结构力学(第二章)-静定刚架

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l/2
l/4 l/4
P
A
l
XA
B
l
C
解:1)取附属部分 X D P()
YA
YD
YB
XD
YC
D
YC P / 4()
YD P / 4()
2)取基本部分
P
XD
A
X A P()
XA
B
YD
C
YA P()
YB P / 4() YC
YA
YB
思考题: 图示体系支反力和约束力的计算途径是怎样的?
简支刚架
单体刚架 (联合结构) 悬臂刚架 复合刚架 (主从结构)
1.单体刚架(联合结构)的支座反力(约束力)计算
方法:切断两个刚片之间的约束,取一个刚片为隔离体,假 定约束力的方向,由隔离体的平衡建立三个平衡方程. 例1: 求图示刚架的支座反力
C
P B
l 2 l 2
C
P
B
YB
A
A
l
XA
YA
解:
F 0, X P 0, X P() l P M 0, P 2 Y l 0, Y 2 () P F 0, Y Y 0, Y Y 2 ()
ql
ql
l
l
ql
解:
F 0,Y 0 l M 0, ql 2 X l 0, X 1 F 0, N X 2 ql ()
y C
A C x AB C
C
1 ql () 2
例5: 求图示刚架的反力和约束力
C
P
E
l
N EC N DC
N DA
D
E
XA
A D
YC
B
XB
YB
例2: 求图示刚架的支座反力和约束力
C
P
l 2 l 2
解:1)取整体为隔离体
F 0,
x
X B P()
A
B
l 2 l 2
XB
MA
YB
YA
C
2)取右部分为隔离体 l M C 0, X B l YB 2 0, YB 2P() Fy 0,YC YB 0,YC YB 2P()
2.三铰刚架(三铰结构)的支座反力(约束力)计算
方法:取两次隔离体,每个隔离体包含一或两个刚片,建立 六个平衡方程求解--双截面法. 解:1)取整体为隔离体 例1: 求图示刚架的支座反力
C
P
l 2 l 2
A
B
l 2 l 2
XA
XB
l P M A 0, P 2 YB l 0, YB 2 () P Fy 0, YA YB 0, YA YB 2 () Fx 0, X A P X B 0
x A A
A B B y A B A B
例2: 求图示刚架的支座反力 q ql 2 解: ql
l
F
A
x
0, X A ql 0, X A ql()
A A
XA
MA
YA
l 2 l 2
F 0,Y ql 0,Y ql() M 0, M ql l ql 0,
ql
P/2
QAB ql
QBA 0
ql ql
Q
ql
§2-2 静定刚架受力分析
一. 刚架的受力特点
二. 刚架的支座反力计算
三. 刚架指定截面内力计算 四.刚架弯矩图的绘制 五.由做出的弯矩图作剪力图 六.由做出的剪力图作轴力图 做法:逐个杆作轴力图,利用结点的平衡条件,由已 知的杆端剪力和求杆端轴力,再由杆端轴力画轴力 图.注意:轴力图画在杆件那一侧均可,必须注明符 号和控制点竖标.
y
2 A A
M A 2ql 2 (逆时针转)
C
l 2 l 2
B
XB MB
例3: 求图示刚架的支座反力
解:
M
Fy 0,YA 0
B
Fx 0, X B P()
P
A
0, M B pl / 2(顺时针转 )
YA
l
例4: 求图示刚架的约束力
q
C
l
C
XC
YC
A
A
B
N AB
分段 定点 连线
例题1: 作图示结构弯矩图
Pl / 2 Pl / 2 l/2
P
练习: 作弯矩图
P P
l
l/2
l l
Pl / 2
l
2 Pl
Pl
Pl
P
l l
例题1: 作图示结构弯矩图
Pl / 2 Pl / 2 l/2
P
练习: 作弯矩图
P P
l
l/2
l l
Pl / 2
l
2 Pl
P
l/2 l/2
Pl
Pl
结点上无外力偶作用,则两 三. 刚架指定截面内力计算 个杆端的弯矩值相等,方向 与梁的指定截面内力计算方法相同. 相反.
例1: 求图示刚架1,2截面的弯矩
C
P
连接两个杆端的刚结点,若 §2-2 静定刚架受力分析
M1
M
1
2
l 2 l 2
M2
A
B
l 2 l 2
M
P/4 P/4
XA
XB
YA
解:
YB
M 2 Pl / 4(右侧受拉) M1 Pl / 4(上侧受拉) M1 M 2 (外侧受拉)
N EF 4 P()
F
y
0, NCD 6P()
B
P 0, YA 2P()
3.复合刚架(主从结构)的支座反力(约束力)计算 若附属部分上无 方法:先算附属部分,后算基本 例1: 求图示刚架的支座反力 外力,附属部分上的 部分,计算顺序与几何组成顺序 约束力是否为零? 相反. D
P
l l
l
练习: 作图示结构弯矩图
P
l l l l
P
l
l
P
l
l
例题2: 作图示结构弯矩图
Pl / 2
P
Pl / 4 3Pl / 4 Pl / 4
Pl / 2
l
3Pl / 4
l
l
0
练习: 作图示结构弯矩图
P
l
Pl
Pl
Pl / 2
2l
2l
P
l
Pl / 2
例题3: 作图示结构弯矩图
ql2 / 2
q
练习: 作图示结构弯矩图
YA P / 2() X B P / 4() X A P / 4()
YB P / 2()
§2-2 静定刚架受力分析
一. 刚架的受力特点
二. 刚架的支座反力计算
三. 刚架指定截面内力计算 四.刚架弯矩图的绘制 做法:拆成单个杆,求出杆两端的弯矩,按与单跨 梁相同的方法画弯矩图.
解:1)取AB为隔离体 l M A 0,2ql 2 YB l 0, YB ql () Fy 0,YA YB 2ql 0,YA ql()
F 0,
X C X B ql / 2()
3)取AB为隔离体
例4: 求图示刚架的反力和约束力 P
例:作图示结构的M,Q,N图
3kN m B
4kN/m
B
QBC
2kN
C
A
7kN M
1 .5 m 1 .5 m
C
QCB QCB 5.8kN,QBC 7kN
4m
B
2kN
B
NCB
C
2kN
A
Q
5.8kN
C
2.75kN
B
N BC
N BA
YC
N BA 7.25kN N BC 2.75kN
C N CB 6.85kN 7.5kN A
N
6.85kN
§2-2 静定刚架受力分析
一. 刚架的受力特点
二. 刚架的支座反力计算
三. 刚架指定截面内力计算 四.刚架弯矩图的绘制
五.由做出的弯矩图作剪力图 六.由做出的剪力图作轴力图
七.计算结果的校核
作业
2-10
2-12
五.由做出的弯矩图作剪力图
Pa / 2
Pa / 2 Pa
P
P/2
P
Pa / 2
P/4
2a
M
P/4
P/4
Q
P/4
a
a
Pl Pl
a
P/2
l l
练习:作剪力图
P
P/2
M
Pl
Q
P
2l
2l
例:作剪力图
3ql / 2
2
3ql2 / 2
q
ql 2
B
ql
2
ql 2
B
A
A
QAB
l
QBA
M
ql
l ql2 / 2
QBA 0, QAB ql
q
ql / 2
l
ql l / 2
ql
l
q
l/2
l
l
l
q
l
作业
2-14
练习: 作图示结构弯矩图
q
ql
5ql / 4
q
l
ql
l/2 l/2
l
5ql / 4
l l
ql
l
5ql2 / 4
ql
2
3ql2 / 2 5ql2 / 4
例四: 作图示结构弯矩图
3M / 4 M /2 M /4 M / 4l M /2
N
P/2
P/2
例:作图示结构的M,Q,N图
4kN/m
x
q
B
B
2kN
C
A
q 4m
1 .5 m
A

l
ql / 2
x
M (x)
1.5m ql / 2
A
ql / 2
x
ql2 / 4 ql2 / 4
ql x 1 M ( x) x qx qx (l x) 2 2 2
ql2 / 8 ql2 / 8
P
P
P
P
Pl
P
P
P
P P
P
P
Pl
P
习题: 求图示体系约束力. M A B M
l
M
M /l M /l M /l
C
l
D
M /l M /l M /l
习题: 求图示体系约束力.
l l
M
l l l
M /l M /l
M
0
§2-2 静定刚架受力分析
一. 刚架的受力特点
二. 刚架的支座反力计算
三. 刚架指定截面内力计算 与梁的指定截面内力计算方法相同.
第二章 静定结构受力分析
§2-2 静定刚架受力分析
§2-2 静定刚架受力分析
一. 刚架的受力特点
刚架是由梁柱组成的含有刚结点的杆件结构
1 2 ql l 8

桁架
1 2 ql 8
刚架
弯矩分布均匀 可利用空间大
§2-2 静定刚架受力分析
一. 刚架的受力特点
二. 刚架的支座反力计算
静定刚架的分类:
三铰刚架 (三铰结构)
M
P
P
Pl
l l
P
2 ql
l
l
0
ql 2
l l
ql2 / 2
q l
ql
l
练习: 试找出图示结构弯矩图的错误
练习: 试找出图示结构弯矩图的错误
§2-2 静定刚架受力分析
一. 刚架的受力特点
二. 刚架的支座反力计算
三. 刚架指定截面内力计算 四.刚架弯矩图的绘制 五.由做出的弯矩图作剪力图 做法:逐个杆作剪力图,利用杆的平衡条件,由已知 的杆端弯矩和杆上的荷载求杆端剪力,再由杆端剪 力画剪力图.注意:剪力图画在杆件那一侧均可,必 须注明符号和控制点竖标.
F 0,
x
X B X C 0, X C P()
XC
YC
B
XB
YB
3)取整体为隔离体 Fy 0,YA YB 0,YA YB P() l M A 0, M A P 2 YB l 0, 1 M A Pl(顺时针转) 2
例3: 求图示刚架的约束力 q
C
XA
A
B
XB
YA
l
2 ql
YB
A
l
B
C
XC
YC
XA
A YA
x
2 ql l
2)取AC为隔离体 Fx 0, X B X A ql / 2() Fy 0, YC YA ql 0 l M C 0, X A l ql 2 YB l 0, X A ql / 2()
l
XB
B
C
E
XB
P B
YB
D
l l l
YB
F
C
E
NCD
N EF
XA
A
YA
解:1)取BCE为隔离体 Fx 0, X B 0
3)取BCE为隔离体
M
C
0, P l YB l N EF l 0,
F 0, X 0 F 0,Y Y
x A y A
2)取整体为隔离体 M A 0, P 3l YB l 0,YB 3P()
B
l
B
YA
l
YB
2)取DBE部分
A
YB
解: 1)取整体
F 0, X P() 1 M 0, Y 2 P()
x
A B
1 Fy 0, YA 2 P()
1 Fy 0, N DC 2 P() 1 M D 0, N BC 2 P() P Fx 0, N DA 2 ()
2)取右部分为隔离体 l P M C 0, X B l YB 2 0, X B 4 () P Fy 0, YC YB 0, YC YB 2 () P Fx 0, X B X C 0, X C 4 ()
YA
C
YB
XC
Hale Waihona Puke Baidu 六.由做出的剪力图作轴力图
Pa / 2
Pa / 2 A
B
Pa
P
P/2
P
Pa / 2
P/4
2a
M
P/4
P/4
Q
P/4
a
a
a
A
P/2 P/2 P/4
B
P/4
P/2
N
P/2
P/4 P/4 3P / 2
练习:作轴力图
P
A
B
l
Pl Pl
l
P/2 P/2
M
Pl
Q
P
2l
P
2l
P/2
P
A
P
P/2
P P/2
B P
相关文档
最新文档