实数易错点和易错题

合集下载

七年级数学上册实数重点易错题

七年级数学上册实数重点易错题

(每日一练)七年级数学上册实数重点易错题单选题1、下列计算正确的是()A.√0.09=±0.3B.√414=2√12C.√−273=−3D.−√|−25|=5答案:C解析:根据平方根的性质、立方根的性质以及绝对值的性质即可求出答案.A、原式=0.3,故A不符合题意.B、原式=√174=√172,故B不符合题意.C、原式=﹣3,故C符合题意.D、原式=﹣5,故D不符合题意.故选:C.小提示:本题考查了平方根的性质、立方根的性质以及绝对值的性质,正确进行平方根与立方根的计算是关键,要注意平方根与算术平方根的区别.2、有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4B.√43C.√3D.√23答案:B解析:由图中的程序知:输入x的值后,当√x3是无理数时,y=√x3;若√x3的值是有理数,将3再取立方根,直至输出的结果为无理数,也就求出了y的值.√x3=4, 4是有理数,将4的值代入x中;当x=4时,解: 解:由题意,得:x=64时, √643是无理数.√4故选:B.小提示:本题考查实数的运算,弄清程序的计算方法是解题关键.3、下列命题是真命题的是()A.如果一个数的平方等于这个数本身,那么这个数一定是0B.如果一个数的平方根等于这个数本身,那么这个数一定是0C.如果一个数的算术平方根等于这个数本身,那么这个数定是0D.如果一个数的立方根等于这个数本身,那么这个数定是0答案:B解析:根据平方、平方根、算术平方根、立方根的定义,思考特殊值,即可求出答案.解:A、如果一个数的平方等于这个数本身,那么这个数一定是0或1,故A是假命题;B、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;C、如果一个数的算术平方根等于这个数本身,那么这个数一定是0或1,故C是假命题;D、如果一个数的立方根等于这个数本身,那么这个数是0、1、-1,故D是假命题.故选:B.小提示:此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.填空题4、比较下列各数的大小:(1)3√24 ____3√26;(2)−22____-π7答案:<;<解析:(1)根据数轴上表示的两个实数,右边的总比左边的大进行比较;(2)根据两个负数,绝对值大的反而小进行比较.解:(1)∵√24<√26,∴3√24<3√26;≈-3.143,-π≈-3.141,(2)−227∵3.143>3.141∴−22<-π.7故答案为<,<.小提示:本题考查了实数的大小比较,解题的关键是注意:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.5、如果a、b分别是√2的整数部分和小数部分,那么b−a=__________.答案:√2−2解析:√2的整数部分是1,即a是1,小数部分是√2-1,即b是√2-1,再代入代数式计算.解:∵√2的整数部分是1,小数部分是√2-1,∴a=1,b=√2-1,∴b-a=(√2-1)-1=√2-1-1=√2-2.所以答案是:√2-2.小提示:此题考查的估算无理数大小的能力,解答此类题目的关键是先对无理数进行估算,再计算.解答题6、设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:x⊕y={3x+4y−5(x≥y)4x+3y−5(x<y)(1)求1⊕(−1)的值;(2)若(m−2)⊕(m+3)=2,求m的值.答案:(1)−6;(2)m=67解析:(1)根据新运算中的代数式,将式子进行化简求值即可.(2)分情况进行讨论,当m-2≥m+3时,当m-2<m+3时分别根据新运算的法则进行运算求值即可.解:(1)1⊕(−1)=3×1+4×(−1)−5=3-4-5=−6;(2)∵m-2≥m+3不成立,∴当m-2<m+3时4(m−2)+3(m+3)−5=2,4m−8+3m+9−5=27m=6m=67小提示:本题考查新运算,解决本题的关键是正确理解题意,熟练掌握新运算的运算步骤.。

实数易错题汇编含答案

实数易错题汇编含答案
4.估计65的立方根大小在()
A.8与9之间B.3与4之间C.4与5之间D.5与6之间
【答案】C
【解析】
【分析】
先确定 介于 、 这两个立方数之间,从而可以得到 ,即可求得答案.
【详解】
解:∵ ,

∴ .
故选:C
【点睛】
本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与 临界的两个立方数是解决问题的关键.
7.下列六个数:0、 中,无理数出现的频数是( )
A.3B.4C.5D.6
【答案】A
【解析】
【分析】
根据无理数的定义找出无理数,根据频数的定义可得频数.
【详解】
因为六个数:0、 中,无理数是
即:无理数出现的频数是3
故选:A
【点睛】
考核知识点:无理数,频数.理解无理数,频数的定义是关键.
8.如图,数轴上的点可近似表示(4 ) 的值是()
18.实数 在数轴上对应点的位置如图所示,则下列结论正确的是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据数轴得a<0<b,且 ,再根据实数的加法法则,减法法则依次判断即可.
【详解】
由数轴得a<0<b,且 ,
∴a+b<0,a-b<0,
故A正确,B、C、D错误,
故选:A.
【点睛】
此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.
【详解】
∵3 4,
∴4 1<5.
故选C.
【点睛】
本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3 4是解题的关键,又利用了不等式的性质.

(文章)实数易错题分析

(文章)实数易错题分析
3、实数
例6、“有限小数都是有理数,无理小数都是无理数”这个命题正确吗?
错解:正确
剖析:“有限小数都是有理数”是对的,因为有理数包括有限小数和无限循环小数,而“无限小数都是无理数”的说法不正确,因为只有无限不循环小数才是无理数,因此这个命题是错误的。
例7、 是有理数还是无理数?
错解:因为 带有根号,所以它是无理数.
实数易错题分析
1、平方根、算术平方根
例1、求4的Байду номын сангаас方根
错解:因为22=4所以4的平方根是2
分析:产生错误的原因是对"一个正数有两个平方根"不清楚.忽视了(-2)2=4这一点应当注意:一个数的平方运算的结果是唯一的 ,而一个正数的开平方运算其结果是互为相反数的两个值,正确答案是±2
例2、 的平方根是( )
分析:判断一个数的性质,应该根据数的定义或数的概念结果去判断,不能只看形式,因为 =-4,而-4是有理数而不是无理数,所以 是有理数.
例8、有没有最小的实数?
错解:有,0是最小的实数,
剖析:0是绝对值最小的实数,但不是最小的实数,故不存在最小的实数。
A3B C±3D±
错解 :因为 的平方根是±3,故选C.
分析:上述解法没有审透题意, 本身表示9的算术平方根,即 =3因此,此题实际上是求3的平方根,其结果应是± 故选D
例3、x为什么实数时, 没有意义?
错解:不论x是什么实数, 都无意义.
分析:
当x=0时 = =0,此时, 有意义,上述解法由于遗漏了x可以取零值而出错.
例4、 计算:
错解: =±
分析:上述解法混淆了平方根和算术平方根的两个概念,算术平方根是指一个数的正的平方根.这里强调了两个正数,被开方数是正数,开平方的结果也是正数. 表示 的算术平方根,因此 =

实数易错点和易错题

实数易错点和易错题

一、 学习目标与考点分析:掌握实数的概念,平方根,立方根以及运算。

能区分出有理数和无理数。

知道绝对值和倒数的概念,并运算。

掌握科学技术;能得出实数在题目中的变化规律。

二、 教学内容:考点.绝对值的概念、性质 例.(1)假设=++<abab b b a a ab 则,0 . (2)已知:b ,0,0与用a b a ><表示a 与b 的差是: . (3)假设b a =,则a 与b 的关系是( ) 〔4〕200111999119991200012000120011---+- x x x 222x ,2++--<化简其结果是?2. 对于每个非零有理数c b a ,,式子abcabcc c b b a a +++的所有可能的值有? 例.(1)数轴上表示整数的点称为整点,某数轴的单位长度是1cm,假设在这个数轴上随意画出一条长2000cm 的线段AB,则线段AB 盖住的整点共有的个数为( ) 2000 C(2)实数a、b、c在数轴上的对应点如下图,其中|a|=|c|试化简:|b-c|-|b-a|+|a-c-2b|-|c-a|考点.非负性〔利用0,0,02≥≥≥a a a 〕例.已知等腰三角形一边长为a,一边长b,且〔2a-b〕2+|9-a2|=0 .求它的周长.练习:已知0)2(432=-+-+-z y x ,求z y x )(+的值《实数》实数运算技巧与典型例题例1. 以下各数中,哪些互为相反数?哪些互为倒数?哪些互为负倒数?-3, 2 -1, 3, - 0.3, 3-1, 1 + 2 , 313互为相反数: 互为倒数: 互为负倒数: 练习:(1)a,b 互为相反数,c,d 互为倒数,m 的绝对值是2.求|a+b|2m 2+1+4m-3cd 的值.(2)假设有理数a 等于它的相反数,有理数b 等于它的倒数, 求1999199919991999b a b a -++的值.例2. 计算:{12 ×〔-2〕2-(12 )2+11-13 }÷| 21996·(-12)1995|练习: 1. -1-〔- 16 〕-2+43-3-1+〔π-3〕02. 3223)1.0()1.01()43()971()52(-÷---⨯--⨯-考点3.绝对值的概念、性质例3.(1)假设=++<abab b b a a ab 则,0 . (2)已知:b ,0,0与用a b a ><表示a 与b 的差是: . (3)假设b a =,则a 与b 的关系是( )〔4〕200111999119991200012000120011---+- x x x 222x ,2++--<化简其结果是?2. 对于每个非零有理数c b a ,,式子abcabcc c b b a a +++的所有可能的值有?例4.(1)数轴上表示整数的点称为整点,某数轴的单位长度是1cm,假设在这个数轴上随意画出一条长2000cm 的线段AB,则线段AB 盖住的整点共有的个数为( ) 2000 C(2)实数a、b、c在数轴上的对应点如下图,其中|a|=|c|试化简:|b-c|-|b-a|+|a-c-2b|-|c-a|练习:已知实数a 、b 在数轴上对应点的位置如图 〔1〕比较a -b 与a+b 的大小〔2〕化简|b -a|+|a+b|考点5.非负性〔利用0,0,02≥≥≥a a a 〕例5.已知等腰三角形一边长为a,一边长b,且〔2a-b〕2+|9-a2|=0 .求它的周长. 练习:已知0)2(432=-+-+-z y x ,求z y x )(+的值.例6.(1)54810精确到百位的近似值是 ,该近似值有 位有效数字.地球到月球的距离用四舍五入法得到38万km,其精确值的范围是 .(2)我国国民生产总值到达11.69万亿元,人民生活总体到达小康水平,其中11.69亿元用科学记数法表示应为( )A.1310169.1⨯B. 1410169.1⨯C. 131069.11⨯D.13101169.0⨯练习:2006年是我国公民义务植树运动开展25周年,25年来我市累计植树154000000株,这个数字可以用科学记数法表示位 株.例7.(1)检修小组从A 地出发,在东西路上检修线路.如果规定向东行驶为正,向西行驶为负,一天中行驶记录如下(单位:km): -4,+7,-9,+8,+6,-4,-3 (1)求收工时距A 地多远?(2)假设每千米耗油,问从出发到收工共耗油多少升? 〔1〕111)1(1+-=+⨯n n n n 〔2〕)11(1)(1dn n d d n n +-=+⨯例8.计算:〔1〕2007654321++-+-+- 〔2〕200019991431321211⨯++⨯+⨯+⨯〔3〕)212007(312006412005)612004(-+++-练习:〔1〕100981751531311⨯++⨯+⨯+⨯ 〔2〕)213(4317)439(655-++-+-易错题填空题1. 计算:•〔﹣〕﹣2﹣〔2〕0+|﹣|+的结果是 _________ .2.假设和都是最简二次根式,则m=_________,n=_________.3.把根式a根号外的a移到根号内,得_________.4.在实数a,3,中,一个数的平方等于另外两个数的积,那么符合条件的a的整数值是_________.5.=_________.8.假设最简二次根式与﹣是同类二次根式,则x=_________.9.当x=_________时,最简二次根式与是同类二次根式.10.〔2010•杭州〕先化简﹣〔﹣〕,再求得它的近似值为_________〔精确到0.01,≈1.414,≈1.732〕.15.设a、b都是有理数,规定a*b=,则〔4*8〕*[9*〔﹣64〕]=_________.16.已知=+,且0<x<y,则满足上式的整数对〔x,y〕有_________.17.计算:=_________.18.假设a是的小数部分,则a〔a+6〕=_________.19.如果a,b分别是6﹣的整数部分和小数部分,那么ab2﹣a2b=_________.20.〔1998•内江〕已知ab=2,则的值是_________.21.已知实数a,b,c满足,则a+b+c=_________.22.已知的值是_________.23.已知,则x3﹣17x+2006=_________.24.已知x>0,y>0且x﹣2﹣15y=0,则=_________.25.非零实数x、y满足〔﹣x〕〔﹣y〕=2009,则=_________.26.设a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣ac﹣bc=_________.27.一个三角形的三边长分别为,,2,〔>0〕,则这个三角形的面积是_________.28.如图,已知OA=OB,数轴上点C表示的数是2,那数轴上线段AC所表示的数是_________.解答题30.计算:+|2﹣3|÷=_________.。

专题04 实数易错题之选择题(30题)七年级数学下册同步易错题精讲精练(人教版)(解析版)

专题04 实数易错题之选择题(30题)七年级数学下册同步易错题精讲精练(人教版)(解析版)

专题04 实数易错题之选择题(30题)Part1 与 平方根 有关的易错题1.(2020·广东汕头市·的算术平方根为( )A . BC .2±D .2【答案】B 【解析】的值,再继续求所求数的算术平方根即可.详解:=2,而2, 故选B .名师点拨:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.2.(2020·河南许昌市·七年级期末)下列各式中,正确的是( )A 3=-B .3=-C 3=±D 3±【答案】B 【提示】如果一个非负数x 的平方等于a ,那么x 是a 的算术平方根,根据此定义即可求出结果. 【详解】解:A 3= ,故本选项错误;B 、3=-,故本选项正确;C 3= ,故本选项错误;D 3= ,故本选项错误; 故选B . 【名师点拨】本题考查算术平方根的定义,主要考查学生的理解能力和计算能力.3.(2020·自贡市期中)已知5a =7=,且a b a b +=+,则-a b 的值为( )A .2或12B .2或12-C .2-或12D .2-或12-【答案】D 【详解】根据a =5,得a 5,b 7=±=±,因为a b a b +=+,则a 5,b 7=±=,则-a b =5-7=-2或-5-7=-12. 故选D.4.(2020·广西防城港市·七年级期中)若30,a -=则+a b 的值是( ) A .2 B .1 C .0D .1-【答案】B 【解析】试题提示:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.5.(2020·安徽铜陵市·七年级期末)若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8【答案】D 【提示】根据单项式的定义可得8m x y 和36nx y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36nx y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【名师点拨】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数. 6.(2020·安徽阜阳市·七年级期末)面积为4的正方形的边长是( ) A .4的平方根 B .4的算术平方根 C .4开平方的结果 D .4的立方根【答案】B 【提示】已知正方形面积求边长就是求面积的算术平方根. 【详解】解:面积为44的算术平方根; 故选B . 【名师点拨】本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.7.(2020·( ) A .±3 B .3C .9D .±9【答案】A 【提示】根据算术平方根、平方根的定义即可解决问题. 【详解】9=,9的平方根3±. 故选:A . 【名师点拨】本题考查算术平方根、平方根的定义,解题的关键是记住平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,属于基础题,中考常考题型. 8.(2020·浙江杭州市期末)下列说法正确的是()A .116的平方根是14B .16-的算术平方根是4C .2(4)-的平方根是4-D .0的平方根和算术平方根都是0【答案】D 【提示】根据一个正数有两个平方根,且这两个平方根互为相反数及平方根的定义即可判断各选项. 【详解】 解:A 、116的平方根为±14,故本选项错误; B 、-16没有算术平方根,故本选项错误; C 、(-4)2=16,16的平方根是±4,故本选项错误; D 、0的平方根和算术平方根都是0,故本选项正确. 故选D . 【名师点拨】本题考查了平方根和算术平方根的定义,一个正数有两个平方根,其中正的平方根称为算术平方根,负数没有平方根,0的平方根和算术平方根都是0.9.(2020·河北邯郸市七年级期中)下列说法正确的是( ) A .-5是25的平方根B .25的平方根是5C .-5是(-5)2的算术平方根D .±5是(-5)2的算术平方根【答案】A 【解析】试题提示:A 、B 、C 、D 都可以根据平方根和算术平方根的定义判断即可. 解:A 、﹣5是25的平方根,故选项正确; B 、25的平方根是±5,故选项错误;C 、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误;D 、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误. 故选A .10.(2020·江西南昌市·七年级期末)若2m -4与3m -1是同一个数的平方根,则m 的值是( ) A .-3 B .-1C .1D .-3或1【答案】D 【提示】根据平方根的性质列方程求解即可; 【详解】当24=31m m --时,3m =-; 当24310m m +=--时,1m =; 故选:D. 【名师点拨】本题主要考查平方根的性质,易错点是容易忽略相等的情况,做好分类讨论是解决本题的关键.Part2 与 立方根 有关的易错题11.(2020·内蒙古乌兰察布市·七年级期末)64的立方根是( ) A .4 B .±4 C .8 D .±8【答案】A 【解析】试题提示:∵43=64,∴64的立方根是4, 故选A考点:立方根.12.(2020·)A.±2B.±4C.4D.2【答案】D【提示】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选D.【名师点拨】本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义. 13.(2020·河南周口市·七年级期末)有理数-8的立方根为()A.-2B.2C.±2D.±4【答案】A【提示】利用立方根定义计算即可得到结果.【详解】解:有理数-8-2故选A.【名师点拨】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.14.(2020·右玉县期中)立方根等于它本身的有( )A.0,1B.-1,0,1C.0,D.1【答案】B【提示】根据立方根性质可知,立方根等于它本身的实数0、1或-1.【详解】解:∵立方根等于它本身的实数0、1或-1.故选B.【名师点拨】本题考查立方根:如果一个数x的立方等于a,那么这个数x就称为a的立方根,例如:x3=a,x就是a的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0.15.(2020·凉州区期末)若,则x和y的关系是().A.x=y=0B.x和y互为相反数C.x和y相等D.不能确定【答案】B【解析】提示:先移项,再两边立方,即可得出x=-y,得出选项即可.详解:,=∴x=-y,即x、y互为相反数,故选B.名师点拨:考查了立方根,相反数的应用,解此题的关键是能得出x=-y.16.(2020·武威市期中)一个正方体的水晶砖,体积为100 cm3,它的棱长大约在( )A.4 cm~5 cm之间B.5 cm~6 cm之间C.6 cm~7 cm之间D.7 cm~8 cm之间【答案】A【解析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.解:设正方体的棱长为x,由题意可知x3=100,解得x=,由于43<100<53,所以4<<5.故选A.此题是考查估算无理数的大小在实际生活中的应用,“夹逼法”估算方根的近似值在实际生活中有着广泛的应用,我们应熟练掌握.17.(2020·凉州区期末)下列各组数中互为相反数的是( )A .2-与2B .2-C .2-与12-D .2-【答案】D【提示】根据相反数的性质判断即可; 【详解】A 中-2=2,不是互为相反数;B 2=-,不是相反数;C 中两数互为倒数;D 中两数互为相反数; 故选:D . 【名师点拨】本题主要考查了相反数的性质应用,准确提示是解题的关键.18.(2020·山东滨州市·七年级期中)一个数的算术平方根与它的立方根的值相同,则这个数是( ) A .1 B .0或1 C .0 D .非负数【答案】B 【提示】根据立方根和平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题. 【详解】∵立方根等于它本身的实数0、1或−1; 算术平方根等于它本身的数是0和1.∴一个数的算术平方根与它的立方根的值相同的是0和1. 故选:B. 【名师点拨】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.19.(2020·浙江杭州市·七年级期末)若24,a =1=-,则+ab 的值是( )A .1B .-3C .1或-3D .-1或3【答案】C 【提示】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可. 【详解】解:24,a =1,=-2,a ∴=±1b =-,∴当2,a =-1b =-时,213a b +=--=-;∴当2,a =1b =-时,211a b +=-=. 故选:C . 【名师点拨】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键.20.(2020·武威市期中)若a b a+b 的值是( ) A .4 B .4或0C .6或2D .6【答案】C 【提示】由a a=±2,由b b=4,由此即可求得a+b 的值. 【详解】∵a∴a=±2,∵b∴b=4,∴a+b=2+4=6或a+b=-2+4=2. 故选C . 【名师点拨】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、 b=4是解决问题的关键.Part3 与 实数 有关的易错题21.(2020·重庆市期末)黄金分割数12是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间 C .在1.3和1.4之间 D .在1.4和1.5之间【答案】B 【提示】根据4.84<5<5.29,可得答案. 【详解】 ∵4.84<5<5.29, ∴, ∴1<1.3, 故选B . 【名师点拨】是解题关键.22.(2020·湖南湘潭市七年级期中)实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>【答案】B 【解析】提示:观察数轴得到实数a ,b ,c 的取值范围,根据实数的运算法则进行判断即可. 详解:∵43a -<<-,∴34a <<,故A 选项错误; 数轴上表示b 的点在表示c 的点的左侧,故B 选项正确; ∵0a <,0c >,∴0ac <,故C选项错误;∵0a <,0c >,a c >,∴0a c +<,故D 选项错误. 故选B.名师点拨:主要考查数轴、绝对值以及实数及其运算.观察数轴是解题的关键.23.(2020·的值在( ) A .2到3之间B .3到4之间C .4到5之间D .5到6之间【答案】B 【提示】利用”夹逼法“+1的范围. 【详解】 ∵4 < 6 < 9 , <,即23<<,∴34<<, 故选B.24.(2020·甘南县期末)下列各数中,13.14159 0.131131113 7π⋅⋅⋅--,,,无理数的个数有 A .1个 B .2个C .3个D .4个【答案】B 【解析】试题提示:无限不循环小数为无理数,由此可得出无理数的个数,因此,由定义可知无理数有:0.131131113…,﹣π,共两个.故选B .25.(2020·广东河源市七年级期末)实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0ab< 【答案】D 【提示】先由数轴上a ,b 两点的位置确定a ,b 的取值范围,再逐一验证即可求解. 【详解】由数轴上a ,b 两点的位置可知-2<a <-1,0<b <1, 所以a<b ,故A 选项错误; |a|>|b|,故B 选项错误; a+b<0,故C 选项错误;0ab<,故D 选项正确, 故选D. 【名师点拨】本题考查了实数与数轴,实数的大小比较、实数的运算等,根据数轴的特点判断两个数的取值范围是解题的关键. 26.(2020·河北保定市·七年级期中)有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.B.C.D.8【答案】A【解析】解:由题中所给的程序可知:把64取算术平方根,结果为8,∵8是有理数,∴∴y=.故选A.27.(2020·山东枣庄市·七年级期中)现定义一种新运算:a★b=ab+a-b,如:1★3=1×3+1-3=1,那么(-2)★5的值为()A.17B.3C.13D.-17【答案】D【提示】根据新运算的定义即可得到答案.【详解】∵a★b=ab+a﹣b,∴(﹣2)★5=(﹣2)×5﹣2﹣5=﹣17.故选D.【名师点拨】本题考查了基本的知识迁移能力,运用新定义,求解代数式即可,要灵活运用所学知识,要认真掌握.28.(2020·的点落在()A.段①B.段②C.段③D.段④【答案】C【解析】试题提示:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵7.84<8<8.41,∴2.82<8<2.92,∴2.82.9,③段上.故选C考点:实数与数轴的关系29.(2020·北京市期末)请你观察、思考下列计算过程:因为112=121,:,因为1112=12321=111…( )A .111111B .1111111C .11111111D .111111111 【答案】D【解析】提示:被开方数是从1到n 再到1(n≥1的连续自然数),算术平方根就等于几个1.详解:=11=111…,…,111 111 111.故选D .名师点拨:本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.30.(2020·浙江杭州市·七年级期末)如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123191111a a a a ++++…的值为( )A .2021B .6184C .589840D .431760【答案】C【提示】根据给定几幅图形中黑点数量的变化可找出其中的变化规律“()2n a n n =+(n 为正整数)”,进而可求出111122n a n n ⎛⎫=- ⎪+⎝⎭,将其代入123191111a a a a ++++…中即可求得结论. 【详解】解:∵第一幅图中“•”有1133a =⨯=个;第二幅图中“•”有2248a =⨯=个;第三幅图中“•”有33515a =⨯=个;∴第n 幅图中“•”有()2n a n n =+(n 为正整数)个 ∴111122n a nn ⎛⎫=- ⎪+⎝⎭∴当19n =时123191111a a a a ++++…11113815399=++++11111324351921=++++⨯⨯⨯⨯1111111111112322423521921⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1111111112324351921⎛⎫=⨯-+-+-++- ⎪⎝⎭11111222021⎛⎫=⨯+-- ⎪⎝⎭589840=.故选:C【名师点拨】此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题.。

实数易错题

实数易错题

实数类型一:平方根1.下列判断中,错误的是()A.﹣1的平方根是±1 B.﹣1的倒数是﹣1C.﹣1的绝对值是1 D.﹣1的平方的相反数是﹣1考点:平方根;相反数;绝对值;倒数。

专题:计算题。

分析:A、利用平方根的定义即可判定;B、利用倒数定义即可判定;C、利用绝对值的定义即可判定;D、利用相反数定义即可判定.解答:解:A、负数没有平方根,故A说法不正确;B、﹣1的倒数是﹣1,故选项正确;C、﹣1的绝对值是1,故选项正确;D、﹣1的平方的相反数是﹣1,故选项正确.故选A.点评:本题考查基本数学概念,涉及平方根、倒数、绝对值等,要求学生熟练掌握.变式:2.下列说法正确的是()A.是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0 C.72的平方根是7D.负数有一个平方根考点:平方根。

专题:计算题。

分析:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.可据此进行判断.解答:解:A、是0.5的平方,故选项错误;B、∵任何一个正数有两个平方根,它们互为相反数,∴这两个平方根之和等于0,故选项正确;C、∵72的平方根是±7,故选项错误;D、∵负数没有平方根,故选项错误.故选B.点评:此题主要考查了平方根的概念,属于基础知识,难度不大.3.如果一个数的平方根等于这个数本身,那么这个数是()A.1 B.﹣1 C.0 D.±1考点:平方根。

专题:计算题。

分析:由于如何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.解答:解:∵±=±0=0,∴0的平方根等于这个数本身.故选C.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.类型二:算术平方根1.的算术平方根是()A.±81 B.±9 C.9 D.3考点:算术平方根。

分析:首先求出的结果,然后利用算术平方根的定义即可解决问题.解答:解:∵=9,而9的算术平方根是3,∴的算术平方根是3.故选D.点评:本题考查的是算术平方根的定义.一个非负数的非负平方根叫做这个数的算术平方根.正数的平方根是正数.特别注意:应首先计算的值.变式:2.的平方根是()A.3 B.±3 C.D.±考点:算术平方根;平方根。

七年级数学实数常考题型及易错点总结

七年级数学实数常考题型及易错点总结

(6)3 a3 a
4
有限小数及无限循环小数整数
正整数 0
有理数
负整数
分数 正分数
实 数
负分数
正无理数
无理数
负无理数
无限不循环小数 (1)、
自然数
一般有三种情况
2、“ ”,“3 ”开不尽的数
(3)、 类似于0.0100100010 0001
常见无理数的值:
易错点总结:
一、判断下列说法是否正确:
9(3 y)2 4
2(7 x 2)3 125 0 3
(5) 3 1 x
10、 39 的整数部分,小数部分
11、已知 5 11 的小数部分为m, 5 11 的小数部分为n,则m n _____
9
12、把下列各数分别填入相应的集合内
3 2 ,
, 5, 2
2,
1, 4
20 , 3
4, 9
(3) 81
(4) 36
3
立方根与开立方
一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,记 为“ 3 a ”,读作“3次根号a” . 注意: (1)一个正数有一个正立方根;
(2)一个负数有一个负的立方根.
Байду номын сангаас
(3)0的立方根是0本身;
(4)3 a 3 a (5)3 a 3 a
(2)0的平方根是0; (3)负数没有平方根
两个公式:( a )2 a(a 0)
a a 0
a2
a
0
a0
a a 0
2
基础练习:
1、49的算术平方根是( ) 3、0.25的平方根是( )
2、9的平方根是( )
4

八上数学 第二章实数知识点归纳+易错例题精选(含答案)

八上数学 第二章实数知识点归纳+易错例题精选(含答案)

八年级数学上册 第二章 实数知识点+易错题精选一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数概念:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= —b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|= -a ,则a ≤0。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算 逐步逼近法的正确使用 三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a ”,读作根号a 。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a”,读作“正、负根号a ”。

专题01 实数(重点+难点)(解析版)

专题01 实数(重点+难点)(解析版)

专题01实数(重点+难点)一、单选题1.下列各数中:﹣227,﹣39,0,0.15,3π,﹣49,1.010010001……(0的个数依次加一个),23.1313313332中,无理数有()个A .1B .2C .3D .4【答案】C【分析】无限不循环小数称为无理数,根据此概念判断即可.【解析】根据无理数的概念知:无理数有﹣39,3π, 1.010010001……(0的个数依次加一个)三个;故选:C .【点睛】本题考查了无理数的含义,常见三类无理数:不能开尽方的平方根或立方根;π与有理数的和差积商;形如1.010010001……(0的个数依次加一个)的数.2.下列说法中,不.正确的是()A .4的平方根是2±B .8的立方根是2C .64的立方根是4±D .9的算术平方根是3【答案】C【分析】根据平方根和立方根的定义进行计算,一个正数的平方根有正负两个,正的平方根是该数的算术平方根,所有实数的立方根只有一个,然后进行逐一判断即可.【解析】A.4的平方根是2±,原选项不合题意;B.8的立方根是2,原选项不合题意;C.64的立方根是4,原选项符合题意;D.9的算术平方根是3,原选项不合题意.故选:C【点睛】本题考查了平方根和立方根的概念,熟练掌握相关知识是解题的关键.3.如图,数轴上点P 表示的数可能是()A.①②【答案】D【分析】根据运算规则即可求解.【解析】解:①x的值不唯一.②输入值x为16时,③对于任意的正无理数④当x=1时,始终输不出其中错误的是①③.故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:及像0.1010010001…,等有这样规律的数.二、填空题11.比较大小:6【答案】<【分析】根据实数的大小比较方法求解即可.<,【解析】解:∵67∴67<,1615>故答案为:<,>.【点睛】本题考查实数的大小比较,三、解答题(1)已知点A、B表示两个实数﹣3、2,请在数轴上描出它们大致的位置,用字母标示出来;(2)O为原点,求出O、A两点间的距离.(3)求出A、B两点间的距离.【答案】(1)见解析;(2)解:∵表示点A的数为﹣3,表示点O的数为0,∴OA=0﹣(﹣3)=3;(3)解:∵表示点A的数为﹣3,表示点B的数为2,∴AB=2﹣(﹣3)=2+3.【点睛】本题考查了实数与数轴以及两点间的距离,在数轴上准确表示出点∴103823的立方根的十位数字是4,又∵103823的立方根的个位数字是7,∴103823的立方根是47.【点睛】考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数.一、单选题A.216【答案】D【分析】由4A纸张的宽为【解析】解:由图得,当∵纸张长与宽的比为∴0A纸的长为42x米,∵0A纸面积为1平方米,∴421x x⋅=,∴2²32x=,∴x的值为232的算术平方根.故选:D.【点睛】本题考查了平方根的计算,根据图形表示出二、填空题三、解答题。

《有理数》的易错题难题集锦 → 《实数》的易错题难题集锦

《有理数》的易错题难题集锦 → 《实数》的易错题难题集锦

《有理数》的易错题难题集锦→ 《实数》
的易错题难题集锦
《实数》的易错题难题集锦
以下是一些与实数相关的易错题和难题,希望能帮助你更好地
理解实数。

1. 有理数的分类
问题:将以下数进行分类:2,-3,0,7/4,-√2
回答:2和-3是整数,0是零,7/4是一个有理数但不是整数,-
√2是无理数。

2. 实数的性质
问题:实数集具有哪些性质?
回答:实数集包含有理数和无理数。

实数集是一个无限的、连
续的数集,包含无序性、稠密性和完备性等特点。

3. 有理数的运算
问题:计算-5/6 + 3/4 - 2/3。

回答:首先,我们需要找到这些有理数的最小公倍数,然后按照最小公倍数进行加减法运算。

在这个例子中,最小公倍数是12,所以答案是-10/12。

4. 实数的大小比较
问题:比较√3和5/2的大小。

回答:我们可以使用近似值来比较这两个数。

近似计算得到√3约等于1.732,而5/2约等于2.5,所以2.5大于1.732,即5/2大于√3。

5. 实数的绝对值
问题:计算|-5| + |3 - 7|。

回答:绝对值表示一个数的正值,所以|-5| = 5。

而|3 - 7| = |-4| = 4。

所以答案是5 + 4 = 9。

希望以上问题和答案能帮助你更好地理解实数的性质、运算和比较等方面内容。

如有其他问题,请随时向我提问。

人教版数学七年级下学期期末总复习第6章《实数》易错题汇编(附解析)

人教版数学七年级下学期期末总复习第6章《实数》易错题汇编(附解析)

第6章《实数》易错题汇编一.选择题(共10小题)1.的平方根是()A.±3B.3C.±9D.92.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c4.的算术平方根是()A.2B.±2C.D.5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间6.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b7.若a,且a、b是两个连续整数,则a+b的值是()A.1B.2C.3D.48.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q 四个实数中,绝对值最大的一个是()A.p B.q C.m D.n9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.10.若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根二.填空题(共4小题)11.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为.12.一个正数的平方根分别是x+1和x﹣5,则x=.13.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).14.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为(用“<”号连接).三.解答题(共2小题)15.化简求值:(),其中a=2+.16.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.试题解析1.的平方根是()A.±3B.3C.±9D.9解:∵,9的平方根是±3,故选:A.2.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个解:据无理数定义得有,π和是无理数.故选:B.3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c 解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.4.的算术平方根是()A.2B.±2C.D.解:=2,2的算术平方根是.故选:C.5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解:∵2.22=4.84,2.32=5.29,∴2.2<<2.3,∵=0.6,=0.65,∴0.6<<0.65.所以介于0.6与0.7之间.故选:C.6.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选:A.7.若a,且a、b是两个连续整数,则a+b的值是()A.1B.2C.3D.4解:∵的整数部分是2,∴0<﹣2<1,∵a、b是两个连续整数,∴a=0,b=1,∴a+b=1,故选:A.8.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q 四个实数中,绝对值最大的一个是()A.p B.q C.m D.n解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选:A.9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.解:由图表得,64的算术平方根是8,8的算术平方根是;故选:D.10.若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根解:∵方程(x﹣5)2=19的两根为a和b,∴a﹣5和b﹣5是19的两个平方根,且互为相反数,∵a>b,∴a﹣5是19的算术平方根,故选:C.11.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为4.解:∵3<<4,∴3+1<+1<4+1,∴4<+1<5,∴[+1]=4,故答案为:4.12.一个正数的平方根分别是x+1和x﹣5,则x=2.解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.13.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.14.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为b <﹣a<a<﹣b(用“<”号连接).解:∵a>0,b<0,a+b<0,∴|b|>a,∴﹣b>a,b<﹣a,∴四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b15.化简求值:(),其中a=2+.解:原式=[+]•+=•+==,当a=2+时,原式=+1.16.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F(57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.。

实数易错题

实数易错题

实数类型一:平方根1.下列判断中,错误的是()A.﹣1的平方根是±1 B.﹣1的倒数是﹣1C.﹣1的绝对值是1 D.﹣1的平方的相反数是﹣1考点:平方根;相反数;绝对值;倒数。

专题:计算题。

分析:A、利用平方根的定义即可判定;B、利用倒数定义即可判定;C、利用绝对值的定义即可判定;D、利用相反数定义即可判定.解答:解:A、负数没有平方根,故A说法不正确;B、﹣1的倒数是﹣1,故选项正确;C、﹣1的绝对值是1,故选项正确;D、﹣1的平方的相反数是﹣1,故选项正确.故选A.点评:本题考查基本数学概念,涉及平方根、倒数、绝对值等,要求学生熟练掌握.变式:2.下列说法正确的是()A.是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7 D.负数有一个平方根考点:平方根。

专题:计算题。

分析:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.可据此进行判断.解答:解:A、是0.5的平方,故选项错误;B、∵任何一个正数有两个平方根,它们互为相反数,∴这两个平方根之和等于0,故选项正确;C、∵72的平方根是±7,故选项错误;D、∵负数没有平方根,故选项错误.故选B.点评:此题主要考查了平方根的概念,属于基础知识,难度不大.3.如果一个数的平方根等于这个数本身,那么这个数是()A.1 B.﹣1 C.0 D.±1考点:平方根。

专题:计算题。

分析:由于如何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.解答:解:∵±=±0=0,∴0的平方根等于这个数本身.故选C.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.类型二:算术平方根1.的算术平方根是()A.±81 B.±9 C.9 D.3考点:算术平方根。

分析:首先求出的结果,然后利用算术平方根的定义即可解决问题.解答:解:∵=9,而9的算术平方根是3,∴的算术平方根是3.故选D.点评:本题考查的是算术平方根的定义.一个非负数的非负平方根叫做这个数的算术平方根.正数的平方根是正数.特别注意:应首先计算的值.变式:2.的平方根是()A.3 B.±3 C.D.±考点:算术平方根;平方根。

初中数学实数易错题汇编含答案

初中数学实数易错题汇编含答案
【答案】C
【解析】
分析:根据平方根的意义,由16<17<25估算出 的近似值进行判断.
详解:∵16<17<25
∴4< <5
∴3< -1<4
因此 -1在3到4之间.
故选:C.
点睛:此题主要考查了无理数的估算,根据平方根的被开方数的大小估算是解题关键.
3.把 中根号外的因式移到根号内的结果是( )
A. B. C. D.
【详解】
仅当开方开不尽时,这个数才是无理数,①错误;
立方根等于本身的有:±1和0,②错误;
20.下列式子中,计算正确的是()
A.- =-0.6B. =-13
C. =±6D.- =-3
【答案】D
【解析】
A选项中,因为 ,所以 ,故A中计算错误;
B选项中,因为 ,所以B中计算错误;
C选项中,因为 ,所以C中计算错误;
【分析】
由于 ,于是 ,10与9的距离小于16与10的距离,可得答案.
【详解】
由于 ,于是 ,10与9的距离小于16与10的距离,可得答案.
解:∵ ,
∴ ,
10与9的距离小于16与10的距离,
∴与 最接近的是3.
故选:A.
【点睛】
本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.
17.对于两个不相等的实数a,b,我们规定符号max{a,b}表示a、b中的较大的数,如:max{2,4}=4,按照这个规定,方程max{x,﹣x}=x2﹣x﹣1的解为( )
D选项中,因为 ,所以D中计算正确;
故选D.
解得:x=1+ (1﹣ <0,不符合舍去);
②当﹣x>x,即x<0时,﹣x=x2﹣x﹣1,
解得:x=﹣1(1>0,不符合舍去),

七年级数学下册第六章实数易错题集锦(带答案)

七年级数学下册第六章实数易错题集锦(带答案)

七年级数学下册第六章实数易错题集锦单选题1、下列说法正确的是()A.−81平方根是−9B.√81的平方根是±9C.平方根等于它本身的数是1和0D.√a2+1一定是正数答案:D分析:A、根据平方根的概念即可得到答案;B、√81的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出a2+1>0,再利用算术平方根的性质直接得到答案.A、−81是负数,负数没有平方根,不符合题意;B、√81=9,9的平方根是±3,不符合题意;C、平方根等于它本身的数是0,1的平方根是±1,不符合题意;D、a2+1>0,正数的算术平方根大于0,符合题意.故选:D.小提示:此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.2、已知a为整数,且满足√8<a<√12,则a等于()A.2B.3C.4D.5答案:B分析:估算无理数√8和√12的大小,进而确定a的值即可.解:∵2<√8<3,3<√12<4,a为整数,且满足√8<a<√12,∴a=3.故选:B.小提示:本题主要考查了估算无理数的大小,熟练掌握估算无理数大小的方法进行求解是解决本题的关键.3、实数x,y,z在数轴上的对应点的位置如图所示,若|z+y|<|x+y|,则A,B,C,D四个点中可能是原点的为()A.A点B.B点C.C点D.D点答案:D分析:分①若原点的位置为A点时,②若原点的位置为B点或C点时,③若原点的位置为D点时,结合有理数的加法法则和点在数轴上的位置分析即可得出正确选项.解:根据数轴可知x<y<z,①若原点的位置为A点时,x>0,则|z+y|=z+y,|x+y|=x+y,x+y<z+y,∴|z+y|>|x+y|,舍去;②若原点的位置为B点或C点时,x<0,y>0,z>0,|z|>|x|,|z|>|y|,则|x+y|<|y|或|x+y|<|x|,|z+y|=|z|+|y|,∴|z+y|>|x+y|,舍去;③若原点的位置为D点时,x<0,y<0,z>0,|y|>|z|则|x+y|<|y|+|x||z+y|<|y|,∴|z+y|<|x+y|,符合条件,∴最有可能是原点的是D点,故选:D.小提示:本题考查实数与数轴,有理数的加法法则,化简绝对值.熟记有理数的加法法则是解题关键.4、下列说法正确的是()A.4的平方根是2B.√16的平方根是±4C.25的平方根是±5D.﹣36的算术平方根是6答案:C分析:根据平方根和算术平方根的定义判断即可.解:A.4的平方根是±2,故错误,不符合题意;B.√16的平方根是±2,故错误,不符合题意;C .25的平方根是±5,故正确,符合题意;D .-36没有算术平方根,故错误,不符合题意;故选:C .小提示:本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.5、下列说法正确的是( )A .负数没有立方根B .8的立方根是±2C .√−83=−√83D .立方根等于本身的数只有±1答案:C分析:根据立方根的定义分别判断即可.立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根. 解:A 负数有一个立方根,故该选项错误,不符合题意;B 选项,8的立方根是2,故该选项错误,不符合题意;C 选项,√−83=−√83,故该选项正确,符合题意;D 选项,立方根等于本身的数只有±1和0,故该选项错误,不符合题意.故选:C .小提示:本题考查了立方根的应用,掌握立方根的定义是解题的关键.6、下列四种叙述中,正确的是( )A .带根号的数是无理数B .无理数都是带根号的数C .无理数是无限小数D .无限小数是无理数答案:C分析:根据无理数的概念逐个判断即可.无理数:无限不循环小数.解:A .√4=2,是有理数,故本选项不合题意;B .π是无理数,故本选项不合题意;C .无理数是无限不循环小数,原说法正确,故本选项符合题意;D .无限循环小数是有理数,故本选项不合题意.故选:C .小提示:此题考查了无理数的概念,解题的关键是熟练掌握无理数的概念.无理数:无限不循环小数.7、如图,在数轴上表示实数√15的点可能().A.点P B.点Q C.点M D.点N答案:C分析:确定√15是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.解:∵9<15<16,∴3<√15<4,∴√15对应的点是M.故选:C.小提示:本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.8、如图,数轴上点E对应的实数是()A.−2B.−1C.1D.2答案:A分析:根据数轴上点E所在位置,判断出点E所对应的值即可;解:根据数轴上点E所在位置可知,点E在-1到-3之间,符合题意的只有-2;故选:A.小提示:本题主要考查数轴上的点的位置问题,根据数轴上点所在位置对点的数值进行判断是解题的关键.9、计算下列各式,值最小的是()A.2×0+1−9B.2+0×1−9C.2+0−1×9D.2+0+1−9答案:A分析:根据实数的运算法则,遵循先乘除后加减的运算顺序即可得到答案.根据实数的运算法则可得:A.2×0+1−9=−8; B.2+0×1−9=-7;C.2+0−1×9=-7; D.2+0+1−9=-6;故选A.小提示:本题考查实数的混合运算,掌握实数的混合运算顺序和法则是解题的关键..10、把四张形状大小完全相同的小长方形卡片(如图①,卡片的长为a ,宽为b )不重叠地放在一个底面为长方形(长为√21,宽为4)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4√21B .16C .2(√21+4)D .4(√21−4)答案:B分析:分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案.较大阴影的周长为:(4−2b)×2+a ×2,较小阴影的周长为:(4−a)×2+2b ×2,两块阴影部分的周长和为:[(4−2b)×2+a ×2]+[(4−a)×2+2b ×2]= 16,故两块阴影部分的周长和为16.故选B .小提示:本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和较小阴影的周长是解题的关键.填空题11、计算:(1)√273=______; (2)√−27643=_______; (3)−√−183=_______;(4)√1+911253=______; (5)√24×45×253=______; (6)√0.25+√−273=______;(7)√0.09−√−83=______.答案: 3 −34 12 65 30 −2.5 2.3 分析:(1)直接利用立方根的定义即可求解;(2)直接利用立方根的定义即可求解;(3)直接利用立方根的定义即可求解;(4)直接利用立方根的定义即可求解;(5)直接利用立方根的定义即可求解;(6)利用算术平方根和立方根的定义即可求解;(7)利用算术平方根和立方根的定义即可求解.解:(1)∵33=27,∴√273=3; (2)∵(−34)3=−2764,∴√−27643=−34; (3)∵(−12)3=−18,∴√−183=−12,即−√−183=12;(4)√1+911253=√2161253∵(65)3=216125,∴√2161253=65,即√1+911253=65; (5)√24×45×253=27000,∵303=27000,∴√270003=30; (6)√0.25+√−273=0.5+(−3)=−2.5;(7)√0.09−√−83=0.3−(−2)=0.3+2=2.3.所以答案是:3,−34,12,65,30,−2.5,2.3.小提示:本题考查立方根和算术平方根.熟练掌握立方根和算术平方根的定义是解题关键.12、规定一种新运算“*”:a *b =13a -14b ,则方程x *2=1*x 的解为________.答案:107 分析:根据题中的新定义化简所求方程,求出方程的解即可.根据题意得:13x -14×2=13×1-14x , 712x =56, 解得:x =107,故答案为x =107. 小提示:此题的关键是掌握新运算规则,转化成一元一次方程,再解这个一元一次方程即可.13、已知√a −b +|b −1|=0,则a +1=__.答案:2.分析:利用非负数的性质结合绝对值与二次根式的性质即可求出a ,b 的值,进而即可得出答案.∵√a −b +|b ﹣1|=0,又∵√a −b ≥0,|b −1|≥0,∴a ﹣b =0且b ﹣1=0,解得:a =b =1,∴a +1=2.故答案为2.小提示:本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a 、b 的方程是解题的关键.14、如果√a 的平方根是±3,则a =_________答案:81分析:根据平方根的定义即可求解.∵9的平方根为±3,∴√a =9,所以a=81小提示:此题主要考查平方根的性质,解题的关键是熟知平方根的定义.15、下列各数3.1415926,√9,1.212212221…,17,2﹣π,﹣2020,√43中,无理数的个数有_____个. 答案:3分析:根据无理数的三种形式:①开不尽的方根,②无限不循环小数,③含有π的绝大部分数,找出无理数的个数即可.解:在所列实数中,无理数有1.212212221…,2﹣π,√43这3个,所以答案是:3.小提示:本题考查无理数的定义,熟练掌握无理数的概念是解题的关键.解答题16、已知4a +7的立方根是3,2a +2b +2的算术平方根是4(1)求a ,b 的值.(2)求6a +3b 的平方根.答案:(1)a =5,b =2;(2)6a +3b 的平方根为±6.分析:(1)运用立方根和算术平方根的定义求解;(2)根据平方根,即可解答.(1)解:∵4a +7的立方根是3,2a +2b +2的算术平方根是4,∴4a +7=27,2a +2b +2=16,∴a =5,b =2;(2)解:由(1)知a =5,b =2,∴6a +3b =6×5+3×2=36,∴6a +3b 的平方根为±6.小提示:本题考查了平方根、立方根、算术平方根.掌握一个正数的平方根有2个是解题的关键,不要漏解.17、我们知道,√2是一个无理数,将这个数减去整数部分,差就是小数部分,即√2的整数部分是1,小数部分是√2−1,请回答以下问题:(1)√10的小数部分是________,5−√13的小数部分是________.(2)若a是√90的整数部分,b是√3的小数部分,求a+b−√3+1的平方根.(3)若7+√5=x+y,其中x是整数,且0<y<1,求x−y+√5的值.答案:(1)√10−3,4−√13;(2)±3;(3)11.分析:(1)确定√10的整数部分,即可确定它的小数部分;确定√13的整数部分,即可确定5−√13的整数部分,从而确定5−√13的小数部分;(2)确定√90的整数部分,即知a的值,同理可确定√3的整数部分,从而求得它的小数部分,即b的值,则可以求得代数式a+b−√3+1的值,从而求得其平方根;(3)由2<√5<3得即9<7+√5<10,从而得x=9,y=√5−2,将x、y的值代入原式即可求解.(1)解:∵3<√10<4,∴√10的整数部分为3,∴√10的小数部分为√10−3,∵3<√13<4,∴−3>−√13>−4,∴5−3>5−√13>5−4即1<5−√13<2,∴5−√13的整数部分为1,∴5−√13的小数部分为4−√13,所以答案是:√10−3,4−√13;(2)解:∵9<√90<10,a是√90的整数部分,∴a=9,∵1<√3<2,∴√3的整数部分为1,∵b是√3的小数部分,∴b=√3−1,∴a+b−√3+1=9+√3−1−√3+1=9∵9的平方根等于±3,∴a+b−√3+1的平方根等于±3;(3)解:∵2<√5<3,∴7+2<7+√5<7+3即9<7+√5<10,∵7+√5=x+y,其中x是整数,且0<y<1,∴x=9,y=7+√5−9=√5−2,∴x−y+√5=9−(√5−2)+√5=11.小提示:本题考查了无理数的估算、求平方根以及求代数式的值,关键是掌握二次根式的大小估算方法.18、把三个半径分别是3,4,5的铅球熔化后做一个更大的铅球,这个大铅球的半径是多少?(球的体积公式是V=43πR3,其中R是球的半径.)答案:大铅球的半径是6.分析:求出半径分别是3,4,5的铅球的体积之和,再根据立方根的定义计算出结果即可.解:设这个大铅球的半径为r,由题意可得4 3πr3=43π(33+43+53),即r3=216,所以r=√2163=6.大铅球的半径是6.小提示:本题考查了立方根的应用,熟记立方根的定义是解答本题的关键.。

专题训练:实数章节易错题42题专训(解析版)—24-2025学年七年级数学上册单元速记巧练(浙教版)

专题训练:实数章节易错题42题专训(解析版)—24-2025学年七年级数学上册单元速记巧练(浙教版)

《实数》章节易错综合题42题专训1.(2023秋•东阳市期中)对于0的表述,不正确的是( )A.0是自然数B.相反数是本身的数只有0C.0的平方根是本身D.0既不是有理数也不是无理数【分析】分别根据有理数的定义和分类,相反数的定义以及平方根的定义逐一判断即可.【解答】解:A.0是自然数,说法正确,故本选项不符合题意;B.相反数是本身的数只有0,说法正确,故本选项不符合题意;C.0的平方根是本身,说法正确,故本选项不符合题意;D.0是有理数不是无理数,原来的说法错误,故本选项符合题意.故选:D.2.(2023秋•鄞州区校级期中)已知a2=16,b3=﹣27,且|a﹣b|=a﹣b,则a+b的值为( )A.1B.﹣7C.﹣1D.1或﹣7【分析】先根据平方和立方的定义求出a,b的值,再根据|a﹣b|=a﹣b求出符合条件的a,b的值,最后将a,b 的值代入a+b中即可求解.【解答】解:∵a2=16,b3=﹣27,∴a=±4,b=﹣3,∵|a﹣b|=a﹣b,∴a﹣b≥0,∴a≥b,∴a=4,b=﹣3,∴a+b=4+(﹣3)=1,故选:A.3.(2023秋•德清县期末)下列说法正确的是( )A.的平方根是±4B.(﹣3)2的算术平方根是﹣3C.负数没有立方根【分析】根据平方根、算术平方根和立方根的概念判断各选项即可.【解答】解:A、=4的平方根是±2,故A选项错误;B、(﹣3)2的算术平方根是3,故B选项错误;C、负数有立方根,故C选项错误;D、是2的算术平方根,故D选项正确.故选:D.4.(2023秋•慈溪市校级期中)有一个数值转换器,原理如图,当输入的x为81时,输出的y是( )A.9B.3C.±3D.【分析】将81 代入得9,9是有理数,再将9代入得3,3是有理数,再将3代入得,是无理数,故y=.【解答】解:∵,9是有理数,∴,3是有理数,∴,,∴,故选:D.5.(2023秋•柯城区校级期中)用符号表示“的平方根是”正确的是( )A.B.C.D.【分析】根据正数由两个平方根进行解答,即可得到答案.【解答】解:“的平方根是”的表示法为.故选:D.6.(2023秋•平湖市校级期中)下列各数中属于无理数的是( )A.3.14B.C.D.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:A、3.14是有限小数,属于有理数,故此选项不符合题意;B、=2,2是整数,属于有理数,故此选项不符合题意;D、是分数,属于有理数,故此选项不符合题意.故选:C.7.(2023秋•富阳区校级期中)下列说法:①无理数的倒数还是无理数;②若a,b互为相反数,则=﹣1;③若a为任意有理数,则a﹣|a|≤0;④两个有理数比较,绝对值大的反而小.其中正确的有( )A.1个B.2个C.3个D.4个【分析】根据无理数的定义和倒数的定义可判断①;根据相反数的定义和0不能做分母可判断②;根据绝对值的性质可判断③;根据有理数的大小比较方法可判断④.【解答】解:①无理数的倒数还是无理数,正确;②当a=b=0时,无意义,故若a,b互为相反数,则说法错误;③若a为任意有理数,则a﹣|a|≤0,正确;④两个负数比较,绝对值大的反而小,故原说法错误.综上可知正确的有①③共两个.故选:B.8.(2024春•温岭市期末)关于的说法错误的是( )A.它是无理数B.它是面积为13的正方形边长的值C.它是比4大的数D.它是13的算术平方根【分析】分别根据无理数的定义,算术平方根的定义和实数的大小比较判断即可.【解答】解:A、是无理数,故不符合题意;B、它是面积为13的正方形边长的值,故不符合题意;C、、∵42=16,13<16,∴<4,故符合题意;D、它是13的算术平方根,故不符合题意.故选:C.9.(2024春•路桥区期末)实数a所对应的点的位置如图所示,则a可能是( )A.B.C.D.【解答】解:由数轴知:3<a<4,∵,,,,∴a可能是,故选:C.10.(2023秋•婺城区校级期中)如图,实数在数轴上的对应点可能是( )A.A点B.B点C.C点D.D点【分析】根据无理数估算方法估算的大小,即可判断.【解答】解:∵1<2<4,∴,∴,∴,∴实数在数轴上的对应点可能是B点,故选:B.11.(2023秋•东阳市期中)在4.1,,,﹣3绝对值最小的数是( )A.4.1B.C.D.﹣3【分析】|﹣|=,|﹣3|=【解答】解:∵|﹣|=,|﹣3|=3,∴4.1>>3>,则绝对值最小的数是﹣,故选:C.12.(2023秋•鹿城区期中)估计的值在( )A.1到2之间B.2到3之间C.3到4之间D.4到5之间【分析】先确定的范围,再加1,得出的范围即可.【解答】解:∵,∴,∴,故选:C.13.(2023秋•慈溪市校级期中)已知a、b是表中两个相邻的数,且,则a=( )x2361364.81368.64372.49376.36380.25384.16388.09392.04396.01400A.19.4B.19.5C.19.6D.19.7【分析】根据表格找一个数的平方最接近380的两个数,一个比380小的,另一个比380大的,即可解答.【解答】解:∵19.42=376.3,19.52=380.2,∴376.3<380<380.2,∴,∴,∴a=19.4,故选:A.14.(2023秋•金华期中)已知的小数部分为a,的小数部分为b,则a+b的值为( )A.0B.1C.D.【分析】根据得到a、b的值,即可得到答案.【解答】解:∵,∴,∴,∵,∴,∴a+b=1.故答案为:B.15.(2023秋•瑞安市期中)下列计算正确的是( )A.B.C.D.【分析】根据平方根、立方根和二次根式的性质与化简的定义进行计算.【解答】解:A、,A计算错误,不符合题意;B、,B计算错误,不符合题意;C、,C计算错误,不符合题意;D、,D计算正确,符合题意.故答案为:D.16.(2023秋•柯城区校级期中)把四张形状大小完全相同,宽为1cm的小长方形卡片(如图①)不重叠地放在一图②中两块阴影部分的周长和是( )A.20cm B.C.D.【分析】先设小长方形卡片的长为x cm,再结合图形得出上面的阴影长方形的周长和下面的阴影长方形的周长,再把它们加起来即可求出答案.【解答】解:设小长方形卡片的长为x cm,根据题意得:,∴,则图②中两块阴影部分周长和是:====20(cm),∴图②中两块阴影部分的周长和是20cm.故选:A.17.(2023秋•鄞州区月考)以下各数0,,﹣2,102,,|,﹣()2,,,0.1010010001…(相邻两个1之间依次增加1个零).有理数的个数是 5 .【分析】先化简每个数,然后根据有理数的定义判断即可.【解答】解:,102=100,,,有理数有:0,﹣2,102,﹣()2,,共5个,故答案为:5.18.(2023秋•鄞州区月考)|x﹣2|与(y+1)2互为相反数,则x+3y= ﹣1 .【分析】根据非负数的性质列出方程求出未知数的值,再代入所求代数式计算即可.∴|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,∴x=2,y=﹣1,∴x+3y=﹣1,故答案为:﹣1.19.(2023秋•余姚市校级期中)若一个正数的平方根分别为5﹣a和2a﹣1,则这个正数是 81 .【分析】根据正数的平方根互为相反数,两平方根相加等于0求出a值,再求出一个平方根,平方就可以得到这个正数.【解答】解:由题可知,5﹣a+2a﹣1=0,解得a=﹣4,则这个正数是(5﹣a)2=92=81.故答案为:81.20.(2023秋•平湖市校级期中)的算术平方根是 3 .【分析】如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为,由此即可得到答案.【解答】解:∵=9,∴的算术平方根是3.故答案为:3.21.(2023秋•鹿城区期中)一个数的算术平方根是7,则这个数是 49 .【分析】根据算术平方根的定义可知这个数为72,据此可得答案.【解答】解:∵一个数的算术平方根是7,∴这个数为72=49,故答案为:49.22.(2023秋•鹿城区期中)小明在单位长度为1的方格纸中画出两个小正方形(如图1),再将这两个小正方形剪开拼成一个大正方形(如图2),则大正方形的边长是 .【解答】解:由题意得,图1中的两个正方形面积分别为:5,2,∴图2中拼接成的大正方形面积为5+2=7,∴大正方形的边长是.故答案为:.23.(2023秋•柯城区校级期中)若则|a﹣1|++(c﹣3)2=0,(a+b)c= ﹣1 .【分析】先根据非负数的性质求出a和b的值,再代入所求代数式进行计算即可.【解答】解:∵|a﹣1|++(c﹣3)2=0,∴a﹣1=0,b+2=0且c﹣3=0,则a=1,b=﹣2,c=3,所以(a+b)c=(1﹣2)3=﹣1.故答案为:﹣1.24.(2023秋•鹿城区期中)若一个正方体的体积是8,那么它的棱长是 2 .【分析】根据立方根解答即可.【解答】解:若一个正方体的体积是8,那么它的棱长是2;故答案为:2.25.(2023秋•金华期中)定义新运算“☆”:a☆b=,则12☆(3☆4)= 13 .【分析】【解答】解:12☆(3☆4)=12☆=12☆5==13.故答案为:13.26.(2023秋•东阳市期中)= ;±= ± ;= 5 ; ﹣ .【解答】解:==;±=±;==5;==﹣.故答案为:,±,5,﹣.27.(2023秋•鄞州区月考)如图,将1、,三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,(3,2)为第3排第2列的数为,则(8,2)与(100,100)表示的两个数的积是 .1第一排第二排1第三排11第四排1第五排……第五列第四列第三列第二列第一列…【分析】由题意得出1,,这三个数循环出现,且第n排有n个数,再根据(8,2)表示第8排第2列的数,即第30个数,根据规律计算出(8,2)表示的数;用同样的方法求出(100,100)表示的数,即可求出答案.【解答】解:由题意得,1,,这三个数循环出现,且第n排有n个数,∵(8,2)表示第8排第2列的数,∴(8,2)表示的数是第(1+2+3+•+7)+2=7×(7+1)2+2=30个数,∴30÷3=10,∴(8,2)表示的数是,∵(100,100)表示第100排第100列的数,∴(100,100)表示的数是第(1+2+3+…+99)+100=99×(99+1)+100=5050个数,∴5050÷3=1683•1,∴(100,100)表示的数是1,故(8,2)与(100,100)表示的两个数的积是,故答案为:.10 .【分析】根据题意可知,有理数的x,y必须满足y=﹣6,y=﹣6,进而求出x的值,再求x+y的值.【解答】解:∵x、y是有理数,且x、y满足,∴y=﹣6,∴y=﹣6,∴2x2+3y=14,即2x2+3×(﹣6)=14,∴x=±4,∴x+y=﹣2或﹣10,故答案为:﹣2或﹣10.29.(2023秋•鄞州区校级期中)的值等于 1 .【分析】先计算算术平方根和立方根,再计算减法即可.【解答】解:原式=4﹣3=1,故答案为:1.30.(2023秋•余姚市校级期中)把下列各数的序号填在相应的大括号里:①,②﹣③0,④,⑤+5,⑥,⑦,⑧﹣3.24,⑨3.1415926整数:{ ③④⑤ }负分数:{ ②⑧ }正有理数:{ ④⑤⑥⑨ }无理数:{ ①⑦ }【分析】分别利用整数、负分数、正有理数、无理数的定义分析得出答案.【解答】解:=3,整数:{③④⑤},负分数:{②⑧},正有理数:{④⑤⑥⑨},无理数:{①⑦},故答案为:③④⑤;②⑧;④⑤⑥⑨;①⑦.31.(2023秋•海曙区校级期中)计算:(1)﹣9+12﹣3+8;(3)|﹣2|.【分析】(1)根据有理数的加减混合运算的运算顺序和运算法则进行计算即可;(2)根据有理数的四则混合运算的运算顺序和运算法则进行计算即可;(3)根据实数的混合运算顺序和运算法则进行计算即可.【解答】解:(1)﹣9+12﹣3+8=8;(2)====;(3)=2+(﹣3)×2﹣1=2﹣6﹣1=﹣5.32.(2023秋•鄞州区校级期中)计算:(1)12+(﹣7);(2);(3)﹣23÷×(﹣)2;(4)|﹣2|;(5);(6)(﹣1)2021×2﹣(﹣2)4+4+|﹣3|.【分析】(1)用有理数加法法则计算;(2)用乘法分配律计算即可;(3)先算乘方,把除化为乘,再约分;(4)先算乘方,求算术平方根,去绝对值,再算乘法,最后算加减;(5)先算算术平方根,去绝对值,再算加减;【解答】解:(1)原式=5;(2)原式=×(﹣27)+×(﹣27)﹣×(﹣27)=﹣6﹣9+2=﹣13;(3)原式=﹣8××=﹣8;(4)原式=9+3×﹣2=9+5﹣2=12;(5)原式=5﹣3+2﹣=4﹣;(6)原式=﹣1×2﹣16+4+3=﹣2﹣16+4+3=﹣11.33.(2023秋•平湖市校级期中)已知a与b互为相反数,c与d互为倒数,x是64的立方根,求3a+3b﹣cd+x2的值.【分析】+b、cd、x的值,再代入3a+3b﹣cd+x2中计算即可.【解答】解:∵a与b互为相反数,∴a+b=0,∵c与d互为倒数,∴cd=1,∵x是64的立方根,∴x=4,∴3a+3b﹣cd+x2=3(a+b)﹣cd+x2=0﹣1+16=15.34.(2023秋•义乌市期中)已知a是最大的负整数,b是绝对值最小的数,c是倒数是它本身的正数,d是9的负平方根.(1)a= ﹣1 ,b= 0 ,c= 1 ,d= ﹣3 .(2)求bd2023++c的值.(2)根据(1)中的值代入即可.【解答】解:(1)∵a是最大的负整数,∴a=﹣1,∵b是绝对值最小的数,∴b=0,∵c是倒数是它本身的正数,∴c=1,∵d是9的负平方根.∴d=﹣3,故答案为:﹣1;0;1;﹣3;(2)由(1)知:a=﹣1;b=0;c=1;d=﹣3;∴bd2023++c=0×(﹣3)2023++1=0+0+1=1.35.(2023秋•北仑区校级期中)已知:81的算术平方根是2a﹣1,b是的整数部分.(1)求a,b的值;(2)求2a﹣3b的平方根.【分析】(1)根据算术平方根,无理数的估算,求得a和b的值;(2)根据(1)的结果,代入代数式,然后求得平方根即可求解.【解答】解:(1)∵81的算术平方根是2a﹣1,b是的整数部分,∴2a﹣1=9,b=2,∴a=5,b=2;(2)由(1)知:a=5,b=2,∴2a﹣3b=2×5﹣3×2=4,∴2a﹣3b的平方根是±2.36.(2023秋•鹿城区期中)为了激发学生的兴趣爱好,培养对数学学科的热爱,某校决定举办数学学科节活动.七年级某班需要在小明和小鹿两位同学中选出一名志愿者协助活动,同学们提议两人从正负数相同的若干卡片中各抽取四张,若抽出的八张卡片中正数多则小明去:负数多则小鹿去.以下是他们抽取的卡片:2π 3.14﹣4(1)该班选出的志愿者是 小明 ;(2)请将以上卡片中的数字按要求填入相应的区域内:整数负分数【分析】(1)根据正负数定义进行分类选择即可;(2)根据整数,负分数的定义进行分类选择即可.【解答】解:(1)抽取的卡片中正数有:2π,,3.14,,,共有5个数,抽取的负数有:,,﹣4,共有3个数,∵5>3,∴正数卡片多,小明去,故答案为:小明;(2)∵,∴以上数字整数有:,﹣4;负分数有:,.37.(2023秋•海曙区校级期中)阅读下面材料:点A、B a,b,则A,B两点之间的距离表示为|AB|=|a﹣b|.回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是 3 .(2)数轴上表示x与﹣3的两点之间的距离表示为 |x+3| .(3)若x表示数轴上的一个实数,且|x+1|+|x﹣2|=5,则x= 3或﹣2 .(4)若x表示数轴上的一个实数,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+…+|x﹣2022|+|x﹣2023|最小值.【分析】(1)根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得出结论;(2)根据数轴上两点的距离等于这两个数的差的绝对值列式即可得出结论;(3)根据绝对值的性质化简即可得出结论;(4)结合数轴,根据绝对值几何意义可得最小值.【解答】解:(1)数轴上表示﹣2和﹣5的两点之间的距离是|(﹣2)﹣(﹣5)|=|5﹣2|=3,故答案为:3;(2)数轴上表示x与﹣3的两点之间的距离是|x﹣(﹣3)|=|x+3|,(3)∵|x+1|+|x﹣2|=5=|x﹣(﹣1)|+|x﹣2|,当x≤﹣1时,|x+1|+|x﹣2|=﹣(x+1)﹣(x﹣2)=5,解得:x=﹣2;当x≥2时,|x+1|+|x﹣2|=(x+1)+(x﹣2)=5,解得:x=3;当﹣1<x<2时,|x+1|+|x﹣2|=(x+1)﹣(x﹣2)=3≠5;故答案为:3或﹣2;(4)|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+⋅⋅⋅+|x﹣2022|+|x﹣2023|表示x到点1,2,3,4,⋯,2023的点距离之和,当时,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+⋅⋅⋅+|x﹣2022|+|x﹣2023|的值最小是:1+2+3+⋯+1011+0+1+2+3+⋯+1011=(1+2+3+⋯+1011)×2=(1+1011)×1011=1023132.38.(2023秋•海曙区校级期中)阅读下面文字,然后回答问题.是无理数,而无理数是无限不循环小数,所以的小数部分我们不可能全部写出来,由于的整数部分是1,将减去它的整数部分,差就是它的小数部分,因此的小数部分可用表示.由此我们得到一个结论:若,其中x0<y<1,那么x=1,.请解答下列问题:(1)如果,其中a是整数,且0<b<1,那么a= 5 ,b= ﹣5 ;(2)如果,其中c是整数,且0<d<1,求|c﹣d|的值.【分析】(1)用夹逼法估算,得出的整数部分和小数部分,即可解答;(2)先用夹逼法估算,得出的整数部分和小数部分,进而得出c和d的值,将其代入|c﹣d|进行化简即可.【解答】解:(1)∵25<26<36,∴,∴的整数部分是5,小数部分是,∵,其中a是整数,且0<b<1,∴,故答案为:5,;∴,∴,∴整数部分为2,小数部分为,∵,其中c是整数,且0<d<1,∴,∴.39.(2023秋•鄞州区校级期中)如图,每个小正方形的边长均为1.(1)图中阴影部分的面积是 13 ;阴影部分正方形的边长a是 .(2)估计边长a的值在两个相邻整数 3 与 4 之间.(3)我们知道π是无理数,而无理数是无限不循环小数,因此π的小数部分我们不可能全部写出来,我们可以用3来表示它的整数部分,用(π﹣3)表示它的小数部分.设边长a的整数部分为x,小数部分为y,求(x﹣y)的相反数.【分析】(1)阴影部分的面积=总面积﹣4个直角三角形的面积,再根据正方形的面积公式以及算术平方根的定义可得阴影部分正方形的边长;(2)根据无理数的估算方法解答即可;(3)结合(2)的结论解答即可.【解答】解:(1)图中阴影部分的面积是:=25﹣12=13;阴影部分正方形的边长a是,故答案为:13;;(2)∵9<13<16,∴;故答案为:3;4;(3)∵;∴a的整数部分为x=3,小数部分为y=(),∴x﹣y=3﹣()=,∴(x﹣y)的相反数.40.(2023秋•东阳市期中)对于含算术平方根的算式,在有些情况下,可以不需要计算出结果也能将算术平方根符号去掉,例如:,.观察上述式子的特征,解答下列问题:(1)把下列各式写成去掉算术平方根符号的形式(不用写出计算结果):= 10﹣6 ;= 9﹣7 ;(2)当a>b时,= a﹣b ;当a<b时,= b﹣a ;(3)计算:….【分析】(1)根据题目给出的式子特征按要求填空即可;(2)根据题目给出的式子特征按要求填空即可;(3)分别将算式中的算术平方根去掉,再运用有理数加法结合律计算即可.【解答】解:(1)由题意可知:=10﹣6,=9﹣7,故答案为:10﹣6,9﹣7;(2)由题意可知:当a>b时,=a﹣b,当a<b时,=b﹣a,故答案为:a﹣b,b﹣a;(3)原式===.41.(2023秋•东阳市期中)(1)请你在图1中画一个边长为的正方形,要求所画正方形的顶点都在格点上;(2)如图2,面积为7的正方形ABCD的顶点A在数轴上,且点A表示的数为﹣1,若点E在数轴上,(点E在点A的右侧)且AB=AE,则点E所表示的数为 ﹣1 ;(3)以图1中1个方格的边长为单位1,画出数轴,然后在数轴上表示和.【分析】(1)可看作是直角边分别为1和4的直角三角形的斜边,再结合正方形的性质画图即可.(2)由题意可得AB=AE=,由数轴的定义可知点E所表示的数为﹣1.(3)由题意画出数轴,在数轴上取点A,使点A表示的数为2,作直角三角形ABC,使AB=1,BC=4,∠B=90°,则AC=,以点A为圆心,AC的长为半径画弧,分别交数轴于点D,E,则点D所表示的数为,点E所表示的数为.【解答】解:(1)如图1,正方形ABCD即为所求.(2)∵正方形ABCD的面积为7,∴正方形ABCD的边长为,即AB=,∴AE=,∴点E所表示的数为﹣1.故答案为:﹣1.(3)如图,点D所表示的数为,点E所表示的数为.42.(2020秋•北仑区期末)如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法.(1)图2中A、B两点表示的数分别为 ﹣ , ;(2)请你参照上面的方法:①把图3中5×1的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a= .(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及a﹣3.(图中标出必要线段的长)【分析】(1)根据图①得出小正方形对角线长即可;(2)根据长方形面积即可得出正方形面积,从而求出正方形边长;(3)从原点开始画一个长是2,宽是1的长方形,对角线即为a.【解答】解:(1)由勾股定理得:对角线为,∴图②中A、B两点表示的数分别﹣,,故答案为:﹣,.(2)∵长方形面积为5,∴正方形边长为,如图所示:故答案为:.。

(易错题精选)初中数学实数知识点总复习含答案解析(1)

(易错题精选)初中数学实数知识点总复习含答案解析(1)

(易错题精选)初中数学实数知识点总复习含答案解析(1)一、选择题1.下列说法正确的是( )A .任何数的平方根有两个B .只有正数才有平方根C .负数既没有平方根,也没有立方根D .一个非负数的平方根的平方就是它本身【答案】D【解析】A 、O 的平方根只有一个即0,故A 错误;B 、0也有平方根,故B 错误;C 、负数是有立方根的,比如-1的立方根为-1,故C 错误;D 、非负数的平方根的平方即为本身,故D 正确;故选D .2.在整数范围内,有被除数=除数⨯商+余数,即a bq r a b =+≥(且)00b r b ≠≤<,,若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:11,2a b ==,则11251=⨯+此时51q r ==,.在实数范围中,也有 (a bq r a b =+≥且0b ≠,商q 为整数,余数r 满足:0)r b ≤<,若被除数是,除数是2,则q 与r 的和( )A .4B .6C .4D .4 【答案】A【解析】【分析】根据2=q 即可先求出q 的值,再将a 、q 、b 的值代入a =bq +r 中即可求出r 的值,从而作答.【详解】∵2=7=45,的整数部分是4, ∴商q =4,∴余数r =a ﹣bq =2×4=8,∴q +r =4+8=4.故选:A .【点睛】本题考查了整式的除法、估算无理数的大小,解答本题的关键理解q 即2的整数部分.3.在3.14,237,π这几个数中,无理数有( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14,237,π中无理数有:, π,共计2个. 故选:B.【点睛】 考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.1,0( )AB .﹣1C .0D 【答案】B【解析】【分析】将四个数按照从小到大顺序排列,找出最小的实数即可.【详解】四个数大小关系为:10-<<<则最小的实数为1-,故选B .【点睛】此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.5.设,a b 是不相等的实数,定义W 的一种运算;()()()2a b a b a b a b =+-+-W ,下面给出了关于这种运算的四个结论:①()6318-=-W ;②a b b a =W W ;③若0a b =W ,则0b =或0a b +=;④()a b c a b a c +=+WW W ,其中正确的是 ( )A .②④B .②③C .①④D .①③【答案】D【解析】【分析】 先化简()()()2a b a b a b +-+-,然后各式利用题中的新定义化简得到结果,即可作出判断.【详解】解:()()()222222222=+-+-=++-+=+a b a b a b a b a ab b a b ab b W , ①()2632(6)323361818-=⨯-⨯+⨯=-+=-W ,故①正确; ②∵222=+b a ba a W ,当a b ¹时,≠a b b a WW ,故②错误; ③∵0a b =W ,即2222()0+=+=ab b b a b ,∴2b =0或a +b =0,即0b =或0a b +=,故③正确;④∵()2222()2()22242a b c a b c b c ab ac b bc c +=+++=++++W 222222222222+=+++=+++a b a c ab b ac c ab ac b c W W∴()+≠+a b c a b a c W WW ,故④错误; 故选:D .【点睛】本题考查了整式的混合运算和定义新运算,理解定义新运算并根据运算法则进行计算是解题的关键.6.如图,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是1-,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是( )A .45B 52C 51D .35【答案】C【解析】【分析】 首先根据勾股定理算出AC 的长度,进而得到AE 的长度,再根据A 点表示的数是-1,可得E 点表示的数.【详解】∵2,1AD BC AB === ∴22521AC =+=∴AE =5 ∵A 点表示的数是1- ∴E 点表示的数是51-【点睛】掌握勾股定理;熟悉圆弧中半径不变性.7.4的算术平方根为( )A .2±B .2C .2±D .2【答案】B【解析】分析:先求得4的值,再继续求所求数的算术平方根即可.详解:∵4=2,而2的算术平方根是2,∴4的算术平方根是2,故选B .点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.8.16的算术平方根是( )A .±4B .-4C .4D .±8【答案】C【解析】【分析】根据算术平方根的定义求解即可求得答案.【详解】 24=16Q ,16∴的算术平方根是4.所以C 选项是正确的.【点睛】此题主要考查了算术平方根的定义,解决本题的关键是明确一个正数的算术平方根就是其正的平方根.9.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .513【答案】D【解析】【详解】解:∵|x 2-4|≥0,2(2)1y --≥0,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形, 则斜边的长为:222222+=;②当2,3均为直角边时,斜边为222313+=;③当2为一直角边,3为斜边时,则第三边是直角,长是22325-=.故选D .考点:1.非负数的性质;2.勾股定理.10.如图所示,数轴上表示3、13的对应点分别为C 、B ,点C 是AB 的中点,则点A 表示的数是 ( )A .13B .13C .13D 13 【答案】C【解析】点C 是AB 的中点,设A 表示的数是c 1333c =-,解得:13C . 点睛:本题考查了实数与数轴的对应关系,注意利用“数形结合”的数学思想解决问题.11.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;12.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.13.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.14.1的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∵34,∴41<5.故选C.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出34是解题的关键,又利用了不等式的性质.15.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;a<是不可能事件;③若a为实数,则0④16的平方根是4±4=±;其中正确的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是164±=±,故错误;综上,正确的只有③,故选:A .【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.16.下列说法:①36的平方根是6; ②±9的平方根是3; 164±; ④ 0.01是0.1的平方根; ⑤24的平方根是4; ⑥ 81的算术平方根是±9.其中正确的说法是( )A .0B .1C .3D .5 【答案】A【解析】【分析】依据平方根、算术平方根的定义解答即可.【详解】①36的平方根是±6;故此说法错误;②-9没有平方根,故此说法错误;16=4164±说法错误;④ 0. 1是0. 01的平方根,故原说法错误;⑤24的平方根是±4,故原说法错误;⑥ 81的算术平方根是9,故原说法错误.故选A.17.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a 、b 中的较大的数,如:max {2,4}=4,按照这个规定,方程max {x ,﹣x }=x 2﹣x ﹣1的解为( )A .2或12B .1或﹣1C .12或1D .2或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x 的分式方程求解,结合x 的取值范围确定方程max {x ,﹣x }=x 2﹣x ﹣1的解即可.【详解】解:①当x ≥﹣x ,即x ≥0时,∵max {x ,﹣x }=x 2﹣x ﹣1,∴x=x2﹣x﹣1,解得:x=(1<0,不符合舍去);②当﹣x>x,即x<0时,﹣x=x2﹣x﹣1,解得:x=﹣1(1>0,不符合舍去),即方程max{x,﹣x}=x2﹣x﹣1的解为或﹣1,故选:D.【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.18.实数)A3<<B.3<C3<<<<D3【答案】D【解析】【分析】先把3化成二次根式和三次根式的形式,再把3做比较即可得到答案.【详解】解:∵3==∴3=<3=><<,3故D为答案.【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较.19.估计值应在()2A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:2=∵91216<<<<∴34<<∴估计2值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.20.在实数范围内,下列判断正确的是()A.若2t ,则m=n B.若22a b>,则a>bC2=,则a=b D=a=b【答案】D【解析】【分析】根据实数的基本性质,逐个分析即可.【详解】A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=-3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.。

实数中的易错题

实数中的易错题

实数中的易错题在九年级中考前实数这一章复习过程中,学生对以下几个问题易混淆,进而出错。

易错一:实数分类例1在实数7,/2,-3/7,0,1.01001,√9中,无理数有_1_个。

错解分析:造成本题错误的原因是对实数分类不清楚,学生知道是√7无理数,但对/2和-3/7却不敢肯定。

其实有理数包括整数和分数,而我们常见的无理数主要有四个类型:①是一个无理数,所有含的数都是无理数,②如构造型,如0.101001……等无限不循环小数;③三角函数型如等;④开方开不尽的数如等。

易错二:无理数的运算例2 判断题:两个无理数之和仍为无理数。

()错解分析:学生做这道题时考虑不全面易做错。

其实,这个命题是假命题。

如-√3+√3=0易错三:近视数和有效数字例3 截至2010年8月14日13时30分,上海世博会累计参观人数已达到4009.99万人次,首次突破四千万,文中数字4009.99万精确到(百分)位,有效数字是(8)个。

分析; 带单位的数字的精确度与单位有关,而有效数字与单位无关。

所以,正确答案应该是百位,六个。

试一试:(1)在7.5,√15, 4, 8, 0.15,22/7,√3/2中,无理数有__个。

(2)近似数0.0360有__个有效数字。

(3)关于近似数5.50×,下列说法:①精确到百分位;②有三个有效数字;③精确到百位;④有两个有效数字;⑤5.50中的“0”可以省去。

其中正确的是__尊敬的各位领导、各位来宾、亲爱的老师们:大家好!在第二十七个教师节来临之际,我首先祝各位老师节日愉快,身体健康!向对关心、支持我们教育事业的县局领导,镇党委政府领导、社会各界,以及给予我个人亲切关怀、无私帮助、辛勤培养的领导和老师们,表达最诚挚的感激和最衷心的祝福!作为一名普通的人民教师,能作为教师代表在庆祝大会上发言,表达我们的心声和对未来的憧憬,心情倍感激动!在这十年的教学实践中,我真切地感受到:孩子们的心灵是纯洁的,孩子们的情感是真挚的!孩子们的天空是浩瀚的!老师始终是他们的模仿的榜样!老师始终是他们尊敬的楷模!老师始终是他们成才的基石!老师永远是他们人生的明灯!教师是伟大的,可我并不是一个伟人!我只是教育战线上的一名船工,无论春秋冬夏,无论烈日风暴,我——不能后退!我只能在这块溪流上把我的学生一个又一个地送往彼岸!我只能在自己这方土地上一次又一次地耕耘我的人生!教师其实是平凡的,普通的,就如一颗小小的铺路石,他也只是社会中的沧海一栗。

《实数》易错题和典型题

《实数》易错题和典型题

《实数》易错题和 【2 】典范题 一.平方根.算术平方根.立方根的根本概念和差别 1.25的平方根是±5的数学表达式是( ) A.525±= B.525= C.525±=± D.525-=2.81的算数平方根是;16的平方根是,=338-,64-的立方根是.3.假如x 是23-)(的算数平方根,y 是16的算数平方根,则1xy x 2++=. 4.若2x =729,则x=;若2x =24-)(,则x=. 5.已知2x-1的负的平方根是-3,3x+y-1的算数平方根是4,求x+2y 的平方根.6.一个数的平方根等于这个数,那么这个数是.7.下列语句及写成的式子准确的是( )A.8是64的平方根,即864=B.864648=±的平方根,即是C.864648±=±的平方根,即是D.88-8-822=)(的算数平方根,即)是( 9.已知有理数m 的两个平方根是方程4x+2y=6的一组解,则m=.10.已知=±x 11-x 232,则的平方根是)(. 二、对21-a )(的化简:去绝对值符号 1.化解=22-1)(;=23-2)(;=22-3)(. 2.假如4m 2=,则m=;假如1-a 1-a 2=)(,则a 的取值规模是. 3.已知b a a -b b -a 10b 6a 2+===,则且,=.4.实数a,b,c 在数轴上的对应点如图所示,化解233c -a b a -b -c a )()(+++三、被开方数的小数位移动与成果的关系 1.已知==200414.12,那么;=02.0.2.已知==23604858.0236.0,那么( )A.4858B.485.8C.48.58D.4.8583.若===x 68.28x 868.26.233,3,那么,. 4.已知853.32.57,788.172.58301.0572.033,3===,,,则=357200;=300572.0; =35720;3572.四.平方根有意义的前提1.若a >a,则a 的取值规模是.2.当x 时,x -有意义;当x 时,2x -)(有意义;当x 时,+x x -有意义;当x 时,22-x -)(有意义;3.化解=a 1-a ;32a 1-a =.4.已知m 知足m 2011-m m -1=+,则m=.五.应用开方解一元二次方程 已知的值。

七年级实数知识点和易错题

七年级实数知识点和易错题

七年级实数知识点和易错题实数是数的分类之一,包括有理数和无理数。

在七年级的数学学习中,学习实数的知识点是十分重要的,同时也是容易错解的一块内容。

本文将持续更新七年级实数知识点和易错题,帮助同学们更好地掌握此部分知识。

一、实数的概念和分类实数是指可以表示成小数形式或无限循环小数形式的数。

可以分为有理数和无理数两大类。

有理数是指可以用整数除以非零的整数得到的数,它们在数轴上是有限或重复的分数。

无理数是指不能表示成有理数形式的数,例如圆周率π、自然数e等。

二、实数的运算实数的运算主要包括加、减、乘、除四种运算。

加法:两个实数相加,其和仍为实数。

减法:两个实数相减,其差仍为实数。

乘法:两个实数相乘,其积仍为实数。

除法:两个实数相除,其商可能是实数也可能是无理数。

需要注意分母不能为0。

三、实数的性质实数具有许多重要的性质,其中一些常见的性质包括:对于任意实数a、b和c,有交换律、结合律和分配律等基本性质。

对于任意实数a和b,有加法逆元和乘法逆元的概念,使得减法和除法成立。

实数还具有相反数和倒数的概念。

实数之间还存在大小关系,可以用大小符号(≤、≥、<、>)表示。

四、容易错解的实数知识点和练习题1. 问:以下哪个数是无理数?A. 3B. 4/3C. √2D. 0.5答案:C解析:√2是一个不能表示成有理数的数,因此是无理数。

2. 问:以下哪个数是有理数?A. 0.333…B. πC. eD. √9答案:D解析:√9可以表示为3,是一个能够用整数表示的数,因此是有理数。

3. 问:以下哪组数可以成为一组有理数?A. 2和√2B. 3和3.14C. 4/3和-5/4D. π和e答案:C解析:4/3和-5/4都是能够用有理数表示的数,因此可以成为一组有理数。

4. 问:求下列式子的值:2+√5+(-3)+3/2答案:0.5+√5解析:将2和(-3)相加得-1,再加上3/2得0.5;2和(-3)可以看成常数项,√5可以看成系数为1的一项,因此可以合并得到0.5+√5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数易错点和易错题
一、 学习目标与考点分析:
掌握实数的概念,平方根,立方根以及运算。

能区分出有理数和无理数。

知道绝对值和倒数的概念,并运算。

掌握科学技术;能得出实数在题目中的变化规律。

二、 教学内容:
考点.绝对值的概念、性质 例.(1)若=++<ab
ab b b a a ab 则
,0 . (2)已知:b ,0,0与用a b a ><表示a 与b 的差是: . (3)若b a =,则a 与b 的关系是( )
A.都是0
B.相等
C.互为相反数
D.相等或互为相反数
(4)
2001
1
1999119991200012000120011---+- 练习:1.若x x x 222x ,2++--<化简其结果是?
2. 对于每个非零有理数c b a ,,式子
abc
abc
c c b b a a +++的所有可能的值有?
考点.数轴 例.
(1)数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出
一条长2000cm 的线段AB,则线段AB 盖住的整点共有的个数为( ) A.1998或1999 B.1999或2000 C.2000或2001 D.2001或2002
(2)实数a、b、c在数轴上的对应点如图所示,其








试化简:|b-c|-|b-a|+|a-c-2b|-|c-a|
《实数》
实数运算技巧与典型例题
考点1.实数概念
例1. 下列各数中,哪些互为相反数?哪些互为倒数?哪些互为负倒数?
-3, 2 -1, 3, - 0.3, 3-1
, 1 + 2 , 31
3
互为相反数: 互为倒数: 互为负倒数: 练习:(1)a,b 互为相反数,c,d 互为倒数,m 的绝对值是2.求|a+b|
2m 2+1
+4m-3cd 的值.
(2)若有理数a 等于它的相反数,有理数b 等于它的倒数, 求1999199919991999b a b a -++的值.
考点2.实数的运算
例2. 计算:{12 ×(-2)2-(12 )2+11-
13 }÷| 21996·(-1
2
)1995|
练习: 1. 0.3-1-(- 16 )-2+43-3-1+(π-3)0
2. 3223)1.0()1
.01
()43()971()52(-÷---⨯--⨯-
考点3.绝对值的概念、性质 例3.(1)若=++<ab
ab b b a a ab 则
,0 . (2)已知:b ,0,0与用a b a ><表示a 与b 的差是: . (3)若b a =,则a 与b 的关系是( )
A.都是0
B.相等
C.互为相反数
D.相等或互为相反数 (4)
2001
1
1999119991200012000120011---+- 练习:1.若x x x 222x ,2++--<化简其结果是?
2. 对于每个非零有理数c b a ,,式子
abc
abc
c c b b a a +++的所有可能的值有?
考点4.数轴 例4.
(1)数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长2000cm 的线段AB,则线段AB 盖住的整点共有的个数为( )
A.1998或1999
B.1999或2000
C.2000或2001
D.2001或2002
(2)实数a、b、c在数轴上的对应点如图所示,其中|a|=|c|
试化简:|b-c|-|b-a|+|a-c-2b|-|c-a|
练习:已知实数a 、b 在数轴上对应点的位置如图 (1)比较a -b 与a+b 的大小
(2)化简|b -a|+|a+b|
考点5.非负性(利用0,0,02≥≥≥a a a )
例5.已知等腰三角形一边长为a,一边长b,且(2a-b)2+|9-a2|=0 .求它的
周长.
练习:已知0)2(432=-+-+-z y x ,求z y x )(+的值.
考点6.科学记数法
例6.(1)54810精确到百位的近似值是 ,该近似值有 位有效数字.地球到月球的距离用四舍五入法得到38万km,其精确值的范围是 .
(2)我国国民生产总值达到11.69万亿元,人民生活总体达到小康水平,其中11.69亿元用科学记数法表示应为( )
A.1310169.1⨯
B. 1410169.1⨯
C. 131069.11⨯
D.13101169.0⨯
练习:2006年是我国公民义务植树运动开展25周年,25年来我市累计植树154000000株,这个数字可以用科学记数法表示位 株. 考点7.实数应用题
例7.(1)检修小组从A 地出发,在东西路上检修线路.如果规定向东行驶为正,向西行驶为负,一天中行驶记录如下(单位:km): -4,+7,-9,+8,+6,-4,-3 (1)求收工时距A 地多远?
(2)若每千米耗油0.3L,问从出发到收工共耗油多少升?
考点8.技巧性实数运算 (1)
111)1(1+-=+⨯n n n n (2)
)1
1(1)(1d
n n d d n n +-=+⨯
例8.计算:
(1)2007654321++-+-+-Λ (2)2000
19991
431321211⨯+
+⨯+⨯+⨯Λ
(3))2
1
2007(312006412005)612004(-+++-
练习:(1)100981751531311⨯+
+⨯+⨯+⨯Λ (2))2
1
3(4317)439(655-++-+-
易错题
填空题
1. 计算:•(﹣)﹣2﹣(2
)0+|﹣
|+
的结果是 _________ .
2.若和
都是最简二次根式,则m= _________ ,n= _________ .
3.把根式a
根号外的a 移到根号内,得 _________ .
4.在实数a ,3,中,一个数的平方等于另外两个数的积,那么符合条件的a 的整数值是 _________ . 5.= _________ .
8.若最简二次根式与﹣
是同类二次根式,则x= _________ .
9.当x= _________ 时,最简二次根式与
是同类二次根式.
10.(2010•杭州)先化简﹣(

),再求得它的近似值为 _________ (精
确到0.01,
≈1.414,
≈1.732).
15.设a 、b 都是有理数,规定a*b=,则(4*8)*[9*(﹣64)]= _________ .
16.已知=+,且0<x <y ,则满足上式的整数对(x ,y )有 _________ .
17.计算:
= _________ .
18.若a是的小数部分,则a(a+6)=_________.
19.如果a,b分别是6﹣的整数部分和小数部分,那么ab2﹣a2b=_________.20.(1998•内江)已知ab=2,则的值是_________.
21.已知实数a,b,c满足,则a+b+c=_________.22.已知的值是_________.
23.已知,则x3﹣17x+2006=_________.
24.已知x>0,y>0且x﹣2﹣15y=0,则=_________.
25.非零实数x、y满足(﹣x)(﹣y)=2009,则=
_________.
26.设a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣ac﹣bc=_________.
27.一个三角形的三边长分别为,,2,(>0),则这个三角形的面积是_________.
28.如图,已知OA=OB,数轴上点C表示的数是2,那数轴上线段AC所表示的数是_________.
解答题
30.计算:+|2﹣3|÷=_________.。

相关文档
最新文档