函数的定义域及常见求解方法PPT课件
合集下载
函数完整版PPT课件
![函数完整版PPT课件](https://img.taocdn.com/s3/m/25a0ea4b0640be1e650e52ea551810a6f524c8ba.png)
16
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程
函数的应用课件ppt课件ppt课件ppt
![函数的应用课件ppt课件ppt课件ppt](https://img.taocdn.com/s3/m/c1c41e56640e52ea551810a6f524ccbff121ca9c.png)
大数据与函数应用
随着大数据技术的不断发展,函 数应用将更多地涉及到大规模数 据的处理和分析,需要更加高效
和稳定的技术支持。
大数据技术将促进函数应用的个 性化发展,使得函数能够更好地 满足不同用户的需求,提升用户
体验。
大数据技术将提升函数应用的预 测能力和决策支持能力,使得函 数能够更好地服务于商业智能和
05
未来函数应用的发展趋势
深度学习与函数应用
深度学习技术将进一步拓展函数应用的领域,特别是在图像识别、语音识别、自然 语言处理等领域,将会有更多的函数应用出现。
深度学习技术将提升函数应用的精度和效率,使得函数能够更好地满足复杂场景的 需求。
深度学习技术将促进函数应用的自动化和智能化,使得函数能够更好地适应不断变 化的环境和需求。
成本与收益
经济增长
在经济增长研究中,函数可以描述国 民生产总值、人均收入等经济指标随 时间的变化规律,用于预测经济发展 趋势和制定经济政策。
在经济分析中,函数用于表示成本、 收益与产量或销售量之间的关系,用 于制定经济决策和评估经济效益。
03
函数的应用实例
三角函数在物理中的应用
总结词 正弦函数 余弦函数 正切函数 应用实例
运动学
在物理学中,函数可以描述物体运动的速度、加速度、位移等物理量随时间的变化规律。
波动
函数可以描述波动现象,如正弦波、余弦波、波动方程等。
热力学
在热力学中,函数可以描述温度、压力、体积等物理量之间的关系,用于研究热力学的性质和变 化规律。
工程领域
控制系统
在工程控制系统中,函数用于描 述系统的输入和输出之间的关系 ,通过调节系统参数实现控制目
解决周期性问题
描述简谐振动、交流电等周 期性现象。
大学高数第一章函数和极限ppt课件
![大学高数第一章函数和极限ppt课件](https://img.taocdn.com/s3/m/7a28bdb8e53a580216fcfe6a.png)
例如函数 y x2 在 (, 0) 上单调递减, 在 (0, ) 上单调递增
7
3.函数的奇偶性
如函数 y f (x) 的定义域 D 关于原点对称,且对于任意 xD ,均有: f (x) f (x) ,则称该函数在其定义域内是偶函数; 若是 f (x) f (x) ,则称该函数在其定义域内是奇函数;
lim 3x
x
28
2、当 x x0 时函数极限
定义 1.6 设函数在点 x0 附近有定义(但在这一点可以没有
定义),若 x ( x x0 )无论以怎样的方式趋近于 x0 ,函
数 f (x) 都无限趋近于一个常数 A ,就称当 x 趋近于 x0 时,
函数以 A 为极限,记为:
lim f (x) A 或
(2)
1 x 1
ln(x 0
1)
1
1
e
x
1 1
x
e
1
D :[1 1, e 1] e
12
邻域的概念
以 x0 为中心的任何开区间称为点 x0 的邻域,记作 N x0 。 设 为任一正数,称开区间 x0 , x0 为 x0 的 邻 域,记作 N x0 , , x0 称为邻域的中心, 称为邻域的半
无界的。
如:函数 y sin x ,在 ,内有界,且:| y | 1
10
1.1.3复合函数
定义 1.2 如变量 y 是变量 u 的函数,变量 u 又是
变量 x 的函数,即: y f (u) , u (x) , 且 u (x) 的值域与 y f (u) 的定义域有公共部分, 则称 y 是 x 的复合函数,记作: y f [(x)]
7
3.函数的奇偶性
如函数 y f (x) 的定义域 D 关于原点对称,且对于任意 xD ,均有: f (x) f (x) ,则称该函数在其定义域内是偶函数; 若是 f (x) f (x) ,则称该函数在其定义域内是奇函数;
lim 3x
x
28
2、当 x x0 时函数极限
定义 1.6 设函数在点 x0 附近有定义(但在这一点可以没有
定义),若 x ( x x0 )无论以怎样的方式趋近于 x0 ,函
数 f (x) 都无限趋近于一个常数 A ,就称当 x 趋近于 x0 时,
函数以 A 为极限,记为:
lim f (x) A 或
(2)
1 x 1
ln(x 0
1)
1
1
e
x
1 1
x
e
1
D :[1 1, e 1] e
12
邻域的概念
以 x0 为中心的任何开区间称为点 x0 的邻域,记作 N x0 。 设 为任一正数,称开区间 x0 , x0 为 x0 的 邻 域,记作 N x0 , , x0 称为邻域的中心, 称为邻域的半
无界的。
如:函数 y sin x ,在 ,内有界,且:| y | 1
10
1.1.3复合函数
定义 1.2 如变量 y 是变量 u 的函数,变量 u 又是
变量 x 的函数,即: y f (u) , u (x) , 且 u (x) 的值域与 y f (u) 的定义域有公共部分, 则称 y 是 x 的复合函数,记作: y f [(x)]
高考数学复习考点知识讲解课件6 函数的定义域与值域
![高考数学复习考点知识讲解课件6 函数的定义域与值域](https://img.taocdn.com/s3/m/6d18efe1b8f3f90f76c66137ee06eff9aef8491d.png)
知识梳理 1.函数的定义域 (1)求定义域的步骤 ①写出使函数式有意义的不等式(组). ②解不等式(组). ③写出函数定义域.(注意用区间或集合的形式写出)
— 返回 —
— 4—
(新教材) 高三总复习•数学
(2)基本初等函数的定义域 ①整式函数的定义域为 R. ②分式函数中分母_不___等__于__0__. ③偶次根式函数被开方式__大__于__或__等__于___0___. ④一次函数、二次函数的定义域均为 R. ⑤函数 f(x)=x0 的定义域为__{_x_|x_≠__0_}__. ⑥指数函数的定义域为____R______. ⑦对数函数的定义域为_(_0_,__+__∞__)_.
0<2-x<1, ⇒x≠32
1<x<2, ⇒x≠32.
所以函数的定义域为1,32∪32,2.
— 14 —
(新教材) 高三总复习•数学
— 返回 —
角度 2:求抽象函数的定义域 【例 2】 已知函数 f(2x+1)的定义域为(0,1),则 f(x)的定义域是___(1_,_3_)__. [思路引导] 由已知得 x∈(0,1)→求 2x+1 的范围→得 f(x)的定义域.
2
— 返回 —
— 13 —
(新教材) 高三总复习•数学
— 返回 —
[解析] (1)要使原函数有意义,
-x2+9x+10≥0, 则x-1>0,
x-1≠1,
解得 1<x≤10 且 x≠2,所以函数 f(x)= -x2+9x+10-
lnx2-1的定义域为(1,2)∪(2,10],故选 D.
(2)要使函数有意义,则log12 2-x>0, 2x-3≠0
— 11 —
— 返回 —
— 返回 —
— 4—
(新教材) 高三总复习•数学
(2)基本初等函数的定义域 ①整式函数的定义域为 R. ②分式函数中分母_不___等__于__0__. ③偶次根式函数被开方式__大__于__或__等__于___0___. ④一次函数、二次函数的定义域均为 R. ⑤函数 f(x)=x0 的定义域为__{_x_|x_≠__0_}__. ⑥指数函数的定义域为____R______. ⑦对数函数的定义域为_(_0_,__+__∞__)_.
0<2-x<1, ⇒x≠32
1<x<2, ⇒x≠32.
所以函数的定义域为1,32∪32,2.
— 14 —
(新教材) 高三总复习•数学
— 返回 —
角度 2:求抽象函数的定义域 【例 2】 已知函数 f(2x+1)的定义域为(0,1),则 f(x)的定义域是___(1_,_3_)__. [思路引导] 由已知得 x∈(0,1)→求 2x+1 的范围→得 f(x)的定义域.
2
— 返回 —
— 13 —
(新教材) 高三总复习•数学
— 返回 —
[解析] (1)要使原函数有意义,
-x2+9x+10≥0, 则x-1>0,
x-1≠1,
解得 1<x≤10 且 x≠2,所以函数 f(x)= -x2+9x+10-
lnx2-1的定义域为(1,2)∪(2,10],故选 D.
(2)要使函数有意义,则log12 2-x>0, 2x-3≠0
— 11 —
— 返回 —
函数的概念与表示法课件(共19张PPT)
![函数的概念与表示法课件(共19张PPT)](https://img.taocdn.com/s3/m/5f41b428bb68a98271fefae5.png)
( x 1) 1 x 的定义域为_____ (2)函数 y ( x 1)
解题回顾:求函数f(x)的定义域,只需使解析式有 意义,列不等式组求解.
抽象函数定义域问题:
抽象函数 :没有给出具体解析式的函数 2. (1)已知函数 y
1 y f ( x 1) 的定义域为______ 2
探究提高: 分段函数是一类重要的函数模型.解决分段函数问题,
关键要抓住在不同的段内研究问题.
如本例,需分x>0时,f(x)=x的解的个数
和x≤0时,f(x)=x的解的个数.
“分段函数分段考察”
五 抽象函数
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),
f(1)=2,则f(-3)等于( C ) A.2 B.3 C.6
推广,函数是一种特殊的映射,要注意构成函数 的两个集合A、B必须是非空数集.
典型例题:
一:函数的基本概念:
1.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面 的4个图形中,能表示集合M到集合N的函数关系的有 ( )
A.①②③④
B.①②③
C.②③
D.②
解析:由函数的定义,要求函数在定义域上都有图 象,并且一个x对应着一个y,据此排除①④,选C.
A
B
x
f ( x)
(2)函数的定义域、值域: 在函数 y f ( x ), x A 中,x叫做自变量,x的取 值范围A叫做函数的定义域;与x的值相对应的y值 叫做函数值,函数值的集合f ( x) x A 叫做函数的 值域。 (3)函数的三要素:定义域、值域和对应法则 . (4)相等函数:如果两个函数的定义域和对应法则完 全一致,则这两个函数相等,这是判断两函数相等的 依据.
对数函数PPT课件
![对数函数PPT课件](https://img.taocdn.com/s3/m/ffb31557b6360b4c2e3f5727a5e9856a561226de.png)
04 对数函数与其他函数的比 较
与指数函数的比较
指数函数和对数函数是互为反函数, 它们的图像关于直线y=x对称。
当a>1时,指数函数和对数函数都是 增函数,但它们的增长速度不同,对 数函数的增长速度更慢。
指数函数y=a^x(a>0且a≠1)的图 像总是经过点(0,1),而对数函数 y=log_a x(a>0且a≠1)的图像则 总是经过点(1,0)。
对数函数和三角函数的应用领域也不同。对数函数主要用于解决与对数运算相关的问题,如 对数的换底公式、对数的运算性质等;而三角函数则主要用于解决与三角形的边角关系、周 期性等问题相关的问题。
05 对数函数的学习方法与技 巧
学习方法
1 2 3
理解对数函数的定义
首先需要理解对数函数的基本定义,包括对数函 数的定义域、值域以及其变化规律。
对数函数ppt课件
目录
• 对数函数的定义与性质 • 对数函数的运算性质 • 对数函数的应用 • 对数函数与其他函数的比较 • 对数函数的学习方法与技巧
01 对数函数的定义与性质
定义
自然对数
以e为底的对数,记作lnx,其中e是自然对数的底数,约等于 2.71828。
常用对数
以10为底的对数,记作lgx。
当0<a<1时,指数函数和对数函数都 是减函数,但它们的下降速度也不同, 对数函数的下降速度更快。
与幂函数的比较
幂函数y=x^n(n为实数)的图像在 第一象限和第三象限都存在,而对数 函数y=log_a x(a>0且a≠1)的图像 只存在于第一象限。
幂函数的增长速度与指数和对数函数 不同,当n>0时,幂函数的增长速度 比对数函数更快;当n<0时,幂函数 的增长速度比对数函数更慢。
函数的基本性质ppt课件
![函数的基本性质ppt课件](https://img.taocdn.com/s3/m/6f63b1152a160b4e767f5acfa1c7aa00b52a9dc4.png)
答案 [-2,+∞)
►单调性的两个易错点:单调性;单调区间.
(2)函数的单调递增(减)区间有多个时,不能用并集表示, 可以用逗号或“和”。
例如 函数 f(x)=x+1x的单调递增区间为________.
解析 由f(x)图象易知递增区间为(-∞,-1],[1,+∞). 答案 (-∞,-1],[1,+∞)
变式训练:
已知奇函数f (x)的定义域为- 2,2,且在区间 - 2,0上递减,则满足f (1 m) f (1 m2) 0的 实数m的取值范围是-1,1
题型五、函数的周期性解题方略
1.有关函数周期性的常用结论 (1)若 f(x+a)=f(x-a),则函数的周期为 2|a|; (2)若 f(x+a)=-f(x),则函数的周期为 2|a|; (3)若 f(x+a)=f(1x),则函数的周期为 2|a|; (4)若 f(x+a)=-f(1x),则函数的周期为 2|a|.
叫做f(x)的最小正周期.
题型归纳
题型一 判断函数的单调性 判断函数的单调性或求单调区间的方法 (1)利用已知函数的单调性. (2)定义法:先求定义域,再利用单调性定义.
(3) 图 象 法 : 如 果 f(x) 是 以 图 象 形 式 给 出 的 , 或 者 f(x)的图象易作出,可由图象的直观性写出它的单
域为[a-1,2a],则a=________,b=________.
解析 由定义域关于原点对称得 a-1+2a=0,解得 a=13,即
f(x)=13x2+bx+b+1,又 f(x)为偶函数,由 f(-x)=f(x)得 b=0.
答案
1 3
0
(2)若函数 f(x)为奇函数且在原点有意义,则 f(0)=0
[点评] 解题(1)的关键是会判断复合函数的单调性;解题(2) 的关键是利用奇偶性和单调性的性质画出草图.
►单调性的两个易错点:单调性;单调区间.
(2)函数的单调递增(减)区间有多个时,不能用并集表示, 可以用逗号或“和”。
例如 函数 f(x)=x+1x的单调递增区间为________.
解析 由f(x)图象易知递增区间为(-∞,-1],[1,+∞). 答案 (-∞,-1],[1,+∞)
变式训练:
已知奇函数f (x)的定义域为- 2,2,且在区间 - 2,0上递减,则满足f (1 m) f (1 m2) 0的 实数m的取值范围是-1,1
题型五、函数的周期性解题方略
1.有关函数周期性的常用结论 (1)若 f(x+a)=f(x-a),则函数的周期为 2|a|; (2)若 f(x+a)=-f(x),则函数的周期为 2|a|; (3)若 f(x+a)=f(1x),则函数的周期为 2|a|; (4)若 f(x+a)=-f(1x),则函数的周期为 2|a|.
叫做f(x)的最小正周期.
题型归纳
题型一 判断函数的单调性 判断函数的单调性或求单调区间的方法 (1)利用已知函数的单调性. (2)定义法:先求定义域,再利用单调性定义.
(3) 图 象 法 : 如 果 f(x) 是 以 图 象 形 式 给 出 的 , 或 者 f(x)的图象易作出,可由图象的直观性写出它的单
域为[a-1,2a],则a=________,b=________.
解析 由定义域关于原点对称得 a-1+2a=0,解得 a=13,即
f(x)=13x2+bx+b+1,又 f(x)为偶函数,由 f(-x)=f(x)得 b=0.
答案
1 3
0
(2)若函数 f(x)为奇函数且在原点有意义,则 f(0)=0
[点评] 解题(1)的关键是会判断复合函数的单调性;解题(2) 的关键是利用奇偶性和单调性的性质画出草图.
函数的概念ppt课件
![函数的概念ppt课件](https://img.taocdn.com/s3/m/69ebc676cec789eb172ded630b1c59eef9c79a19.png)
→s=x 十y;
⑥A={x|—1≤x≤1,x∈R},B={0}, 对应关系f:x→
y=0.
A.①⑤⑥
B.②④⑤⑥
C.②③④
D.①②③⑤
【思维·引】
1.在x 轴上区间[0,2]内作与x 轴垂直的直线,此直线 与函数的图象恰有一个公共点.
2.先看集合A,B 是否为非空数集,再判断非空数集A 中任取一个数,在非空数集 B 中是否有唯一的数与之 对应.
②求f(g(a)): 已 知f(x) 与 g(x), 求 f(g(a)) 的值应遵 循由里往外的原则.
(2)关注点:用来替换解析式中x 的 数a 必须是函数定 义域内的值,否则函数无意义.
习练 ·破
1.若f(x)=ax²—√2,a 为正实数,且f(f(√2))=—√2, 则 a=
2.设f(x)=2x²+2,
函数的定义,所以A 不是函数.B.由 |x—1|+√y²-1=
0得, |x—1|=0,√y²-1=0, 所以x=1,y=±1, 所以
●
( 1 ) 求 f(2),f(a+3),g
—2),g(f(2)). (2)求g(f(x)).
(a)+g(0)(a≠
≠—2),
【加练·固】
若
(x≠—1), 求 f(0),f(1),
f(1—a)(a≠2),f(f(2)) 的值.
课堂达标检测
1.下列图形中,不能确定y 是x 的函数的是
y
3
(
)
3
x
⑥对于由实际问题的背景确定的函数,其定义域还要受 实际问题的制约.
★习练·破
求下列函数的定义域:
(1
;(2)y=√x- 1·√1—x;
③
新教材人教版B版必修一 函数及其表示 课件(53张)
![新教材人教版B版必修一 函数及其表示 课件(53张)](https://img.taocdn.com/s3/m/68881da0f46527d3250ce03c.png)
[变式 1] (1)已知函数 f(x)的定义域为(0,1),求 f(x2)的定义 域;
(2)已知函数 f(2x+1)的定义域为(0,1),求 f(x)的定义域; (3)已知函数 f(x+1)的定义域为[-2,3],求 f(2x2-2)的定义 域. 解:(1)∵f(x)的定义域为(0,1), ∴要使 f(x2)有意义,需使 0<x2<1, 即-1<x<0 或 0<x<1, ∴函数 f(x2)的定义域为{x|-1<x<0 或 0<x<1}.
[解] (1)令 t=2x+1,则 x=t-2 1, ∴f(t)=lgt-2 1,即 f(x)=lgx-2 1. (2)设 f(x)=ax+b,则 3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b=ax+5a+ b=2x+17, 则有 a=2,b+5a=17, ∴a=2,b=7,故 f(x)=2x+7.
[ 变 式 3] 定 义 在 R 上 的 函 数 f(x) 满 足 f(x) =
log21-x,x≤0, fx-1-fx-2,x>0,
则 f(2 013)的值为(
)
A.-1
B.0
C.1
D.2
解析:通过计算得 f(-1)=1,f(0)=0,f(1)=-1,f(2)=-1, f(3)=0,f(4)=1,f(5)=1,f(6)=0,f(7)=-1,∴f(x)的值在 x> 0 时以-1,-1,0,1,1,0 循环,∴f(2 013)=f(335×6+3)=f(3)=0.
f(x)的解析式为( )
A.-1x
B.x+1 2
C.-x+1 2
1 D.2-x
解析:因为函数 y=f(x)的图象关于点(-1,0)对称,则-y= f(-2-x).设 x∈(-∞,-2),则-2-x>0,故-y=f(-2-x) =-x+1 2,即 y=x+1 2.
函数的定义域PPT教学课件
![函数的定义域PPT教学课件](https://img.taocdn.com/s3/m/0c47ad4919e8b8f67d1cb966.png)
• 巴山楚水凄凉地 , 第一个意象:忆昔,凄凉经历 • 二十三年弃置身。 • 怀旧空吟闻笛赋, 第二个意象:抚今,悲痛感受 • 到乡翻似烂柯人。 • 沉舟侧畔千帆过, 第三个意象:想事,沉重比喻 • 病树前头万木春。 • 今日听君歌一曲, 第四个意象:听歌,精神一振 • 暂凭杯酒长精神。
• 诗词中的“象”一般有四指:人、事、 物、景;“意”则有四涵:情、志、理、 趣。于是便可以组合成16种基本意象, 就全篇而言,即为16种基本意境。 如 下表
通过对这一个个意象的把握及联缀,我们就可以 把这首词的整体意境描述为:上阙写作者酒后望月 驰思,对天上人间的无限感慨;下阙写辗转不寐思 念亲人,又感悟到万事万物自古难全的道理,由此 得以自慰和宽解,并表达对亲人的美好祝愿。
一般说来,诗词多以一个完整的韵句为一个 意象,表达一个完整的形象及意思。如:
第二环节 弄懂字词,理顺语句
—疏通作品
• 初读之时,眼在字面上跑,嘴从字面上说, 字面的意思未必连贯得起来,诗面的形象未必 形成得起来。这是由古典诗词的高度凝练、精 辟,加之语言组织的特殊性造成的。这就需要 停顿下来,尝试着把每个词语的意思弄清楚, 把词与词的意思联系起来,以求把大致意思搞 清楚。就像叶老所说:先自行思考求解,不得 其解再看注解;看了注解仍不懂再与同学商量; 同学间商量不出再问老师。
例8、若函数y=lg(4-a•2x)的定义域为R, 则实数a的取值范围是_______
综合3: 已知函数f(x)=lg(mx2-4mx+m+3) 1)若f(x)的定义域为R,则实数m的取 值范围是_______ 2)若f(x)的值域为R,则实数m的取值 范围___________
例9、渔场中鱼群的最大养殖量为m吨,为保 证鱼群的生长空间,实际养殖量不能达到最 大养殖量,必须留出适当的空闲量,已知鱼 群的年增长量y吨和实际养殖量x吨与空闲率 成正比,比例系数为k(k>0)。
• 诗词中的“象”一般有四指:人、事、 物、景;“意”则有四涵:情、志、理、 趣。于是便可以组合成16种基本意象, 就全篇而言,即为16种基本意境。 如 下表
通过对这一个个意象的把握及联缀,我们就可以 把这首词的整体意境描述为:上阙写作者酒后望月 驰思,对天上人间的无限感慨;下阙写辗转不寐思 念亲人,又感悟到万事万物自古难全的道理,由此 得以自慰和宽解,并表达对亲人的美好祝愿。
一般说来,诗词多以一个完整的韵句为一个 意象,表达一个完整的形象及意思。如:
第二环节 弄懂字词,理顺语句
—疏通作品
• 初读之时,眼在字面上跑,嘴从字面上说, 字面的意思未必连贯得起来,诗面的形象未必 形成得起来。这是由古典诗词的高度凝练、精 辟,加之语言组织的特殊性造成的。这就需要 停顿下来,尝试着把每个词语的意思弄清楚, 把词与词的意思联系起来,以求把大致意思搞 清楚。就像叶老所说:先自行思考求解,不得 其解再看注解;看了注解仍不懂再与同学商量; 同学间商量不出再问老师。
例8、若函数y=lg(4-a•2x)的定义域为R, 则实数a的取值范围是_______
综合3: 已知函数f(x)=lg(mx2-4mx+m+3) 1)若f(x)的定义域为R,则实数m的取 值范围是_______ 2)若f(x)的值域为R,则实数m的取值 范围___________
例9、渔场中鱼群的最大养殖量为m吨,为保 证鱼群的生长空间,实际养殖量不能达到最 大养殖量,必须留出适当的空闲量,已知鱼 群的年增长量y吨和实际养殖量x吨与空闲率 成正比,比例系数为k(k>0)。
高中数学必修一(人教版)《函数的概念与性质》课件
![高中数学必修一(人教版)《函数的概念与性质》课件](https://img.taocdn.com/s3/m/7749376b3868011ca300a6c30c2259010202f383.png)
提醒:要利用函数的单调性、奇偶性、对称性简化作图.
【集训冲关】 已知f(x)是R上的奇函数,且当x>0时,f(x)=-x2+2x+2. (1)求f(-1); (2)求f(x)的解析式; (3)画出f(x)的图象,并指出f(x)的单调区间. 解:(1)由于函数f(x)是R上的奇函数,所以对任意的x都有f(-x)=-f(x),所 以f(-1)=-f(1)=-(-1+2+2)=-3.
[方法技巧] 函数单调性与奇偶性应用的常见题型
(1)用定义判断或证明函数的单调性和奇偶性. (2)利用函数的单调性和奇偶性求单调区间. 3利用函数的单调性和奇偶性比较大小、解不等式. 4利用函数的单调性和奇偶性求参数的取值范围. 提醒:判断函数的奇偶性时要特别注意定义域是否关于原点对称.
【集训冲关】
(2)由(1)知 f(x)=2x32+x 2=23x+32x.任取 x1,x2∈[-2,-1],且 x1<x2,则 f(x1) -f(x2)=23(x1-x2)1-x11x2=23(x1-x2)·x1xx12x-2 1. ∵-2≤x1<x2≤-1,∴x1-x2<0,x1x2>1,x1x2-1>0, ∴f(x1)-f(x2)<0,即 f(x1)<f(x2). ∴函数 f(x)在[-2,-1]上为增函数, 因此 f(x)max=f(-1)=-43,f(x)min=f(-2)=-53.
2.已知函数 f(x)=m3xx+2+n2是奇函数,且 f(2)=53. (1)求实数 m 和 n 的值; (2)求函数 f(x)在区间[-2,-1]上的最值. 解:(1)∵f(x)是奇函数,∴f(-x)=-f(x), ∴-m3xx2++2n=-m3xx+2+n2=-m3xx2+-2n. 比较得 n=-n,n=0.又 f(2)=53,∴4m6+2=53,解得 m=2.因此,实数 m 和 n 的值分别是 2 和 0.
【集训冲关】 已知f(x)是R上的奇函数,且当x>0时,f(x)=-x2+2x+2. (1)求f(-1); (2)求f(x)的解析式; (3)画出f(x)的图象,并指出f(x)的单调区间. 解:(1)由于函数f(x)是R上的奇函数,所以对任意的x都有f(-x)=-f(x),所 以f(-1)=-f(1)=-(-1+2+2)=-3.
[方法技巧] 函数单调性与奇偶性应用的常见题型
(1)用定义判断或证明函数的单调性和奇偶性. (2)利用函数的单调性和奇偶性求单调区间. 3利用函数的单调性和奇偶性比较大小、解不等式. 4利用函数的单调性和奇偶性求参数的取值范围. 提醒:判断函数的奇偶性时要特别注意定义域是否关于原点对称.
【集训冲关】
(2)由(1)知 f(x)=2x32+x 2=23x+32x.任取 x1,x2∈[-2,-1],且 x1<x2,则 f(x1) -f(x2)=23(x1-x2)1-x11x2=23(x1-x2)·x1xx12x-2 1. ∵-2≤x1<x2≤-1,∴x1-x2<0,x1x2>1,x1x2-1>0, ∴f(x1)-f(x2)<0,即 f(x1)<f(x2). ∴函数 f(x)在[-2,-1]上为增函数, 因此 f(x)max=f(-1)=-43,f(x)min=f(-2)=-53.
2.已知函数 f(x)=m3xx+2+n2是奇函数,且 f(2)=53. (1)求实数 m 和 n 的值; (2)求函数 f(x)在区间[-2,-1]上的最值. 解:(1)∵f(x)是奇函数,∴f(-x)=-f(x), ∴-m3xx2++2n=-m3xx+2+n2=-m3xx2+-2n. 比较得 n=-n,n=0.又 f(2)=53,∴4m6+2=53,解得 m=2.因此,实数 m 和 n 的值分别是 2 和 0.
函数的概念及表示法PPT课件
![函数的概念及表示法PPT课件](https://img.taocdn.com/s3/m/c3acf86bec630b1c59eef8c75fbfc77da26997df.png)
4
5
6
y(元)
巩固知识 典型例题
例4 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅 笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示 这个函数.
解 (2)以上表中的x值为横坐标,对应的y值为纵坐标,在直角 坐标系中依次作出点(1 , 0.12)、(2 , 0.24)、(3 , 0.36)、 (4,0.48)、(5,0.6)、(6,0.72),则函数的图像法表示如图所示.
巩固知识 典型例题
例2 设 f x 2x 1 ,求 f 0 , f 2 , f 5 , f b .
3
分析 本题是求自变量x=x0时对应的函数值,方法是将x0代入 到函数表达式中求值.
解 f 0 20 1
3
f 5 2 5 1
3
, f 2 2 2 1
3
, f b 2b 1
3
, .
巩固知识 典型例题
动 脑思考 探索新 知
作函数图像的一般方法——描点法
.
巩固知识 典型例题
例4 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅 笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示 这个函数.
解 (3)关系式y=0.12 x就是函数的解析式, 故函数的解析法表示为 y=0. .12 x, x ∈{1,2,3,4,5,6}
总结演示
判断下列对应能否表示y是x的函数
(1)能(2)不能(3) 能 (4)不能
应用知识 强化练习
教材练习3.1.1
1.求下列函数的定义域:
(1) f x 2 ;(2) f x x2 6x 5 .
x4
2.已知 f x 3x 2 ,求 f 0 , f 1 , f a .
《函数的概念及其表示》函数的概念与性质PPT(第一课时函数的概念)
![《函数的概念及其表示》函数的概念与性质PPT(第一课时函数的概念)](https://img.taocdn.com/s3/m/204a444ebf1e650e52ea551810a6f524ccbfcb07.png)
栏目 导引
第三章 函数的概念与性质
(2)①定义域不同,f(x)的定义域为{x|x≠0},g(x)的定义域为 R. 不相等. ②对应关系不同,f(x)= 1x,g(x)= x.不是同一个函数. ③定义域、对应关系都相同.同一个函数. ④对应关系不同,f(x)=|x+3|,g(x)=x+3.不是同一个函数. 【答案】 (1)B (2)③
栏目 导引
第三章 函数的概念与性质
下列各组函数表示同一个函数的是( ) A.f(x)=x-,xx,≥x0<,0 与 g(x)=|x| B.f(x)=1 与 g(x)=(x+1)0 C.f(x)= x2与 g(x)=( x)2 D.f(x)=x+1 与 g(x)=xx2--11
栏目 导引
第三章 函数的概念与性质
栏目 导引
第三章 函数的概念与性质
判断两个函数为同一个函数应注意的三点 (1)定义域、对应关系两者中只要有一个不相同就不是同一个函 数,即使定义域与值域都相同,也不一定是同一个函数. (2)函数是两个非空数集之间的对应关系,所以用什么字母表示 自变量、因变量是没有限制的. (3)在化简解析式时,必须是等价变形.
(-∞,4).
栏目 导引
第三章 函数的概念与性质
已知全集 U=R,A={x|1<x≤3},则∁UA 用区间表示为 ________. 解析:∁UA={x|x≤1 或 x>3},用区间可表示为(-∞,1]∪(3, +∞). 答案:(-∞,1]∪(3,+∞)
栏目 导引
第三章 函数的概念与性质
下图中能表示函数关系的是________.
栏目 导引
第三章 函数的概念与性质
⑤若 f(x)是实际问题的解析式,则应符合实际问题,使实际问 题有意义. (2) 第 (1) 题 易 出 现 化 简 y = x + 1 - 1-x , 错 求 定 义 域 为 {x|x≤1},在求函数定义域时,不能盲目对函数式变形.
第三章 函数的概念与性质
(2)①定义域不同,f(x)的定义域为{x|x≠0},g(x)的定义域为 R. 不相等. ②对应关系不同,f(x)= 1x,g(x)= x.不是同一个函数. ③定义域、对应关系都相同.同一个函数. ④对应关系不同,f(x)=|x+3|,g(x)=x+3.不是同一个函数. 【答案】 (1)B (2)③
栏目 导引
第三章 函数的概念与性质
下列各组函数表示同一个函数的是( ) A.f(x)=x-,xx,≥x0<,0 与 g(x)=|x| B.f(x)=1 与 g(x)=(x+1)0 C.f(x)= x2与 g(x)=( x)2 D.f(x)=x+1 与 g(x)=xx2--11
栏目 导引
第三章 函数的概念与性质
栏目 导引
第三章 函数的概念与性质
判断两个函数为同一个函数应注意的三点 (1)定义域、对应关系两者中只要有一个不相同就不是同一个函 数,即使定义域与值域都相同,也不一定是同一个函数. (2)函数是两个非空数集之间的对应关系,所以用什么字母表示 自变量、因变量是没有限制的. (3)在化简解析式时,必须是等价变形.
(-∞,4).
栏目 导引
第三章 函数的概念与性质
已知全集 U=R,A={x|1<x≤3},则∁UA 用区间表示为 ________. 解析:∁UA={x|x≤1 或 x>3},用区间可表示为(-∞,1]∪(3, +∞). 答案:(-∞,1]∪(3,+∞)
栏目 导引
第三章 函数的概念与性质
下图中能表示函数关系的是________.
栏目 导引
第三章 函数的概念与性质
⑤若 f(x)是实际问题的解析式,则应符合实际问题,使实际问 题有意义. (2) 第 (1) 题 易 出 现 化 简 y = x + 1 - 1-x , 错 求 定 义 域 为 {x|x≤1},在求函数定义域时,不能盲目对函数式变形.
初中函数的概念ppt课件
![初中函数的概念ppt课件](https://img.taocdn.com/s3/m/d1586b5853d380eb6294dd88d0d233d4b14e3f2d.png)
二次函数的定义
形如y=ax^2+bx+c(a, b,c是常数,a≠0)的函 数称为二次函数。
二次函数的图像
二次函数y=ax^2+bx+c 的图像是一个抛物线。
二次函数的性质
当a>0时,抛物线开口向 上,有最小值;当a<0时 ,抛物线开口向下,有最 大值。
03 函数的应用
函数在生活中的实际应用
人口增长模型
提供工具。
04 函数的扩展知识
复合函数的概念
定义
如果y是u的函数,而u是x的函数,那么y关于x的函数叫做由基本函 数f(u)和g(x)构成的复合函数。
表示方法
y = f(u),u = g(x)
分解
把一个复合函数分解成若干个基本初等函数,并分别指出各基本初等 函数在复合函数中的作用。
函数的奇偶性
THANKS 感谢观看
微积分
函数是微积分的基础,可以用来研 究物体的运动、变化和趋势等。
统计学
函数可以用来描述数据的分布特征 ,为统计分析提供工具。
函数在物理问题中的应用
力学
函数可以用来描述物体的运动状 态,如速度、加速度等。
热力学
函数可以用来描述温度、压力等 物理量的变化情况,为热力学研
究提供工具。
电学
函数可以用来描述电流、电压等 物理量的变化情况,为电学研究
函数的定义通常包括定义域和值域,定义域是指自变量的取值范围,值域是指因变 量的取值范围。
函数的表示方法
函数的表示方法有三种:表格法、图 象法和解析式法。
图象法是用图形来表示函数关系,它 直观形象,可以反映函数的单调性、 增减性等性质。
表格法是最简单的一种表示方法,它 将自变量和因变量的对应关系列成表 格,适用于简单的函数关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
g x 的值域。
例3:已知 y f 2x 1 的定义域为 1,2
,求 y f x 的定义域。
练习:
⑴已知 y f x 的定义域为 1, 2
,求 f x2 2 的定义域;
⑵已知 y f x 的定义域为 ,0
,求
f
log
2
x2
函数的定义域及常见求解方法
二、函数的定义域及常见求解方法
(一)、函数的定义域:
y f x 的定义域指的是自变量x的
取值范围,实质上是指被法则 f直接作 用的对象的取值范围。故要用集合表示.
(二).常见函数定义域的类型及求解
1.基本函数的定义域________熟记(理解记忆) 2.合成函数的定义域: (1)定义:合成函数______由若干个基本函数通
(1)复合函数____ 若 y f u,u g x则y f g x
就叫做 f 和g 的复合函数。其中 y f u
叫外函数, u g x 叫内函数。
(2)复已知 y f x的定义域 D1 ,
求 y f g x 的定义域 D2 。
过四则运算所形成的函数,其定义域为使得每 一部分都有意义的公共取值范围。 (2)求解:求解过程中坚持以下几个原则: (1)分式的分母不能为0; (2)偶次方根 内部必需非负 即大于等于零。
(3)对数的真数为正; (4)对数的底数 大于0且不为1;
(5) x0 中, x 0 。
例1:求下列各函数的定义域
1 y x2 2x 2 y x2 2x 3 0 x3
例1:
3 y 5 x2 lg x 1
x2
4 y log 13x2
2
5
y
log
x
3
x
2
2
x
3
6 y 25 x2 lg cos x
3、复合函数的定义域
分析:
的定义域;
4、实际问题中的函数的定义域
_______除使解析式有意义外,还要保证
a 问题有实际意义。
例4:如图,在边长为
的正 ABC 的边
BC, CA, AB 上各取一点P、Q、R,使
CQ=2BP,AR=3BP,
1.若BP= x ,三角形PQR的面积为 y ,求 y
与 x 的关系,并注明 x 的取值范围。 2.当 x 为何值时,三角形PQR的面积最小?
解法:解不等式 g x D1
例2:已知 y f x 的定义域 D1 1,2
。
,求 y f x2 2 的定义域D2
(Ⅱ)已知 y f g x 的定义
域 D1,求 y f x的定义域 D2。
解法:令 u g x, xD1,求函数
2
的定义域;
⑶已知 y f x2 2x 3 的定义域为
1,3 ,求 f x 的定义域;
⑷已知 y f 2x 的定义域为 1,1 ,
求 y f log2x 的定义域;
⑸已知 y f x 的定义域为 1,1 ,
求 F x f x2 3 f 2sin 2x 1
例3:已知 y f 2x 1 的定义域为 1,2
,求 y f x 的定义域。
练习:
⑴已知 y f x 的定义域为 1, 2
,求 f x2 2 的定义域;
⑵已知 y f x 的定义域为 ,0
,求
f
log
2
x2
函数的定义域及常见求解方法
二、函数的定义域及常见求解方法
(一)、函数的定义域:
y f x 的定义域指的是自变量x的
取值范围,实质上是指被法则 f直接作 用的对象的取值范围。故要用集合表示.
(二).常见函数定义域的类型及求解
1.基本函数的定义域________熟记(理解记忆) 2.合成函数的定义域: (1)定义:合成函数______由若干个基本函数通
(1)复合函数____ 若 y f u,u g x则y f g x
就叫做 f 和g 的复合函数。其中 y f u
叫外函数, u g x 叫内函数。
(2)复已知 y f x的定义域 D1 ,
求 y f g x 的定义域 D2 。
过四则运算所形成的函数,其定义域为使得每 一部分都有意义的公共取值范围。 (2)求解:求解过程中坚持以下几个原则: (1)分式的分母不能为0; (2)偶次方根 内部必需非负 即大于等于零。
(3)对数的真数为正; (4)对数的底数 大于0且不为1;
(5) x0 中, x 0 。
例1:求下列各函数的定义域
1 y x2 2x 2 y x2 2x 3 0 x3
例1:
3 y 5 x2 lg x 1
x2
4 y log 13x2
2
5
y
log
x
3
x
2
2
x
3
6 y 25 x2 lg cos x
3、复合函数的定义域
分析:
的定义域;
4、实际问题中的函数的定义域
_______除使解析式有意义外,还要保证
a 问题有实际意义。
例4:如图,在边长为
的正 ABC 的边
BC, CA, AB 上各取一点P、Q、R,使
CQ=2BP,AR=3BP,
1.若BP= x ,三角形PQR的面积为 y ,求 y
与 x 的关系,并注明 x 的取值范围。 2.当 x 为何值时,三角形PQR的面积最小?
解法:解不等式 g x D1
例2:已知 y f x 的定义域 D1 1,2
。
,求 y f x2 2 的定义域D2
(Ⅱ)已知 y f g x 的定义
域 D1,求 y f x的定义域 D2。
解法:令 u g x, xD1,求函数
2
的定义域;
⑶已知 y f x2 2x 3 的定义域为
1,3 ,求 f x 的定义域;
⑷已知 y f 2x 的定义域为 1,1 ,
求 y f log2x 的定义域;
⑸已知 y f x 的定义域为 1,1 ,
求 F x f x2 3 f 2sin 2x 1