七年级数学上册第二章整式总复习课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.若 xa6ya4与 3x 4 y b的和是一个单项式, 则 a b=_4__.
4.若 2 a 3 m b 5 p 4 b n a 1 7 b 5 a 4 ,则
m+n-p=__-_4___
例7 下列合并同类项的结果错误的有
__①__、__②__、_③__、__④__、. ⑤
① 3a 2 2a 3 5a5;
= x 3 3x 2 4 x 2 12x 3 2 3
= x 3 5 x 2 12x 1 (合并同类项,3 化简完成)
(降幂排列)
当x=-2时 (代入)
原式= (2)3 5 (2)2 12 (2) 1
=8
20
3 24
1
(代入时注意添上括号,乘号
=39 23
改回“×”)
3
例13
一个多项式A加上 3x25x2 得 2x24x3, 求这个多项式A?
解 : 因 为A (3 x 2 5 x 2) 2 x 2 4 x 3
所以A 2x 2 4x 3 (3x 2 5x 2) A 2x2 4x 3 3x2 5x 2 A 2x2 3x2 4x 5x 3 2 A x2 x 1
的值与x无关,则a的取值为__1___. 解:原式= 8 x 2 6 a 1 x 8 x 4 2 6 x 5
( 8 x 2 8 x 2 ) ( 6 a 6 x x ) ( 1 9 ) 4
(6a6)x5
由题意知,则:
6a-6=0
∴a=1
例17
如果关于x,y的多项式( m 2 2 x x x y ) 与 3 x 2 2 n x y 3 y )
∴m=3,n=-1;
∴ n m= (1)3=-1
例18 已知数a,b在数轴上的位置如图所示
a
化简下列式子:
0b
a2ab3ba
解:由题意知:a<0,b>0且|a|>|b|
∴原式=-a-2[-(a+b)]-3(b-a) =-a+2[a+b]-3b+3a =-a+2a+2b-3b+3a =(-a+2a+3a)+(2b-3b) =4a-b
(1)错在把所有6项都当作同类项了;
正确的解法:
(1 )解 : (3 x 2 y 原 3 y2 ) x 式 ( 2 x2 = y1 x2 )y
2
3
=3x2y5xy2
2
3
例9 王强班上有男生m人,女生比男生的一半多5
人,王强班上的总人数(用m表示)为______人。
易错点:结果不进行化简,直接写(m 1 m 5).
(3)2x2y3与 3y2x3 (4)2x2y与 3y2 x
点拨:对于(1)、(3),考察的是同类项的定义,所含字母相同, 相同字母的指数也相同的称为同类项;所以(1)、(3)不是同类 项;
对于(2),虽然好像它们的次数不一样,但其实它们都是 常数项,所以,它们都是同类项;
对于(4),虽然它们的系数不同,字母的顺序也不同,但 它依然满足同类项的定义,是同类项;
2
x2
注意:1,单个的字母或数字也是单项式; 2,用加减号把数字或字母连接在一起 的式子不是单项式;
3,都是数字或字母的积这样 的式子是单项式;
4,当式子中出现分母时,要留意分母里有 没有字母,有字母的就不是单项式,如
果分母没有字母的仍有可能是单项式
(注:“π”当作数字,而不是字母)
例2 指出下列单项式的系数和次数;
若多项式 A 3 x 2 2 x 1 ,B 2 x 2 x 1 ; 计算多项式A-2B;
解 :A 2B (3 x 2 2 x 1) 2(2 x 2 x 1) 3x2 2x 1 4x2 2x 2 3x2 4x2 2x 2x 1 2 7x2 4x 1
注意:列式时要先加上括号,再去括号;
2
点 并以拨保:证结最果中后有的结m , 果12 m最, 简它.们正是确同的类写项法,是应( 3合m 5).
2
同类项知识点总结
同类项
同类项的定义:
1.字__母__相同,
(两相同)
2._相__同__的__字_母__的__指__数__也_相同。
1.与_系__数_无关
(两无关)
2.与字__母__的__位__置__无关。
例4 请说出下列各多项式是几次几项式,并
写出多项式的最高次项和常数项;
(1)25 x2 y xy3是 __四___ 次 __三___ 项式,
最高次项是 ____x_y__3__,常数项是 ____2__5___;
(2) x3 x2 y2 1 是 __四___ 次 __三___ 项式,
3
x2 y2
单项式: 系数: 单项式中的__数_字__因__数__。 次数: 单项式中的___所_有__字__母__的__指_数__和___.
注意的问题:
1.当单项式的系数是1或-1时,“1”通常省略不写。 2.当式子分母中出现字母时不是单项式。 3.圆周率π是常数,不要看成字母。 4.当单项式的系数是带分数时,通常写成假分数。 5.单项式的系数应包括它前面的性质符号。
2、带分数与字母相乘,要写成假分数 3、代数式中出现除法运算时,一般用分数写,即用分数
线代替除号。 4、系数一般写在字母的前面,且系数“1”往往会省略;
单项式知识点总结
定义:由__数__字__或_字__母__的__乘__积__组成的式子。 单独的_一__个__数_或_一__个__字__母_也是单项式。
的差不含有二次项,求n m 的值。
解:原式= ( m 2 2 x x x y ) ( 3 x 2 2 n 3 x y )y m 2 2 x x x y 3 x 2 2 n 3 x yy
( m 3 ) x 2 ( 2 2 n ) x x y 3 y
由题意知,则: m-3=0 2+2n=0
⑥ ab 2 b 2 a 0 ;
得__0__;
例8 合并同类项:
( 1 ) 3 x 2 y 2 x 2 y 1 x 2 y 3 y 2x ( 2 ) 3 a a - b - 2 b 2 - a + b 2 b 2 32
小明的解法: (1)解:(原 32 式 13 = )x2y
32
= 1 x2y
去括号及整式加减 混合运算规律总结
整式的加减混合运算步骤(有括号先去括号)
一:去括号(按照先小括号,再中括号,最后大括号顺序)
1.如果括号外的因数是正数,去括号后原括 号内各项的符号与原来的符号相同。 2.如果括号外的因数是负数,去括号后原括 号内各项的符号与原来的符号相反。
“去括号,看符号。是‘+’号,不变号,是‘-’号,全变号 二:计算
答:(2)、(4)是同类项,(1)(3)不是同类项;
例6 1.下列各式中,是同类项的是:___③__⑤__⑥____
①2 x 2 y 3 与 x 3 y 2 ②x2yz与 x2y
③10mn与 2 mn
3
④ (a)5与 (3)5 ⑤3x2y 与 0.5yx2 ⑥-125与
2.若 2 x3 y n 与 xmy2 是同类项,则m+n=__5_.
1.找同类项,做好标记。 找 2.利用加法的交换律和结合律把同类项放在一起。运 3.利用乘法分配律计算结果。 合 4.按要求按“升”或“降”幂排列。按
先化简,再求值
百度文库 例14
1 ,求多 3 (x2项 4x 1 式 )1(3x34x26 )的值 x , 2 ; 3
解:原式=3 x 2 12 x 3 x 3 4 x 2 2 (先去括号) 3
注意的问题:
1.在确定多项式的项时,要连同它前面的符号, 2.一个多项式的次数最高项的次数是几,就说这个多项式是 几次多项式。
3.在多项式中,每个单项式都是这个多项式的项,每一项都 有系数,但对整个多项式来说,没有系数的概念,只有次数 的概念。
同类项
例5 判断下列各式是否是同类项?
(1)2a2b3与2x2y3 (2)10与 222
复习课
目标要求:
1.理解整式的概念; 2.掌握合并同类项和去括号的法则; 3.能灵活进行整式加法和减法运算。
本章知识结构
单项式
例1 下列各式子中,是单项式的有
__①__、_②__、__④__、__⑦_(填序号)
① a ; ② 1 ; ③ x y ; ④ x ; ⑤ y 2 ; ⑥ x 1 ; ⑦ x ;
注意:几个常数项也是_同__类__项_。
合并同类项概念: _把__多__项_式__中__的__同__类_项__合__并__成__一_项_.
合并同类项法则: 1.__系_数___相加减;
2._字__母__和__字_母__的__指__数___不变。
去括号
例10 判断下列各式是否正确: ( 1 ) a ( b c d ) a b c d (×)
例15
当x=1时,a3x b x23; 则当x=-1时,
a3xb x2____
解:将x=1代入 a3 xb x 23中得:
a+b-2=3 ∴ a+b=5;
整体代换思想
当x=-1时 a3xb x2
=-a-b-2
=-(a+b)-2
=-5-2
=-7
例16
如果关于x的多项式 ( 8 x 2 6 a 1 x ) ( 4 8 x 2 6 x 5 )
( 2 ) c 2 ( a b ) c 2 a b
(3)x23(x2)x23x3
4
42
( 4 ) ( a b c ) a b c
(×) (×) (√ )
去括号时,
1.注意括号外面的符号,括号前面是“+”号,把括号和它 前面的“+”号去掉,括号里各项都不用变符号;括号前面是 “—”号,把括号和它前面的“—”号去掉,括号里各项都改 变符号。
例12 1,化简:
3x2[2x3(x21)2x2]
解: 3 x 2原 [2 x 3 式 x 2 3 = 2 x 2 ] = 3 x 2 2 x 3 x 2 3 2 x 2 = (3 x 23 x 2 2 x 2) 2 x 3
= 4x22x3
注意:有多重括号的,一般先去小括号,再去中 括号,最后再去大括号;
1
最高次项是 ______3___,常数项是 ____3_____;
多项式知识点总结
定义:几个_单__项__式__的_和__.
多项式
项: 组成多项式中的__每__一_个__单__项__式__. 有几项,就叫做__几__项__式___.
常数项:多项式中__不__含_字__母__的__项____.
多项式的次数:_________________________. 多项式中次数最高的项的次数。
下列各个式子中,书写格式正确的是( F)
A.ab B.11ab C.a3 2
a2b D.a3 E.1ab F.
3
1、代数式中用到乘法时,若是数字与数字乘,要用“×” 若是数字与字母乘,乘号通常写成”.”或省略不写,如 3×y应写成3·y或3y,且数字与字母相乘时,字母与 字母相乘,乘号通常写成“·”或省略不写。
注意:1,合并同类项的 法则是把同类项的系数
② 2x 4x 6x2;
相加,字母和字母的次 数不变;
③ 7 ab 2 ab 5 ;
2,合并同类项后也
④ 3 ab 2 ab 1 ab ;
要注意书写格式; 3,如果两个同类项
⑤
3x2
1 2
x2
1 2
2
x2;
的系数互为相反数,那 么合并同类项后,结果
单项式 a 系数 1
ab 2
3
1 3
a 2bc 3 1
a 2b3
7
7
次数 1
3
6
5
22 x2 y 4 3
注意:1,字母的系数“1” 可以省略的,但不代表没有系 数(次数也是同样道理); 2,有分母的单项式,分母中的数字也是单项式系 数的一部分;
3,注意“π”不是字母,而是数字,属于系数的一
部分; 4,计算次数的时候并不是简单的见到指数就相 加,注意单项式的次数指的是字母的指数和;
6.单项式次数是指所有字母的次数的和,与数字的次数没 有关系。
7.单独的数字不含字母, 规定它的次数是零次.
多项 式
例3 下列多项式次数为3的是(C )
A .5x26x1
B .x2x1
C .a2ba bb2
D .x2y22x31
注意 (1)多项式的次数不是所有项的次数的和,而是 它的最高次项次数; (2)多项式的每一项都包含它前面的符号; (3)再强调一次, “π”当作数字,而不是字母
2.注意外面有系数的,各项都要乘以那个系数;
例11 化简下列各式:
(1)(3x2 2x 1) (x2 x 3) (2)(2a2b 2ab2) 3(a2b 2ab2)
解 :(1)原 式 =4 x 2 3 x 2
(2)原 式 = a 2b 4ab 2
整式的加减一般步骤是 (1)如果有括号就先去括号, (2)然后再合并同类项.
4.若 2 a 3 m b 5 p 4 b n a 1 7 b 5 a 4 ,则
m+n-p=__-_4___
例7 下列合并同类项的结果错误的有
__①__、__②__、_③__、__④__、. ⑤
① 3a 2 2a 3 5a5;
= x 3 3x 2 4 x 2 12x 3 2 3
= x 3 5 x 2 12x 1 (合并同类项,3 化简完成)
(降幂排列)
当x=-2时 (代入)
原式= (2)3 5 (2)2 12 (2) 1
=8
20
3 24
1
(代入时注意添上括号,乘号
=39 23
改回“×”)
3
例13
一个多项式A加上 3x25x2 得 2x24x3, 求这个多项式A?
解 : 因 为A (3 x 2 5 x 2) 2 x 2 4 x 3
所以A 2x 2 4x 3 (3x 2 5x 2) A 2x2 4x 3 3x2 5x 2 A 2x2 3x2 4x 5x 3 2 A x2 x 1
的值与x无关,则a的取值为__1___. 解:原式= 8 x 2 6 a 1 x 8 x 4 2 6 x 5
( 8 x 2 8 x 2 ) ( 6 a 6 x x ) ( 1 9 ) 4
(6a6)x5
由题意知,则:
6a-6=0
∴a=1
例17
如果关于x,y的多项式( m 2 2 x x x y ) 与 3 x 2 2 n x y 3 y )
∴m=3,n=-1;
∴ n m= (1)3=-1
例18 已知数a,b在数轴上的位置如图所示
a
化简下列式子:
0b
a2ab3ba
解:由题意知:a<0,b>0且|a|>|b|
∴原式=-a-2[-(a+b)]-3(b-a) =-a+2[a+b]-3b+3a =-a+2a+2b-3b+3a =(-a+2a+3a)+(2b-3b) =4a-b
(1)错在把所有6项都当作同类项了;
正确的解法:
(1 )解 : (3 x 2 y 原 3 y2 ) x 式 ( 2 x2 = y1 x2 )y
2
3
=3x2y5xy2
2
3
例9 王强班上有男生m人,女生比男生的一半多5
人,王强班上的总人数(用m表示)为______人。
易错点:结果不进行化简,直接写(m 1 m 5).
(3)2x2y3与 3y2x3 (4)2x2y与 3y2 x
点拨:对于(1)、(3),考察的是同类项的定义,所含字母相同, 相同字母的指数也相同的称为同类项;所以(1)、(3)不是同类 项;
对于(2),虽然好像它们的次数不一样,但其实它们都是 常数项,所以,它们都是同类项;
对于(4),虽然它们的系数不同,字母的顺序也不同,但 它依然满足同类项的定义,是同类项;
2
x2
注意:1,单个的字母或数字也是单项式; 2,用加减号把数字或字母连接在一起 的式子不是单项式;
3,都是数字或字母的积这样 的式子是单项式;
4,当式子中出现分母时,要留意分母里有 没有字母,有字母的就不是单项式,如
果分母没有字母的仍有可能是单项式
(注:“π”当作数字,而不是字母)
例2 指出下列单项式的系数和次数;
若多项式 A 3 x 2 2 x 1 ,B 2 x 2 x 1 ; 计算多项式A-2B;
解 :A 2B (3 x 2 2 x 1) 2(2 x 2 x 1) 3x2 2x 1 4x2 2x 2 3x2 4x2 2x 2x 1 2 7x2 4x 1
注意:列式时要先加上括号,再去括号;
2
点 并以拨保:证结最果中后有的结m , 果12 m最, 简它.们正是确同的类写项法,是应( 3合m 5).
2
同类项知识点总结
同类项
同类项的定义:
1.字__母__相同,
(两相同)
2._相__同__的__字_母__的__指__数__也_相同。
1.与_系__数_无关
(两无关)
2.与字__母__的__位__置__无关。
例4 请说出下列各多项式是几次几项式,并
写出多项式的最高次项和常数项;
(1)25 x2 y xy3是 __四___ 次 __三___ 项式,
最高次项是 ____x_y__3__,常数项是 ____2__5___;
(2) x3 x2 y2 1 是 __四___ 次 __三___ 项式,
3
x2 y2
单项式: 系数: 单项式中的__数_字__因__数__。 次数: 单项式中的___所_有__字__母__的__指_数__和___.
注意的问题:
1.当单项式的系数是1或-1时,“1”通常省略不写。 2.当式子分母中出现字母时不是单项式。 3.圆周率π是常数,不要看成字母。 4.当单项式的系数是带分数时,通常写成假分数。 5.单项式的系数应包括它前面的性质符号。
2、带分数与字母相乘,要写成假分数 3、代数式中出现除法运算时,一般用分数写,即用分数
线代替除号。 4、系数一般写在字母的前面,且系数“1”往往会省略;
单项式知识点总结
定义:由__数__字__或_字__母__的__乘__积__组成的式子。 单独的_一__个__数_或_一__个__字__母_也是单项式。
的差不含有二次项,求n m 的值。
解:原式= ( m 2 2 x x x y ) ( 3 x 2 2 n 3 x y )y m 2 2 x x x y 3 x 2 2 n 3 x yy
( m 3 ) x 2 ( 2 2 n ) x x y 3 y
由题意知,则: m-3=0 2+2n=0
⑥ ab 2 b 2 a 0 ;
得__0__;
例8 合并同类项:
( 1 ) 3 x 2 y 2 x 2 y 1 x 2 y 3 y 2x ( 2 ) 3 a a - b - 2 b 2 - a + b 2 b 2 32
小明的解法: (1)解:(原 32 式 13 = )x2y
32
= 1 x2y
去括号及整式加减 混合运算规律总结
整式的加减混合运算步骤(有括号先去括号)
一:去括号(按照先小括号,再中括号,最后大括号顺序)
1.如果括号外的因数是正数,去括号后原括 号内各项的符号与原来的符号相同。 2.如果括号外的因数是负数,去括号后原括 号内各项的符号与原来的符号相反。
“去括号,看符号。是‘+’号,不变号,是‘-’号,全变号 二:计算
答:(2)、(4)是同类项,(1)(3)不是同类项;
例6 1.下列各式中,是同类项的是:___③__⑤__⑥____
①2 x 2 y 3 与 x 3 y 2 ②x2yz与 x2y
③10mn与 2 mn
3
④ (a)5与 (3)5 ⑤3x2y 与 0.5yx2 ⑥-125与
2.若 2 x3 y n 与 xmy2 是同类项,则m+n=__5_.
1.找同类项,做好标记。 找 2.利用加法的交换律和结合律把同类项放在一起。运 3.利用乘法分配律计算结果。 合 4.按要求按“升”或“降”幂排列。按
先化简,再求值
百度文库 例14
1 ,求多 3 (x2项 4x 1 式 )1(3x34x26 )的值 x , 2 ; 3
解:原式=3 x 2 12 x 3 x 3 4 x 2 2 (先去括号) 3
注意的问题:
1.在确定多项式的项时,要连同它前面的符号, 2.一个多项式的次数最高项的次数是几,就说这个多项式是 几次多项式。
3.在多项式中,每个单项式都是这个多项式的项,每一项都 有系数,但对整个多项式来说,没有系数的概念,只有次数 的概念。
同类项
例5 判断下列各式是否是同类项?
(1)2a2b3与2x2y3 (2)10与 222
复习课
目标要求:
1.理解整式的概念; 2.掌握合并同类项和去括号的法则; 3.能灵活进行整式加法和减法运算。
本章知识结构
单项式
例1 下列各式子中,是单项式的有
__①__、_②__、__④__、__⑦_(填序号)
① a ; ② 1 ; ③ x y ; ④ x ; ⑤ y 2 ; ⑥ x 1 ; ⑦ x ;
注意:几个常数项也是_同__类__项_。
合并同类项概念: _把__多__项_式__中__的__同__类_项__合__并__成__一_项_.
合并同类项法则: 1.__系_数___相加减;
2._字__母__和__字_母__的__指__数___不变。
去括号
例10 判断下列各式是否正确: ( 1 ) a ( b c d ) a b c d (×)
例15
当x=1时,a3x b x23; 则当x=-1时,
a3xb x2____
解:将x=1代入 a3 xb x 23中得:
a+b-2=3 ∴ a+b=5;
整体代换思想
当x=-1时 a3xb x2
=-a-b-2
=-(a+b)-2
=-5-2
=-7
例16
如果关于x的多项式 ( 8 x 2 6 a 1 x ) ( 4 8 x 2 6 x 5 )
( 2 ) c 2 ( a b ) c 2 a b
(3)x23(x2)x23x3
4
42
( 4 ) ( a b c ) a b c
(×) (×) (√ )
去括号时,
1.注意括号外面的符号,括号前面是“+”号,把括号和它 前面的“+”号去掉,括号里各项都不用变符号;括号前面是 “—”号,把括号和它前面的“—”号去掉,括号里各项都改 变符号。
例12 1,化简:
3x2[2x3(x21)2x2]
解: 3 x 2原 [2 x 3 式 x 2 3 = 2 x 2 ] = 3 x 2 2 x 3 x 2 3 2 x 2 = (3 x 23 x 2 2 x 2) 2 x 3
= 4x22x3
注意:有多重括号的,一般先去小括号,再去中 括号,最后再去大括号;
1
最高次项是 ______3___,常数项是 ____3_____;
多项式知识点总结
定义:几个_单__项__式__的_和__.
多项式
项: 组成多项式中的__每__一_个__单__项__式__. 有几项,就叫做__几__项__式___.
常数项:多项式中__不__含_字__母__的__项____.
多项式的次数:_________________________. 多项式中次数最高的项的次数。
下列各个式子中,书写格式正确的是( F)
A.ab B.11ab C.a3 2
a2b D.a3 E.1ab F.
3
1、代数式中用到乘法时,若是数字与数字乘,要用“×” 若是数字与字母乘,乘号通常写成”.”或省略不写,如 3×y应写成3·y或3y,且数字与字母相乘时,字母与 字母相乘,乘号通常写成“·”或省略不写。
注意:1,合并同类项的 法则是把同类项的系数
② 2x 4x 6x2;
相加,字母和字母的次 数不变;
③ 7 ab 2 ab 5 ;
2,合并同类项后也
④ 3 ab 2 ab 1 ab ;
要注意书写格式; 3,如果两个同类项
⑤
3x2
1 2
x2
1 2
2
x2;
的系数互为相反数,那 么合并同类项后,结果
单项式 a 系数 1
ab 2
3
1 3
a 2bc 3 1
a 2b3
7
7
次数 1
3
6
5
22 x2 y 4 3
注意:1,字母的系数“1” 可以省略的,但不代表没有系 数(次数也是同样道理); 2,有分母的单项式,分母中的数字也是单项式系 数的一部分;
3,注意“π”不是字母,而是数字,属于系数的一
部分; 4,计算次数的时候并不是简单的见到指数就相 加,注意单项式的次数指的是字母的指数和;
6.单项式次数是指所有字母的次数的和,与数字的次数没 有关系。
7.单独的数字不含字母, 规定它的次数是零次.
多项 式
例3 下列多项式次数为3的是(C )
A .5x26x1
B .x2x1
C .a2ba bb2
D .x2y22x31
注意 (1)多项式的次数不是所有项的次数的和,而是 它的最高次项次数; (2)多项式的每一项都包含它前面的符号; (3)再强调一次, “π”当作数字,而不是字母
2.注意外面有系数的,各项都要乘以那个系数;
例11 化简下列各式:
(1)(3x2 2x 1) (x2 x 3) (2)(2a2b 2ab2) 3(a2b 2ab2)
解 :(1)原 式 =4 x 2 3 x 2
(2)原 式 = a 2b 4ab 2
整式的加减一般步骤是 (1)如果有括号就先去括号, (2)然后再合并同类项.