my+1是完全平方式,则m的值是.5.(2023•宿迁)若实数m满足(m﹣2023)2+(2024﹣m)2=2025,则(m﹣2023)(2024﹣m)=.6.(2023•丽水)如图,分别以a,b,m,n为边长作正方形,已知m>n且满足am﹣bn=2,an+bm=4.(1)若a=3,b=4,则图1阴影部分的面积是;(2)若图1阴影部分的面积为3,图2四边形ABCD的面积为5,则图2阴影部分的面积是.7.(2023•西宁)计算:(2a﹣3)2﹣(a+5)(a﹣5).8.(2023•河北)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图所示(a>1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如表2和表3,其面积分别为S1,S2.表2表3(1)请用含a的式子分别表示S1,S2,当a=2时,求S1+S2的值;(2)比较S1与S2的大小,并说明理由.【中考模拟练】1.(2024•天河区校级一模)下列计算,正确的是()A.a2⋅a3=a6B.a2+a2=2a4C.(﹣a2)3=﹣a6D.(a﹣1)2=a2﹣12.(2024•惠州模拟)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b23.(2023秋•凉山州期末)已知x+y﹣3=0,则2y•2x的值是()A.6B.﹣6C.D.84.(2024•邗江区校级一模)已知a﹣2b=8,则代数式a2﹣4ab+4b2的值为.5.(2024•长安区一模)规定一种新运算:a☆b=ab+a﹣b,如2☆3=2×3+2﹣3=5.(1)计算:(3a)☆5=;(2)如果2☆(2x﹣3)=3x2﹣2,则x的值为.6.(2024•南岗区校级一模)阅读材料:若x满足(6﹣x)(x﹣4)=﹣3,求(6﹣x)2+(x﹣4)2的值.解:设(6﹣x)=a,(x﹣4)=b,则(6﹣x)(x﹣4)=ab=﹣3,a+b=(6﹣x)+(x﹣4)=2.所以(6﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10.带仿照上例解决下面问题:若x满足(20﹣x)(x﹣10)=﹣5,则(20﹣x)2+(x﹣10)2的值是.7.(2024•南京模拟)如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=9,两正方形的面积和S1+S2=51,则图中阴影部分面积为.8.(2024•重庆模拟)要使(x2﹣ax+6)(2x2﹣x+b)展开式中不含x2项和x3项,则a﹣b=.9.(2024•郸城县二模)(1)计算:;(2)化简:(2x﹣y)(2x+y)﹣(2x﹣y)2.10.(2024•文水县一模)请阅读下面材料,并完成相应的任务,妙用平方差公式解决问题学完平方差公式后,王老师展示了以下例题:例计算+观察算式发现:如果将乘这时可以连续运用平方差公式进行计算,为使等式恒成立,需将式子整体再乘2.解:原式======2﹣+=2.以上计算的关键是将原式进行适当的变形后,运用平方差公式解决问题.计算符合算理,过程简洁.这种变形来源于认真观察(发现特点)、大胆猜想(运用公式)、严格推理(恒等变形).学习数学要重视观察、实验、猜测、计算、推理、验证等活动过程.任务:(1)请仿照上述方法计算:2(3+1)(32+1)(34+1)(38+1)+1;(2)请认真观察,计算:.题型02分式及其化简计算易错点01:分式的判断只需要确定分母中含有未知数即可,不需要看化简后的结果;易错点02:分式的值为0时,必须同步保证分母是有意义的,也就是分母不等于0,否则分式无意义;解题大招01:若0>B A ,则A、B 同号;若0<BA,则A、B 异号;解题大招02:分式的化简求值问题中,加减通分,乘除约分,结果最简,喜欢的数既要方便计算,又尽可能大点;【中考真题练】1.(2023•赤峰)化简+x ﹣2的结果是()A .1B .C .D .2.(2023•河北)化简的结果是()A .xy 6B .xy 5C .x 2y 5D .x 2y 63.(2023•凉山州)分式的值为0,则x 的值是()A .0B .﹣1C .1D .0或14.(2023•北京)若代数式有意义,则实数x 的取值范围是.5.(2023•宁夏)计算:+=.6.(2023•福建)已知+=1,且a ≠﹣b ,则的值为.7.(2023•大庆)若x 满足(x ﹣2)x +1=1,则整数x 的值为.8.(2023•大连)计算:(+)÷.9.(2023•丹东)先化简,再求值:,其中.10.(2023•宜昌)先化简,再求值:+3,其中a=﹣3.11.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【中考模拟练】1.(2024•珠海校级一模)下列计算正确的是()A.B.C.D.2.(2024•绵阳模拟)如果a=﹣3﹣2,b=,c=,那么a,b,c三数的大小为()A.a<c<b B.c<b<a C.c<a<b D.b<c<a3.(2024•运城模拟)化简的结果是()A.B.C.D.14.(2024•兰山区校级模拟)若x﹣y=3xy,则的值是()A.﹣3B.3C.D.5.(2024•湖州一模)若分式有意义,则实数x的取值范围是.6.(2024•西城区校级一模)如果分式的值为0,则x的值是.7.(2024•新疆模拟)当a=﹣2时,代数式的值为.8.(2024•凤翔区一模)化简:.9.(2024•绵阳模拟)(1)计算:;(2)先化简,再求值:,其中.10.(2024•天河区校级一模)先化简,然后从﹣1,0,1,2中选取一个合适的数作为x的值代入求值.11.(2024•兴庆区校级一模)在数学课上,老师出了一道题,让甲、乙、丙、丁四位同学进行“接力游戏”规则如下:每位同学可以完成化简分式的一步变形,即前一位同学完成一步后,后一个同学接着前一个同学的步骤进行下一步化简变形,直至将该分式化简完毕.请根据如表的“接力游戏”回答问题:接力游戏老师:化简:甲同学:原式=乙同学:=丙同学:=丁同学:=.任务一:①在“接力游戏”中,丁同学是依据C进行变形的.A.等式的基本性质B.不等式的基本性质C.分式的基本性质D.乘法分配律②在“接力游戏”中,从同学开始出现错误,错误的原因是.任务二:请你写出该分式化简的正确结果.题型03利用整体思想解决代数式求值问题代数式求值问题常用处理办法:①变形已知条件,使其符合待求式中含字母部分的最简组合形式②将待求式变形,使其成为含有上面最简组合式的表达式,③代入未知最简组合形式部分的值,求出最后结果;【中考真题练】1.(2023•巴中)若x满足x2+3x﹣5=0,则代数式2x2+6x﹣3的值为()A.5B.7C.10D.﹣132.(2023•南通)若a2﹣4a﹣12=0,则2a2﹣8a﹣8的值为()A.24B.20C.18D.163.(2023•泰州)若2a﹣b+3=0,则2(2a+b)﹣4b的值为.4.(2023•宁夏)如图是某种杆秤.在秤杆的点A处固定提纽,点B处挂秤盘,点C为0刻度点.当秤盘不放物品时,提起提纽,秤砣所挂位置移动到点C,秤杆处于平衡.秤盘放入x克物品后移动秤砣,当秤砣所挂位置与提纽的距离为y毫米时秤杆处于平衡.测得x与y的几组对应数据如下表:x/克024610y/毫米1014182230由表中数据的规律可知,当x=20克时,y=毫米.5.(2023•赤峰)已知2a2﹣a﹣3=0,则(2a+3)(2a﹣3)+(2a﹣1)2的值是()A.6B.﹣5C.﹣3D.46.(2023•福建)已知+=1,且a≠﹣b,则的值为.7.(2023•北京)已知x+2y﹣1=0,求代数式的值.8.(2023•成都)若3ab﹣3b2﹣2=0,则代数式(1﹣)÷的值为.9.(2023•菏泽)先化简,再求值:(+)÷,其中x,y满足2x+y﹣3=0.【中考模拟练】1.(2023•香洲区一模)已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣102.(2023•巴中)若x满足x2+3x﹣5=0,则代数式2x2+6x﹣3的值为()A.5B.7C.10D.﹣133.(2023•姑苏区校级二模)若a2﹣3a+2=0,则1+6a﹣2a2=()A.5B.﹣5C.3D.﹣34.(2023•龙江县四模)代数式3x2﹣4x﹣5的值为7,则x2﹣x﹣5的值为()A.4B.﹣1C.﹣5D.75.(2024•兰山区校级模拟)若x﹣y=3xy,则的值是()A.﹣3B.3C.D.6.(2024•汉川市模拟)已知x2﹣x﹣6=0,则的值是()A.B.C.D.17.(2024•潼南区一模)当x=1时,ax3+bx+3=5;则当x=﹣2时,则多项式ax2﹣2bx﹣2的值为.8.(2024•咸安区模拟)已知x2﹣2x﹣2=0,代数式(x﹣1)2+2021=.9.(2024•安溪县模拟)已知,且x≠y,则的值为.10.(2024•武侯区校级一模)若2x2+2xy﹣5=0,则代数式的值为.11.(2024•东阿县模拟)已知:m+=5,则m2+=.12.(2023•河源一模)已知m2﹣4m+1=0,则代数式值=.13.(2024•东城区校级模拟)已知a2+a﹣2=0,求代数式的值.考点二:代数式规律题题型01数字变化类规律题解题大招01:周期型规律题常见处理办法:①.找出第一周期的几个数,确定周期数②.算出题目中的总数和待求数③.用总数÷周期数=m……n(表示这列数中有m个整周期,最后余n个)④.最后余几,待求数就和每周期的第几个一样;解题大招02:推理型规律题常见处理办法:①依题意推出前3~4项规律的表达式;②类推第N项表达式【中考真题练】1.(2023•牡丹江)观察下面两行数:1,5,11,19,29,…;1,3,6,10,15,….取每行数的第7个数,计算这两个数的和是()A.92B.87C.83D.782.(2023•常德)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数若排在第a行b 列,则a﹣b的值为()A.2003B.2004C.2022D.20233.(2023•临沂)观察下列式子:1×3+1=22;2×4+1=32;3×5+1=42;…按照上述规律,=n2.4.(2023•内蒙古)观察下列各式:S1==1+,S2==1+,S3==1+…请利用你所发现的规律,计算:S1+S2+…+S50=.5.(2023•恩施州)观察下列两行数,探究第②行数与第①行数的关系:﹣2,4,﹣8,16,﹣32,64,…①0,7,﹣4,21,﹣26,71,…②根据你的发现,完成填空:第①行数的第10个数为;取每行数的第2023个数,则这两个数的和为.6.(2023•聊城)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:(3,5);(7,10);(13,17);(21,26);(31,37)…如果单独把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.7.(2023•浙江)观察下面的等式:32﹣12=8×1,52﹣32=8×2,72﹣52=8×3,92﹣72=8×4,…(1)写出192﹣172的结果;(2)按上面的规律归纳出一个一般的结论(用含n的等式表示,n为正整数);(3)请运用有关知识,推理说明这个结论是正确的.【中考模拟练】1.(2024•官渡区校级模拟)按一定规律排列的式子:a,2a3,4a5,8a7,16a9,…,则第2024个式子为()A.22023a2025B.(22024﹣1)a4047C.22023a4047D.22024a40492.(2024•渝中区校级模拟)有一列数{﹣1,﹣2,﹣3,﹣4},将这列数中的每个数求其相反数得到{1,2,3,4},再分别求与1的和的倒数,得到,设为{a1,a2,a3,a4},称这为一次操作,第二次操作是将{a1,a2,a3,a4}再进行上述操作,得到{a5,a6,a7,a8};第三次将{a5,a6,a7,a8}重复上述操作,得到{a9,a10,a11,a12}…以此类推,得出下列说法中,正确的有()个.①a5=2,,,,②a10=﹣2,③a2015=3,④.A.0B.1C.2D.33.(2024•南岗区校级一模)小王利用计算机设计了一个计算程序,输入和输出的数据如表:输入…12345…输出……那么,当输入数据为8时,输出的数据为()A.B.C.D.4.(2024•东兴区一模)对于每个正整数n,设f(n)表示n×(n+1)的末位数字.例如:f(1)=2(1×2末位数字),f(2)=6(2×3的末位数字),f(3)=2(3×4的末位数字)…,则f(1)+f(2)+f(3)+…+f(2023)的值是()A.4020B.4030C.4040D.40505.(2024•沈阳模拟)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,(其中k是使F(n)为奇数的正整数)…两种运算交替进行,例如,取n=12,则有,按此规律继续计算,第2024次“F”运算的结果是()A.B.37C.1D.46.(2024•兰山区校级模拟)如图的数字三角形被称为“杨辉三角”,图中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a2023﹣a2021=.7.(2024•湖南模拟)观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a+b的值为.8.(2023•咸丰县模拟)把一根起点为0的数轴弯折成如图所示的样子,虚线最下面第1个数字是0,往上第2个数字是6,……,则第21个数字是.9.(2024•花山区校级一模)观察下列等式:第1个等式:第2个式:第3个等式:第4个等式:…【总结规律】按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出第n个等式:(用含有n的等式表示);(3)利用以上规律,化简下面的问题(结果只需化简)..题型02图形变化类规律题解题大招:多从图形的变化规律上找相同点,再类比数字变化类推论去推导所求目标项的数字或表达式【中考真题练】1.(2023•重庆)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.262.(2023•达州)如图,四边形ABCD是边长为的正方形,曲线DA1B1C1D1A2…是由多段90°的圆心角所对的弧组成的.其中,的圆心为A,半径为AD;的圆心为B,半径为BA1;的圆心为C,半径为CB 1;的圆心为D,半径为DC1…,、、、的圆心依次为A、B、C、D循环,则的长是()A.B.2023πC.D.2022π3.(2023•广元)在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为21.4.(2023•山西)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n个图案中有个白色圆片(用含n的代数式表示).5.(2023•十堰)用火柴棍拼成如图图案,其中第①个图案由4个小等边三角形围成1个小菱形,第②个图案由6个小等边三角形围成2个小菱形,…,若按此规律拼下去,则第n个图案需要火柴棍的根数为.(用含n的式子表示)6.(2023•绥化)在求1+2+3+…+100的值时,发现:1+100=101,2+99=101…,从而得到1+2+3+…+100=101×50=5050.按此方法可解决下面问题.图(1)有1个三角形,记作a1=1;分别连接这个三角形三边中点得到图(2),有5个三角形,记作a2=5;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作a3=9;按此方法继续下去,则a1+a2+a3+…+a n=.(结果用含n的代数式表示)7.(2023•安徽)【观察思考】【规律发现】请用含n的式子填空:(1)第n个图案中“◎”的个数为;(2)第1个图案中“★”的个数可表示为,第2个图案中“★”的个数可表示为,第3个图案中“★”的个数可表示为,第4个图案中“★”的个数可表示为,……,第n个图案中“★”的个数可表示为.【规律应用】(3)结合图案中“★”的排列方式及上述规律,求正整数n,使得连续的正整数之和1+2+3+……+n等于第n个图案中“◎”的个数的2倍.【中考模拟练】1.(2024•济宁一模)如图都是由相同的小正方形按照一定规律摆放而成的,照此规律排列下去,第1个图形中小正方形的个数是3个,第2个图形中小正方形的个数是8个,第3个图形中小正方形的个数是15个,第9个图形中小正方形的个数是()A.100B.99C.98D.802.(2024•松山区一模)如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由()个基础图形组成.A.3n﹣1B.3n+1C.4n﹣1D.4n3.(2024•张家口一模)如图是P1,P2,…,P10十个点在圆上的位置图,且此十点将圆周分成十等份.连接P1P2和P5P6,并延长交于一点,连接P9P10和P6P7并延长交于一点,则夹角各是多少()A.30°和60°B.54°和72°C.36°和54°D.36°和72°4.(2024•重庆模拟)用大小相同的圆点摆成如图所示的图案,其中地①个图案用了7个圆点,第②个图案用了10个圆点,第③个图案用了14个圆点,第④个图案用了19个圆点,…,按照这样的规律摆放,则第7个图案中共有画点的个数是()A.40B.49C.50D.525.(2024•南岸区校级模拟)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、…、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷…)等,甲烷的化学式为CH4,乙烷的化学式为C2H6,丙烷的化学式为C3H8…,其分子结构模型如图所示,按照此规律,十二烷的化学式为()A.C12H24B.C12H25C.C12H26D.C12H286.(2024•渝中区校级模拟)下列图形都是由同样大小的△按一定规律组成的,其中第①个图形中一共有6个△,第②个图形中一共有13个△,第③个图形中一共有22个△,……,按此规律排列,则第⑧个图形中△的个数为()A.97B.95C.87D.857.(2024•阿城区一模)如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,继续排列下去,如果第n幅图中有337个菱形,则n=.8.(2024•巴东县模拟)如图,数轴上的点O为原点,点A表示的数为﹣3,动点P从点O出发,按以下规律跳动:第1次从点O跳动到OA的中点A1处,第2次从点A1跳动到A1A的中点A2处,第3次从点A2跳动到A2A的中点A3处,…,第n次从点A n﹣1跳动到A n﹣1A的中点A,处,按照这样的规律继续跳动到点A4,A5,A6,…,A2024处,那么点A2024所表示的数为.9.(2024•滕州市一模)如图,正方形ABCB1中,AB=,AB与直线l所夹锐角为60°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l 于点A3,作正方形A3B3C3B4,…,依此规律,则线段A2023A2024=.10.(2024•东莞市校级一模)如图:Rt△ABC中,∠C=90°,BC=1,AC=2,把边长分别为x1,x2,x3,…x n的n个正方形依次放在△ABC中:第一个正方形CM1P1N1的顶点分别放在Rt△ABC的各边上;第二个正方形M1M2P2N2的顶点分别放在Rt△AP1M1的各边上,…其他正方形依次放入,则第2022个正方形的边长x2022为.。
找规律,列代数式
搭1条、2条、3条如图所示的小鱼 各用几根火柴棒?
小鱼条数 火柴棒根数
1 8
2 14
3 20
… …
20
122
… …
n
6n+2
搭20条这样的小鱼用几根火柴棒? 搭n条这样的小鱼用几根火柴棒?
8+6(n-1)
搭100条这样的小鱼用几根火柴棒?1000条呢?
· · · · · · 把搭第1条小鱼的方法看做是先搭2
2、下面是用棋子写成的“上”字:
第一个“上”字 字
第二个“上”字
第三个“上”
如果按照以上规律继续摆下去,那么通过观察,可以发 现: (1)第四、第五个“上”字分别需用 和 枚棋子; (2)第n个“上”字需用 枚棋子.
3、下图是某同学在沙滩上用石子摆成 的小房子.
观察图形的变化规律,写出第n个小房 子用了_________块石子
4、下面的图形是由边长为1的正方形按照 某种规律排列而组成的.
(1)观察图形,填写下表: 图形 ① ②
③
正方形的个数 图形的周长
8 18
(2)推测第n个图形中,正方形的个数为________, 周长为_______(都用含n的代数式表示).
请同学们谈谈上了这节课后的 感想……
找规律,列代数式
问题一: 现在有10个人前来坐在一起就餐,如 果你是餐厅主人,你将如何安排顾客就餐呢?
1张餐桌可坐6人
问题一: 现在有10个人前来坐在一起就餐,如 果你是餐厅主人,你将如何安排顾客就餐呢?
摆法一
摆法二
问题二: 按照摆法一,三张餐桌拼放在一起可以 坐多少人?n张呢?
搭第一个正方形需要4根火柴棒。 (1)搭一搭,填一填:
· · · · · ·n根 上面的一排和下面的一排各用了
代数式找规律
代数式找规律1、(2010•济南)观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n(n是正整数)的结果为()A、(2n+1)2B、(2n-1)2C、(n+2)2D、n22、(2010•淮安)观察下列各式:,,,…计算:3×(1×2+2×3+3×4+…+99×100)=()A、97×98×99B、98×99×100C、99×100×101D、100×101×1023、(2010•呼和浩特)在计算机程序中,二叉树是一种表示数据结构的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点总数为3,三层二叉树的结点总数为7…照此规律,七层二叉树的结点总数为()A、63B、64C、127D、1284、(2010•河北)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()A、6B、5C、3D、25.(2010•安顺)四个电子宠物排座位,一开始,小鼠、小猴、小兔、小猫分别坐在1,2,3,4号座位上(如图所示),以后它们不停地变换位置,第一次上下两排交换,第二次是在第一次换位后,再左右两列交换位置,第三次再上下两排交换,第四次再左右两列交换…这样一直下去,则第2005次交换位置后,小兔所在的号位是()A、1B、2C、3D、46、(2010•安徽)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A、495B、497C、501D、5037、(2009•重庆)观察下列图形,则第n个图形中三角形的个数是()A、2n+2B、4n+4C、4n-4D、4n8、(2009•永州)如图是蜘蛛结网过程示意图,一只蜘蛛先以O为起点结六条线OA,OB,OC,OD,OE,OF后,再从线OA上某点开始按逆时针方向依次在OA,OB,OC,OD,OE,OF,OA,OB…上结网,若将各线上的结点依次记为:1,2,3,4,5,6,7,8,…,那么第200个结点在()A、线OA上B、线OB上C、线OC上D、线OF上9、(2009•河北)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A、13=3+10 B、25=9+16 C、36=15+21 D、49=18+3110..(2009•鄂州)为了求1+2+22+23+...+22008的值,可令S=1+2+22+23+...+22008,则2S=2+22+23+ (22009)因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+5+52+53+…+52009的值是()A、52009-1B、52010-1C、D、11、(2008•淄博)观察下面几组数:1,3,5,7,9,11,13,15,…2,5,8,11,14,17,20,23,…7,13,19,25,31,37,43,49,…这三组数具有共同的特点.现在有上述特点的一组数,并知道第一个数是3,第三个数是11.则其第n个数为()A、8n-5B、n2+2C、4n-1D、2n2-4x+512、(2008•台州)课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在()A、第3天B、第4天C、第5天D、第6天13、(2008•衢州)23,33,43分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,63也能按此规律进行“分裂”,则63“分裂”出的奇数中最大的是()A、41B、39C、31D、2914、(2008•黔东南州)观察图给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为()A、3n-2B、3n-1C、4n+1D、4n-315、(2008•聊城)如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()A、54个B、90个C、102个D、114个16、(2008•鄂尔多斯)小时候我们就用手指练习过数数,一个小朋友按图中的规则练习数数,数到2009时应对应的指头是()A、大拇指B、食指C、中指D、无名指17、(2007•孝感)将一正方形按如图方式分成n个全等矩形,上、下各横排两个,中间竖排若干个,则n 的值为()A、12B、10C、8D、618、(2007•台湾)将化成小数,则小数点后第122位数为()A、0B、3C、7D、919、(2007•济南)世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是()A、B、C、D、、20(2007•呼和浩特)观察下列三角形数阵:则第50行的最后一个数是()A、1225B、1260C、1270D、127521、(2011•遂宁)在同一平面内有n条直线,任何两条不平行,任何三条不共点.当n=1时,如图(1),一条直线将一个平面分成两个部分;当n=2时,如图(2),两条直线将一个平面分成四个部分;则:当n=3时,三条直线将一个平面分成部分;当n=4时,四条直线将一个平面分成部分;若n条直线将一个平面分成a n个部分,n+1条直线将一个平面分成a n+1个部分.试探索a n、a n+1、n之间的关系.22、(2011•凉山州)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b2展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.23、(2010•汕头)阅读下列材料:1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),3×4=(3×4×5-2×3×4),由以上三个等式相加,可得:1×2+2×3+3×4=×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n×(n+1)=(3)1×2×3+2×3×4+3×4×5+…+7×8×9=24、(2010•济宁)观察下面的变形规律:=1-;=-;=-;…解答下面的问题:(1)若n为正整数,请你猜想=(2)证明你猜想的结论;(3)求和:+++…+.25、(2009•张家界)有若干个数,第1个数记为a1,第2个数记为a2,第3个数记为a3,…第n个数记为a n,若a1=-,从第二个数起,每个数都等于1与前面那个数的差的倒数.(1)分别求出a2,a3,a4的值;(2)计算a1+a2+a3+…a36的值.26、(2009•安徽)观察下列等式:1×=1-,2×=2-,3×=3-,…(1)猜想并写出第n个等式;(2)证明你写出的等式的正确性.27、(2008•湛江)先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.28、(2007•镇江)探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n与层数n之间满足关系式a n=n2-32n+247,1≤n<16,n为整数.(1)例如,当n=2时,a2=22-32×2+247=187,则a5= ,a6=(2)第n层比第(n+1)层多堆放多少个仪器箱;(用含n的代数式表示)(3)如果不考虑仪器箱堆放所承受的压力,请根据题设条件判断仪器箱最多可以堆放几层?并说明理由;(4)设每个仪器箱重54N(牛顿),每个仪器箱能承受的最大压力为160N,并且堆放时每个仪器箱承受的压力是均匀的.①若仪器箱仅堆放第1、2两层,求第1层中每个仪器箱承受的平均压力;②在确保仪器箱不被损坏的情况下,仪器箱最多可以堆放几层?为什么?29、(2007•内江)探索研究:(1)观察一列数2,4,8,16,32,...,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18= ,a n= (2)如果欲求1+3+32+33+...+320的值,可令s=1+3+32+33+ (320)将①式两边同乘以3,得②由②减去①式,得S=(3)用由特殊到一般的方法知:若数列a1,a2,a3,…,a n,从第二项开始每一项与前一项之比的常数为q,则a n= (用含a1,q,n的代数式表示),如果这个常数q≠1,那么a1+a2+a3+…+a n= (用含a1,q,n的代数式表示).30、(2006•衢州)用若干根火柴可以摆出六个正方形,如下图就是一种摆法,请你再画出与下图不同的两种摆法示意图.并回答:要摆出六个正方形至多需要根火柴,至少需要根火柴.(摆出的六个正方形中,每个正方形的边仅限于一根火柴.)31、(2006•青岛)我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.例如:求1+2+3+4+…+n的值,其中n是正整数.对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为,即1+2+3+4+…+n=.(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)32、(2006•南平)如图每个正方形是由边长为1的小正方形组成.(1)观察图形,请填与下列表格:正方形边长 1 3 5 7 …n(奇数)黑色小正方形个数…正方形边长 2 4 6 8 …n(偶数)黑色小正方形个数…(2)在边长为n(n≥1)的正方形中,设红色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1,若存在,请写出n的值,若不存在,请说明理由.33、(2006•南充)有规律排列的一列数:2,4,6,8,10,12,…它的每一项用式子2n(n是正整数)来表示.有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,…(1)它的每一项你认为可用怎样的式子来表示;(2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数?34、(2006•河北)观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式:4×0+1=4×1-3;①4×1+1=4×2-3;②4×2+1=4×3-3;③。
列代数式找规律专题练习.
找规律专题练习1、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏 合,再拉伸,反复儿次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示。
这样捏 合到第次后可拉出64根细面条。
第一次捏合 第二次捏合 第三次捏合2、如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小 正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形, 如此循环进行下去; (1)填表:5、现有黑色三角形“▲"和“△”共200个,按照一定规律排列如下:▲ ..................................................则黑色三角形有个,口色三角形有个。
6、 仔细观察下列图形.当梯形的个数是n 时,图形的周长是。
1/ \1 / \ ■/ / \ / \27、 用火柴棒按如下方式搭三角形:(1) ____________________________________________________ 照这样的规律搭下去,搭n个这样的三角形需要 __________________________________________ 根火柴棒剪的次数123 45正方形个数8、 把编号为1,2,34…的若干盆花按右图所示摆放,花盆中 的花按红、黄、蓝、紫的颜色依次循环排列,则笫8行从左边 数第6盆花的颜色为 __________________ 色。
9、 已知一列数:1 , —2, 3 , —4, 5, —6, 7, •…将这列 数排成下列形式:(2) 如果剪n 次,共剪出多少个小正方形? (3) 如果剪了 1 00次,共剪出多少个小正方形?(4)观察图形,你还能得出什么规律?3、小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和 是•第1行 1 第2行-2 3 第3行 -4 5 笫4行 7-8笫5行11 -12-6 9 -10 1 3-1 415按照上述规律排下去,那么第10行从左边数第5个数等于.10、观察下列算式:lx5 + 4 = 32 ,2x6 + 4 = 42, 3x7 + 4 = 52,4x8+4 = 62,请你在察规律之后并用你得到的规律填空:—x —+ _____________ = 502, 第n 个式子呢? _____________X0 0 10. 111 010 01 000t 1001 一 21 1、一张长方形桌子可坐6人,按下列方式讲桌子拼在一起。
代数式中数字图形类找规律
第1页数字类找规律(代数式)1.有一列数a 1,a 2,a 3,…,a n ,…满足a 1=3,a 2=,之后每一个数都是前一个数的差倒数,即a n +1=,则a 2020﹣a 2018=( )A .﹣B .C .﹣D .2.观察下列数字:第2题图第4题图在上述数字宝塔中,第4层的第二个数是17,则数字2517的位置为( ) A .第50层第17个数 B .第50层第18个数 C .第20层第17个数D .第2017层第500个数 3.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是( ) A .9999B .10000C .10001D .100024.如图是含x 的代数式按规律排列的前4行,依此规律,若第10行第2项的值为1034,则此时x 的值为( )A .1 B .2 C .5 D .105.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a ,b ,c 的值分别为( )A .a=1,b=6,c=15 B .a=6,b=15,c=20C .a=15,b=20,c=15D .a=20,b=15,c=66.在一列数:a 1,a 2,a 3,…a n 中,a 1=3,a 2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2018个数是( ) A .1B .3C .7D .97.观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a 的值为()A .75B .89C .103D .1398.下表中,填在各正方形中的四个数之间都有相同的规律,根据此规律,m的值是( )A .58B .66C .74D .112二.填空题(共9小题)9.观察下列有规律的数:1,﹣,,﹣,,…,则第n 个数表示为 .10.如图,下列图形中的三个数之间均有相同的规律.根据此规律,图形中n 的值是 .11.观察以下等式: 第1个等式:=1 第2个等式:=1 第3个等式:=1 第4个等式:=1…按照以下规律,写出你猜出的第n 个等式: (用含n 的等式表示). 12.我国古代数学的许多创新与发展都曾居世界前列,图中的“杨辉三角”就是一例,则第n 行各数的和为 .13.将一列有理数﹣1,2,﹣3,4,﹣5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰6”中C 的位置是有理数 ,2018应排在A ,B ,C ,D ,E 中的位置.14.已知从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前9个奇数相加(即当最后一个奇数是17时),它们的和是 .15.如图,为一列有规律的式子,则可猜想第n 个式子是 . 2×0+1=12 4×2+1=32 8×6+1=72 16×14+l=152 32×30+1=312 …16.根据下列各式的规律,在横线处填空:,,=,…,+﹣ =17.已知:a 1=,a 2=,a 3=,a 4=,a 5=,a 6=,……,则a 100= .图形类找规律(代数式)一.选择题(共6小题)1.如图,将一张正三角形纸片剪成四个第2页全等的正三角形,得到4个小正三角形,称为第一次操作;然后,将其中的一个正三角形再剪成四个小正三角形,共得到7个小正三角形,称为第二次操作;再将其中的一个正三角形再剪成四个小正三角形,共得到10个小正三角形,称为第三次操作;…,以上操作n 次后,共得到49个小正三角形,则n 的值为( )A .n=13B .n=14C .n=15D .n=162.通过观察下面每个图形中5个实数的关系,得出第四个图形中y 的值是( )A .8B .﹣8C .﹣12D .123.观察下列图形的构成规律,依照此规律,第10个图形中共有( )个“•”.A .90B .91C .110D .1114.如图,物体从A 点出发,按照A→B (第一步)→C (第二步)→D→A→E→F→G→A→B……的顺序循环运动,则第2018步到达( )A .A 点B .C 点C .E 点D .F 点5.观察下列图形,它是把一个三角形分别连接这个三角形的中点,构成4个小三角形,挖去中间的小三角形(如图①);对剩下的三角形再分别重复以上做法,并将它们分别标记为图②,图③……,则图⑤中挖去三角形的个数为( )A .121B .362C .364D .7296.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为( )A .11B .13C .15D .17二.填空题(共10小题)7.观察下列图案,它们都是由边长为lcm 的小正方形按一定规律拼接而成的,依此规律,则第18个图案中的小正方形有 个.8.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚.(用含n 的代数式表示)9.将火柴棒按如图所示的方式摆放,按照这个规律摆下去,第6个图形需要 根火柴棒.10.下面由火柴拼出的一列图形中,第n 个图形由n 个正方形组成通过观察、归纳可得出,第672个图形中的火柴棒根数为 根. 11.观察下列图形的排列规律(其中▲、■、★分别表示三角形、正方形、五角星).若第一个图形是三角形,则第2018个图形是 .(填图形的名称)12.如图,下列图案是由火柴棒按某种规律搭成的,第(1)个图案中有2个正方形,第(2)个图案中有5个正方形,第(3)个图案中有8个正方形……,则第(5)个图案中有 个正方形,第n 个图案中有 个正方形.13.如图是用火荣棒拼成的一组图形,第①个图形有3根火柴棒,第②个图形有5根火柴棒,第③个图形有7根火柴棒,第④个图形有9根火柴棒,…按此规律拼下去,则第2018个图形需 根火柴棒.14.观察下列一组由★排列的“星阵”,按图中规律,第n 个“星阵”中的★的个数是 .15.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有 个正方形.16.如图,是用大小相等的小正方形按一定规律拼成的,则第10个图形是 个小正方形,第n 个图形是 个小正方形.第3页数字类找规律(代数式)参考答案与试题解析一.选择题(共8小题)1.有一列数a 1,a 2,a 3,…,a n ,…满足a 1=3,a 2=,之后每一个数都是前一个数的差倒数,即a n +1=,则a 2020﹣a 2018=( )A .﹣B .C .﹣D .【分析】根据差倒数的定义分别求出前几个数,便不难发现,每3个数为一个循环组依次循环,再根据规律求出a 2020与a 2018,然后将它们相减即可得解.【解答】解:∵a 1=3, ∴a 2=,a 3==,a 4==3,a 5==﹣,…,所以这列数的周期为3,又2020÷3=673…1,2018÷3=672…2, ∴a 2020=3,a 2018=﹣,∴a 2020﹣a 2018=3﹣(﹣)=. 故选:D .【点评】本题考查了数字的变化规律,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.2.观察下列数字:…在上述数字宝塔中,第4层的第二个数是17,则数字2517的位置为( )A .第50层第17个数B .第50层第18个数C .第20层第17个数D .第2017层第500个数【分析】根据每层第一个数以及该层数的个数即可得出第n 层第一个数为n 2,共n +1个数,令n 2≤2517<(n +1)2结合n 为正整数即可求出n 的值,再用2517﹣n 2+1即可得出该数为第几个,此题得解.【解答】解:∵第1层第一个数为1,共2个数;第2层第一个数为4,共3个数;第3层第一个数为9,共4个数;第4层第一个数为16,共5个数;…,∴第n 层第一个数为n 2,共n +1个数. 令n 2≤2517<(n +1)2,n 为正整数, 解得:n=50, ∵2517﹣2500+1=18,∴2517为第50层第18个数. 故选:B .【点评】本题考查了规律型中数字的变化类,根据每层第一个数以及该层数的个数的变化找出变化规律是解题的关键.3.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是( ) A .9999B .10000C .10001D .10002【分析】观察不难发现,第奇数是序数的平方加1,第偶数是序数的平方减1,据此规律得到正确答案即可. 【解答】解:∵第奇数个数2=12+1, 10=32+1, 26=52+1, …,第偶数个数3=22﹣1, 15=42﹣1,25=62﹣1, …,∴第100个数是1002﹣1=9999, 故选:A .【点评】本题是对数字变化规律的考查,分数所在的序数为奇数和偶数两个方面考虑求解是解题的关键,另外对平方数的熟练掌握也很关键.4.如图是含x 的代数式按规律排列的前4行,依此规律,若第10行第2项的值为1034,则此时x 的值为( )A .1B .2C .5【分析】先根据已知图片找出规律,根据规律得出方程,求出方程的解即可.【解答】解:根据题意得:29x +10=1034, 解得:x=2, 故选:B .【点评】本题考查了数字的变化类,能根据图片找出规律是解此题的关键.5.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a ,b ,c 的值分别为( )A .a=1,b=6,c=15B .a=6,b=15,C .a=15,b=20,c=15D .a=20,b=15【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a 、b 、c 的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和, ∴a=1+5=6,b=5=10=15,c=10+10=20, 故选:B .【点评】本题是一道找规律的题目,这第4页类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.6.在一列数:a 1,a 2,a 3,…a n 中,a 1=3,a 2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2018个数是( ) A .1B .3C .7D .9【分析】本题可分别求出n=3、4、5…时的情况,观察它是否具有周期性,再把2018代入求解即可.【解答】解:依题意得:a 1=3,a 2=7,a 3=1,a 4=7,a 5=7,a 6=9,a 7=3,a 8=7; 周期为6; 2018÷6=336…2, 所以a 2018=a 2=7. 故选:C .【点评】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.7.观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a 的值为()A .75B .89C .103 D .139【分析】由1、3、5、…为连续的奇数可知,11所在“品”字形为第6个图形,由左下的数字为2、4、8、…可得出b=26=64,再由右下数字为上面数字加左下数字,即可求出a 值. 【解答】解:∵“品”字形中上面的数字为连续的奇数,左下的数字为2、4、8、…,∴11所在“品”字形为第6个图形, ∴b=26=64.又∵1+2=3,3+4=7,5+8=13,…,∴a=11+b=75. 故选:A .【点评】本题考查了规律型中数字的变化类,根据“品”字形中数字的变化,找出变化规律是解题的关键.8.下表中,填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( ) A .58B .66C .74D .112【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10,由此解决问题. 【解答】解:8×10﹣6=74. 故选:C .【点评】此题考查数字的变化规律,通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.二.填空题(共9小题)9.观察下列有规律的数:1,﹣,,﹣,,…,则第n 个数表示为.【分析】观察发现,分子是从1开始的连续奇数,分母是n 2的数,然后根据此规律写出即可.【解答】解:因为1,﹣,,﹣,,…, 所以,故答案为:,【点评】本题考查了数字变化规律,观察发现分子是从1开始的连续奇数,分母是n 2的数是解题的关键,本题同学们对数字的敏感性比较重要.10.如图,下列图形中的三个数之间均有相同的规律.根据此规律,图形中n 的值是 2499 .【分析】根据图形数字变化可知:m=49+1=50,右下角的数字=上方的数字×左下方的数字+上方的数字,从而求出n 的值即可.【解答】解:第一图形:3×4+3=15, 第二个图形:5×6+5=35, 第三个图形:7×8+7=63, 依此类推,由图可知:左下角的数字比上方的数字大1, 即m=49+1=50,右下角的数字=上方的数字×左下方的数字+上方的数字, n=49×50+49=2499, 故答案为:2499.【点评】本题考查数字的变化类,根据已知图形找到数字的规律是解题的关键.11.观察以下等式: 第1个等式:=1 第2个等式:=1 第3个等式:=1 第4个等式:=1… 按照以下规律,写出你猜出的第n 个等式:++×=1 (用含n的等式表示).【分析】观察前四个等式可得出第n 个等式的前两项为及,对比前四个等式即可写出第n 个等式,此题得解.【解答】解:观察前四个等式,可得出:第n 个等式的前两项为及,∵++×=+=+==1,∴第n 个等式为++×=1.故答案为:++×=1.【点评】本题考查了规律型中的数字的变化类,观察给定等式,找出第n的等式是解题的关键.12.我国古代数学的许多创新与发展都曾居世界前列,图中的“杨辉三角”就是一例,则第n 行各数的和为2n﹣1.【分析】根据每行各数的和为2的序数减一次幂可得.【解答】解:∵第一行各数的和为1=20,第二行各数的和为2=21,第三行各数的和为4=22,第四行各数的和为8=23,……∴第n行各数的和为2n﹣1,故答案为:2n﹣1.【点评】本题主要考查数字的变化规律,解题的关键是根据数列得出每行各数的和为2的序数减一次幂.13.将一列有理数﹣1,2,﹣3,4,﹣5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C的位置是有理数﹣29,2018应排在A,B,C,D,E中的B位置.【分析】由题意可知:每个峰排列5个数,求出5个峰排列的数的个数,再求出,“峰6”中C位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答,根据题目中图中的特点可知,每连续的五个数为一个循环A到E,从而可以解答本题.【解答】解:∵每个峰需要5个数,∴5×5=25,25+1+3=29,∴“峰6”中C位置的数的是﹣29,(2018﹣1)÷5=2016÷5=403…2,∴2017应排在A、B、C、D、E中B的位置,故答案为:﹣29;B.【点评】此题考查图形的变化规律,观察出每个峰有5个数是解题的关键,难点在于峰上的数的排列是从2开始.14.已知从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前9个奇数相加(即当最后一个奇数是17时),它们的和是81.【分析】从已知可以找出规律,前n个奇数的和是n的平方,那么前9个奇数的和就是9的平方.【解答】解:前一个奇数和是1的平方,前两个奇数和是2的平方,前三个奇数和是3的平方,以此类推可得,前9个奇数(即当最后一个基数是17时)相加,其和是9的平方,故答案为:81.【点评】此题主要考查学生对规律型题的掌握,做此类题要先对给出的数据进行观察分析从而发现规律,根据规律解题.15.如图,为一列有规律的式子,则可猜想第n个式子是2n(2n﹣2)+1=(2n﹣1)2.2×0+1=124×2+1=328×6+1=7216×14+l=15232×30+1=312…【分析】由第1个式子为21×(21﹣2)+1=(21﹣1)2,第2个式子22×(22﹣2)+1=(22﹣1)2,第3个式子23×(23﹣2)+1=(23﹣1)2,据此可得答案.【解答】解:∵第1个式子为21×(21﹣2)+1=(21﹣1)2,第2个式子22×(22﹣2)+1=(22﹣1)2,第3个式子23×(23﹣2)+1=(23﹣1)2,……∴第n个式子为2n(2n﹣2)+1=(2n﹣1)2,故答案为:2n(2n﹣2)+1=(2n﹣1)2.【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.16.根据下列各式的规律,在横线处填空:,,=,…,+﹣=【分析】根据给定等式的变化,可找出变化规律“+﹣=(n为正整数)”,依此规律即可得出结论.第5页【解答】解:∵+﹣1=,+﹣=,+﹣=,+﹣=,…,∴+﹣=(n为正整数).∵2018=2×1009,∴+﹣=.故答案为:.【点评】本题考查了规律型中数字的变化类,根据等式的变化,找出变化规律“+﹣=(n为正整数)”是解题的关键.17.已知:a1=,a2=,a3=,a4=,a5=,a6=,……,则a100=.【分析】根据已知数列得出a n=,据此解答可得.【解答】解:由题意知a n =,当n=100时,a100==,故答案为:.【点评】本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n=.图形类找规律(代数式)参考答案与试题解析一.选择题(共6小题)1.如图,将一张正三角形纸片剪成四个全等的正三角形,得到4个小正三角形,称为第一次操作;然后,将其中的一个正三角形再剪成四个小正三角形,共得到7个小正三角形,称为第二次操作;再将其中的一个正三角形再剪成四个小正三角形,共得到10个小正三角形,称为第三次操作;…,以上操作n次后,共得到49个小正三角形,则n的值为()A.n=13B.n=14C.n=15D.n=16【分析】根据已知得出第n次操作后,正三角形的个数为3n+1,据此求解可得.【解答】解:∵第一次操作后得到4个小正三角形,第二次操作后得到7个小正三角形;第三次操作后得到10个小正三角形,∴第n次操作后,正三角形的个数为3n+1.则:49=3n+1,解得:n=16,故若要得到49个小正三角形,则需要操作的次数为16次.故选:D.【点评】此题主要考查了图形的变化类,根据已知得出第n次操作后,总的正三角形的个数为3n+1是解题关键.2.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8B.﹣8C.﹣12D.12【分析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.【解答】解:∵2×5﹣1×(﹣2)=12,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=12.故选:D.【点评】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.3.观察下列图形的构成规律,依照此规律,第10个图形中共有()个“•”.A.90B.91C.110【分析】观察图形可知前4个图形中分别有:3,7,13,21个“•”,所以可得规律为:第n个图形中共有[n(n+1)+1]个“•”.再将n=10代入计算即可.【解答】解:由图形可知:n=1时,“•”的个数为:1×2+1=3,n=2时,“•”的个数为:2×3+1=7,n=3时,“•”的个数为:3×4+1=13,n=4时,“•”的个数为:4×5+1=21,所以n=n时,“•”的个数为:n(n+1)+1,n=10时,“•”的个数为:10×11+1=111.故选:D.【点评】本题主要考查了规律型:图形的变化类,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律,难度适中.4.如图,物体从A点出发,按照A→B(第一步)→C(第二步)→D→A→E→F→G→A→B……的顺序循环运动,则第2018步到达()A.A点B.C点C.E点【分析】先求出由A点开始按照A→B(第1步)→C(第2步)→D→A→E→F→G→A→B→…的顺序循环运动走一圈所走的步数,在用2018除以此步数即可.【解答】解:∵如图物体从点A出发,按照A→B(第1步)→C(第2步)→D→A→E→F→G→A→B→…的顺序循第6页第7页环运动,此时一个循环为8步, ∴2018÷8=252…2.∴当物体走到第252圈后再走2步正好到达C 点. 故选:B .【点评】本题考查的是图形的变化类这一知识点,解答此题的关键是根据题意得出物体走一个循环的步数,找出规律即可轻松作答.5.观察下列图形,它是把一个三角形分别连接这个三角形的中点,构成4个小三角形,挖去中间的小三角形(如图①);对剩下的三角形再分别重复以上做法,并将它们分别标记为图②,图③……,则图⑤中挖去三角形的个数为( )A .121B .362C .364D .729【分析】根据题意找出图形的变化规律,根据规律计算即可.【解答】解:图①挖去中间的1个小三角形,图②挖去中间的(1+3)个小三角形, 图③挖去中间的(1+3+32)个小三角形, …则图⑤挖去中间的(1+3+32+33+34)个小三角形,即图⑤挖去中间的121个小三角形, 故选:A .【点评】本题考查的是图形的变化,掌握图形的变化规律是解题的关键.6.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为( )A .11B .13C .15D .17【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知: 第一个图形有3个正方形, 第二个有5=3+2×1个, 第三个图形有7=3+2×2个, …故第⑥个图形有3+2×5=13(个), 故选:B .【点评】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.二.填空题(共10小题)7.观察下列图案,它们都是由边长为lcm 的小正方形按一定规律拼接而成的,依此规律,则第18个图案中的小正方形有 171 个.【分析】从图中可看出小正方形的逐排个数是呈自然数列,可推出第n 个图形就有n (n +1)÷2,通过计算便可得出结果.【解答】解:第一个图形有1个小正方形,即1=1×(1+1)÷2;第二个图形有3个小正方形,即3=2×(2+1)÷2;第三个图形有6个小正方形,即6=3×(3+1)÷2; 依此规律,则第18个图案中的小正方形有18×19÷2=171个. 故答案为:171.【点评】本题考查了图形的变化规律,正确理解第n 个图案有n 层,从上到下分别有1,2,3…n 个正方形是关键.8.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 4n +2 枚.(用含n 的代数式表示)【分析】由已知图形知每增加一个矩形,棋子数增加4个,据此可得. 【解答】解:∵第一个图中棋子数6=4×1+2,第二个图中棋子数10=4×2+2, 第三个图中棋子数14=4×3+2, ……∴第n 个图中棋子数为4n +2, 故答案为:4n +2.【点评】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个矩形,棋子数增加4个.9.将火柴棒按如图所示的方式摆放,按照这个规律摆下去,第6个图形需要 31 根火柴棒.【分析】仔细观察发现每增加一个正六边形其火柴根数增加5根,将此规律用代数式表示出来即可. 【解答】解:由图可知:图形标号(1)的火柴棒根数为6; 图形标号(2)的火柴棒根数为11; 图形标号(3)的火柴棒根数为16; …由该搭建方式可得出规律:图形标号每增加1,火柴棒的个数增加5,所以可以得出规律:搭第n个图形需要火柴根数为:6+5(n﹣1)=5n+1,当n=6时,5n+1=31,即第6个图形需要31根火柴棒.故答案为:31.【点评】本题主要考查图形的变化规律,解题的关键在于通过题中图形的变化情况,通过归纳与总结找出普遍规律求解即可.10.下面由火柴拼出的一列图形中,第n个图形由n个正方形组成通过观察、归纳可得出,第672个图形中的火柴棒根数为2017根.【分析】拼1个正方形中火柴棒的根数是4,拼2个正方形中火柴棒的根数是(4×2﹣1),拼3个正方形中火柴棒的根数是(4×3﹣2),拼4个正方形中火柴棒的根数是(4×4﹣3)…拼n个正方形中火柴棒的根数是[4n﹣(n﹣1)],据此求解可得.【解答】解:∵第1个图形中火柴棒的根数是:4第2个图形中火柴棒的根数是:4×2﹣1=7第3个图形中火柴棒的根数是:4×3﹣2=10第4个图形中火柴棒的根数是:4×4﹣3=13.……∴第n个图形中火柴棒的根数是:4n﹣(n﹣1)=3n+1.当n=672时,3n+1=3×672+1=2017,故答案为:2017.【点评】本题主要考查图形的变化规律;得到火柴棒的根数是在4基础上增加几个3的关系是解决本题的关键.11.观察下列图形的排列规律(其中▲、■、★分别表示三角形、正方形、五角星).若第一个图形是三角形,则第2018个图形是正方形.(填图形的名称)【分析】观察图形可知,图形六个一循环,结合2018=336×6+2可找出第2018个图形和第2个图形相同,此题得解.【解答】解:观察图形,可知:图形六个一循环,∵2018=336×6+2,∴第2018个图形和第2个图形相同.故答案为:正方形.【点评】本题考查了规律型中图形的变化类,依照图形的排列找出变化规律是解题的关键.12.如图,下列图案是由火柴棒按某种规律搭成的,第(1)个图案中有2个正方形,第(2)个图案中有5个正方形,第(3)个图案中有8个正方形……,则第(5)个图案中有14个正方形,第n个图案中有3n﹣1个正方形.【分析】由题意知,正方形的个数为序数的3倍与1的差,据此可得.【解答】解:∵第(1)个图形中正方形的个数2=3×1﹣1,第(2)个图形中正方形的个数5=3×2﹣1,第(3)个图形中正方形的个数8=3×3﹣1,……∴第(5)个图形中正方形的个数为3×5﹣1=14个,第n个图形中正方形的个数(3n﹣1),故答案为:14、3n﹣1.【点评】本题主要考查图形的变化规律,根据题意得出正方形的个数为序数的3倍与1的差是解题的关键.13.如图是用火荣棒拼成的一组图形,第①个图形有3根火柴棒,第②个图形有5根火柴棒,第③个图形有7根火柴棒,第④个图形有9根火柴棒,…按此规律拼下去,则第2018个图形需4037根火柴棒.【分析】按照图中火柴的个数填表即可当三角形的个数为:1、2、3、4时,火柴棒的根数分别为:3、5、7、9,由此可以看出当三角形的个数为n时,三角形个数增加(n﹣1)个,那么此时火柴棒的根数应该为:3+2(n﹣1)进而得出答案.【解答】解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;…由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.当n=2018时,2n+1=2×2018+1=4037,故答案为:4037.【点评】此题主要考查了图形变化类,解题关键根据第一问的结果总结规律是得到规律:三角形的个数每增加一个,火柴棒的根数增加2根,然后由此规律解答.14.观察下列一组由★排列的“星阵”,按图中规律,第n个“星阵”中的★的个数是n2+n+2.第8页【分析】排列组成的图形都是三角形.第一个图形中有2+1×2=4个★,第二个图形中有2+2×3=8个★,第三个图形中有2+3×4=14个★,…,继而可求出第n个图形中★的个数.【解答】解:∵第一个图形有2+1×2=4个,第二个图形有2+2×3=8个,第三个图形有2+3×4=14个,第四个图形有2+4×5=22个,…∴第n个图形共有:2+n×(n+1)=n2+n+2.故答案为:n2+n+2.【点评】本题考查规律型中的图形变化问题,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.15.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有30个正方形.【分析】观察图形发现:第1幅图中有1个正方形,第2幅图中有1+4=5个正方形,第3幅图中有1+4+9=14个正方形,…由此得出第n幅图中有12+22+32+42+…+n2=n(n+1)(2n+1)从而得到答案.【解答】解:∵第1幅图中有1个正方形,第2幅图中有1+4=5个正方形,第3幅图中有1+4+9=14个正方形,…∴第n幅图中有12+22+32+42+…+n2=n (n+1)(2n+1),∴第4幅图中有12+22+32+42=30个正方形.故答案为30.【点评】此题考查图形的变化规律,利用图形之间的联系,得出数字的运算规律解决问题.16.如图,是用大小相等的小正方形按一定规律拼成的,则第10个图形是120个小正方形,第n个图形是(n2+2n)个小正方形.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,再将n=10代入求得第10个图形中小正方形的个数.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n,第10个图形中小正方形的个数是:102+2×10=120;故答案为120,(n2+2n).【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.第9页。
探索规律列代数式(初中数学)
探索规律列代数式探索规律列代数式这类考题是近几年中考的热点,这类题通常是通过对数、式或图形关系分析,探索规律,并能用代数式反映这个规律.现以近年各地的中考题为例说明如下.1. 探索单项式中的规律例1 (2021年云南)按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是()A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n解析:观察单项式中a的系数、次数与单项式的序数的关系,有如下规律:第1个单项式a2=12·a1+1;第2个单项式4a3=22·a2+1;第3个单项式9a4=32·a3+1;第4个单项式16a5=42·a4+1;……所以第n(n为正整数)个单项式为n2a n+1.故选A.2. 探索等式中的规律例2 (2021年嘉兴)观察下列等式:1=12-02,3=22-12,5=32-22,…,按此规律,则第n个等式为2n﹣1=___________.解析:观察等式中的数字与等式的序数的关系,有如下规律:第1个等式:2×1-1=12-02;第2个等式:2×2-1=22-12;第3个等式:2×3-1=32-22;……所以第n个等式为2n﹣1=n2-(n-1)2.故填n2-(n-1)2.3. 探索图形中的规律例3 (2021年绥化)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形……依此规律,则第n个图形中三角形的个数是_________.解析:观察图中三角形的个数与图形的序数的关系,有如下规律:第1个图形中三角形的个数为1=12+0;第2个图形中三角形的个数为5=22+1;第3个图形中三角形的个数为11=32+2;第4个图形中三角形的个数为19=42+3;……所以第n个图形中三角形的个数为n2+n﹣1.故填n2+n﹣1.第1 页共1 页。
代数找规律专项练习60题(有答案)
代数找规律专项练习60题(有答案)1.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891= _________ ×_________ ;(2)24×231= _________ ×_________ .2.观察下列算式:①1×3﹣22=3﹣4=﹣1②2×4﹣32=8﹣9=﹣1③3×5﹣42=15﹣16=﹣1④_________…(1)请你按以上规律写出第4个算式;_________(2)把这个规律用含字母的式子表示出来;_________ .3.观察下列等式9﹣1=816﹣4=1225﹣9=1636﹣16=20…这些等式反映自然数间的某种规律,请用含n(n为正整数)的等式表示这个规律_________ .4.小明玩一种游戏,每次挪动珠子的颗数与对应所得的分数如下表:挪动珠子数(颗) 2 3 4 5 6 …对应所得分数(分) 2 6 12 20 30 …①那么:挪动珠子7颗时,所得分数为_________ ;②当对应所得分数为132分时,挪动的珠子数为_________ 颗.5.观察下列一组分式:,则第n个分式为_________ .6.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时分裂成6个并死去1个,3小时后分裂成10个并死去1个,按此规律,5小时后细胞存活的个数是_________ .7.观察表格,当输入8时,输出_________ .输入 1 2 3 4 5 6 …输出 3 4 5 6 7 8 …8.观察下列各式,2=,3=,= _________ ,请你将发现的规律用含自然数n(n≥2)的式子表示为_________ .9.观察下列等式:32+42=52;52+122=132;72+242=252;92+402=412…按照这样的规律,第七个等式是:_________ .10.观察这组数据:,,,,…,按此规律写出这组数据的第n个数据,用n表示为_________ .11.一列小球按如下图规律排列,第20个白球与第19个白球之间的黑球数目是_________ 个.12.观察下列各个算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52;根据上面的规律,请你用一个含n(n>0的整数)的等式将上面的规律表示出来_________ .13.观察下列各式,你会发现什么规律1×3=12+2×1,2×4=22+2×23×5=32+2×3,4×6=42+2×4,…请你将猜到的规律用正整数n表示出来:_________ .14.观察下列式子:(x+1)(x﹣1)=x2﹣1(x2+x+1)(x﹣1)=x3﹣1(x3+x2+x+1)(x﹣1)=x4﹣1(x4+x3+x2+x+1)(x﹣1)=x5﹣1…请你根据以上式子的规律计算:1+2+22+23+…+262+263= _________ .15.观察下列各式:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;…将你猜想到的规律用含有字母n(n为正整数)的式子表示出来:_________ .16.观察下列算式:4×1×2+1=324×2×3+l=524×3×4+l=724×4×5+1=92用代数式表示上述的规律是_________ .17.观察如图所示的三角形阵:则第50行的最后一个数是_________ .18.已知,依据上述规律,则a9=_________ .19.下列各式是个位数为5的整数的平方运算:152=225;252=625;352=1225;452=2025;552=3025;652=4225;…;观察这些数都有规律,如果x2=9025,试利用该规律直接写出x为_________ .20.观察下列各式:22﹣1=1×3,32﹣1=2×4,42﹣1=3×5,52﹣1=4×6,…,根据上述规律,第n个等式应表示为_________ .21.观察上面的一系列等式:32﹣12=8×1;52﹣32=8×2;72﹣52=8×3;92﹣72=8×4;…则第n个等式为_________ .22.已知一列数,,…那么是第_________ 个数.23.已知…,按照这种规律,若(a、b为正整数)则a+b= _________ .24.观察下列各式:2×2=2+2,,,,…用含有字母n (其中n为正整数)的等式表示你发现的规律:_________ .25.观察下面数阵:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15…2 3 4 5 6 7 8 9 10 11 12 13 14 15 16…3 4 5 6 7 8 9 10 11 12 13 14 15 16 17…4 5 6 7 8 9 10 11 12 13 14 15 16 17 18…5 6 7 8 9 10 11 12 13 14 15 16 17 18 19…位于第2行和第2列的数为3,位于第3行和第1列的数为3,由此推知位于第n+2行和第n列的数是_________ .(请用含n的代数式表示,n为正整数)26.观察下列一组数:1,﹣2,4,﹣8,16,﹣32,…顺次写下去,写到第2011个数是_________ .27.大于或等于2的自然数的3次方有如下的分拆规律:23=3+5,33=7+9+11,43=13+15+17+19,…根据上述的分拆规律,则53= _________ .28.观察下列各等式:.根据以上各等式成立的规律,若使等式成立,则m= _________ ,n= _________ .29.观察下列等式:第1个等式:42﹣12=3×5;第2个等式:52﹣22=3×7;第3个等式:62﹣32=3×9;第4个等式:72﹣42=3×11;…则第n(n是正整数)个等式为_________ .30.如图各圆中三个数之间都有相同的规律,根据这个规律,探索第n个圆中的m= _________ (用含n的代数式表示).31.体育馆的某个区域的座位,第一排是20个座位,以后每增加一排,座位就增加2个.如果用字母a n表示每排的座位数,用n表示排数.请填写表格,并回答问题:(1)填写下表:排数n 1 2 3 4 5 …20 …座位数a n(2)第10排有多少个座位?(3)第n排有多少个座位?(4)其中某一排的座位是118个,那么它是第几排?32.观察下列两组算式,回答问题:第一组第二组①0+1=12①0=②1+3=22②1=③3+6=32③3=④6+10=42④6=⑤_________⑥_________…(1)根据第一组①→④式之间和本身所反映出的规律,继续完成第⑤⑥式(直接填在横线上);(2)学习第二组对第一组各式第一个数的分析,寻找规律,将第一组的第n个式子表示出来.33.研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1= _________ =(_________ )2(2)用含有n的式子表示上面的规律:_________ .(3)用找到的规律解决下面的问题:计算:= _________ .34.树的高度与树生长的年数有关,测得某棵树的有关数据如下表:(树苗原高100厘米)(1)用含有字母n的代数式表示生长了n年的树苗的高度a n;(2)生长了11年的树的高度是多少?35.将2007减去它的,再减去余下的,再减去余下的,…,再减去余下的,最后减去余下的,问此时余下的数是多少?36.观察下列等式:32﹣12=8×1;52﹣32=8×2;72﹣52=8×3;92﹣72=8×4;…(1)根据上面规律,若a2﹣b2=8×10,则a= _________ ,b= _________ ;(2)用含有自然数n的式子表示上述规律为_________ .37.将连续的奇数1、3、5、7…排成如图所示的数阵:(1)如图,十字框中五个数的和与框正中心的数17有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于2007吗?若能,请写出这五个数;若不能,请说明理由.38.计算并填写下表:n 1 2 3 4 5 10 100 10001﹣(1)请你描述一下所填的这一列数的变化规律;(2)当n非常大时,的值接近什么数?39.观察下列各式:﹣1×=﹣1+﹣×=﹣+﹣×=﹣+…(1)你能探索出什么规律?(用文字或表达式)(2)试运用你发现的规律计算:(﹣1×)+(﹣×)+(﹣×)+…+(﹣×)+(﹣×)40.(1)有自然数列:0,1,2,3,4,5,6,…①按顺序从第2个数数到第6个数,共数了_________ 个数;②按顺序从第m个数数到第n个数(n>m),共数了_________ 个数;(2)对于奇数数列:1,3,5,7,9,…按顺序从数3数到数19,共数了_________ 个数;(3)对于整百数列:100,200,300,400,500,…按顺序从数500数到数2000,共数了_________ 个数.41.仔细观察下列四个等式1×2×3×4+1=25=522×3×4×5+1=121=1123×4×5×6+1=361=1924×5×6×7+1=841=292(1)观察上述计算结果,找出它们的共同特征.(2)以上特征,对于任意给出的四个连续正整数的积与1的和仍具备吗?若具备,试猜想,第n个等式应是什么?给出你的思考过程(3)请你从第10个式子以后的式子中,再任意选一个式子通过计算来验证你猜想的结论.42.观察下列等式,并回答有关问题:;;;…(1)若n为正整数,猜想13+23+33+…+n3= _________ ;(2)利用上题的结论比较13+23+33+…+1003与50002的大小.43.观察下面三行数:①2,﹣4,8,﹣16,32,﹣64,…;②0,﹣6,6,﹣18,30,﹣66,…;③1,﹣2,4,﹣8,16,﹣32,…;(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第8个数,计算这三个数的和.44.下列各组算式,观察它们的共同特点:7×9=63 11×13=143 79×81=63998×8=64 12×12=144 80×80=6400从以上的计算过程中,你发现了什么?请用字母表示这一规律,并说明它的正确性.45.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…由上面的规律:(1)求25+24+23+22+2+1的值;(2)求22011+22010+22009+22008+…+2+1的个位数字.(3)你能用其它方法求出+++…++的值吗?46.我们把分子为1的分数叫做单位分数,如…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如,,…观察上述式子的规律:(1)把写成两个单位分数之和;(2)把表示成两个单位分数之和(n为大于1的整数).47.观察下列各式,并回答问题1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52…(1)请你写出第10个式子;(2)请你用含n 的式子表示上述式子所表述的规律;(3)计算1+3+5+7+9…+1003+1005+…+2009+2011;(4)计算:1005+1007+…+2009+2011.48.观察下列等式12×231=132×2113×341=143×3123×352=253×3234×473=374×4362×286=682×26…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同的规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反应的规律填空,使式子称为“数字对称等式”.①52×_________ = _________ ×25②_________ ×396=693×_________(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9则等式右边的两位数可表示为_________ ,等式右边的三位数可表示为_________ ;(3)在(2)的条件下,若a﹣b=5,等式左右两边的两个三位数的差;(4)等式左边的两位数与三位数的积能否为2012?若能,请求出左边的两位数;若不能,请说明理由.49.从2开始,将连续的偶数相加,和的情况有如下规律:2=1×2,2+4=6=2×3,2+4+6=12=3×4,2+4+6+8=20=4×5,2+4+6+8+10=30=5×6,2+4+6+8+10+12=42=6×7,…按此规律,(1)从2开始连续2011个偶数相加,其和是多少?(2)从2开始连续n个偶数相加,和是多少?(3)1000+1002+1004+1006+…+2012的和是多少?50.从2开始,连续的偶数相加,它们和的情况如下表:加数n的个数和S1 2=1×22 2+4=6=2×33 2+4+6=12=3×44 2+4+6+8=20=4×55 2+4+6+8+10=30=5×6……当n个最小的连续偶数(从2开始)相加时,它们的和与n之间有什么样的关系,请用公式表示出来,并由此计算:①2+4+6+…+202的值;②126+128+130+…+300的值.51.探索规律观察下面由※组成的图案和算式,解答问题:(1)请猜想1+3+5+7+9+…+19= _________ ;(2)请猜想1+3+5+7+9+…+(2n﹣1)= _________ ;(3)请用上述规律计算:103+105+107+…+2003+2005.52.大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3…+100=?,经过研究,这个问题的一般性结论是1+2+3…+n=,其中n是正整数,现在我们来研究一个类似的问题:1×2+2×3+…+n(n+1)=?观察下面三个特殊的等式:2×3=(2×3×4﹣1×2×3)将这三个等式的两边相加,可以得到1×2+2×3+3×4=×3×4×5=20读完这段材料,请尝试求(要求写出规律):(1)1×2+2×3+3×4+4×5=?(2)1×2+2×3+…+100×101=?(3)1×2+2×3+…+n(n+1)=?53.按一定规律排列的一列数依次为,,,…(1)请写出这列数中的第6个数;(2)如果这列数中的第n个数为a n,请用含有n的式子表示a n;(3)分数是否为这列数当中的一个数,如果是,请指出它是第几个数,如果不是,请找出这列数中与它最接近的那个数.54.观察下列等式,你会发现什么规律:1×3+1=222×4+1=323×5+1=424×6+1=52…请将你发现的规律用仅含字母n(n为正整数)的等式表示出来,并说明它的正确性.55.观察下面的一列数:…(1)用只含一个字母的等式表示这一列数的特征;(2)利用(1)题中的规律计算:.56.观察下面一列数,探求其规律:(1)请问第7个,第8个,第9个数分别是什么数?(2)第2004个数是什么如果这列数无限排列下去,与哪个数越来越接近?57.有一列数,第一个数为x1=1,第二个数为x2=3,从第三个数开始依次为x3,x4,…x n,从第二个数开始,每个数是左右相邻两个数和的一半,如:.(1)求第三、第四、第五个数,并写出计算过程;(2)根据(1)的结果,推测x9= _________ ;(3)探索这些户一列数的规律,猜想第k个数x k= _________ .58.观察下列各式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,…(1)根据你观察、归纳、发现的规律,写出8×9×10×11+1的结果;(2)试猜想:n(n+1)(n+2)(n+3)+1是哪一个数的平方?并说明理由.59.(1)若2x﹣3y=8,6x+4y=19,求16x+2y的值;(2)观察下列各式:×2=(+1)×2=+2,×3=(+1)×3=+3,×4=(+1)×4=+4,×5=(+1)×5=+5,…①想一想,什么样的两数之积等于两数之和;②设n表示正整数,用关于n的等式表示这个规律.60.(1)观察:1=12,1+3=22,1+3+5=32…可得1+3+5+…+(2n﹣1)= _________ .如果1+3+5+…+x=361,则奇数x的值为_________ .(2)观察式子:;;…按此规律计算1+3+5+7+…+2009= _________ .代数找规律专项练习60题参考答案1.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891= 198 ×81 ;(2)24×231= 132 ×42 .2.(1)①1×3﹣22=3﹣4=﹣1,②2×4﹣32=8﹣9=﹣1,③3×5﹣42=15﹣16=﹣1,④4×6﹣52=24﹣25=﹣1;故答案为:4×6﹣52=24﹣25=﹣1;(2)第n个式子是:n×(n+2)﹣(n+1)2=﹣1.故答案为:n×(n+2)﹣(n+1)2=﹣1.3.∵上述各等式可整理为:32﹣12=2×4;42﹣22=3×4;52﹣32=4×4;62﹣42=5×4;从而可得到规律为:(n+2)2﹣n2=4(n+1)4.∵n=2时,y=2,即y=1×2;n=3时,y=6,即y=2×3;n=4时,y=12,即y=3×4;n=5时,y=20,即y=4×5;n=6时,y=30,即y=5×6;n=7时,y=6×7=42,…n=n时,y=(n﹣1)n.∴当y=132时,132=(n﹣1)n,解得n=12或﹣11(负值舍去).故答案分别为:42,12.5. 观察题中的一系列分式,可以发现奇数项分式的前面有负号,可得每项分式的前面有(﹣1)n,从各项分式的分母可以发现分母为na,从各项分式的分子可以发现分子为b n,综上所述,可知第n个分式为:6.5小时后是25+1=33个.故答案为:337.由表格中上行输入的数据1 2 3 4 …n下行输出相对应的数据分别为3 4 5 6 …n+2∴当输入8时,输出8+2=10.8.由题意可知自然数n(n≥2)的式子表示为,则=9.第七个等式是152+1122=113210.由题可知:分子的规律是12,22,32, (2)分母的规律是:n(n+3),∴第n个数据为11.由题可找规律:1个白球分别和1个、2个、3个…黑球组成1组,所以20个白球即是第20项,20=1+(n﹣1)×1,即n=20,第20个白球与第19个白球之间的黑球数目是19个12.规律为n(n+2)+1=(n+1)2.13.∵1×3=12+2×1,2×4=22+2×2,3×5=32+2×3,4×6=42+2×4,∴n(n+2)=n2+2n14.由下列式子:(x+1)(x﹣1)=x2﹣1(x2+x+1)(x﹣1)=x3﹣1(x3+x2+x+1)(x﹣1)=x4﹣1(x4+x3+x2+x+1)(x﹣1)=x5﹣1…规律为:(x n+…+x3+x2+x+1)(x﹣1)=x n+1﹣1,故x n+…+x3+x2+x+1=;所以1+2+22+23+…+262+263=.即得答案15.因为各式:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31都为9乘以一个变化的数加上一个变化的数等于第一个变化的数乘以10,再加1,故此当为n时有:9•(n﹣1)+n=(n﹣1)•10+1;答案为:9•(n﹣1)+n=(n﹣1)•10+116.∵4×1×2+1=(2×1+1)=32,4×2×3+l=(2×2+1)=52,4×3×4+l=(2×3+1)=72,4×4×5+1=(2×4+1)=92,∴规律是:4a(a+1)+1=(2a+1)2.故答案为:4a(a+1)+1=(2a+1)2.17.第n行的最后一个数是1+2+3+…+n=,当n=50时,原式=1275.故答案为:1275.18.由已知通过观察得:a1=+=,即a1=+=;a2=+=,即a2=+=;a3=+=,即a3=+=;…,∴a n=+=,所以a9=+=,即a9=+=,故答案为:a9=+=.19.根据数据可分析出规律,个位数位5的整数的平方运算结果的最后2位一定是25,百位以上结果则为n×(n+1),n×(n+1)=90,得n=9,所以x=95,故答案为:9520.∵22﹣1=1×3,32﹣1=2×4,42﹣1=3×5,52﹣1=4×6,…,∴规律为(n+1)2﹣1=n(n+2).故答案为:(n+1)2﹣1=n(n+2)21.∵32﹣12=8×1;52﹣32=8×2;72﹣52=8×3;92﹣72=8×4;…∴第n个等式为:(2n+1)2﹣(2n﹣1)2=8n.故答案为:(2n+1)2﹣(2n﹣1)2=8n22.∵分母为1的数有1个:;分母为2的数有2个:,;分母为3的数有3个:,,;…∴前面数的个数为1+2+3+…+9=45,∴是第45+7=52个数.故答案为5223.由已知等式的规律可知,a=8,b=82﹣1=63,∴a+b=71.故答案为:7124.∵2×2=2+2,,,,…∴第n个式子为•(n+1)=+(n+1).故答案为+(n+1).25.第n+2行的第一个数是n+2,后边的数一次大1,则第n列的数是2n+1.故答案是:2n+126.第1个数:1=(﹣2)0,第2个数:﹣2=(﹣2)1,第3个数:4=(﹣2)2,第4个数:﹣8=(﹣2)3,第5个数:16=(﹣2)4,…第n个数:﹣2=(﹣2)n﹣1,第2011个数是(﹣2)2010.故答案为:(﹣2)201027.由已知23=3+5,33=7+9+11,43=13+15+17+19,…观察可知,(1)几的三次方就有几个奇数组成,(2)依次得到的第一个奇数是前一个关系式的最后一个奇数后的奇数,因此53=21+23+25+27+29.故答案为:21+23+25+27+2928.+=2,+=2,+=2,+=2,…∵1+7=8,2+6=8,3+5=8,10+(﹣2)=8,∴19+n=8,解得n=﹣11,∴m=n=﹣11.故答案为:﹣11,﹣1129.等式左边是平方差公式,即(n+3)2﹣n2=3(2n+3),故答案为(n+3)2﹣n2=3(2n+3).30.∵3=2×1+1,14=(1+3)2﹣2,5=2×2+1,47=(2+5)2﹣2,7=3×2+1,98=(3+7)2﹣2,∴n右边的数是2n+1,m=(n+2n+1)2﹣2=(3n+1)2﹣2.故答案为:(3n+1)2﹣231.(1)如图所示:排数n 1 2 3 4 5 …20 22 24 26 28 …座位数a n(2)第10排的座位数为:20+2×9=38;(3)第n排的座位数为20+2×(n﹣1)=18+2n;(4)由题意18+2n=118,解得n=50.答:是50排32.(1)⑤10+15=52,⑥15+21=62;(2)第n个式子为:+=n2.故答案为:10+15=52;15+21=6233.(1)7×9+1=64=82;(2)上述算式有规律,可以用n表示为:n(n+2)+1=n2+2n+1=(n+1)2.(3)原式==.故答案为:64,8;n(n+2)+1=(n+1)2;34.(1)a n=100+5n;(2)a n=100+5n=100+5×11=155厘米.35.依题意得第一次余下的数是原数2007的,即×2007;第二次余下的数是第一次余下的数的,即××2007;第三次余下的数是第二次余下的数的,即×××2007;最后余下的数是第2005次余下的数的,即××××××2007=1.36.(1)根据分析可知:a2﹣b2=8×10=(2×10+1)2﹣(2×10﹣1)2,∴a=21,b=19;(2)(2n+1)2﹣(2n﹣1)2=8n.故答案为:(1)a=21,b=1937.(1)十字框中五个数的和是框正中心的数17的5倍;(2)有这种规律.设框正中心的数为x,则其余的4个数分别为:x+2,x﹣2,x+12,x﹣12,所以十字框中五个数的和是x+x+2+x﹣2+x+12+x﹣12=5x,即十字框中五个数的和是框正中心的数的五倍.(3)不能.∵5x=2010,∴x=402.∵402不是奇数,故不存在38.填表:0,,,,,,,;(1)这一列数随着n值的变大,代数式的值越来越小;(2)当n变得非常大时,的值接近于﹣139.(1)﹣×=﹣+;(2)(﹣1×)+(﹣×)+(﹣×)+…+(﹣×)+(﹣×)=﹣1+﹣+﹣++﹣+﹣+=﹣1+=﹣.40.(1)①6﹣2+1=5个,②(n﹣m+1)个;(2)(19﹣3)÷2+1=9个;(3)(2000﹣500)÷100+1=16个.41.(1)都是完全平方数…(3分);(2)仍具备.也都是完全平方数…(5分);仔细观察前5个算式与其结果的关系,发现:1×2×3×4+1=(1×4+1)22×3×4×5+1=(2×5+1)23×4×5×6+1=(3×6+1)24×5×6×7+1=(4×7+1)25×6×7×8+1=(5×8+1)2…因此,猜想:n(n+1)(n+2)(n+3)+1=[n(n+3)+1]2=(n2+3n+1)2.即,第n个等式是:n(n+1)(n+2)(n+3)+1=(n2+3n+1)2…(8分)(3)如11×12×13×14+1=24024+1=24025.(112+3×11+1)2=(121+33+1)2=1552=24025.∴11×12×13×14+1=(112+3×11+1)2.猜想正确42.(1)根据所给的数据可得:13+23+33+…+n3=.故答案为:.(2)13+23+33+ (1003)==50502>50002,则13+23+33+…+1003>5000243.(1)∵2,﹣4,8,﹣16,32,﹣64,…;∴第①行数是:﹣(﹣2)1,﹣(﹣2)2,﹣(﹣2)3,﹣(﹣2)4,(2)第②行数比第①行数相应的数少2.即:﹣(﹣2)1﹣2,﹣(﹣2)2﹣2,﹣(﹣2)3﹣2,﹣(﹣2)4﹣2,…[答案形式不唯一],第③行数的是第①行数数的.即:﹣(﹣2)1×0.5,﹣(﹣2)2×0.5,﹣(﹣2)3×0.5,﹣(﹣2)4×0.5,…[答案形式不唯一];。
七年级数学上册 专题训练(四)寻找规律列代数式课件
第八页,共十三页。
解:(1)第4个图形中的棋子(qízǐ)有13枚 (2)第n个图形中的棋子枚数是3n+1 (3)当 n=20时,3n+1=3×20+1=61,所以第20个图形中有61枚棋子
第九页,共十三页。
第三章 整式(zhěnɡ shì)的加减
专题(zhuāntí)训练(四) 寻找规律列代数式
第一页,共十三页。
类型一:数(式)的规律 1.按一定的规律排列的一列数依次(yīcì)为:0,-3,-8,-15,-24,…,按此 规律排列下去,这列数中第9个数及第n个数(n为正整数)分别是( ) A.B-80,-n2-1 B.-80,-(n2-1) C.-63,-(n2-1) D.-63,-n2-1
类型三:程序运算图中的规律
9.如图是一计算程序,回答下列(xiàliè)问题: (1)当输入某数后,第一次得到的结果为5,则输入的数值x是多少? (2)小华发现当输入的x的值为16时,第1次得到的结果为8,第2次得到的结果为
4……
①请你帮小华完成下列表格:
②你能求出第2020次运算得到的结果是多少吗?请说明理由.
第十三页,共十三页。
第六页,共十三页。
7.如图,用有花纹和没有花纹的两种正方形地砖(dì zhuān)按图中所示的规律拼成若
干图案,则第n(n为正整数)个图案中没有花纹的地砖有___________块(,5n第+153个) 图案中
没有花纹的地砖有______块.
78
第七页,共十三页。
Hale Waihona Puke 8.观察下图中的棋子(qízǐ): (1)按照这样的规律摆下去,第4个图形中的棋子有多少枚?
2024年人教版七年级上册数学期末复习专项突破4用代数式表示排列规律的常见类型
1
2
3
4
5
6
7
8
6 073
9
个.
C. 209
D. 252
1
2
3
4
5
6
7
8
9
C
)
6. 观察下列表格:
第1列
第2列
第3列
第4列
…
第1行
1
2
3
4
…
第2行
2
3
4
5
…
第3行
3
4
5
6
…
第4行
4
5ห้องสมุดไป่ตู้
6
7
…
…
…
…
…
…
…
1
2
3
4
5
6
7
8
9
2 n -1
请猜想第 n 行第 n 列上的数是
1
2
3
4
5
6
7
8
9
.( n 为正整数)
类型3图形中的排列规律
7. [2024安庆期中]用棋子摆出一组如图所示的图形:
人教 七年级上册
第三章
专项突破4
代数式
用代数式表示排列规律
的常见类型
专项突破4
用代数式表示排列规律的常见类型
类型1数式中的排列规律
1. 观察下面的一组代数式:- x ,2 x2,-4 x3,8 x4,-16
x5,…,根据其中的规律,得出第10个代数式是(
A. -29 x10
B. 29 x10
C. -29 x9
A
)
B. 10 201
C. 10 203
与代数式有关的探索规律题.
与代数式有关的探索规律题一,探索算式规律.…,若符合前面式子的规律,则。
10102+=⨯+=b a b a a b 分析:观察已知中的算式,根据由特殊到一般的解题思想,发现a b 中,a=102 -1,b=10,所以a+b=109 答案:109同类练习例2(岳阳04).观察:11111()35235⨯=-, 11111()57257⨯=- 11111()79279⨯=- ………… 计算:111111112446681820⨯+⨯+⨯++⨯L = 。
答案:147二,探索图形规律例1(浙江湖州05).观察下面图形我们可以发现:第1个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种规律下去的第5个图形共有________个正方形。
答案:55个分析:根据图形反映的规律,第一个图正方形的个数是12个,第2个图正方形的个数是(12+22)个, 第3个图正方形的个数是(12+22+32)个,所以第5个图正方形的个数是(12+22+32+42+52)个.同类练习例2:(05山东泉州)下图是某同学在沙滩上用石于摆成的小房子.观察图形的变化规律,写出第n 个小房子用了 块石子.答案 n 2 +4n三,探索数据排列规律例1 (黄岗04)(本题10分)(1)在2004年6月的日历中(见图),任意圈出一竖列上相邻的三个数,设中间的一个为 a ,则用含 a 的代数式表示这三个数(从小到大排列)分别是 。
⑵ 连续的自然数1至2004按图中的方式派成一个长方形阵列,用一个正方形框出16个数(如图)①图中框出的这16个数之和是1222322333833844154415552455242222.已知:,,,,+=⨯+=⨯+=⨯+=⨯例1,(05青岛)②在上图中,要使一个正方形框出的16个数之和分别等于2000、2004,是否可能?若不可能,试说明理由。
若有可能,请求出该正方形框出的16个数中的最小数与最大数。
列代数式--数列规律型问题
列代数式--数列规律型问题1.观察以下一列数的特点:12,14,18,116…请根据这组数的规律求出第n个数是______(n为正整数)2.观察以下一列数的特点:3,5,7,9,11…请根据这组数的规律求出第n-1个数用代数式表示是______(n为正整数)3.观察以下一列数的特点:12,14,16,18,110…请根据这组数的规律求出第n个数是______(n为正整数)4.观察以下一列数的特点:1,13,15,17,19…则第n个数用代数式表示为______(n为正整数)5.观察以下一列数的特点:2,4,8,16,32,64…请根据这组数的规律求出第n个数用代数式表示为(n为正整数)6.请观察数字的规律:13,115,135,163,199…那么这列数的第n个数用代数式表示为______(n为正整数) 7.观察下列式子:第1个式子:2×4+1=9=32第2个式子:6×8+1=49=72第3个式子:14×16+1=225=152…请写出第n个式子:8. 如图,该数阵是由从1开始的连续自然数组成的,观察规律并完成下列各题(1) 数阵中第8行的最后一个数是________,它是自然数________的平方,第8行共有________个数;(2) 用含n 的式子表示:第n 行的第一个数是___________,最后一个数是________,第n 行共有________个数 9. 观察以下等式:第1个等式:11+02+11×02=1, 第2个等式:12+13+12×13=1, 第3个等式:13+24+13×24=1, 第4个等式:14+35+14×35=1, 第5个等式:15+46+15×46=1, …按照以上规律,解决下列问题:(1)写出第6个等式:____________________;(2)写出你猜想的第n 个等式:____________________(用含n 的等式表示)10.观察下列一组单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,….回答下列问题:(1)这组单项式中系数的符号、绝对值的规律分别是什么?(2)根据上面的归纳,请你猜想出第n个单项式(3)请你根据猜想,分别写出第2 021,2 022个单项式答案1. 12n⎛⎫ ⎪⎝⎭2. 21n -3.12n4.121n - 5. 2n6.()()12121n n +-7. ()()2111222121n n n +++-⨯+=-8. 64、8、15;()211n -+、2n 、()21n - 9.151516767++⨯=;1111111n n n n n n --++⋅=++ 10. 这组单项式中系数的符号的规律是-,+,-,+,…,系数的绝对值的规律是1,3,5,7,…,2n -1;第n 个单项式是(-1)n (2n -1)x n ;第2 021个单项式是-4 041x 2 021,第2 022个单项式是4 043x 2 022。
专题训练 寻找规律列代数式
专题训练寻找规律列代数式类型一、数(式)的规律一、选择题1、按一定的规律排列的一列数依次为0,-3,-8,-15,-24,、、、按此规律排列下去,这列数中第9个数及第n个数(n为正整数)分别是()。
A、-80,1n-2-n-2-B、-80,()1-2-D、-63,1n-2-C、-63,()1n2、在一列数a1,a2,a3、、、an中,a1=3,a2=7,从第三个数开始,每个数都是等于它前面两个数之积的个位数字,则这一列数中的第2017个数是()3、观察下面的式子:a,-2a2,4a3,-8a4,、、、根据你发现的规律,第8个式子是。
4.按一定规律排列的一列数依次为:﹣3,8,﹣15,24,﹣35,…,按此规律排列下去,这列数中第n个数(n为正整数)应该是()A.n(n+2)B.(﹣1)n n(n+2)C.(﹣1)n(n2﹣1)D.﹣n(n+1)二.填空题(共9小题)1.按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.2.按一定规律排列的一列数依次为:﹣1,,1,,…按此规律,这列数中的第10个数是.3.按一定规律排列的一列数依次为,…,按此规律排列下去,这列数的第n个数是.(n是正整数)4.按一定规律排列的一列数依次为,﹣,,﹣,,…,若按此规律排列下去,则这列数中第7个数是.5.按一定规律排列的一列数依次为:…,按此规律排列下去,这列数中的第9个数是.6.观察下面的单项式:a,﹣2a2,4a3,﹣8a4,…根据你发现的规律,第8个式子是.7.观察下列等式:(1)第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…用含有n的代数式表示第n个等式:a n==(n为正整数);(2)按一定规律排列的一列数依次为,1,,,,,…,按此规律,这列数中的第100个数是.类型二、图形中的规律一、选择题1.如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71B.78C.85D.892.下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,…,照此规律排列下去,则第个8图中小正方形的个数是()A.48B.63C.80D.993.下列图案由边长相等的黑、白两色正方形按一定的规律拼接而成,依此规律,第n个图形中白色正方形的个数为()A.4n+1B.4n﹣1C.3n﹣2D.3n+2二、填空题4.当n等于1,2,3…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)5.如图,用有花纹和没有花纹的两种正方形地面砖按图中所示的规律拼成若干图案,则第n个图案中没有花纹的地面砖有块.6.如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有个点.7.如图形是由边长为1的正方形按照某种规律排列而组成的.(1)观察图形,填写下表:(2)依上推测第n个图形中,正方形的个数为;图形的周长为.(都用含n的代数式表示)(3)当n=2009时,计算图形的周长.8.如图所示的图案是有边长相等的黑白两色正方形按照一定规律拼接而成.(1)观察图形,填写下表:(2)推测第6个图形中,黑色正方形的个数是,白色正方形的个数是.(3)推测第n个图形中,黑色正方形的个数是,白色正方形的个数是(都用含n的代数式表示)9.观察图中的棋子:(1)按照这样的规律摆下去,第4个图形中的棋子个数是多少?(2)用含n的代数式表示第n个图形的棋子个数;(3)求第20个图形需棋子多少个?类型三、程序运算图中的规律1.按图所示的运算程序,若开始输入的x的值是6,我们发现第一次得到的结果是3,第二次得到的结果是8,…,请你探索第2012次得到的结果为()A.2B.4C.6D.82.如图,是一计算程序,回答如下问题:(1)当输入某数后,第一次得到的结果为5,则输入的数值x是多少?(2)小华发现若输入的x的值为16时,第1次得到的结果为8,第2次得到的结果为4,…①请那帮小华完成下列表格:②你能求出第2011次得到的结果是多少吗?请说明理由.。
(完整版)找规律列代数式(整理后)
找规律列代数式活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?问题1。
若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?问题2。
若按图1方式摆放桌子和椅子桌子张数 1 2 3 4 5 n 可座人数问题3。
如果按图2的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?⑵⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。
活动三:1、用棋子摆出下列一组图形:(1)摆第一个图形用_________枚棋子,摆第二个图形用______枚棋子,摆第三个棋子用___枚棋子,按照这种方式摆下去,摆第n个图形用________枚棋子。
图形变化:●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●(2)摆第一个图形用_________枚棋子,摆第二个图形用______枚棋子,摆第三个棋子用___枚棋子,按照这种方式摆下去,摆第n个图形用________枚棋子。
三、拓展1、思考题:将一张长方形的纸对折,可得到一条折痕。
继续对折,对折时每次与上次的折痕保平行。
连续6次后,可以得到几条折痕?如果对折10次呢?对折n次呢?2. 木材加工厂堆放木料的方式如图所示:依此规律可得出第6堆木料的根数是 。
3、 如图:是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即n =20)根时,需要的火柴棍总数为 根。
4. 如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__第3题 ________个圆组成。
6. 下面是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字 如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用 和 枚棋子; (2)第n 个“上”字需用 枚棋子.找规律专题练习1、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示。
找规律列代数式
4n +1
例题3.观察下列由火柴棒搭成的小鱼图形,搭n 个小鱼需要多少根火柴棒?
1条 3条
2条
……
例题3.观察下列由火柴棒搭成的小鱼图形,搭n 个小鱼需要多少根火柴棒?
……
6n +2
由图形找规律可以有两种思路:
1、拆分图形,找出基本图形,得出规律 列出式子.
2、列出数字,从数字中找出规律,列出 式子.
例题1.观察下列由相同火柴棒搭成的图形,找出 规律,回答问题.
第n个图形是由
根火柴棒搭成?
①
ቤተ መጻሕፍቲ ባይዱ
②
④
③
……
例题1.观察下列由相同火柴棒搭成的图形,找出 规律,回答问题.
第n个图形是由
根火柴棒搭成?
……
2n +1
例题2.观察下列由小正方形拼成的图形,第n个 图形里有多少个小正方形?
① ③
②
……
例题2.观察下列由小正方形拼成的图形,第n个 图形里有多少个小正方形?
专题03与代数式相关的五种排列规律2024-2025学年七年级数学上册同步学与练「含答案」
专题03 与代数式相关的五种排列规律题型一:数字与数式的排列规律题型二:数表的排列规律题型三:数阵的排列规律题型四:图阵中点的排列规律题型五:图形的排列规律题型一:数字与数式的排列规律1.观察下列等式:第1个等式: 111111323a æö==´-ç÷´èø;第2个等式:2111135235a æö==´-ç÷´èø;第3个等式:3111157257a æö==´-ç÷´èø;第4个等式:4111179279a æö==´-ç÷´èø.请解答下列问题:(1)按以上规律列出第5个等式:5a = .(2)用含有n 的代数式表示第n 个等式:n a = (n 为正整数);(3)求11121399100a a a a a +++++L .一、单选题(共2小题)2.观察等式:232222+=-,23422222++=-,2345222222+++=-,….若502x =用含x 的式子表示;5051529910022222+++++L ,结果是( )A .22x x-B .222x -C .22x x -D .22x -3.观察下列等式:①223124-=´ ②225328-=´ ③2275212-=´……那么第n (n 为正整数)个等式为( )A .()()222222n n n --=´-B .()()221122n n n +--=´C .()()()22222242n n n --=´-D .()()22212124n n n +--=´二、解答题(共3小题)4.观察下列各式的计算结果:22221131311;244221182411;3993311153511;416164411244611...5252555-=-==´-=-==´-=-==´-=-==´(1)用你发现的规律填写下列式子的结果:2116-= × ;211n -= × .(2)用你发现的规律计算:22222111111111123420192020æöæöæöæöæö-´-´-´´-´-ç÷ç÷ç÷ç÷ç÷èøèøèøèøèøL 5.观察下列等式. 231216´´=①. 22523126´´=+②. 2227341236´´=++③.……(1)请写出第 5 个等式:(2)猜想第n (n 为正整数)个等式,并计算 222212320++++L 的值.6.观察下列算式:第1个等式:261213´=´第2个等式:()22623125´=+´第3个等式:()2226341237´=++´……(1)请写出第5个等式:__________;(2)写出第n 个(n 为正整数)等式;(3)计算:222213511++++L 的值.题型二:数表的排列规律7.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④后面的横线上写出相应的等式:①211=;②2132+=;③21353++=;④________;⑤2135795++++=;…(2)若n 表示任意一个整数,则2n 可以表示任意一个偶数,请你写出第n 个等式;(3)利用(2)中的等式,计算:41434599++++L 一、单选题(共2小题)8.如图,在2×2的网格内各有4个数字,各网格内数字都有相同的规律,c 为( )A .990B .9900C .985D .98509.干支纪年是中国传统纪年方法.干支是天干和地支的总称,“甲、乙…”等十个符号叫天干;“子、丑…”等十二个符号叫地支,把干支(天干十地支)顺序相配(甲子、乙丑、丙寅…)正好六十为一周期,周而复始,循环记录.有人总结出纪年算法的辅助表如下.甲乙丙丁戊已庚辛壬癸十天干4567890123子丑寅卯辰巳午未申酉戌亥十二地支45678910110123由上表很快算出1911年是辛亥年,1984年是甲子年,2000年是庚辰年,那么2024年是( )A .庚子B .丁酉C .壬卯D .甲辰二、解答题(共2小题)10.将连续的奇数1,3,5,7,9,…,39,排成如图1所示的数阵.(1)如图2,求方框中四个数的平均数;(2)如果用方框任意圈住四个数,设方框左上角的数为a .求方框中四个数的和(用含a 的代数式表示),并说明这个和能被4整除.11.探索规律:观察下面由※组成的图案和算式,解答问题:21342+==213593++==21357164+++==213579255++++==(1)请猜想1357917+++++¼+= ;(2)请猜想()()()135********n n n +++++¼+-++++= ;(3)请用上述规律计算: 10310510720072009+++¼++题型三:数阵的排列规律12.如图所示的数表是由1开始的连续自然数组成的,观察规律并解决下列问题:(1)第10行的最后一个数是______;(2)第20行共有______个数;(3)数字2023排在第_____行,从右往左数是第_____个数.一、单选题(共2小题)13.已知一列数:1、―2、3、4-、5、6-、……,将这列数排成下列形式:按照上述规律排列下去,第10行数的第1个数是( )A .46-B .36-C .37D .4514.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示()n a b +(此处0n =,1,2,3,4,5,…)的计算结果中的各项系数:则()6a b +各项系数的和为( )A .32B .48C .64D .128二、解答题(共4小题)15.观察下列正整数的排列顺序:解答以下问题:(1)35排在第几行第几列?(2)第10行第10列的数是多少?第n 行n 列的数呢?(用含n 的代数式表示)(3)2023排在第几行第几列?16.下面的数表是由从1开始的连续自然数组成的,观察规律并完成各题的解答.(1)表中第8行的最后一个数是______,它是自然数_____的平方,第8行共有_____个数;(2)用含n 的代数式表示:第n 行第一个数是________,最后一个数是______,第n 行共有_______个数;(3)求第20行各数之和.17.观察下面三行数:2,4-,8,16-,32,64-, ××××××①4,2-,10,14-,34,62-××××××②1,2-,4,8-,16,32-××××××③(1)第①行的第8个数为______,第②行的第8个数为______,第③行的第8个数为______.(2)取每行的第10个数,计算这三个数的和.18.材料一:杨辉三角(如图1),出现在中国宋朝时期数学家杨辉的著作《详解九章算法》中,是我国数学史上一颗璀璨的明珠,是居于世界前列的数学成就.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和,揭示了()na b +(n 为非负整数)展开式的项数及各项系数的相关规律,蕴含很多有趣的数学性质,运用规律可以解决很多数学问题.材料二:斐波那契数列,是意大利数学家莱昂纳多·斐波那契从兔子繁殖问题中引入的一列神奇数字,用n a 表示这一列数中的第n 个,则数列为11a =,21a =,32a =,43a =,55a =,…,数列从第三项开始,每一项都等于其前两项之和,即21n n n a a a ++=+(n 为正整数)结合材料,回答以下问题:(1)多项式()5a b +展开式共有________项,各项系数和为________,利用展开式规律计算:5432111115101051________22222æöæöæöæöæö-´+´-´+´-=ç÷ç÷ç÷ç÷ç÷èøèøèøèøèø.(2)我们借助杨辉三角中第三斜行的数:1,3,6,10,…记11b =,23b =,36b =,410b =,…则8________b =;________n b =(用n 表示);1231001111________b b b b ++++=….(3)如图2,把杨辉三角左对齐排列,将同一条斜线上的数字求和,计算可得11a =,21a =,32a =,43a =,55a =,68a =,…若123n n T a a a a =+++¼+,且2024T k =,结合材料二,求2026a 的值(用k 表示).题型四:图阵中点的排列规律19.如图为一个三角形点阵,从上向下数有无数行,其中第一行有一个点,第二行有两个点……第n 行有n 个点,我们将前n 行的点数和记为n S ,如11S =,410S =,则n S 不可能是()A.20B.15C.28D.36一、解答题(共4小题)20.有一个形如六边形的点阵,它的中心是一个点算第一层,第二层每边有两个点,第三层每边有三个点,依次类推.(1)填写下表中的空格:层数123456该层对应的点数161218所有层的总点数17(2)根据上表中的数据,试推断:n³)的点数为________(用n的代数式表示);①第n层(2②n层六边形点阵的总点数为_______(用n的代数式表示).21.如图是由同样大小的黑点按一定的规律组成的图形,其中图1中共有4个黑点,图2中共有9个黑点,图3中共有14个黑点,图4中共有19个黑点,L,依此规律,请解答下列问题.(1)图n中共有______个黑点;(用含n的式子表示)(2)若图n中共有2024个黑点,求n的值.22.用围棋棋子摆出下列一组图形,按照这种规律摆下去.(1)第5个图形用的棋子的个数为______,第n个图形用的棋子个数为______;(2)若第m个图形用的棋子个数超过57个,求m的最小值.23.化学中把仅有碳和氢两种元素组成的有机化合物称为碳氢化合物,又叫烃,如图,这是部分碳氢化合物的结构式,第1个结构式中有1个C和4个H,分子式是4CH;第2个结构式中有2个C和6个H,分子式是26C H;第3个结构式中有3个C和8个H,分子式是38C H…按照此规律,回答下列问题.(1)第6个结构式的分子式是________;(2)第n个结构式的分子式是________;(3)试通过计算说明分子式20244048C H的化合物是否属于上述的碳氢化合物.题型五:图形的排列规律24.【问题提出】2024欧洲杯正如火如荼进行中,本次比赛24支参赛球队分成6个小组,小组赛每小组4支球队进行单循环比赛,(任何一队都要与其他各队比赛一场且只比赛一场,不同小组之间不进行小组赛),则本次欧洲杯总计有几场小组赛比赛?【构建模型】为解决上述问题,我们构建如下数学模型:如图①,我们可以在平面内画出5个点(任意3个点都不在同一条直线上),每个点与另外4个点都可连成一条线段,这样一共连成54´条线段,实际只有54102´=条线段.(1)若某次比赛有6支队伍进行单循环比赛,借助图②,我们可知一共要安排______场比赛;(2)根据以上规律,若有n 支足球队进行单循环比赛,则一共要安排______场比赛.【实际应用】(3)2024年欧洲杯足球赛,总计需要安排______场小组赛.(4)甬舟铁路预计2028年通车,届时杭州到舟山的车程将缩短至一个半小时左右,从起点杭州站出发,途经绍兴、余姚、宁波、马岙,至终点白泉站(每种车票票面都印有上车站名称与下车站名称),那么在这段线路上往返行车,要准备车票的种数为______种.一、解答题(共4小题)25.用同样大小的两种不同颜色的正方形纸片,按如图方式拼成长方形:第①个图形中有2张正方形纸片;第②个图形中有()212623+==´张正方形纸片;第③个图形中有()21231234++==´张正方形纸片;第④个图形中有()212342045+++==´张正方形纸片;LL ;请你观察上述图形与算式,完成下列问题:(1)观察可得:123n ++++=L ______(用含n 的代数式表示);(2)根据你的发现计算:121122123300++++L .26.由镶嵌知识可知,边长相等的正六边形、正方形、正三角形三种地砖可进行无缝密铺,观察图1、图2、图3,完成如下解答.(1)填写下表:图序正六边形个数正方形个数正三角形个数图1166图22图33(2)①图n 中,正方形地砖数量为_______块、正三角形地砖的数量为_______块;②求图10中正方形地砖和正三角形地砖的总数量.27.【阅读】邻边不相等的长方形纸片,剪去一个正方形,余下一个四边形,称为第1次操作;在余下的四边形纸片中再剪去一个正方形,又余下一个四边形,称为第2次操作¼依此类推,若第n 次操作余下的四边形仍是正方形,则称原长方形为n 阶方形.如图1,邻边长分别为1和2的长方形只需第1次操作(虚线为剪裁线),余下的四边形就是正方形,则这个长方形为1阶方形;显然,图2是一个2阶方形;如图3,邻边长分别为2和3的长方形是2阶方形.【探索】(1)已知长方形的邻边长分别为1和(1)a a >,且这个长方形是3阶方形,请画出长方形及剪裁线的示意图,并在图形下方直接写出a 的值.【拓展】(2)若长方形的邻边长分别为a 和()b a b <,且满足4a r =,5b a r =+,则这个长方形是 阶方形.28.在滨湖国际会展中心广场中央摆放着一个正六边形的鲜花图案,如图所示,已知第一层摆红色花,第二层摆黄色花,第三层是紫色花,第四层摆红色花¼由里向外依次按红、黄、紫的颜色摆放.(1)这个鲜花图案有n 层,则这n 层共摆放了 盆花(用含n 的代数式表示);(2)如果最外层共有96盆花,则最外层花的颜色是 ,请计算此时鲜花图案共有多少盆花摆成的.1.(1)11119112911æö=´-ç÷´èø(2)1111(21)(21)22121n n n n æö=-ç÷-+-+èø(3)10469【分析】本题主要考查了数字的变化规律,根据题目所给等式,总结出变化规律是解题的关键.(1)根据题目所给的前几个等式,即可写出第五个等式;(2)根据题目所给的等式,总结出变化规律,即可解答;(3)根据题目所给的等式变化规则,分别计算1234100a a a a a ++++¼+和123410a a a a a ++++¼+,两者相减即可得到11121399100a a a a a +++++L .【详解】(1)解:由题意得:第5个等式为:511119112911a æö==´-ç÷´èø,故答案为:11119112911æö=´-ç÷´èø;(2)解:∵第1个等式:111111323a æö==´-ç÷´èø;第2个等式:2111135235a æö==´-ç÷´èø;第3个等式:3111157257a æö==´-ç÷´èø;第4个等式:4111179279a æö==´-ç÷´èø;…,∴第n 个等式:1111(21)(21)22121n a n n n n æö==-ç÷-+-+èø故答案为:1111(21)(21)22121n n n n æö=-ç÷-+-+èø;(3)解:∵1234100a a a a a ++++¼+1111113355779199201=+++++´´´´´L 1111111111123355779199201æö=´-+-+-+-++-ç÷èøL 1112201æö=´-ç÷èø12002201=´100201=又∵123410a a a a a ++++¼+11111133557791921=++++´´´´´11111111111233557791921æö=´-+-+-+-++-ç÷èøL 111221æö=´-ç÷èø120221=´1021=∴11121399100a a a a a ++++¼+1001020121=-10469=2.C【分析】本题考查了数字的变化类.根据题中的等式,找到规律,再根据幂的运算法则求解.【详解】解:∵232222+=-,23422222++=-,2345222222+++=-.….∴23412222222n n ++++++=-LL ,∴5051529910022222+++++L ()2100249222222=++-+++LL LL ()101502222=---1015022=-()25050222=´-22x x =-,故选:C .3.D【分析】此题考查了数字的变化规律,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.分别观察等式左边第一个数,第二个数,右边的后一个因数之间的关系,可归纳出规律;【详解】解:①223124-=´,②225328-=´,③2275212-=´…………第n (n 为正整数)个等式为()()22212124n n n +--=´,故选:D .4.(1)5711,,,66n n n n -+(2)20214040【分析】(1)根据题目中的规律解答即可;(2)根据题目中的规律解答即可;此题考查数字的变化规律,找出数字之间的运算规律与变换方法,得出规律解决问题.【详解】(1)解:依题意,21571666-=´,21111n n n n n-+-=´;故答案为:5711,,,66n n n n -+;(2)解:22222111111111123420192020æöæöæöæöæö-´-´-´´-´-ç÷ç÷ç÷ç÷ç÷èøèøèøèøèøL 13243520182020201920212233442019201920202020=´´´´´´´´´´L 1202122020=´20214040=.5.(1)222221156123456´´=++++(2)2870【分析】本题考查的是数字的变化规律和有理数的混合运算:(1)根据上述等式写出第5个等式即可;(2)根据上述等式写出第n 个等式,并据此计算222212320++++L 的值.【详解】(1)解:第5个等式:222221156123456´´=++++,故答案为:222221156123456´´=++++;(2)解:第n 个等式:()()2222221121123456n n n n ++=++++++L ,∴222212320++++L ()1202122016=´´´´+2870=.6.(1)()222226561234511´=++++´(2)()()222611221n n n n +=+++´+L (n 为正整数)(3)286【分析】本题考查数字变化的规律及有理数的混合运算,能用n 表示出第n 个等式是解题的关键.(1)根据题中所给等式,发现规律即可解决问题.(2)根据(1)中发现的规律即可解决问题.(3)根据(1)中发现的规律即可解决问题.【详解】(1)解:(1)由题知,因为第1个等式:261213´=´;第2个等式:()22623125´=+´;第3个等式:()2226341237´=++´;…,所以第n 个等式为:()()222611221n n n n +=+++´+L ;当5n =时,()222226561234511´=++++´;故答案为:()222226561234511´=++++´.(2)由(1)知,第n 个等式为:()()222611221n n n n +=+++´+L (n 为正整数).(3)原式()222222221231124610=++++-++++L L ()222221111112412356´+=´´-´++++L 2111251111245666´+´+=´´-´´´506220=-286=.7.(1)213574+++=(2)()21321n n+++-=L (3)2100【分析】本题考查了图形类和数字类规律探究,解决本题的关键是通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.(1)观察图形的变化情况即可填空;(2)结合(1)即可得第n 个等式;(3)结合(2)的规律进行计算即可.【详解】(1)解:根据题意得:④213574+++=,故答案为:213574+++=;(2)解:∵211=;2132+=;21353++=;213574+++=;2135795++++=;…∴()21321n n +++-=L 故答案为:()21321n n +++-=L ;(3)解:41434599++++L()L L1357999135739=++++++-+++++225020=-=.21008.D【分析】本题主要考查数字规律,根据方格先求的a,进一步求得b,则可求得c.【详解】解:观察网格图中的数字可以发现:a=¸=,100250b=-=,100199=-=´-=,c b a10010099509850故选:D.9.D【分析】本题考查了规律问题的探索与运用,读懂题目介绍的中国传统纪年方法是解题的关键.天干表10个数为一个周期,地支表12个数为一个周期,2000年是庚辰年,从2000年算起,用24分别除以10和12,根据余数结合天干地支表即可得到答案.【详解】根据题意可知,2000年是庚辰年,那么2000年的天干对应的数字是0,地支对应的数字是8,从2000年开始算起,2024年为第24年,Q天干表10个数为一个周期,地支表12个数为一个周期,¸=……,24122241024¸=,那么2024年的天干从0开始数,第4个是甲,2024年的地支与2000年的地支一样,都是数字是8\2024年对应的天干为甲,地支为辰,故2024年为甲辰年,故选:D.10.(1)8(2)见详解【分析】本题考查了规律型:数字的变化类,列代数式,解决本题的关键是根据题意列出代数式.(1)根据平均数的定义进行计算即可;(2)用含a 的代数式表示方框中四个数,然后求和即可解决问题.【详解】(1)解:35111384+++=,\方框中的四个数的平均数为8;(2)解:方框中的四个数分别为a ,2a +,8a +,10a +,\这四个数的和为:2810420a a a a a ++++++=+4204(5),a a a +=+Q 为整数\这个和能被4整除.11.(1)81(2)()22n +(3)1007424【分析】此题主要考查了数字变化规律,培养学生通过特例分析从而归纳总结出一般结论的能力.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目的难点.(1)根据已知得出连续奇数的和等于数字个数的平方;(2)根据已知得出连续奇数的和等于数字个数的平方,得出答案即可;(3)利用以上已知条件得出()()103105107200720091352007200913599101+++¼++=+++¼++-+++¼++,求出即可.【详解】(1)解:由已知得出:21342+==,213593++==,21357164+++==,213579255++++==,依此类推:第n 个所代表的算式为:()213521n n +++¼+-=;故当2117n -=,即9n =时,213517981+++¼+==,故答案为:81;(2)解:由(1)可得()()()()2135792121232n n n n +++++¼+-++++=+,故答案为:()22n +;(3)解:10310510720072009+++¼++()()1352007200913599101=+++¼++-+++¼++2212009110122++æöæö=-ç÷ç÷èøèø10100252061=-1007424=.12.(1)100(2)39(3)45;3【分析】本题主要考查了数字类的规律探索:(1)观察可知第n 行最后一个数为2n ,据此规律求解即可;(2)先求出第19行和第20行最后一个数,用第20行最后一个数减去第19行最后一个数即可得到答案;(3)根据224419362023452025=<<=即可得到答案.【详解】(1)解:第1行最后一个数为21,第2行最后一个数为22第3行最后一个数为23第4行最后一个数为24,……,以此类推,可知第n 行最后一个数为2n ,∴第10行最后一个数为210100=,故答案为:100;(2)解:由(1)得第20行最后一个数为220400=,第19行最后一个数为219361=,∴第20行共有40036139-=个数,故答案为:39;(3)解:∵224419362023452025=<<=,∴数字2023排在第45行,从右往左数是第3个数,故答案为:45;3.13.A【分析】本题考查了规律型:数字的变化类:认真观察、仔细思考,利用数字与序号数的关系解决这类问题.观察排列规律得到第1行有1个数,第2行有2个数,第3行有3个数,…,第9行有9个数,则可计算出前9行的数的个数45,而数字的序号为偶数时,数字为负数,于是可判断第10行数的第1个数为46-.故选A .【详解】解:第1行有1个数,第2行有2个数,第3行有3个数,…,第9行有9个数,所以前9行的数的个数为123945+++¼+=,而数字的序号为奇数时,数字为正数,数字的序号为偶数时,数字为负数,所以第10行数的第1个数为46-.故选:A .14.C【分析】此题主要考查了学生解决实际问题的能力和阅读理解能力,找出此题的数字规律是正确解题的关键.根据杨辉三角数表规律解答即可.【详解】解:当0n =时,各项系数的和为012=,当1n =时,各项系数的和为11122+==,当2n =时,各项系数的和为212142++==,当3n =时,各项系数的和为3133182+++==,……发现规律∶()na b +各项系数的和为2n ,当6n =时, ()6a b +各项系数的和为6264=,故选:C .15.(1)第6行第2列(2)91,2n n 1-+(3)数2023在第3行第45列.【分析】本题主要考查数字的变化规律,根据数字的变化得出第n 列第n 行为2n n 1-+,第1行第21n -列的数为()221n -是解题的关键.(1)根据表格中数字的排列得出结论即可;(2)根据第1列第1行到第5列第5行的数字规律得出第n 行第n 列的代数式即可;(3)根据数字变化规律得出第1行第21n -列的数为()221n -,即第1行第45列的数为2025,推出2023的位置即可.【详解】(1)解:由题意知,35排在第6行第2列;(2)解:∵第1列第1行为21111=-+,第2列第2行为23221=-+,第3列第3行为27331=-+,第4列第4行为213441=-+,第5列第5行为221551=-+,¼¼,第10列第10行为21010191-+=,∴第n 列第n 行为2n n 1-+;(3)解:由规律可知,第1行第21n -列的数为()221n -,∴第1行第45列的数为2025,∴数2023在第3行第45列.16.(1)64,8,15(2)()211n -+,2n ,(21)n -(3)14859【分析】本题考查了数字的变化规律,发现每行的变化规律是解答此题的关键.(1)根据图中的数据,总结规律求解即可;(2)根据图中的数据,总结规律求解即可;(3)根据前面发现的数字的变化特点,计算出第20行第1个数和最后一个数,然后求和即可.【详解】(1)第1行的最后一个数是211=,它是自然数1的平方,第1行共有1211=´-个数;第2行的最后一个数是242=,它是自然数2的平方,第2行共有3221=´-个数;第3行的最后一个数是293=,它是自然数3的平方,第3行共有5231=´-个数;第4行的最后一个数是2164=,它是自然数4的平方,第4行共有7241=´-个数;…;∴第8行的最后一个数是2864=,它是自然数8的平方,第8行共有28115´-=个数;故答案为:64,8,15;(2)第1行的第一个数是2101=+,最后一个数是211=,第1行共有1211=´-个数;第2行的第一个数是2211=+,最后一个数是242=,第2行共有3221=´-个数;第3行的第一个数是2521=+,最后一个数是293=,第3行共有5231=´-个数;第4行的第一个数是21031=+,最后一个数是2164=,第4行共有7241=´-个数;…;∴第n 行的第一个数是()211n -+,最后一个数是2n ,第n 行共有(21)n -个数;故答案为:()211n -+,2n ,(21)n -;(3)∵第20行第1个数为()22011362-+=,最后一个数为220400=,共有220139´-=个数∴第20行所有数字之和362363...400=+++()36239919400=+´+14859=.17.(1)256-,254-,128-(2)2558-【分析】此题考查数字的变化规律,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.(1)根据第①行已知数据都是2的乘方得到,再利用第偶数个数的系数为负数,即可得出答案;再根据第②行都比第①行对应数字大2进行解答,第③行是第①行的对应数字的12进行解答即可(2)先分别表示每一行的第10个数,再求和即可【详解】(1)解:∵2,4-,8,16-,32,64-, ×××××× ①∴122=,242-=-,382=,4162-=-,…∴第①行第8个数为:82256-=-;∵4,2-,10,14-,34,62-××××××②,都比第①行对应数字大2,∴第②行第8个数为:2562254-+=-;∵1,2-,4,8-,16,32-××××××③,∴第③行是第①行的12,∴第③行第8个数为:12561282-´=-,(2)∵第①行第10个数为:102-;∴第②行第10个数为:1022-+;第③行第10个数为:()10122´-,∴()101010122222--++´-101092222=---+()922212=-´+++9522=-´+2558=-.18.(1):6,32,132-;(2)36,()12n n +,200101;(3)1k +.【分析】本题主要考查了探索规律,正确理解题意,找出规律是解题的关键.(1)总结规律得多项式()5a b +展开式共有156+=项,各项系数和为515101051322+++++==,令()5a b +中,1,12a b ==-,由展开式得5543211111115101051222222æöæöæöæöæöæö-=-´+´-´+´-ç÷ç÷ç÷ç÷ç÷ç÷èøèøèøèøèøèø,从而即可得解;(2)总结规律得()8188362b +´==,()12n n n b +=,从而代入1231001111b b b b ++++…求解即可;(3)总结规律得21n n n a a a --=+,再由123n n T a a a a =+++¼+,2024T k =,得123202422a a a k a a a +++=++¼+,从而即可得解.【详解】(1)解:∵多项式()a b +展开式共有112+=项,各项系数和为11122+==;多项式()2a b +展开式共有123+=项,各项系数和为212142++==;多项式()3a b +展开式共有134+=项,各项系数和为3133182+++==;多项式()4a b +展开式共有145+=项,各项系数和为414641162++++==;多项式()5a b +展开式共有156+=项,各项系数和为515101051322+++++==;令()5a b +中,1,12a b ==-,由展开式得5543211111115101051222222æöæöæöæöæöæö-=-´+´-´+´-ç÷ç÷ç÷ç÷ç÷ç÷èøèøèøèøèøèø543251111111510105122222232æöæöæöæöæöæö-´+´-´+´-=-=-ç÷ç÷ç÷ç÷ç÷ç÷èøèøèøèøèøèø,故答案为:6,32,132-;(2)解:11b =,()21221232b +´=+==,()313312362b +´=++==,()41441234102b +´=+++==,…∴()8188362b +´==;()12n n nb +=,1231001111b b b b ++++…()()()()111111112213311001002222=+++¼++´+´+´+´2213243101102022´´´=++´++…11112213243101100æö=+++¼+ç÷´´´´èø11111112122334100101æö=-+-+-+¼+-ç÷èø1002101=´200101=故答案为:36,()12n n +,200101;(3)解:∵11a =,21a =,32a =,43a =,55a =,68a =,∴3212a a a ==+,4233a a a ==+,5345a a a ==+,6458a a a ==+,L∴21n n n a a a --=+,∵123n n T a a a a =+++¼+,2024T k =,∴12324422020k a a a T a ++++==¼,∴123202422a a a k a a a +++=++¼+,23320242a k a a a a +++¼=++,32424204a k a a a a +++¼=++,202420251a k a +=+∴20261a k =+.19.A【分析】题目主要考查规律探索问题,根据题意得出n S 的两倍等于相邻两个正整数的积,结合题意即可判断.【详解】解:由题意,可知()()1234114321n S n n n n =++++×××+-+=+-+×××++++,∴()21n S n n =+,即n S 的两倍等于相邻两个正整数的积.∵15256´=´,21267´=´,28278´=´,36289´=´,∴不存在两个相邻正整数的积等于20的两倍,故选A .20.(1)见解析(2)①66n -;②2331n n -+【分析】此题主要考查了找规律——图形的变化,学生通过特例分析从而归纳总结出一般规律的能力,通过分析找到各部分的变化规律后直接利用规律求解.(1)观察点阵可以写出答案;(2)①观察可知,从第二层开始,每增加一层就增加六个点;②将每一层的点数相加后即可得到答案.【详解】(1)解:如表:层数1234¼该层对应的点数161218¼所有层的总点数171937¼(2)解:①第一层上的点数为1;第二层上的点数为616=´;第三层上的点数为6626+=´;第四层上的点数为66636++=´;¼;第n 层上的点数为(1)666n n -´=-.②第二层开始,每增加一层就增加六个点,即n 层六边形点阵的总点数为,1162636(1)6n +´+´+´+¼+-´,[]161234(1)n =+++++¼+-,(1)162n n -=+´,13(1)n n =+-.第n 层六边形的点阵的总点数为:213(1)331n n n n +-=-+.故答案为:66n -;2331n n -+21.(1)()51n -(2)405n =【分析】(1)根据所给的图形进行类比得到公式即可;(2)利用公式得到方程解题即可;本题考查了图形的变化规律和解一元一次方程,解题的关键是仔细观察图形的变化规律,然后利用规律求解.【详解】(1)解:图1中共有4511=´-个黑点,图2中共有9521=´-个黑点,图3中共有14531=´-个黑点,图4中共有19541=´-个黑点,L ,图n 中共有()51n -个黑点,故答案为:()51n -;(2)当512024n -=时,405n =.22.(1)14,24n +;(2)27【分析】本题考查图形变化的规律,能根据所给图形发现棋子的个数依次增加2是解题的关键.(1)依次求出图形中棋子的个数,发现规律即可解决问题.(2)根据(1)中发现的规律即可解决问题.【详解】(1)解:由所给图形可知,第1个图形所用棋子的个数为:6124=´+;第2个图形所用棋子的个数为:8224=´+;第3个图形所用棋子的个数为:10324=´+;第4个图形所用棋子的个数为:12424=´+;¼,所以第n 个图形所用棋子的个数为(24)n +个,当5n =时,2425414n +=´+=(个),即第5个图形所用棋子的个数为14个.故答案为:14,24n +.(2)解:由(1)知,2457m +>,解得26.5m >,又m 是正整数,所以m 的最小值为27.23.(1)614C H (2)22C H n n +(3)不属于,理由见解析【分析】本题考查了图形规律问题 ,旨在考查学生的抽象概括能力,根据图示确定一般规律即可求解.(1)由图可知:第n 个结构式中有n 个C 和()22+n 个H ,分子式是22C H n n +,据此即可求解;(2)由(1)中的结论即可求解;(3)令2024n =,计算22n +即可判断;【详解】(1)解:由图可知:第n 个结构式中有n 个C 和()22+n 个H ,分子式是22C H n n +;∴第6个结构式的分子式是614C H ,故答案为:614C H (2)解:由(1)可知:第n 个结构式的分子式是22C H n n +,故答案为:22C H n n +(3)解:令2024n =,则224050n +=,∴分子式20244048C H 的化合物不属于上述的碳氢化合物24.(1)15.(2)()12n n ´-(3)90(4)30【分析】本题考查了归纳总结和配对问题,涉及列代数式及其求值、有理数的运算,求出关于n 的关系式,再根据实际情况讨论是解题的关键.(1)根据图②线段数量进行作答.(2)当有n 支足球队进行单循环比赛时,即在平面内画出n 个点(任意3个点都不在同一条直线上),每个点与另外1n -个点都可连成一条线段,这样一共连成()1n n ´-条线段,实际只有()12n n ´-条线段,即可得求出比赛的场数.(3)根据题意可得,一个小组会有65152´=场比赛,故六个小组则共有有61590´=场比赛.(4)因为行车往返存在上车与下车,所以不需要除去每两个点之间的线段都重复计算了一次的情况,即一个车站与另外5个车站都可各形成一张车票,即5张车票,得出六个车站一共形成了5630´=种车票.【详解】(1)由图②可知,图中实际共有56152´=条线段,∴根据题意,可得6支队伍进行单循环比赛一共要安排15场比赛.故答案为:15.(2)当有n 支足球队进行单循环比赛时,即在平面内画出n 个点(任意3个点都不在同一条直线上),每个点与另外1n -个点都可连成一条线段,这样一共连成()1n n ´-条线段,实际只有()12n n ´-条线段,即根据以上规律,若有n 支足球队进行单循环比赛,则一共要安排()12n n ´-场比赛,故答案为:()12n n ´-.(3)根据题意可得,欧洲杯24支参赛球队分成6个小组,由上可得一个小组会有65152´=场比赛,故六个小组则共有有61590´=场比赛,即本次欧洲杯总计有几场小组赛比赛,故答案为90.(4)由题意可得一共有六个车站,因为行车往返存在上车与下车,所以不需要除去每两个点之间的线段都重复计算了一次的情况,即每两个车站就会有两种车票,∴一个车站与另外5个车站都可各形成一张车票,即5张车票,∴这样六个车站一共形成了5630´=种车票.故答案为30.25.(1)()12n n +(2)37890【分析】此题考查了数字类计算规律的应用,能根据题中所给已知条件找到计算的规律并应用解决问题是解题的关键.(1)根据已知条件直接列式计算即可;(2)将原式变形为()()300112312320++-+×××++×××+++,根据得到的公式计算即可.【详解】(1)解:∵第①个图形中有2张正方形纸片;第②个图形中有()212623+==´张正方形纸片;第③个图形中有()21231234++==´张正方形纸片;第④个图形中有()212342045+++==´张正方形纸片;∴第n 个图形中有()()21231n n n ++++=+L 张正方形纸片;∴123n +++×××+=()12n n +,故答案为:()12n n +;(2)121122123300+++×××+()()300121231230=++-+×××++×××+++()()3003001120120122´+´+=-451507260=-37890=.26.(1)见解析(2)①51+n ,42n +;②93块【分析】本题考查了平面镶嵌(密铺)问题和用代数式表示规律,解题的关键是要注意分别找到三角形和正方形的个数的规律.(1)直接根据图像中各方块数量填表即可解题;(2)①根据图1、2、3正方形个数与正三角形个数寻找规律,即可解题;②根据①中规律直接解题即可.【详解】(1)解:由图可得:图序正六边形个数正方形个数正三角形个数。
初一数学代数式规律题
1、一列数a 1,a 2,a 3,…,其中a 1=21,a n =111--n a (n 为不小于2的整数),则a 100=( ) A . 21B .2 C .-1 D .-2 2、如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为n 1,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为( )A . 601B . 1681C . 2521D . 2801 3、如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是( )A .M=mnB .M=n (m+1)C .M=mn+1D .M=m (n+1)4、给定一列按规律排列的数:21,52,103,174 ,…,则这列数的第6个数是( ) A . 376 B . 356 C . 315D .397 5、把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M =(i ,j )表示正奇数M 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2013=( )A .(45,77) B .(45,39) C .(32,46) D .(32,23)6、大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是2013,则m 的值是( )A .43 B .44 C .45 D .467、已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|,…,依此类推,则a 2012的值为( )A .-1005 B .-1006C .-1007D .-2012 8、一列数a 1,a 2,a 3,…,其中a 1=21,a n =1a 11-+n (n 为不小于2的整数),则a 4的值为( ) A .85 B . 58 C . 813 D .13813 9、古希腊数学家把1,3,6,10,15,…叫做三角形数,则第16个三角形数与第14个三角形数的差是( )A .30B .31C .32D .3310、小明在一本有一千页的书中,从第1页开始,逐页依顺序在第1页写1,第2页写2、3,第3页写3、4、5,…,依此规则,即第n 页从n 开始,写n 个连续正整数.求他第一次写出数字1000是在第几页?( )A .500B .501C .999D .100011、已知世运会、亚运会、奥运会分别于公元2009年、2010年、2012年举办.若这三项运动会均每四年举办一次,则这三项运动会均不在下列哪一年举办?( )A .公元2070年B .公元2071年C .公元2072年D .公元2073年3 a b c -1 2 …12、如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中 所填整数之和都相等,则第2011个格子中的数为( )13、观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72; … 请你根据观察得到的规律判断下列各式正确的是( )A .1005+1006+1007+…+3016=20112B .1005+1006+1007+…+3017=20112C .1006+1007+1008+…+3016=20112D .1007+1008+1009+…+3017=2011214、一个容器装有1升水,按照如下要求把水倒出:第1次倒出21升水,第2次倒出的水量是21升的31,第3次倒出的水量是31升的41,第4次倒出的水量是41升的51,…按照这种倒水的方法,倒了10次后容器内剩余的水量是( )A .1110 升 B . 91升 C .101升 D . 111升 15、下面是一个按某种规律排列的数阵:根据规律,自然数2 000应该排在从上向下数的第m 行,是该行中的从左向右数的第n 个数,那么m+n 的值是( )A .110 B .109 C .108 D .10716、如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为( )A .6B .3C . 200623D . 100323+3×100317、3的正整数次幂:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…观察归纳,可得32007的个位数字是( )A .1 B .3C .7D .9 18、将一个正整数n 输入一台机器内会产生出 2)1(n n 的个位数字.若给该机器输入初始数a ,将所产生的第一个数字记为a 1;再输入a 1,将所产生的第二个数字记为a 2;…;依此类推.现输入a=2,则a 2010是( )A .2B .3C .6D .119、四个电子宠物排座位,一开始,小鼠、小猴、小兔、小猫分别坐在1,2,3,4号座位上(如图所示),以后它们不停地变换位置,第一次上下两排交换,第二次是在第一次换位后,再左右两列交换位置,第三次再上下两排交换,第四次再左右两列交换…这样一直下去,则第2005次交换位置后,小兔所在的号位是( )A .1B .2C .3D .420、某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5A .3B .2C .0D .-1粒,第3组取7粒…即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n组应该有种子数()粒.A.2n+1 B.2n-1 C.2n D.n+221、为了求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+5+52+53+…+52009的值是()A.52009-1 B.52010-1 C.4152009-D.4152010-22、观察图寻找规律,在“”处填上的数字是()A.128 B.136 C.162D.18823、观察下列图形,则第n个图形中三角形的个数是()A.2n+2 B.4n+4 C.4n-4 D.4n24、观察下列图形,并判断照此规律从左向右第2007个图形是()A.B.C.D.25、观察图给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为()A.3n-2 B.3n-1 C.4n+1 D.4n-326、如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()A.54个B.90个C.102个D.114个27、我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.下图给出了“河图”的部分点图,请你推算出P处所对应的点图是()A.B.C.D.28、如图(1)是一个水平摆放的小正方体木块,图(2),(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是()个.A.25 B.66 C.91 D.12029、意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的长度构造一组正方形(如下图),再分别依次从左到右取2个,3个,4个,5个正方形拼成如下长方形并记为①,②,③,④,相应长方形的周长如下表所示:序号①②③④周长 6 10 16 26若按此规律继续作长方形,则序号为⑧的长方形周长是()A.288 B.178 C.28 D.11030、下列图案由边长相等的黑、白两色正方形按一定规律拼接而成.依此规律,第n个图案中白色正方形的个数为.31、一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图所示),则这串珠子被盒子遮住的部分有颗.32、用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第10个图案中,所包含的黑色正三角形的个数是()A.36 B.38 C.40 D.42。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
找规律专题练习
1、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示。
这样捏合到第次后可拉出64根细面条。
第一次捏合 第二次捏合 第三次捏合
2、如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去; (1)填表:
剪的次数
1 2
3 4 5 正方形个数
(2)如果剪n 次,共剪出多少个小正方形? (3)如果剪了100次,共剪出多少个小正方形? (4)观察图形,你还能得出什么规律?
3、小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数
–6 –4 –3 –2 -1 0 1 2 4 5 4、填表并回答下列问题
x 0.01 0.1 1 10 100
1000
2
1001x
-
(1)根据上表结果,描述所求得的一列数的变化规律
(2)当x 非常大时,2100
x
的值接近于什么数?
5、现有黑色三角形“▲”和“△”共200个,按照一定规律排列如下: ▲ ▲△△▲△▲▲△△▲△▲▲…… 则黑色三角形有个,白色三角形有个。
6、仔细观察下列图形.当梯形的个数是n 时,图形的周长是. 1
1 1 2
7、用火柴棒按如下方式搭三角形:
(1) 照这样的规律搭下去,搭n 个这样的三角形需要______根火柴棒
8、把编号为1,2,3,4,…的若干盆花按右图所示摆放,花盆中的花按红、黄、蓝、紫的颜色依次循环排列,则第8行从左边数第6盆花的颜色为___________色.
9、已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成下列形式:
第1行 1
第2行 -2 3
第3行 -4 5 -6
第4行 7 -8 9 -10 第5行 11 -12 13 -14 15 … …
按照上述规律排下去,那么第10行从左边数第5个数等于.
10、观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在察规律之后并用你得到的规律填空:250___________=+⨯, 第n 个式子呢?___________________
11、一张长方形桌子可坐6人,按下列方式讲桌子拼在一起。
①张桌子拼在一起可坐______人。
3张桌子拼在一起可坐____人,n 张桌子拼在一起可坐______人。
②一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐______人。
③若在②中,改成每8张桌子拼成1张大桌子,则共可坐_________人。
12、观察下列顺序排列的等式:9×0+1=1
9×1+2=11 9×2+3=21 9×3+4=31 9×4+5=41 ……
猜想:第n 个等式(n 为正整数)应为.
13、一个两位数的个位数是a ,十位数字是b ,请用代数式表示这个两位数是______。
14、 观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729…你能从中发现
底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:32004的个位数字是. 15、观察下列各式,你会发现什么规律?
3×5=15,而15=2
41-。
5×7=35,而35=2
61-…… 11×13=143,而143=2121-
将你猜想到的规律用只含一个字母的式子表示出来:_______。
(3)根据上面的归纳猜想得到的结论,试比较两个数的大小(1分)
20052006________20062005(填”>”,”<”, “=”)
16、为了美化城市,某商场在门前的空地上用花盆按如图所示的方式搭正方形,
(1) 填写下表
(2) 按这个规律搭下去,搭第n 层正方形,需要________________盆花? 17.(1)3个球队进行单循环赛(参赛的每一个队都与其它所有各队比赛一场),总的比赛场数是多少?4个球队呢?m 个球队呢?(代数式表示出来)
(2)当m=12时,总共比赛几场? 18.按一定规律排列的一串数:
112312345123
,,,,,,,,,,,, (133355555777)
------中,第98个数是_____________ 19.下面的算式里,符号○、△、和□分别代表三个不同的自然数,这三个数的和是________
20.一群整数朋友按照一定的规律排成一排,可排在□位置的数跑掉了,请帮它们把跑掉的朋友找回来。
(1)5,8,11,14,□,20; (2)1,3,7,15,31,63,□;
(3)1,1,2,3,5,8,□,21 21.下列两列数:
2,4,6,8,10,12,……1994;
6,13,20,27,34,……1994 这两列数中,相同的数的个数是( ) A 、142 B 、143 C 、284 D 、285
22.一串数字的排列规律是:第一个数是20,从第二个数起,每一个数比前一个数小8 (1)第10个数是多少?(2)第n 个数是多少?(3)第几个数是—60
23.某仓库堆放一批圆木,一共20层,第一层3根,每往下一层多1根,问这堆圆木一共有多少根?
24.在如图所示的2003年1月份的日历中,用一个方框圈出任意3×3个数
(1) 从左下角到右上角的三个数字之和为45,那么这9个数的和是多少?这9个日期中
最后一天是1月几日?
(2) 用这样的方框能否圈出总和为162的9个数?
26.在某月日历上一个竖列相邻的五个数之和为80,这五个数是__________________ 27.某月日历有一竖列四个日期,其中第二个日期与第四个日期的和是36,那么第三个日期是___________
28.今年暑假,李老师一家三口人外出旅行一周,这一周各天的日期之和是91,那么李老师是_________号回家的
29.如果这个月的5
号是星期三,则20号是星期_________
30.三个连续偶数中,n 是最小的一个,这三个数的和为_________。
31、观察公式:
公式1:3223333)(a xa a x x a x +++=+ 公式2:4322344464)(a xa a x a x x a x ++++=+ (1) 利用公式计算:
)2
1
()21(24)21(26)21(24232234-+-⨯⨯+-⨯⨯+-⨯⨯+
△ □
○ 11
11181=+++
32、下面有三组数,请你填上合适的运算符号,使每一组数的结果都为10。
(1) 1 5 5 9 =10 ; (2) 3 3 3 3 =10 ; (3) 1 1 9 9 =10 34. 如图1-29所示,图①是一个三角形,分别连结这个三角形三边的中点(将这条边分为相等的两部分的点)得到图②;再分别连结图②中间的小三角形三边的中点,得到图③,按此方法继续下去,请你根据图中三角形个数的规律,完成下列问题
①②③
图1-29 (1) 将下表填写完整.
(2) 在第n 个图形中有几个三角形?(用含n 的代数式表示)
35、某种细胞每过30分便由1个分裂成2个,经过5小时,这种细胞由1个能分裂成个。
36、有一张厚度是0 .1毫米的纸,将它对折1次后,厚度为2×0.1毫米。
(1)、对折2次后,厚度为毫米。
(2)对折20次后,厚度为毫米。
(3)对折n 次后,厚度为毫米。
37、观察下列算式:
,, , , , , , , 2562128264232216282422287654321======== 根据
上述算式中的规律,你认为202的末位数字是( ). 38、根据规律填上合适的数:(1) -9,-6,-3,, 3 ; (2) 1,8,27,64,,216; (3) 2,5,10,17,,37 39、观察下列数据,按某种规律在横线上填上适当的数:
1,43-,95,16
7-,,,…
40、一列数71,72,73 … 72003,其中末位数是3的有 个。
41、探索规律:用棋子按下面的方式摆出正方形
①按图示规律填写下表:
②按照这种方式摆下去,摆第n 个正方形需要多少个棋子? ③按照这种方式摆下去,第第20个正方形需要多少个棋子?
42、,2232141
11⨯⨯==,
2233324
1
921⨯⨯==+,
22333434
1
36321⨯⨯==++,………
(1)猜想填空:⨯=++++4
1
3213333n ( )2⨯( )2
(2)若233332404
1
321⨯=++++n ,试求n 的值.。