21.2.2 公式法

合集下载

初中数学教学课件:21.2.2 公式法(人教版九年级上)

初中数学教学课件:21.2.2  公式法(人教版九年级上)

x2 x 6.82 102.
即,2x2-13.6x-53.76=0. 解这个方程,得 x1=9.6; x2=-2.8(不合题意,舍去).
∴x-6.8=2.8. 答:门的高是9.6尺,宽是2.8尺.
10
x
x-6.8
通过本课时的学习,需要我们掌握:
1.由配方法解一般形式的一元二次方程 ax2+bx+c=0
∴x b b2 4ac 3 25 3 5
2a
22
4
ห้องสมุดไป่ตู้
即x1=2,x2= 1 . 2
跟踪训练
1、解方程:x2 3 2 3x
【解析】化简为一般式
x2 2 3x 3 0
这里 a=1, b= 2 3 , c= 3. ∵b2 - 4ac=( 2 3 )2 - 4×1×3=0,
x 2
3 21
0
23 2
3,
即:x1= x2= 3
2、解方程:(x-2)(1-3x)=6. 【解析】去括号:x-2-3x2+6x=6
化简为一般式:-3x2+7x-8=0 3x2-7x+8=0
这里 a=3, b=-7, c=8. ∵b2-4ac=(-7)2-4×3×8=49-96=-47<0, ∴原方程没有实数根.
21.2.2 公式法
x b b2 4ac (b2 4ac 0) 2a
1.理解一元二次方程求根公式的推导过程; 2.了解公式法的概念; 3.会熟练应用公式法解一元二次方程.
1、请用配方法解一元二次方程2x2+4x+1=0
2、用配方法解一元二次方程的步骤: (1)把原方程化成 x2+px+q=0的形式;
(x1-1)(x2-1) (1 2 1)(1 2 1) 2 2 2

九年级数学上册 21.2.2 公式法课件 (新版)新人教版

九年级数学上册 21.2.2 公式法课件 (新版)新人教版

合作探究
2.用公式法解下列方程: (1)x2+x-12=0 ; (2)x2-x-=0; (3)x2+4x+8=2x+11; (4)x(x-4)=2-8x; (5)x2+2x=0 ; (6)x2+2x+10=0.
解:(1)x 1=3,x 2=-4;
2+ 3
2- 3
(2)x 1= 2 ,x 2= 2 ;
第二十一章:一元二次方程
21.2 解一元二次方程 21.2.2 公式法
学习目标
1. 理解一元二次方程求根公式的推导过程,了 解公式法的概念.
2. 会熟练应用公式法解一元二次方程.
重点难点
重点:求根公式的推导和公式法的应用. 难点:一元二次方程求根公式的推导.
学前准备
用配方法解方程: (1)x2+3x+2=0; 解:x1=-2,x2=-1; (2)2x2-3x+5=0. 解:无解.
(3)没有实数根?
解:(1)m<
1 4
Hale Waihona Puke ;(2)m=;14
(3)m> .
1 4
合作探究
3. 已知x2+2x=m-1没有实数根,求证:x2+ mx=1-2m必有两个不相等的实数根.
证明:∵x2+2x-m+1=0没有实数根, ∴4-4(1-m)<0,∴m<0. 对于方程x2+mx=1-2m,即x2+mx+2m-1 =0, Δ=m2-8m+4,∵m<0,∴Δ>0, ∴x2+mx=1-2m必有两个不相等的实数根.
(3)利用求根公式解一元二次方程的方法叫做公式法. 根((,45))也由一可求般能根地有,公式式可子个知b12实,-根一4a或元c叫者二做次方方实程程没根a最x有.2多+有bx+c2个 =实数 0(a≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b2 -4ac.

21.2.2解一元二次方程——公式法

21.2.2解一元二次方程——公式法

21.2.2 解一元二次方程——公式法学习目标:1.理解一元二次方程求根公式的推导过程;2.会利用求根公式解简单数字系数的一元二次方程;3.经历探索求根公式的过程,发展学生合情合理的推理能力;学习重点:求根公式的推导和公式法的应用难点:一元二次方程求根公式的推导一、复习导学1.配方法解一元二次方程的步骤是_______________________________;2.一元二次方程26710xx -+=中a=_____,b=_____,c=_______; 3.在方程2x a =中,当0a >时,1x =2x =;当0a =时,1x =2x =;当0a <时,方程实数根。

二、自主学习问题1:能否用配方法把一般形式的一元二次方程转化为吗? 因为,方程两边都除以,得移项,得配方,得即三、合作探究问题2:根据配方的结果讨论方程跟的情况: 小结:一般地,式子b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0),通常用希腊字母“⊿”表示,即⊿=一元二次方程20(0)axbx c a ++= ≠根的情况: ⑴当⊿=b 2-4ac >0时,一元二次方程ax 2+bx +c =0(a ≠0)•有两个不相等实数根即x 1=,x 2=。

⑵当⊿= b 2-4ac =0时,一元二次方程ax 2+bx +c =0(a ≠0)有两个相等实数根即x 1=x 2=。

⑶当⊿=b 2-4ac <0时,一元二次方程ax 2+bx +c =0(a ≠0)•没有实数根。

⑴⑵又合称有实数根;反过来也成立。

由上可知,一元二次方程20(0)ax bx c a ++= ≠的根由方程的系数a,b,c 而定,因此: (1) 解一元二次方程时,可以先将方程化为一般形20(0)ax bx c a ++= ≠,当240b ac -≥时,将a,b,c 代入式子x=_____________,就得到方程的根; 20(0)ax bx c a ++=≠2224()4b b ac x a a -+=0a ≠a 2224()4b b ac x a a-+=(2) 这个式子叫做一元二次方程的求根公式;(3) 利用求根公式解一元二次方程的方法叫公式法;(4) 由求根公式可知,一元二次方程最多有___个实数根。

第二十一章21.2.2公式法

第二十一章21.2.2公式法

栏目索引
易错点二 对形如ax2+bx+c=0的方程有实数根的问题理解错误 例2 (2018河南新乡辉县二模)关于x的方程ax2-2x-1=0有实数根,则a的 取值范围是 ( ) A.a≥-1 B.a>-1 C.a≥-1且a≠0 D.a>-1且a≠0 解析 当a≠0时,∵原方程有实数根, ∴Δ=4+4a≥0,∴a≥-1; 当a=0时,-2x-1=0有实数根.故选A.
根的判别 式的应用
(1)不解方程直接判断一元二次方程根的情况; (2)已知一元二次方程根的情况,用根的判别式求方程中未知字母的值或取值范围
21.2.2 公式法
栏目索引
例1 (2017上海中考)下列方程中,没有实数根的是 ( ) A.x2-2x=0 B.x2-2x-1=0 C.x2-2x+1=0 D.x2-2x+2=0 解析 A选项,Δ=(-2)2-4×1×0=4>0,∴有两个不相等的实数根; B选项,Δ=(-2)2-4×1×(-1)=8>0,∴有两个不相等的实数根; C选项,Δ=(-2)2-4×1×1=0,∴有两个相等的实数根; D选项,Δ=(-2)2-4×1×2=-4<0,∴D选项中的方程没有实数根,故选D. 答案 D 点拨 不解方程可通过计算Δ的值来判断根的情况.特殊的方程可不必 计算Δ的值,如:当a与c异号,或b≠0且c=0时,方程有两个不相等的实数 根.
答案 A 点拨 首先根据一次函数的定义确定字母的取值范围,然后由字母的取 值范围得出判别式的取值范围,最后得出根的情况.
21.2.2 公式法
栏目索引
题型三 根的判别式与三角形的综合应用
例3 已知a,b,c分别为△ABC中∠A,∠B,∠C的对边,若关于x的一元二次方

21.2.2公式法

21.2.2公式法

21.2.2公式法教学目标:1.知识与技能:⑴理解一元二次方程求根公式的推导过程。

⑵掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况。

⑶会利用求根公式解简单数字系数的一元二次方程。

2.过程与方法:经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解公式的基础。

3.情感态度与价值观:提高学生运算能力,使学生获得成功体验,建立学习信心。

教学重点:用公式法解简单系数的一元二次方程。

教学难点:求根公式的推导过程。

教学过程:一、复习引入导语:我们学习了用配方法解数字系数的一元二次方程,能否用配方法解一般形式的一元二次方程()002≠=++a c bx ax 二、探究新知活动1.学生观察下面两个方程思考它们有何异同?○1;6x 2-7x+1=0 ○2()002≠=++a c bx ax 活动2.按配方法一般步骤同时对两个方程求解: 1.移项得到:c bx ax -=+2用求根公式解一元二次方程的方法叫做公式法.1.当b 2-4ac >0时,一元二次方程ax 2+bx +c =0(a ≠0)有两个不等实数根;2.当b 2-4ac =0时,一元二次方程ax 2+bx +c =0(a ≠0)有两个相等实数根;3.当b 2-4ac <0时,一元二次方程ax 2+bx +c =0(a ≠0)没有实数根.一般的,式子b 2-4ac 叫方程ax 2+bx +c =0(a ≠0)根的判别式.用字母△表示.即△=b 2-4ac.一元二次方程的判别式与根的情况有何关系?(1)当方程有两个不相等的实数根时,b 2-4ac >0(2)当方程有两个相等的实数根时,b 2-4ac =0(3)当方程没有实数根时,b 2-4ac <0你能用公式法解方程2x 2-9x =-8吗?解:2x 2-9x +8=0 1.变形:化已知方程为一般形式; ∵a =2,b =-9,b =8 2.确定系数:用a ,b 写出各项系数;△=b 2-4ab =(-9)2-4×2×8=27>03.计算:b 2-4ab 的值;4.代入:把有关数值代入公式计算; ().417922179242±=⨯±--=-±-=∴a ac b b x .4179;417921-=+=∴x x 5.定根:写出原方程的根.用公式法解一元二次方程的一般步骤:1、把方程化成一般形式,并写出a 、b 的值;2、求出△=b 2-4ab 的值;3、代入求根公式;4、写出方程的解;归纳小结本节课应掌握:公式法的概念及用其解一元二次方程的步骤.。

人教版九年级数学上册课件:21.2.2公式法

人教版九年级数学上册课件:21.2.2公式法

21.2.2 公式法
(2)方程整理,得 x2-2 5x+10=0,
∵Δ=b2-4ac=(-2 5)2-4×1×10=-20<0,∴此方程无实数根.
(3)方程整理,得 x2+4x-2=0.∵a=1,b=4,c=-2,
∴b2-4ac=16+8=24>0,∴x=-42±×1 24,
∴x1=-2+ 6,x2=-2- 6. (4)原方程可化为 x2-9x+2=0.∵a=1,b=-9,c=2,
1)·(-2)=9+8(a-1)≥0,且 a-1≠0,即得 a≥-81且 a≠1.
21.2.2 公式法
13.已知等腰三角形的腰长为 x,周长为 20,则方程 x2- 12x+31=0 的根为___6+___5__.
【解析】由方程 x2-12x+31=0 得 a=1,b=-12,c=31,b2-4ac=(-12)2 12± 20
(2)方程的根为 x= ,即 x =2,x =k+1.∵方程总有一个根 艰闹群垛漆除蛾多悠纷铝终锰炕毅贞绵粳压谣灸艇磁诧酱述凶妖喧朝芋疡人教版九年级数学上册课件:211.
2
2 2公式法作业本人教版九年级数学上册课件:21.
馏亥磨甩僵钾河纪灿翼大实刃昂拎赣崇捍您戌登棺秤渣肃例笆荚弗窿鼻冗人教版九年级数学上册课件:21.
2公式法作业本人教版九年级数学上册课件:21.
【解析】∵点 P(a,c)在第二象限,∴a<0,c>0, 第二十一章 一元二次方程
敞憨厦打员寨玩缠厦驰农头宗怂在例沫呢蒲绥河谣泞躲结旧双峻饯喘兽纸人教版九年级数学上册课件:21.
敞憨厦打员寨玩缠厦驰农头宗怂在例沫呢蒲绥河谣泞躲结旧双峻饯喘兽纸人教版九年级数学上册课件:21.
21.2.2 公式法
14.用公式法解下列方程:

21.2.2_公式法

21.2.2_公式法

x b
b2
4ac
. b2
4ac
;
0.
7.定解:写出原方程的解
2a
.
用配方法解一般形式的一元二次方程
ax2 bx c 0 (a 0) ∵a 0,4a2 0 当 b2 4ac 0

b
b2 4ac
x
2a
2a
特别提醒
b b2 4ac x
b b2 4ac b b2 4ac
2a
2a
b b 2a 2a
b 0
五、师生互动,课堂小结
通过本节课的学习,你有哪些收获和体会?
课后作业
1.布置作业:从教材“习题21.2”中选取。 2.完成状元导练中本课时练习的“课后作业”部分。
解:将x=0代入方程, 得m²+2m-3=0, 解得m1=1,m2=-3, 又∵m-1≠0,即m≠1. 故m的值为-3.
5.解下列方程:
(1)x²+x-6=0; (2)x2 3x 1 0 ;
4
(3)3x²-6x-2=0; (4)4x²-6x=0; (5)x²+4x+8=4x+11; (6)x(2x-4)=5-8x.
3.方程 2x2 4 3x 6 2 0 的根是( D )
A. x1 2, x2 3 B. x1 6, x2 2 C.x1 2 2, x2 2 D. x1 x2 6
4.关于x的一元二次方程(m-1)x²+x+m²+2m-3=0有 一个根为0,试求m的值.
2a
一元二次方程 的求根公式
x1 b
b2 2a

人教版数学九年级上册 21.2.2公式法 课件(共20张PPT)

人教版数学九年级上册  21.2.2公式法 课件(共20张PPT)
人教版数学九年级上册
第二十一章 二元一次方程
21.2.2 公式法
学习目标
1.理解一元二次方程求根公式的推导过程,会用b2-4ac 的值判断一元二次方程根的情况,会运用公式法解一元二次 方程。
2.通过对求根公式的发现和探索过程,提高观察能力、 分析能力和逻辑思维能力。
3.发展独立思考,勇于探索的创新精神,渗透转化思想, 使其感受数学的内在美。
例 用公式法解方程:
解:(1)a=1,b=-4,c=-7.
1.确定系数
Δ=b2-4ac=(-4)2-4×1×(-7)=44>0,2.计算 Δ 方程有两个不相等的实数根.

3.代入



4.定根
Байду номын сангаас
例 用公式法解方程: 解:

例 用公式法解方程:
解: (3)方程化为5x2-4x-1=0.
a=5,b=-4,c=-1.
导入新知
同学们,用直接开平方法和配方法解一元二 次方程,计算比较麻烦,能否研究出一种更好的 方法,迅速求得一元二次方程的实数根呢?
合作探究
你能用配方法解方程 ax2+bx+c=0(a≠0) 吗?
x2 b x c 0 aa
1.化1: 把二次项系数化为1 2.移项: 把常数项移到方程的右边
3.配方: 方程两边都加上一次项 系数的一半的平方
故选B.
A
A.2x2+4x+1=0 B.2x2-4x+1=0 C.2x2-4x-1=0 D.2x2+4x-1=0
4.当 a<0 时,方程x|x|+|x|-x-a=0 的解为

再见
2.计算根的判别式:将 a,b,c 的值代入 Δ=b2-4ac 计算,并判断 Δ 的符号.

九年级数学人教版(上册)21.2.2《公式法》教学课件

九年级数学人教版(上册)21.2.2《公式法》教学课件

1. 将方程化成一般形式,并写出a,b,c 的值。
2. 求出 ∆ 的值。 3. (a)当 ∆ >0 时,代入求根公式 : x b b2 4ac
2a
写出一元二次方程的根:
x1 = ______ ,x2 = ______ 。 (b)当∆=0时,代入求根公式:
写出一元二次方程的根:
x1 = x2 = ______ 。
b2 4ac 62 432 60.
x 6 60 6 2 15 3 15 ,
6
6
3
3 15 3 15
x1
3
, x2
. 3
4 4x2 6x 0
解: a 4,b 6, c 0.
b2 4ac 62 4 40 36.
6
x
36 6 6 ,
24
8
3
x1
0,
x2
公式法
❖ 例2:用公式法解方程 (1)x2-4x-7=0
解a 1,b 4, c 7
△ b2 4ac 42 41 (7) 44 0.
方程有两个不相等的实数根:
❖1.变形:化已知方 程为一般形式;
❖2.确定系数:用 a,b,c写出各项系 数;
x b b2 4ac 2a
4 44 4 2 11 .
2
c a
b 2a
2
,

x
b 2a
2
b2 4ac 4a2
.

因为a≠0,4a2>0,式子b2-4ac的值有以下三种情况:
(1)当 b2 4ac 0时,一元二次方程 ax2 bx c 0 (a 0)有实数根.
x1 b
b2 2a
4ac
,
x2

21.2.2公式法解一元二次方程(两课时)

21.2.2公式法解一元二次方程(两课时)

2.确定系数:用 a,b,c写出各项系 数; 3.计算: b2-4ac 的值; 4.代入:把有关数 值代入公式计算; 5.定根:写出原方 程的根.
用公式法解一元二次方程的一般步骤:
b c 的值。 1、把方程化成一般形式,并写出 a、、
2、求出 = b 4ac 的值,
2
特别注意:当
=
b 4ac 0
2
2a
2a
此时,方程有两个相等的实数根 b x1 x2 2a
即 因为a≠0,所以4 a >0
2
2
b b 4ac x 2a 4a 2
2
2
2
式子 b 4ac的值有以下三种情况:
2 2
b 而x取任何实数都不可能使 ( x ) 2a
因此方程无实数根
4ac b (3) b 4ac 0, 这时 0 4a
9 ∴m> 8 9 2 (2)若方程有两个相等的实数根,则b -4ac=0即8m+9=0 ∴m= 8
(1)若方程有两个不相等的实数根,则b2-4ac>0,即8m+9>0 (3)若方程没有实数根,则b2-4ac<0即8m+9<0 ∴当m>
9 方程有两个相等的实数根;当m< 时,方程没有实数根 8
2
0

一般地,式子b 4 ac 叫做方程
2
根的判别式,通常用希腊字母△表示它,即
ax bx c 0
2
△= b 4ac
2
心动
2
不如行动
公式法
ax2+bx+c=0(a≠0)
一般地,对于一元二次方程
当 b 4ac 0时, 它的根是 :

21.2.2公式法

21.2.2公式法

方程两边都除以a x2 b x c ,
a
a
配方,得
x2
b a
x
b 2a
2
c a
b 2a
2
.

x
b 2a
2
b2 4ac 4a 2
.
问题:接下来能用直接开平方解吗?
∵a ≠0,4a2>0, 当b2-4ac ≥0时,

x b
b2 4ac .
2a
2a
b b2 4ac
x
.
2a
特别提醒
2.若关于x的一元二次方程kx2-2x-1=0有两个不相
等的实数根,则k的取值范围是( )
A.k>-1
B.k>-1且k≠0
C.k<1
D.k<1且k≠0
3.关于x的一元二次方程 x2 2x m 0 有
两个实根,则m的取值范围是
.
4.若关于x的一元二次方程(k-1)x2-2x-1=0有两个 不相等的实数根,求k的取值范围。
2.解方程:x2 +7x – 18 = 0. (x - 2) (1 - 3x) = 6. 2x2 - 3 3x + 3 = 0
课堂小结
公式法Leabharlann 求根 公式b b2 4ac x
2a
根的判别式b2-4ac
务必将方程化 为一般形式
步骤
一化(一般形式); 二定(系数值); 三求( Δ值); 四判(方程根的情况); 五代(求根公式计算).
18.已知关于 x 的方程 x2-(2k+1)x+4(k-12)=0. (1)求证:这个方程总有两个实数根; (2)若等腰三角形 ABC 的一边长 a=4, 另两边 b,c 恰好是这个方程的两个实数根,求△ABC 的周长.

21.2.2公式法(教案)

21.2.2公式法(教案)
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式和平方差公式这两个重点。对于难点部分,如公式选择和应用,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与公式法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用公式法计算物体运动的速度。
(3)通过多项式乘法公式的应用,增强学生解决实际问题的能力,提升数学应用素养;
(4)培养学生合作交流、探索创新的精神,提高数学表达和数据分析素养。
三、教学难点与重点
1.教学重点
(1)掌握整式的乘法公式与因式分解公式,特别是完全平方公式和平方差公式的应用;
举例:a² - b² = (a + b)(a - b),a² + 2ab + b² = (a + b)²
在讲授过程中,我尽量用简洁明了的语言解释概念,并通过举例来加深同学们的印象。看到他们在小组讨论中积极互动,提出自己的观点,我感到非常欣慰。这种合作学习的方式不仅提高了学生的参与度,也帮助他们从不同角度理解问题。
我也注意到,在学生的小组讨论中,有的组员可能过于依赖其他同学,自己的思考不够独立。在接下来的教学中,我会更加关注这部分学生,鼓励他们独立思考,勇于表达自己的观点。
(2)能够运用多项式乘例:计算长方形的面积,其中长和宽为多项式表达式;
(3)通过具体实例,让学生感受数学公式在简化计算和问题解决中的重要性。
2.教学难点
(1)因式分解中的公式的选择与应用,特别是完全平方公式的识别与运用;
难点举例:分解表达式x² - 6x + 9时,学生需识别出是完全平方公式(a - b)² = a² - 2ab + b²的变形;

21.2.2 一元二次方程的解法——公式法课件 2024-2025学年人教版数学九年级上册

21.2.2 一元二次方程的解法——公式法课件  2024-2025学年人教版数学九年级上册
第二十一章 一元二次方程
第2课时
一元二次方程的解法
——公式公式法解一元二次方程,知道使用公式前先将方
程化为一般形式.
❸ (2022新课标)能用公式法解数字系数的一元二次方程.
复习引入
1.如何用配方法解方程 2x2 4x 10?
解:方程整理得

小结:注意一元二次方程的二次项系数不能为0.

2
2
★10.若a +5ab-b =0(ab≠0),求 的值.




2
2
解:∵a +5ab-b =0,∴ + -1=0,



令t= ,∴方程可化为t2+5t-1=0,

∴52-4×1×(-1)=29>0,
根据公式法得t=
-±
×


-±

±


×

即x1=2 ,x2= .
3.【例1】用公式法解方程:x2+3x+1=0.
解:a=1,b=3,c=1,b2-4ac=5>0,
x=
-±
所以x1=

-± -±




×

-+

--
,x2=



小结:用公式法解方程时,先确定出a,b,c和b2-4ac的值.
x=

x- =0.

±

8.用公式法解方程:2x2+3x=3.
x=
-±


9.用公式法解方程:x2-5=2(x+1).
x=1±2


6.某数学小组对关于x的方程(m+1)
+(m-2)x-1=0提出了问题:

21.2.2公式法--解一元一次方程

21.2.2公式法--解一元一次方程

2a
2a
即 b 0, a
当b 0, ac 0时,原方程的两根互为相反数.
精品PPT
课堂小结
用“公式(gōngshì)法”解一元二次方程的一般 (步1)骤将: 方程化成一般形式(xíngshì),并写出a,b,c 的值。
(2)求出 b2-4ac 的值。 (3)当 b2-4ac ≥0 且 a≠0 时,代入求根公式 :
b2 4ac 82 4117 4 0
方程无实数根.
精品PPT
练 习 解下列(xiàliè)
方程:
1 x2 x 6 0; 2 x2 3x 1 0;
4
3 3x2 6x 2 0; 4 4x2 6x 0;
5 x2 4x 8 4x 11 ; 6 x 2x 4 5 8x.
时,有两个相等的实数根。
b
x1
x2
; 2a
时,没有实数根。
精品PPT
一般地,式子 b2 4ac叫做方程
ax2 bx c 0(a 0) 根的判别式.
通常用希腊字母△表示它,即△= b2 4ac
判别方程的根
1、当Δ=b²-4ac>0 时,方程 ax²+bx+c=0(a≠0)有 两个(liǎnɡ ɡè)不相等的实数根;
4m 17
由4m 17 0,得m 17 . 4
当m 17 时,b2 4ac 0, 4
则原方程有两个相等的实数解.
精品PPT
例:求证方程(fāngchéng)2x2-(m+5)x+m+1=0有 两个不相等的实数根.
解: b2 4ac (m 5)2 4 2 (m 1)
m2 10m 25 8m 8 m2 2m 17 (m 1)2 16 >0

21.2.2 公式法课件

21.2.2 公式法课件

方程两边都除以 a,得
x2 b x c
a
a
配方,得
x2

b a
x


b 2a
2


c a


b 2a
2


x

b 2a
2

b2 4ac 4a 2
探究新知
用公式法解一般形式的一元二次方程
ax2 bx c 0 (a 0)
解: a 0, 4a2 0 当 b2 4ac ≥ 0
解:a=2,b=-(4m+1),c=2m2-1
b2-4ac=〔-(4m+1)〕2-4×2(2m2-1)=8m+9
(1)若方程有两个不相等的实数根,则b2-4ac >0,即8m+9>0 ∴m> 9
(2)若方程有两个相等的实数根,则b2-4ac=0即8m+9=0 ∴m= (3)若方程没有实数根,则b2-4ac<0即8m+9<0 ∴m< 9
当 b2 4ac 0 时,将a,
b,c 代入式子
b b2 4ac x
,就得到方程的根,这个式子叫做一元
2a
二次方程的求根公式,利用它解一元二次方程的方法叫做公式当法b,-4由ac求<根0
公式可知,一元二次方程最多有两个实数根.
时,方程有实数 根吗
探究新知
素养考点 1 公式法解方程

x2

b ; 2a
(3)当b2-4ac<0时,没有实数根.
一般的,式子 b2-4ac 叫做一元二次方程根的判别式,通 常用希腊字母“∆”来表示,即∆=b2-4ac
探究新知
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档