瑞士万通 870 KF Titrino plus共92页文档

合集下载

瑞士万通水分仪培训资料

瑞士万通水分仪培训资料

13
KF Titration
平衡时间与漂移值的关系
l 两个稳定条件只能选择一个. l 二者之间是对应关系:
瑞士万通中国有限公司_卡尔费休水份仪课程
14
KF Titration
漂移停止判据 drift stop
Drift / µl/min
基线漂移 例如: 6 µl/min
加入样品
瑞士万通中国有限公司_卡尔费休水份仪课程
打印机,天平的接口设置
波特率 数据位 停止位 奇偶性
信号交换式 C30...C39,一般为空白和滴定度。
卡氏试剂的滴定度一般为C39。
瑞士万通中国有公司_卡尔费休水份仪课程
9
KF Titration
滴定参数-parameters <PARAM>键
瑞士万通中国有限公司_卡尔费休水份仪课程
10
KF Titration
瑞士万通中国有限公司_卡尔费休水份仪课程
8
KF Titration
仪器参数---configuration
l RS232设置RS232 settings
– baud rate: – data bit: – stop bit: – parity: – handshake:
l 公共变量com.var.
4
KF Titration
仪器参数---configuration <CONFIG>键
瑞士万通中国有限公司_卡尔费休水份仪课程
5
KF Titration
仪器参数---configuration
l 监控monitoring
– 检定validation:
监控检定周期
– 校正calibration:(只有758有此功能) 监控pH校正周期

KF简介卡尔费休(KF)水份滴定原理

KF简介卡尔费休(KF)水份滴定原理

Statistics(统计) Recalculation(重新计算) Routine dialog
+ + +
+ + +
Internal printer(内置打印机)
GLP(GLP测试)
+
+
+
瑞士万通中国有限公司_卡尔费休水份仪课程
34
KF Titration
756 KF- Coulometer
瑞士万通中国有限公司_卡尔费休水份仪课程
(RN =碱)
瑞士万通中国有限公司_卡尔费休水份仪课程
2
KF Titration
KF试剂的基本组成
l
l
l
l
碘 二氧化硫 碱 溶剂
I2 SO2 咪唑 甲醇
瑞士万通中国有限公司_卡尔费休水份仪课程
3
KF Titration
KF滴定的优点

方法简单,容易操作
是专一性的测定水份的方法 测量结果准确度高,重现性好。 测量范围宽: 10g - 100% 分析时间短: 2 -5 minutes
835836titrando799gpttitrino容量法卡氏水份仪使用万通metrohm的活塞式滴定管和插入式交换单元才使容量法卡氏水份测定变为非常简单高分辨率的滴定仪titrino110000精度titrando120000精度保证了滴定的准确787kftitrino操作方便的交换单元703滴定台titrando系列titrando系列835kfdtitrando836kfdtitrando803滴定台库仑法kf水份仪可以使用有隔膜和无隔膜发生电极可以内存各种分析方法应付复杂的试验预知kf试剂的寿命可以实现自动更换试剂库仑法kf水份仪库仑法kf水份仪756kfcoulometer831kfcoulometer卡氏炉768kfoven传统型的干燥炉带样品舟832thermoprep新型干燥炉样品置于小的安培瓶中832thermoprep768和832的异同全自动kf滴定774自动进样炉全自动kf滴定824易操作自动进样器kf滴定的滴定头全自动kf滴定814usb接口自动进样器内置磁力搅拌msb接口抽排液泵前置更易于操作可选试剂瓶组织单元废液瓶防溢出保护100100usermethods用户方法automation自动化software软件livedisplay实时显示756kfcoulometer831kfcoulometerinternalprinter内置打印机glpglp测试routinedialogrecalculation重新计算statistics统计756kfcoulometer831kfcoulometer滴定池样品瓶放入卡氏炉中卡氏炉的测定原理768kfoven容量法和库仑法均可容量法和库仑法均可水份测量方式可在样品的上方也可通过样品在样品的上方载气流可变固定盛装样品的容器规格50

瑞士万通831 KF 水份分析仪中文版操作手册

瑞士万通831 KF 水份分析仪中文版操作手册

广州代表处
广州先烈中路 80 号 汇华商贸大厦 21 楼 K 单元
邮编: 510070 电话: 020-37617902
37617903 37617939 传真: 020-37616051
成都技术支援中心
成都市一环路南一段 20 号 普利大厦 410 房 邮编: 610021 电话: 028-5239418
执行干燥时,灯闪烁,滴定池仍未干燥。达到干燥时,灯亮。
“STATISTICS” 启动“STATISTICS”功能时(计算平均值和标准偏差),灯亮。
“SILO”
启动仓储记忆时(样品数据),灯亮。
4
显示对比度设置
仪器面板
6
KF Coulometer
仪器后板
KFC 库仑法水分测定仪
仪器后板:
5
RS 232 接口
5 准备………………………………………………………………………………………………… 62
5.1 安装仪器………………………………………………………………………………………… 62
5.1.1 连接搅拌器或滴定台………………………………………………………………………. 62
5.1.2 安装内置热敏打印机的打印纸……………………………………………………………. 63
12
连接电源电缆
由于电源电压易强高频干扰,Coulometer 内设有附加电源滤波器,
例如:Metrohm 615 型。
13
散热片
14
标定牌
生产、系列和仪器编号。
KF Coulometer
7
KFC 库仑法水分测定仪
2. 湿化学部分
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

KF仪器参数设置

KF仪器参数设置

瑞士万通中国有限公司_卡尔费休水份仪课程
7
KF Titration
仪器参数---configuration

辅助功能auxiliaries
– – – – – – – – – 语种dialogue: 日期date: 时间time: 编号run number: 自动开始auto start: 开始延迟start delay: 结果显示result display: 设备标记device label: 程序版本program 选择对话语言English, Franch, Germany 现时日期 现时时间 开机后样品测定的次数0,1,... 9999 自动开始滴定 启动方法后的延迟时间。 bold(黑体)standard(标准字体) 滴定仪的编号或代码 滴定仪内运行的程序版本如:795.0010
瑞士万通中国有限公司_卡尔费休水份仪课程
6
KF Titration
仪器参数---configuration
l 外设peripheral units
– 打印机send to: – 手动打印报告man. Reports to COM: – 天平banlance: – 记录仪record: – 搅拌控制stirrer control: – 连接远程接口remote box: 可以选择Epson,Seiko,Citizen,IBM 如果仪器后板有两个COM口,在此 选择手动打印报告的输出口。 可以选择Sartorius, Mettler, U, dU/dt, V, dV/dt, U(rel) 在滴定过程中自动开关搅拌 连接PC键盘或条形码读出器
瑞士万通中国有限公司_卡尔费休水份仪课程
13
KF Titration
平衡时间与漂移值的关系

瑞士万通离子色谱仪800 Dosino进样器说明书--英文

瑞士万通离子色谱仪800 Dosino进样器说明书--英文

800 Dosino - GeneralThe 800 Dosino is a flexible dosing drive which, as an MSB device, can be used with a host of Metrohm main devices. Together with the intelligent 807 Dosing unit, it is well suited for both simple dosing and for automation and liquid handling tasks, such as sample transfer or pipetting.NoteMagIC Net only supports the use of intelligent 807 Dosing units! Configuration MSB DeviceAn MSB device is not entered in the device table. In the configuration it is only listed under the MSB connections of the main device to which it is connected (e.g. 850 Professional IC or 858 Professional Sample Processor).800 Dosino - MethodAn 800 Dosino (as is the case with all MSB devices) cannot be added separately to a method. It is added to the list of devices by adding the main device to which it is connected to the method.If the method is created without connected devices, the MSB device can be added separately. In this case, the MSB connector on the main device must be entered manually.In the device group, the 800 Dosino behaves like a stand-alone device. It can be selected and displayed graphically in the upper area of the device window.800 Dosino - Start parametersTab: Method ▶ Devices ▶ DosinoSolutionSelect the solution for the Dosino that should be available when the hardware is started with [Start HW]. A check is carried out in the method run to ensure that the correct solution has been put on the dosing device. When the method is started, the working life and GLP test interval are checked for the selected solution.Selection not defined | Solutions from the solution tableDefault value not definednot definedThe solution is not checked.Solutions from the solution tableOnly "intelligent" solutions, i.e. solutions that are assigned to an 807 Dosing unit, can be selected.ConnectorShows the main device and the MSB connector which the 800 Dosino is on.800 Dosino - CommandsOverview of the time program commands available for the 800 Dosino:DosingDialog window: Method ▶Time program ▶Edit ▶'Device' - DosingThe device-dependent time program command Dosing (command with feedback) doses the specified volume via the defined port. There is no automatic filling beforehand or afterwards.ParametersPortPort via which dosing takes place. Formula input possible.Range 1 (4)Default value 1V olumeVolume to be transported. Formula input possible.Range0.0000 ... 99999.9000 mLDefault value 1.0000 mLDosing rateSpeed at which discharge takes place. The maximum rate depends on the cylinder volume of the buret used. Formula input possible.Cylinder volume 2 mLRange0.01 ... 6.00 mL/minDefault value 1.00 mL/minSelection maximumCylinder volume 5 mLRange0.01 ... 16.00 mL/minDefault value 1.00 mL/minSelection maximumCylinder volume 10 mLRange0.01 ... 33.00 mL/minDefault value 1.00 mL/minSelection maximumCylinder volume 20 mLRange0.01 ... 66.00 mL/minDefault value 1.00 mL/minSelection maximumCylinder volume 50 mLRange0.01 ... 166.00 mL/minDefault value 1.00 mL/minSelection maximumFilling rateSpeed at which filling takes place. The maximum rate depends on the cylinder volume of the buret used. Formula input possible.Cylinder volume 2 mLRange0.01 ... 6.00 mL/minDefault value 1.00 mL/minSelection maximumCylinder volume 5 mLRange0.01 ... 16.00 mL/minDefault value 1.00 mL/minSelection maximumCylinder volume 10 mLRange0.01 ... 33.00 mL/minDefault value 1.00 mL/minSelection maximumCylinder volume 20 mLRange0.01 ... 66.00 mL/minDefault value 1.00 mL/minSelection maximumCylinder volume 50 mLRange0.01 ... 166.00 mL/minDefault value 1.00 mL/minSelection maximumCommentOptional comment on the time program command.Input64 charactersGenerated variablesThe following type 'mand number.Variable name' variables are generated by the command:AspirateDialog window: Method ▶Time program ▶Edit ▶'Device' - AspirateThe device-dependent time program command Aspirate (command with feedback) draws in the specified volume via the defined port. As with the command Dosing, the cylinder is not filled automatically beforehand or afterwards. It should be possible to achieve the volume to be aspirated with a single piston stroke.ParametersPortPort via which aspiration takes place. Formula input possible.Range 1 (4)Default value 1V olumeVolume to be transported. Formula input possible.Range0.0000 ... 50.0000 mLDefault value 1.0000 mLRateThe maximum rate depends on the cylinder volume of the buret used. Formula input possible.Cylinder volume 2 mLRange0.01 ... 6.00 mL/minSelection maximumDefault value maximumCylinder volume 5 mLRange0.01 ... 16.00 mL/minSelection maximumDefault value maximumCylinder volume 10 mLRange0.01 ... 33.00 mL/minSelection maximumDefault value maximumCylinder volume 20 mLRange0.01 ... 66.00 mL/minSelection maximumDefault value maximumCylinder volume 50 mLRange0.01 ... 166.00 mL/minSelection maximumDefault value maximumCommentOptional comment on the time program command.Input64 charactersGenerated variablesThe following type 'mand number.Variable name' variables are generated by the command:FillDialog window: Method ▶Time program ▶Edit ▶'Device' - FillThe device-dependent time program command Fill (command with feedback) fills the cylinder via the specified port. The valve disc stops on the selected port.ParametersPortPort via which filling takes place. Formula input possible.Range 1 (4)Default value 2RateThe maximum rate depends on the cylinder volume of the buret used. Formula input possible.Cylinder volume 2 mLRange0.01 ... 6.00 mL/minSelection maximumDefault value maximumCylinder volume 5 mLRange0.01 ... 16.00 mL/minSelection maximumDefault value maximumCylinder volume 10 mLRange0.01 ... 33.00 mL/minSelection maximumDefault value maximumCylinder volume 20 mLRange0.01 ... 66.00 mL/minSelection maximumDefault value maximumCylinder volume 50 mLRange0.01 ... 166.00 mL/minSelection maximumDefault value maximumCommentOptional comment on the time program command.Input64 charactersEject to end volumeDialog window: Method ▶Time program ▶Edit ▶'Device' - Eject to end volumeThe device-dependent time program command Eject to end volume (command with feedback) ejects the entire contents of the cylinder via the specified port. In contrast to the command Eject to stop, the piston travels to the maximum volume mark i.e. until it has performed 10,000 pulses. This command should be used for pipetting functions for emptying the cylinder.ParametersPortPort via which ejection takes place. Formula input possible.Range 1 (4)Default value 4RateThe maximum rate depends on the cylinder volume of the buret used. Formula input possible.Cylinder volume 2 mLRange0.01 ... 6.00 mL/minSelection maximumDefault value maximumCylinder volume 5 mLRange0.01 ... 16.00 mL/minSelection maximumDefault value maximumCylinder volume 10 mLRange0.01 ... 33.00 mL/minSelection maximumDefault value maximumCylinder volume 20 mLRange0.01 ... 66.00 mL/minSelection maximumDefault value maximumCylinder volume 50 mLRange0.01 ... 166.00 mL/minSelection maximumDefault value maximumCommentOptional comment on the time program command.Input64 charactersEject to stopDialog window: Method ▶Time program ▶Edit ▶'Device' - Eject to stopThe device-dependent time program command Eject to stop (command with feedback) ejects the entire contents of the cylinder via the specified port. The piston is lowered to the stop point, i.e. past the maximum volume mark.NoteThis function should only be carried out to eject any air bubbles present.CautionThe command aspirate does not function directly after Eject to stop.If aspiration is to take place after Eject to stop, then Eject to end volume must first be carried out. In this command, the port via which aspiration is to take place must already be selected.ParametersPortPort via which ejection takes place. Formula input possible.Range 1 (4)Default value 4RateThe maximum rate depends on the cylinder volume of the buret used. Formula input possible.Cylinder volume 2 mLRange0.01 ... 6.00 mL/minSelection maximumDefault value maximumCylinder volume 5 mLRange0.01 ... 16.00 mL/minSelection maximumDefault value maximumCylinder volume 10 mLRange0.01 ... 33.00 mL/minSelection maximumDefault value maximumCylinder volume 20 mLRange0.01 ... 66.00 mL/minSelection maximumDefault value maximumCylinder volume 50 mLRange0.01 ... 166.00 mL/minSelection maximumDefault value maximumCommentOptional comment on the time program command.Input64 charactersExchange positionDialog window: Method ▶Time program ▶Edit ▶'Device' - Exchange positionWith the device-dependent time program command Exchange position (command with feedback) the cylinder is first filled via the port specified. The valve disc is then turned to Port 2 and the dosing unit can be removed from the dosing drive.ParametersFill portPort via which filling takes place. Formula input possible.Range 1 (4)Default value 2RateThe maximum rate depends on the cylinder volume of the buret used. Formula input possible.Cylinder volume 2 mLRange0.01 ... 6.00 mL/minSelection maximumDefault value maximumCylinder volume 5 mLRange0.01 ... 16.00 mL/minSelection maximumDefault value maximumCylinder volume 10 mLRange0.01 ... 33.00 mL/minSelection maximumDefault value maximumCylinder volume 20 mLRange0.01 ... 66.00 mL/minSelection maximumDefault value maximumCylinder volume 50 mLRange0.01 ... 166.00 mL/minSelection maximumDefault value maximumCommentOptional comment on the time program command.Input64 charactersChange portDialog window: Method ▶Time program ▶Edit ▶'Device' - Change portThe device-dependent time program command Change port (command with feedback) results only in one rotation of the valve to the given port and not in any piston movement.ParametersPortPort to which the valve is rotated. Formula input possible.Range 1 (4)Default value 2CommentOptional comment on the time program command.Input64 charactersCompensateDialog window: Method ▶Time program ▶Edit ▶'Device' - CompensateBecause of the fact that the dosing units are interchangeable, the coupling of the Dosino piston rod (spindle) exhibits a low mechanical tolerance that can be noticed when the piston changes its direction of movement. This tolerance can be compensated for with the device-dependent time program command Compensate (command with feedback). A short piston movement is first made in the same direction as the previous movement, which is then followed by a piston movement in the reverse direction.ParametersPortPort via which the piston motion runs. Formula input possible.Range 1 (4)Default value 4CommentOptional comment on the time program command.Input64 charactersPrepareDialog window: Method ▶Time program ▶Edit ▶'Device' - PrepareThe device-dependent time program command Prepare (command with feedback) is used to prepare a dosing unit.The cylinder and all the tubing of a dosing unit are rinsed in an extensive cleaning sequence. The parameters required for this process are stored in the configuration of the solution.CommentOptional comment on the time program command.Input64 charactersEmptyDialog window: Method ▶Time program ▶Edit ▶'Device' - EmptyThe device-dependent time program command Empty (command with feedback) is used to empty the cylinder and the tubing of a dosing unit.The cylinder and all the tubing of a dosing unit are emptied in an extensive sequence. The parameters required for this process are stored in the configuration of the solution.CommentOptional comment on the time program command.Input64 charactersReleaseDialog window: Method ▶Time program ▶Edit ▶'Device' - 'Module' - ReleaseThe device-dependent time program command Release (command without feedback) releases the module/device for use by other methods running at the same time. It removes the reservation made by the current method.TimeTime at which the command is to be executed.Range0.00 ... 10000.00 minIncrement0.01 minDefault value0.00 minCommentOptional comment on the time program command.Input0 ... 64 characters800 Dosino - Manual ControlTab: Manual ▶Manual Control - 'Device name' ▶'Dosino'CommandSelection of the Dosino command that is to be triggered manually.Selection Dosing | Aspirate | Fill | Prepare | EmptyDefault value DosingDosingDoses the specified volume via the defined port. There is no automatic filling beforehand or afterwards.AspirateAspirates the specified volume via the defined port. There is no automatic filling beforehand or afterwards.FillThe cylinder is filled in a fixed sequence. The parameters required for this process are stored in the configuration of the solution.PrepareThe cylinder and all the tubing of a dosing unit are rinsed in an extensive cleaning sequence. The parameters required for this process are stored in the configuration of the solution.EmptyThe cylinder and all the tubing of a dosing unit are emptied in an extensive sequence. The parameters required for this process are stored in the configuration of the solution.SolutionDisplays the solution assigned to the Dosino.VolumeCurrent valueDisplays the current dosed volume.InputEnter the volume that is to be dosed / moved.Range0.0000 ... 99999.9000 (Exception: with command "Aspirate" 50.0000) mL Default value 1.0000 mLPortCurrent valueShows the current port.InputSelection of a port for the action selected in the parameter Command.Range 1 (4)Default value 1Dosing rateInputEnter dosing rate. The maximum rate depends on the cylinder volume of the buret used. Formula input possible.Cylinder volume 2 mLRange0.01 ... 6.00 mL/minSelection maximumDefault value maximumCylinder volume 5 mLRange0.01 ... 16.00 mL/minSelection maximumDefault value maximumCylinder volume 10 mLRange0.01 ... 33.00 mL/minSelection maximumDefault value maximumCylinder volume 20 mLRange0.01 ... 66.00 mL/minSelection maximumDefault value maximumCylinder volume 50 mLRange0.01 ... 166.00 mL/minSelection maximumDefault value maximumFilling rateInputEnter filling rate. The maximum rate depends on the cylinder volume of the buret used. Formula input possible.Cylinder volume 2 mLRange0.01 ... 6.00 mL/minSelection maximumDefault value maximumCylinder volume 5 mL Range0.01 ... 16.00 mL/minSelection maximumDefault value maximumCylinder volume 10 mL Range0.01 ... 33.00 mL/minSelection maximumDefault value maximumCylinder volume 20 mL Range0.01 ... 66.00 mL/minSelection maximumDefault value maximumCylinder volume 50 mL Range0.01 ... 166.00 mL/minSelection maximumDefault value maximum[Start]Start Dosino command.[Stop]Stop Dosino command.。

瑞士万通离子色谱仪操作培训PPT学习教案

瑞士万通离子色谱仪操作培训PPT学习教案
IC使用注意事项—试剂
所有试剂都应当是分析纯以上,最好是优级纯。
标准品应当是离子色谱专用的。 例如:基体应该为水,而不是酸。
18
第17页/共26页
IC使用注意事项—CO2
由于CO2会影响Na2CO3-NaHCO3的平衡(使淋洗液变弱),淋洗液瓶应当总是加装CO2吸收管。 注意:
CO2吸收管里,装半管的CaO(碱石灰,钠石灰)即可,千万不要装得过满,否则可能会涨爆。 同样,弱缓冲能力的淋洗液必须避免CO2的吸收。
分离柱(500-1000ml/天)。 17 第16页/共26页
IC使用注意事项—水质
离子色谱以水性介质为主。因此水的好坏对结果至关重要。 水质不好则结果肯定不好,如:曲线线性不好,谱图中待测离子出现负
峰等。 水质不好还可能对仪器和分离柱有损坏。 IC 用水的要求:
电阻>18MΩ;无颗粒(<0.45m滤膜过滤)。
19
配置的基本要求:
化学组成明确而稳定
超纯水------〉达到18MΩ
有足够的纯度------〉优级纯
各化学成份比例准确------〉严格称量
无细小颗粒------〉0.45(或0.22)微米过滤(溶剂过滤器+真空
泵)
无气泡----〉超声/真空/惰性气体 –脱气(溶剂过滤器+真空泵)

将小镜子置于抑制器下方检查是否正常转动。

不可用手接触抑制器陶瓷片。

抑制器压力应小于0.5MPa(3根)。

MCS CO2水气及CO2吸收管内填充物以颜色变化指示寿命, 吸水硅
胶可高温140度过夜除水。

如避免H2SO4 对低浓度的SO42-测定有污染, 可选择10mM 草酸+5%

017 Metrohm 870KF Titrino plus水分滴定仪验证方案.

017 Metrohm 870KF Titrino plus水分滴定仪验证方案.

Metrohm 870 KF Titrino plus 水分滴定仪验证方案方案编号:STP-VP-017-00 方案制定方案审核方案批准验证小组人员名单目录1 水分滴定仪概述2 验证目的3 验证范围4 验证参考文件5 计划及进度6 设计确认7 安装确认8 运行确认9 性能确认10 验证周期1 水分滴定仪概述Metro 870 KF Titrino plus水分滴定仪是常茂生物化学工程股份有限公司按照卡尔-费休(Karl Fisher方法进行容量水分滴定的仪器。

2 验证目的确认Metro 870 KF Titrino plus水分滴定仪符合GMP标准及设计要求,所制定的标准文件符合GMP要求,确保水分滴定的准确性。

3 验证范围本验证方案适用于常茂生物化学工程股份有限公司的Metro 870 KF Titrino plus 水分滴定仪,该设备安装于质检科仪器室。

验证内容包括对Metro 870 KF Titrino plus水分滴定仪进行设计确认、安装确认、运行确认、性能确认。

4 验证参考文件本方案以国家药品监督管理局颁布的《药品生产质量管理规范》、由国家食品药品监督管理局组织编写的《药品生产验证指南》、中国药典2010年版为依据,制定了Metro 870 KF Titrino plus水分滴定仪的验证方案。

5 计划及进度整个验证活动分四个阶段完成:设计确认:从_____年_ _月_ _日至_____年___月___日;安装确认:从_____年___月__ 日至_____年__ 月__ 日;运行确认:从_____年___月__ 日至_____年__ 月__ 日;性能确认:从_____年___月_ _日至_____年__ 月__ 日。

6 设计确认6.1 供应商的资格和服务6.1.1 设备供应商应有良好的生产运营情况,没有与国家法规或地方法规相违背的生产状况。

6.1.2 安装时能提供现场指导或培训的技术人员数量、资格,并且将来在日常使用中能提供维修。

瑞士万通 870 KF Titrino plus

瑞士万通 870 KF Titrino plus

配置外部设备(Devices)
菜单(Menu) ▶ 系统(System) ▶ 设备(Devices)
PC/LIMS Printer Graphics width Keyboard layout Balance
COM2 | U 盘 Baudrate 波特率 Data bits 字长 打印机 Stop bits 结束位 图形宽度 Handshake 握手 键盘布局 Parity 奇偶校验位 天平
详细 控制参数(Control parameters)
菜单(Menu) ▶ 参数(Parameters) ▶ 控制参数(Control parameters)
停止标准 Stop criterion
Drift / µl/min
12 µl/min停止 6 µl/min停止 基线漂移 例如: 6 µl/min
详细 预滴定(Conditioning)
菜单(Menu) ▶ 参数(Parameters) ▶ 预滴定(Conditioning)
预滴定停止体积 Cond. Stop volume
在预滴定过程中最大允许配液的体积。若配液 的体积已达到该值,则停止预滴定。若通过重新按 下[开始](Start)的方式继续预滴定,则已经加入 的滴定液体积将被忽略不计,且配液重新由零开始。 应该根据滴定杯的大小调整停止体积,以防止溢出。
终点指示
标准品
Sigma 34828 HYDRANAL® - Water Standard 1.00 (0.1 H2O %)
ampoules, CofA in each box
34847 HYDRANAL® - Water Standard 0.10 (0.01 H2O %) ampoules, CofA in each box 34748 HYDRANAL® - Water Standard KF-Oven CofA in each box

瑞士万通离子色谱仪800 Dosino进样器说明书--中文

瑞士万通离子色谱仪800 Dosino进样器说明书--中文

800 Dosino –开始参数标签: 方法▶设备▶ Dosino溶液Select the solution for the Dosino that should be available when the hardware is started with [Start HW]. A check is carried out in the method run to ensure that the correct solution has been put on the dosing device. When the method is started, the working life and GLP test interval are checked for the selected solution.选择未定义 | Solutions from the solution table默认值未定义未定义The solution is not checked.Solutions from the solution tableOnly "intelligent" solutions, i.e. solutions that are assigned to an 807 Dosing unit, can be selected.ConnectorShows the main device and the MSB connector which the 800 Dosino is on.800 Dosino –命令Overview of the time program commands available for the 800 Dosino: 加液对话窗口:方法▶时间程序▶编辑▶‘设备’–加液The device-dependent time program command Dosing (command with feedback) doses the specified volume via the defined port. There is no automatic filling beforehand or afterwards.参数PortPort via which dosing takes place. Formula input possible.1 (4)范围默认值 1V olumeVolume to be transported. Formula input possible.范围0.0000 ... 99999.9000 mL默认值 1.0000 mLDosing rateSpeed at which discharge takes place. The 最大值 rate depends on the cylinder volume of the buret used. Formula input possible.Cylinder volume 2 mL范围0.01 ... 6.00 mL/min默认值 1.00 mL/min选择最大值Filling rateSpeed at which filling takes place. The 最大值 rate depends on the cylinder volume of the buret used. Formula input possible.Cylinder volume 2 mL范围0.01 ... 6.00 mL/min默认值 1.00 mL/min选择最大值命令时间程序命令的可选注释。

CDC卫生标准管理办法及参考仪器配置

CDC卫生标准管理办法及参考仪器配置

国家职业卫生标准管理办法中华人民共和国卫生部令第20号《国家职业卫生标准管理办法》已于2002年3月15日经卫生部部务会讨论通过,现予发布,自2002年5月1日起施行。

部长张文康二○○二年三月二十八日国家职业卫生标准管理办法第一条为加强国家职业卫生标准的管理,根据《中华人民共和国职业病防治法》(以下简称《职业病防治法》),制定本办法。

第二条对下列需要在全国范围内统一的技术要求,须制定国家职业卫生标准:(一)职业卫生专业基础标准;(二)工作场所作业条件卫生标准;(三)工业毒物、生产性粉尘、物理因素职业接触限值;(四)职业病诊断标准;(五)职业照射放射防护标准;(六)职业防护用品卫生标准;(七)职业危害防护导则;(八)劳动生理卫生、工效学标准;(九)职业性危害因素检测、检验方法。

第三条本办法适用于国家职业卫生标准的立项、起草、审查、公布、复审和解释。

第四条卫生部主管国家职业卫生标准工作;卫生部委托办事机构,承担国家职业卫生标准的日常管理工作;由卫生部聘请有关技术专家组成全国卫生标准技术委员会,负责国家职业卫生标准的技术审查工作。

第五条国家职业卫生标准制定的原则:(一)符合国家有关法律、法规和方针、政策,满足职业卫生管理工作的需要;(二)体现科学性和先进性,注重可操作性;(三)在充分考虑我国国情的基础上,积极采用国际通用标准;(四)逐步实现体系化,保持标准的完整性和有机联系.第六条国家职业卫生标准分为强制性标准和推荐性标准.强制性标准分为全文强制和条文强制两种形式。

强制性标准包括:(一)工作场所作业条件的卫生标准;(二)工业毒物、生产性粉尘、物理因素职业接触限值;(三)职业病诊断标准;(四)职业照射放射防护标准;(五)职业防护用品卫生标准。

其他标准为推荐性标准。

第七条任何单位和个人可向卫生部标准办事机构提出制定国家职业卫生标准立项的建议。

建议内容包括:标准名称、制定标准的目的、主要技术内容和国内外主要情况说明等。

碱激发偏高岭土-矿渣砂浆的碱骨料反应机理研究 

碱激发偏高岭土-矿渣砂浆的碱骨料反应机理研究 

第42卷第8期2023年8月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.8August,2023碱激发偏高岭土-矿渣砂浆的碱骨料反应机理研究罗㊀哲1,黄敦文1,2,彭㊀晖1(1.长沙理工大学土木工程学院,长沙㊀410114;2.南方地区桥梁长期性能提升技术国家地方联合工程实验室,长沙㊀410114)摘要:碱激发胶凝材料是一种新型低碳材料,其液相环境的碱度普遍高于水泥基材料,势必导致碱骨料反应引起的体积变形不同于水泥基材料㊂为探究碱激发胶凝材料的碱骨料反应行为与液相碱度的关系,选取花岗岩为代表性骨料制备碱激发偏高岭土-矿渣砂浆,研究在不同浓度NaOH 溶液浸泡下的砂浆变形行为㊂结合微观分析表明,碱激发胶凝材料的体积收缩能很好地抑制碱骨料反应产生的膨胀,不同浸泡条件下碱激发偏高岭土-矿渣砂浆会呈现不同的变形行为㊂碱激发偏高岭土-矿渣砂浆的膨胀是由碱骨料反应生成产物以及原类沸石结构的水化硅铝酸钠凝胶向沸石结构转化所造成的㊂当碱激发胶凝材料的孔溶液氢氧根离子浓度大于0.209mol /L 时,碱骨料反应会发生㊂关键词:碱激发胶凝材料;碱骨料反应;偏高岭土;矿渣;变形行为;液相碱度;微观结构中图分类号:TQ177㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)08-2830-07Alkali-Aggregate Reaction Mechanism of Alkali-Activated Metakaolin-Slag MortarLUO Zhe 1,HUANG Dunwen 1,2,PENG Hui 1(1.School of Civil Engineering,Changsha University of Science and Technology,Changsha 410114,China;2.National-Local Joint Engineering Laboratory of Technology for Long-Term Performance Enhancement of Bridges in Southern District,Changsha 410114,China)Abstract :Alkali-activated cementitious material is a new type of low-carbon material.The pore solution of alkali-activated cementitious materials generally has more alkalinity than cement-based materials,inevitably leading to the different volume deformation caused by alkali-aggregate reaction.Granite was selected as a representative aggregate to prepare alkali-activated metakaolin-slag mortar for exploring the relationship between the alkalinity of pore solution and alkali-aggregate reaction.The deformation behaviors of mortar immersed in the NaOH solution with different concentrations were studied.According to the microstructure analysis,it is shown that the volume shrinkage of alkali-activated cementitious materials can effectively suppress the expansion caused by alkali-aggregate reaction.Under different soaking conditions,the alkali-activated metakaolin-slag mortar exhibits different deformation behaviors.The expansion behavior of alkali-activated metakaolin-slag mortar is caused by the alkali-aggregate reaction products and the transformation from a zeolite-like structure sodium silicaluminate hydrate gel to a zeolite structure gel.Alkali-aggregate reaction would occur when the hydroxyl ion concentration in the pore solution of alkali-activated cementitious materials is greater than 0.209mol /L.Key words :alkali-activated cementitious material;alkali-aggregate reaction;metakaolin;slag;deformation behavior;alkalinity in pore solution;microstructure 收稿日期:2023-04-08;修订日期:2023-06-01基金项目:国家自然科学基金(51878068,52008036);湖南省自然科学基金(2021JJ40581);湖南省教育厅优秀青年项目(22B0344);交通基础设施安全风险管理交通运输行业重点实验室(长沙)开放基金(22KF02)作者简介:罗㊀哲(1998 ),男,硕士研究生㊂主要从事碱激发胶凝材料耐久性能的研究㊂E-mail:2593853824@通信作者:黄敦文,博士,讲师㊂E-mail:dw.huang@彭㊀晖,博士,教授㊂E-mail:huipeng@0㊀引㊀言碱激发胶凝材料因能以矿渣㊁粉煤灰㊁煤矸石等富含硅㊁铝元素的工业副产品为原料[1],而可实现固废㊀第8期罗㊀哲等:碱激发偏高岭土-矿渣砂浆的碱骨料反应机理研究2831资源化利用,具有低碳环保的特点[2-3]㊂碱骨料反应是硅酸盐水泥混凝土的主要耐久性问题之一㊂Rivard 等[4]发现水泥混凝土发生碱骨料反应的孔溶液氢氧根离子浓度通常大于0.205~0.335mol/L㊂一般情况下,水泥基材料液相pH值范围通常在11~13,而碱激发胶凝材料由于需使用水玻璃㊁氢氧化钠等强碱激发剂促使原料溶解并发生聚合反应,其液相pH值高达13~14[5]㊂碱激发胶凝材料较高碱度的液相环境或可诱发不同于水泥基材料的碱骨料反应㊂至今尚未明确碱激发胶凝材料中碱骨料反应发生的碱度条件以及不同碱度对碱激发胶凝材料体积变形所造成的影响㊂有研究[6-8]指出碱激发胶凝材料聚合反应过程发生的体积收缩可大幅掩盖碱骨料反应造成的膨胀㊂然而该类研究均忽略了碱骨料反应加速试验中早期高温水浴养护条件与试验浸泡溶液的碱性对骨料反应及产物生成的影响㊂Shi等[9]的研究显示,随着液相碱度的提高,碱激发矿渣砂浆发生的膨胀会增大㊂刘永道等[10]发现高温碱环境会使碱激发粉煤灰-偏高岭土的水化硅铝酸钠(N-A-S-H)凝胶转变为沸石结构,会造成体积增长㊂碱激发偏高岭土-矿渣胶凝材料是原料性能较为稳定的碱激发胶凝材料㊂本文以碱激发偏高岭土-矿渣胶凝材料为代表,利用三种不同碱性浸泡液调整碱激发偏高岭土-矿渣砂浆的液相碱度,观测碱激发偏高岭土-矿渣砂浆浸泡前后的微观形貌与体积变形,同时测试材料孔溶液的碱度,分析碱骨料反应发生的碱度范围,为碱激发胶凝材料碱骨料反应的碱度判定及其膨胀行为分析提供试验支持㊂1㊀实㊀验1.1㊀原料及试件设计原料选用偏高岭土(metakaolin,MK)㊁粒化高炉矿渣(ground granulated blast furnace slag,GGBFS)和标号425的普通硅酸盐水泥(ordinary Portland cement,OPC)㊂偏高岭土为内蒙古KAOPOZZ系列高活性偏高岭土,由高岭土在700ħ煅烧24h得到㊂矿渣为华新湘钢水泥公司的粒化高炉矿渣,属于高活性酸性矿渣㊂骨料采用花岗岩,其级配如表1所示㊂胶凝材料和骨料的化学成分如表2所示㊂偏高岭土和矿渣的粒径分布与XRD谱见图1,其中偏高岭土和矿渣的中值粒径分别为2㊁20μm㊂表1㊀骨料级配尺寸Table1㊀Grading size of aggregateSize/mm0.15~<0.300.30~<0.600.60~<1.20 1.20~<2.50 2.50~<5.00 Content/%1525252510表2㊀胶凝材料和骨料的化学成分Table2㊀Chemical composition of cementing materials and aggregateMaterial Mass fraction/%SiO2Al2O3CaO Fe2O3K2O MgO Other OPC19.12 5.1557.06 4.230.68 1.5212.24 MK50.2846.230.150.450.05 2.84 GGBFS30.3515.0737.080.310.43 6.2810.48 Aggregate57.3813.63 1.85 4.690.8421.61采用工业水玻璃㊁固体氢氧化钠和去离子水制备模数1.2㊁浓度35%(激发剂SiO2和Na2O的质量占溶液总质量的比值)的激发剂[11]㊂所用水玻璃的模数为3.28,SiO2和Na2O的质量分数分别为26.54%和8.35%㊂配制的碱激发剂使用磁子搅拌器搅拌8h,然后按表3配比混合原料㊁制作试件㊂将试件标准养护24h后脱模,并放入80ħ养护箱中控制湿度55%养护24h,并设计80ħ持续水浴养护空白组,以探讨水浴养护对加速试验变形行为的影响㊂2832㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图1㊀偏高岭土和矿渣的粒径分布与XRD谱Fig.1㊀Particle size distribution and XRD patterns of MK and GGBFS表3㊀材料的配比设计Table3㊀Mix proportion design of materialMaterial Mass/gCement MK GGBFS NaOH Na2SiO3Water Aggregate Cement paste400.000000200.000Cement mortar400.000000200.00900.00 Alkali-activated mortar0280.00120.0061.33345.2873.39900.001.2㊀测试方法1.2.1㊀碱激发胶凝材料中的骨料碱活性测试参考规范ASTM C1260的测试方法[12],制备尺寸为25mmˑ25mmˑ280mm的试件放于80ħ㊁1.0mol/L 的NaOH溶液中浸泡14d㊂采用BC156-300型比长仪,测定1㊁3㊁5㊁7㊁10㊁14d对应的试件长度变形㊂为消除测量误差,采用每组试件三个测量值的平均值作为最终测定值,且每个测量值之间误差不能超过0.05%㊂同时设计同等强度的水泥净浆㊁砂浆的浸泡试验作为对照组㊂1.2.2㊀不同浓度NaOH溶液浸泡下的变形测试将所有试件放入0.1㊁1.0㊁3.0mol/L的NaOH溶液养护盒中浸泡,并置入80ħ环境箱静置14d㊂采用前述变形测试方法获取三组试件的长度变化㊂此外,设置一组80ħ水养条件的同配比试件作为对照组,排除在测量数据时温度等其他因素的干扰,并分析80ħ水养条件对碱激发胶凝材料化学反应及变形行为的影响㊂1.2.3㊀碱度测试利用固液萃取法[13]测试对应试件的碱度㊂将浸泡1㊁7㊁14d龄期的试件粉碎取样,过筛提取粒径在0.074mm以下的样品25g,并取25mL去离子水,将两者在密封塑料瓶内混合㊂之后将样品置于(20ʃ2)ħ的恒温环境下避光静置3d,并将静置后的混合溶液过滤2次,取上层滤液5mL为碱度待测液㊂通过瑞士万通Metrohm818Titrino plus自动电位滴定仪测试萃取待测液的OH-浓度㊂1.2.4㊀X射线衍射与扫描电子显微镜测试试验14d后,切取边缘非核心部分0~5mm试件10g,过0.074mm孔筛提取粉末样品,放置于存有干燥剂的干燥箱中进行干燥处理,处理后密封保存作为XRD测试样品㊂采用的仪器为CD/max2200vpc X射线衍射仪,测试范围为2θ=5ʎ~90ʎ,测试时间为10min㊂同时,取砂浆棒中间段切片作为扫描电子显微镜观察样品,切片大小为10mmˑ10mmˑ10mm㊂将待测样品用乙醇浸泡3d,之后置于干燥箱中干燥,干燥后将样品喷金处理用于扫描电子显微镜观察㊂采用的仪器为EVOMA25蔡司场发射扫描电子显微镜,加速电压为10.00kV,扫描步长为20μm㊂2㊀变形测试结果分析2.1㊀骨料在水泥与碱激发胶凝材料中的碱活性对比图2是水泥与碱激发胶凝材料试件在80ħ㊁1.0mol/L的NaOH溶液中浸泡14d的长度变化㊂第8期罗㊀哲等:碱激发偏高岭土-矿渣砂浆的碱骨料反应机理研究2833㊀图2㊀水泥与碱激发胶凝材料试件在80ħ㊁1.0mol /L 的NaOH 溶液中浸泡14d 的长度变化Fig.2㊀Length change of cement and alkali-activatedcementitious material specimens soaked in 1.0mol /L NaOH solution at 80ħfor 14d 从图2可以看出,在80ħ㊁1.0mol /L 的NaOH 溶液连续浸泡条件下,水泥净浆在早期出现了短暂膨胀,这源于水泥水化反应生成的钙矾石㊁氢氧化钙等膨胀性物质[14]㊂也有研究[15]指出水泥水化生成的水化硅酸钙(C-S-H)凝胶在强碱环境作用下被Na +入侵发生凝胶固溶,可形成能吸水膨胀的碱硅凝胶并造成体积变大㊂以上因素导致溶液中水泥试件早期的膨胀变形量远大于早期自收缩,而呈现膨胀的现象㊂水泥砂浆试件在第14天的膨胀率为0.117%,膨胀率处于0.1%~0.2%㊂基于碱骨料的判断标准[12],水泥体系的花岗岩属于具有潜在危害性的骨料㊂而碱激发砂浆在整个测试期内呈现体积收缩的状态,且在第5天达到最大值-0.017%,之后基本保持稳定㊂碱激发砂浆表现出与水泥砂浆不同的变形行为,可能是因为碱激发胶凝材料聚合反应不生成膨胀性的产物,又或者产生过大的收缩掩盖了膨胀量㊂Li 等[13]㊁Ye 等[14]㊁Huang 等[16]都发现碱激发胶凝材料自干燥引起的较大毛细孔应力会引发凝胶结构持续性的重组和重排,促使自收缩在聚合反应结束后依然发生㊂为了验证骨料发生碱骨料反应存在适宜的碱度范围,接下来开展不同碱性溶液中的变形测试与微观分析㊂2.2㊀碱激发砂浆在不同碱性溶液中的变形行为图3为碱激发砂浆在不同碱性溶液中的变形发展㊂其中,高温水浴组在第1天收缩迅速,这可能是高温条件下促使未反应的原料进一步反应,从而引发自收缩㊂此后收缩放缓,可能源于自干燥引发的毛细孔应力较大,从而导致凝胶结构持续性的重组和重排[16]㊂图3中三种碱性溶液浸泡条件下砂浆试件变形行为呈现不同的规律㊂浸泡条件为80ħ㊁0.1mol /L NaOH 时,砂浆收缩在前期较快,而后在第3天出现短暂膨胀,之后又继续收缩㊂80ħ㊁1.0mol /L NaOH 条件下浸泡的砂浆试件在早期快速收缩之后,形变保持一个较稳定的状态㊂而浸泡环境为80ħ㊁3.0mol /L 的NaOH 溶液时,试件变形出现先收缩后膨胀的规律㊂NaOH 溶液从1.0mol /L 至3.0mol /L 时,砂浆试件14d 的最终变形变小,在3.0mol /L 的NaOH 溶液中高温浸泡的试件从第2天的最大收缩值0.026%到第14天收缩值为0.003%,其间试件产生了0.023%的膨胀变形,这是凝胶类沸石结构向沸石相转变以及花岗岩骨料发生碱骨料反应所造成的变形结果[17]㊂从总的变形结果来看,所有碱激发胶凝材料砂浆试件完整(如图4所示),均未发生膨胀开裂㊂图3㊀碱激发砂浆在不同碱性溶液中浸泡14d 的变形Fig.3㊀Deformation of alkali-activated mortar soaked in different alkaline solutions for 14d 图4㊀试验后的砂浆试件Fig.4㊀Mortar specimens after experiment2834㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷3㊀微观形貌分析3.1㊀不同碱性溶液浸泡条件下碱激发砂浆的微观形貌为理解各浸泡条件下试件的变形行为,开展了对应的微观形貌测试㊂图5为浸泡14d 的碱激发砂浆试件的SEM 照片㊂图5㊀不同浸泡条件下碱激发砂浆试件的SEM 照片Fig.5㊀SEM images of alkali-activated mortar specimens soaked in different conditions 在图5(a)中观察到表面完整的花岗岩骨料以及反应较致密的浆体,骨料与浆体接触面并没有被腐蚀的迹象㊂而在图5(b)中可以观察到花岗岩骨料的表面出现了被侵蚀的痕迹㊂图5(c)中的骨料由于浸泡环境碱度的提高而被严重腐蚀,已没有明显的骨浆界线,初步判断产生了类似水泥混凝土中碱骨料反应的界面过渡区(ITZ)形貌㊂从骨料在三种碱性溶液浸泡测试下的表现可以判断出,在1.0与3.0mol /L NaOH 溶液中浸泡的碱激发胶凝材料砂浆中,花岗岩骨料发生了不同程度的碱骨料反应㊂3.2㊀物相辨析使用SEM 观察到80ħ㊁0.1mol /L NaOH 溶液浸泡样品呈一束长条针状产物形貌,如图6所示㊂图7为各浸泡条件下试件的XRD 分析结果㊂图6㊀长条针状形貌样品的SEM 照片Fig.6㊀SEM image of sample with elongated needle-shapedshape 图7㊀碱激发胶凝材料与骨料的XRD 谱Fig.7㊀XRD patterns of alkali-activated cementitious materials and aggregate ㊀㊀结合产物分析与图6形貌,可初步判定长条针状形貌属于沸石类产物,类似的形貌特征在Shi 等[18]的研究中也有出现㊂图7中三种碱性溶液浸泡下样品的XRD 谱在2θ=20ʎ~30ʎ处都有一群无法分析的弥散衍射峰,这是胶凝材料水化反应生成的无定形凝胶产物,曲线中也出现了产物为石英(SiO 2)㊁钠长石(NaAlSi 3O 8)以及Na 6Al 6Si 10O 32的晶体衍射峰,石英与钠长石是花岗岩骨料本身包含的物质㊂图7显示0.1与3.0mol /L NaOH 溶液浸泡条件下的XRD 分析结果中多出了一个沸石(zeolite)衍射峰,可能是在高温条件下无定形凝胶产物转变成了沸石结构[19],而凝胶的类沸石结构转变成沸石结构可能会造成膨胀㊂结合图3的试件变形分析,沸石相的出现印证了0.1mol /L NaOH 条件下的试件在反应中期出现轻微膨胀,但是沸第8期罗㊀哲等:碱激发偏高岭土-矿渣砂浆的碱骨料反应机理研究2835㊀石相产生膨胀较小且不具备可持续性㊂而图3中3.0mol /L NaOH 条件下对应曲线的膨胀变形明显比1.0mol /L NaOH 条件下更大,说明3.0mol /L NaOH 溶液浸泡的试件膨胀变形不仅是由沸石产物造成的㊂结合图3㊁图5与图7的分析,可知0.1mol /L 碱溶液养护条件下的砂浆试件中骨料状态完好,不会发生碱骨料反应,但是碱激发反应生成的无定形凝胶产物会部分转变成沸石结构,导致试件产生微小不可持续的膨胀㊂1.0mol /L 碱溶液养护条件下的砂浆试件骨料表面形貌出现轻微侵蚀情况,产物分析中沸石产物消失,而3.0mol /L 碱溶液养护条件下的砂浆试件骨料发生严重碱骨料反应,骨料表面出现被腐蚀区以及与浆体产生界面过渡区,在浆体材料早期收缩变形很大的情况下最终膨胀幅度为0.023%㊂3.0mol /L 碱溶液浸泡条件下试件的XRD 产物分析中同样出现沸石,但沸石产物不会造成可持续的较大膨胀,结合图3的变形测试结果分析可以得出,3.0mol /L 碱溶液浸泡下的砂浆试件出现的膨胀是碱骨料反应与沸石产物形成的综合结果㊂4㊀碱激发胶凝材料发生碱骨料反应的碱度范围图8㊀不同碱性溶液浸泡下的砂浆孔溶液碱度Fig.8㊀Alkalinity in pore solution of mortar soaked indifferent alkaline solutions 在第1㊁7㊁14天萃取的碱激发砂浆试件的孔溶液的OH -浓度如图8所示㊂从图8可以看出,对于三种不同碱性溶液浸泡条件的砂浆棒,随着外部溶液碱度从0.1mol /L 提高到1.0mol /L,砂浆孔溶液碱度均得到不同程度的提高,且碱度在浸泡7与14d 接近一个稳定值㊂其中在80ħ㊁3.0mol /L NaOH 溶液浸泡下的砂浆试件OH -浓度最大,第14天为0.393mol /L㊂而在1.0和0.1mol /L NaOH 溶液浸泡下的OH -浓度分别为0.209㊁0.123mol /L㊂结合前面结论,可认为在碱激发胶凝材料中孔溶液OH -浓度大于0.209mol /L 时,骨料会发生碱骨料反应㊂5㊀结㊀论1)碱激发砂浆在碱活性标准试验中的变形以收缩为主,但不同碱性环境下变形行为不同㊂砂浆孔溶液中的碱物质能被外部浸泡溶液补充,并重新参与到试件内部的碱骨料反应中,因此浸泡溶液碱度越高,骨料发生的碱骨料反应越严重,试件的整体收缩率越小㊂2)高温碱环境对碱激发砂浆的体积膨胀有明显促进作用,偏高岭土材料反应产生的N-A-S-H 凝胶类沸石结构会往沸石结构转化,同时花岗岩骨料表面会产生较多的碱骨料反应产物,并逐步形成浆-骨过渡区形貌㊂3)碱激发偏高岭土-矿渣胶凝材料中孔溶液的氢氧根离子浓度大于0.209mol /L 时,碱骨料反应会发生㊂参考文献[1]㊀PROVIS J L,BERNAL S A.Geopolymers and related alkali-activated materials[J].Annual Review of Materials Research,2014,44:299-327.[2]㊀WINNEFELD F,LOTHENBACH B.Hydration of calcium sulfoaluminate cements:experimental findings and thermodynamic modelling [J].Cement and Concrete Research,2010,40(8):1239-1247.[3]㊀PELLETIER L,WINNEFELD F,LOTHENBACH B.The ternary system Portland cement-calcium sulphoaluminate clinker-anhydrite:hydrationmechanism and mortar properties[J].Cement and Concrete Composites,2010,32(7):497-507.[4]㊀RIVARD P,BÉRUBÉM A,OLLIVIER J P,et al.Decrease of pore solution alkalinity in concrete tested for alkali-silica reaction[J].Materialsand Structures,2007,40(9):909-921.[5]㊀JOHN L P,JANNIE S J V D.Alkali activated materials[M].Springer,Dordrecht,2013:59.[6]㊀SHI C J,SHI Z G,HU X,et al.A review on alkali-aggregate reactions in alkali-activated mortars /concretes made with alkali-reactive aggregates[J].2836㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷Materials and Structures,2015,48(3):621-628.[7]㊀XIE Z,XIANG W,XI Y.ASR potentials of glass aggregates in water-glass activated fly ash and Portland cement mortars[J].Journal of Materialsin Civil Engineering,2003,15(1):67-74.[8]㊀杨长辉,蒲心诚,吴㊀芳.碱性水泥系统的长期碱集料反应研究[J].混凝土与水泥制品,1999(3):3-7.YANG C H,PU X C,WU F.Study on the long-term AAR of alkaline cement system[J].Chinal Concrete and Cement Products,1999(3):3-7(in Chinese).[9]㊀SHI Z G,SHI C J,ZHAO R,et parison of alkali-silica reactions in alkali-activated slag and Portland cement mortars[J].Materials andStructures,2015,48(3):743-751.[10]㊀刘永道,卢都友,郑彦增,等.不同养护条件下含石英玻璃地质聚合物砂浆的变形行为[J].硅酸盐学报,2012,40(5):696-702.LIU Y D,LU D Y,ZHENG Y Z,et al.Deformation behaviour of geopolymer mortars with silica glass under different curing conditions[J].Journal of the Chinese Ceramic Society,2012,40(5):696-702(in Chinese).[11]㊀杨振天.地质聚合物与碱活性骨料界面反应机理研究[D].长沙:长沙理工大学,2019:20-22.YANG Z T.The research on reaction mechani of geopolymer and alkali activity of aggregate in the interface transition zone[D].Changsha: Changsha University of Science&Technology,2019:20-22(in Chinese).[12]㊀刘㊀珩,卢都友,许仲梓.集料碱活性检测方法评述[J].混凝土与水泥制品,2003(4):1-6.LIU H,LU D Y,XU Z Z.Development of research on testing method for identifying the AAR reactivity of aggregate[J].China Concrete and Cement Products,2003(4):1-6(in Chinese).[13]㊀LI L F,NAM J,HARTT W H.Ex situ leaching measurement of concrete alkalinity[J].Cement and Concrete Research,2005,35(2):277-283.[14]㊀YE H L,RADLIN'SKA A.Quantitative analysis of phase assemblage and chemical shrinkage of alkali-activated slag[J].Journal of AdvancedConcrete Technology,2016,14(5):245-260.[15]㊀余红发,孙㊀伟,王甲春,等.盐湖地区侵蚀性离子在混凝土中的扩散及其相互作用[J].东南大学学报(自然科学版),2003,33(2):156-159.YU H F,SUN W,WANG J C,et al.Diffusion of corrosive ions into concrete exposed to salt lake and interaction between corrosive-ions and concrete[J].Journal of Southeast University(Natural Science Edition),2003,33(2):156-159(in Chinese).[16]㊀HUANG D W,CHEN P,PENG H,et al.Drying shrinkage performance of medium-Ca alkali-activated fly ash and slag pastes[J].Cement andConcrete Composites,2022,130:104536.[17]㊀FERNANDEZ-JIMENEZ A,GARCÍA-LODEIRO I,PALOMO A.Durability of alkali-activated fly ash cementitious materials[J].Journal ofMaterials Science,2007,42(9):3055-3065.[18]㊀SHI Z G,SHI C J,ZHANG J,et al.Alkali-silica reaction in waterglass-activated slag mortars incorporating fly ash and metakaolin[J].Cementand Concrete Research,2018,108:10-19.[19]㊀刘永道,卢都友,郑彦增.养护条件对粉煤灰基地质聚合物变形行为的影响[J].硅酸盐通报,2011,30(6):1227-1232.LIU Y D,LU D Y,ZHENG Y Z.Effect of curing conditions on the deformation behaviour of fly ash-based geopolymer[J].Bulletin of the Chinese Ceramic Society,2011,30(6):1227-1232(in Chinese).。

桑沟湾表层水春夏两季二氧化碳分压变化和影响因素

桑沟湾表层水春夏两季二氧化碳分压变化和影响因素

桑沟湾表层水春夏两季二氧化碳分压变化和影响因素刘毅;蔺凡;吴文广;武宁宁;张义涛;王巍;李敏;张继红【摘要】为研究季节变化和养殖活动对桑沟湾表层海水二氧化碳分压(pCO2)的影响,尤其是海带(Saccharina japon-ica)养殖活动对表层水pCO2的影响,本研究分别在海带收获前(2015年5月)、后(2015年8月)采用走航式二氧化碳分压仪对中国北方典型的贝藻筏式养殖海域——桑沟湾养殖区表层水pCO2及有关环境参数进行了大面调查,探讨了季节、养殖模式以及海带收获前、后表层水pCO2的变化规律及影响因素.调查结果显示:(1)春夏两季桑沟湾湾内表层海水中pCO2的平均值分别为(346.78±13.85) μatm(1 atm=101325 Pa,1μatm=10-6 atm)和(351.50±8.00) μat m;湾外自然海域pCO2值分别为(353.42±0.71)μatm和(358.05±2.01)μatm,均小于大气中pCO2.(2)pCO2的平面分布特性为:由湾底向湾外递减并在外海空白区升高,两个季节最低值都出现在海带养殖区,最高值都出现在贝类养殖区.(3)春季表层海水pCO2与水温相关性不显著(P<0.05),而与叶绿素a(Chl a)、溶解氧(DO)显著相关(P<0.05),反映了生命活动对pCO2影响较大;夏季,养殖海带已收获,表层海水pCO2与水温、溶解无机碳(DIC)、Chl a、DO显著相关(P<0.05).(4)桑沟湾养殖区以及外海自然海域表层水pCO2都低于大气中pCO2,表现为二氧化碳(CO2)的汇区.藻类养殖区表层水pCO2远低于自然海域,表现为CO2的强汇区;贝类养殖区表层水pCO2略高于自然海域,表现为CO2的弱汇区,贝藻混养区则介于二者之间.春季海带的光合作用是影响表层水pCO2的主要因素之一,养殖活动对海区表层水pCO2的影响使得桑沟湾pCO2表现出不同于自然海域的特性.夏季养殖活动减少导致物理因素的影响开始显现.%This study aimed to assess the effect of aquaculture activity,especially the cultivation of large algae such as kelp,on the seasonal variation ofpCO2 in surfaceseawater.The pCO2 and related parameters of the surface water were measured by the OceanPackTM (SubCTech,Kiel,Germany) before and after kelp harvesting (May and August,2015) in a typical polyculture area in Sanggou Bay,China.The variations ofpCO2 and its corresponding impact factors are discussed for different seasons and culture modes,and before and after kelp harvesting.The results showed that:(1) the mean values ofpCO2 in the surface seawater during the spring and summer seasons were (346.7±13.85) μatm(1 atm=101325 Pa) and (351.50±8.00) μatm in the inner bay,and those of the outer waters were (353.42±0.71) μatm and (358.05±2.01)μatm,respectively.All these values were lower than atmospheric pCO2.(2) The horizontal distribution ofpCO2 decreased from the coast of the bay to the outside waters and rose at the reference outer region.The lowest pCO2 values in both seasons appeared in the algal culture area and the highest values appeared in the shellfish culture area.(3) No significant correlation was found between pCO2 and water temperature in the spring;however,pCO2 was significantly correlated with chlorophyll a and dissolved oxygen,indicating that organic activity had a great impact on pCO2.In summer,after kelp harvesting,pCO2 and water temperature,dissolved inorganic carbon,chlorophyll a,and dissolved oxygen were significantly correlated.(4) The pCO2 values of Sanggou Bay and the adjacent outer surface waters were lower than the atmospheric pCO2,showing that the bay acted as a sink for CO2.The algal culture area was a strong carbon sink zone,because its pCO2 value was much lower than that of the natural sea area.The shellfish culture area was a weakcarbon sink zone,because its pCO2 value was slightly higher than that of the natural sea area.The pCO2 values in the algae-shellfish polyculture area were intermediate between the two monoculture areas.The photosynthetic activity of kelp in spring was a major factor affecting the surface water pCO2.The aquaculture activity in Sanggou Bay resulted in altered pCO2 values compared with those of the natural sea area.The effects of physical factors on surface waterpCO2 became apparent in summer owing to a lack of aquaculture in that season.【期刊名称】《中国水产科学》【年(卷),期】2017(024)005【总页数】8页(P1107-1114)【关键词】桑沟湾;二氧化碳分压;海水养殖;春夏季【作者】刘毅;蔺凡;吴文广;武宁宁;张义涛;王巍;李敏;张继红【作者单位】中国水产科学研究院黄海水产研究所,农业部海洋渔业资源可持续发展重点实验室,山东青岛266071;青岛海洋科学与技术国家实验室,海洋渔业科学与食物产出过程功能实验室,山东青岛266071;中国水产科学研究院黄海水产研究所,农业部海洋渔业资源可持续发展重点实验室,山东青岛266071;中国水产科学研究院黄海水产研究所,农业部海洋渔业资源可持续发展重点实验室,山东青岛266071;青岛市渔业技术推广站,山东青岛266071;荣成东楮岛海洋科技有限公司,山东威海264200;中国水产科学研究院黄海水产研究所,农业部海洋渔业资源可持续发展重点实验室,山东青岛266071;中国水产科学研究院黄海水产研究所,农业部海洋渔业资源可持续发展重点实验室,山东青岛266071;上海海洋大学水产与生命学院,上海201306;中国水产科学研究院黄海水产研究所,农业部海洋渔业资源可持续发展重点实验室,山东青岛266071;青岛海洋科学与技术国家实验室,海洋渔业科学与食物产出过程功能实验室,山东青岛266071【正文语种】中文【中图分类】S913近年来, 全球变暖已成为人类最为关注的环境问题, 全球变暖所带来的冰川融化、海平面上升、气候反常等现象是国际社会以及人类生存所面临的最为严峻的挑战之一[1]。

不同包装方法对蓝莓采后贮藏品质和抗氧化活性的影响_陈杭君

不同包装方法对蓝莓采后贮藏品质和抗氧化活性的影响_陈杭君

6期
陈杭君等:不同包装方法对蓝莓采后贮藏品质和抗氧化活性的影响
1231
对蓝莓保健功能的逐步认识,该产业在国内得到快 速发展。由于蓝莓果实成熟于高温多雨季节,采后 不耐贮藏,极大地限制了鲜果产业的发展。因此, 生产上迫切需要适宜的贮藏保鲜理论和技术。【前 人研究进展】目前蓝莓的保鲜技术研究主要包括低 温[2]、气调[3-6]、高压静电场[7]、生物可降解包装材 料[8]、辐照[9]、可食性涂膜[10]和外源物质异硫氰酸 烯丙酯[11]、1-MCP[12]熏蒸处理等。不同的贮藏方法 均可在一定程度上延长蓝莓鲜果的货架寿命,但在 冷藏基础上发展起来的气调、静电场、辐照等贮藏 方法因建设投资大、运行能耗高,限制了其在生产 上的广泛应用。采用薄膜小包装进行保鲜贮藏是目 前生产上较为经济实用的方法。於虹等[6]研究了聚 氯乙烯袋(PVC)、聚乙烯袋(PE)和纸袋包装对 蓝莓保鲜效果的影响,结果表明聚乙烯袋是低温贮 藏蓝莓相对较为合适的包装材料。【本研究切入点】 已有研究表明,PE 包装能够延长蓝莓保鲜期。果蔬 贮藏时,打孔包装也能有效减少黄瓜[13]、芒果[14]等 水分的散失,并维持其贮藏品质。而目前对 PE 包 装和打孔 PE 包装对蓝莓保鲜效果比较及抗氧化活 性的研究未见报导。【拟解决的关键问题】本试验 研究在低温条件下,不同包装方法对于蓝莓贮藏品 质和抗氧化性的影响,以期为蓝莓保鲜实用技术提 供理论依据和实践指导。
随机挑选 200 粒 PE 保鲜袋挽口包装,对照 组(CK)不包装,每组试验 3 次重复。于(5±0.5) ℃条件贮藏下,定期取样,测定各项指标。本试验工
作在浙江省农业科学院食品科学研究所食品物流与保
鲜公共实验室完成。
1.4 测定指标及方法 1.4.1 失重率 采用称重法[15] 测定。 1.4.2 好果率 果实好果率(%)=(总果数-病果数) /总果数×100%。病果是指果实表面至少有一处发生 汁液外漏、严重软化或腐烂现象[16]。

PiCCO plus使用说明

PiCCO plus使用说明

117 71
1 初始连续进行3次热稀释测量,对 连续心输出量进行校准
(CVP) 12 SVRI 2157 PC CI HR 78 SVI 38
2.38
8%
2 按
3 .....按
进行下一次热稀释测量 到info页面
000 0
10s 10s 10s 10s
SVV 20s PPV 12% 20s 20s T 0.24 / TI 12 (GEDI) 479
2.38
8%
0
78 38
2.38
SVV PPV 12% (GEDI) 479
SVV 12% 20s 20s PPV 20s T 0.31 / TI 12 (GEDI) 479 20s
8%
78 38
1
2
1 按键
还可以显示最近5次测量的曲线。
2 删除一个有效的热稀释测量结果,先选中要删除的测量结果,再按 功能键 两次。
注射液温度电缆 PC80109
压力线 PMK-206
温度测量电缆 PC80150 PULSION一次性压力传感器 ( e.g. PV8115) 动脉热稀释导管 (e.g. PV2015L20)
PiCCOplus 后面板
PC81200 – Adapter cable for connection of PiCCO plus to bedside vital sign monitor
PiCCO plus操作步骤
PULSION PiCCO plus
中心静脉导管
注射液温度探头容纳管 PV4046
13.03 16.28 TB37.0
AP
AP 117
140 92
(CVP) 5 SVRI PC CI HR 3.24 78 42 2762

锂离子电池PMMA_VAc聚合物电解质的制备与性质研究

锂离子电池PMMA_VAc聚合物电解质的制备与性质研究

2007年第65卷化学学报V ol. 65, 2007第6期, 475~480 ACTA CHIMICA SINICA No. 6, 475~480* E-mail: liwsh@Received September 8, 2006; revised October 26, 2006; accepted November 24, 2006.476化学学报V ol. 65, 2007Bellcore公司将高分子聚合物用于开发聚合物锂离子电池(PLIB), 提高了电池的安全性, 从而聚合物电解质成为近年来化学电源的研究热点[6~9].聚合物电解质按其形态可分为凝胶聚合物电解质(GPE)和固态聚合物电解质(SPE), 其主要区别在于前者含有液体增塑剂, 而后者没有. 尽管目前已经开发了很多聚合物电解质, 如聚醚系(主要是PEO), 聚丙烯腈(PAN)系, 聚甲基丙烯酸甲酯(PMMA)类及聚偏氟乙烯(PVDF)系等, 但是聚合物电解质仍然不太理想, 存在下列问题: (1)在室温下的电导率偏低; (2)机械强度有待提高. 因而采用共混、共聚以及添加纳米无机填料等方法合成复合聚合物电解质来提高聚合物膜的离子电导率及机械强度成了目前的研究热点[10~12]. 采用聚烯烃多孔膜支撑的凝胶聚合物电解质由于同时具有凝胶聚合物电解质电导率高以及聚烯烃多孔膜机械强度好的优点, 因此引起了广泛的关注[13,14]. 本文结合聚甲基丙烯酸甲酯(PMMA)吸液能力强, 而聚醋酸乙烯酯(PVAc)有较强的粘结性及可增强正负极材料间接触的特点, 合成了共聚物: 聚甲基丙烯酸甲酯-醋酸乙烯酯PMMA- VAc, 并以此聚合物制备了聚烯烃膜支撑的凝胶聚合物电解质膜, 利用红外(FTIR)、凝胶色谱(GPC)、扫描电镜(SEM)、差热/热重分析(DSC/TG)对聚合物电解质膜进行了表征, 利用交流阻抗测量了聚合物电解质膜的离子电导率, 并测试了聚合物电解质的电化学性能. 结果表明, 该聚合物电解质膜有良好的离子传输性能和电化学性能, 能用作聚合物锂离子电池的电解质.1 实验部分1.1 PMMA-VAc的合成采用乳液聚合法合成PMMA-VAc, 单体MMA(天津科密欧化学试剂有限公司)和VAc(天津化学试剂研发中心)均为分析纯. 实验前先将单体蒸馏除去阻聚剂对苯二酚: 其中在常温下蒸馏提纯VAc, 减压蒸馏提纯MMA. 具体合成方法如下: 在N2气氛下, 将1.5%的乳化剂十二烷基硫酸钠加入到去离子水中溶解, 再加入30%单体(MMA与VAc质量比为9∶1)及少量交联剂邻苯二甲酸二丙烯酯, 搅拌均匀, 在65 ℃下将0.15%的引发剂过硫酸钠分两次加入进行反应; 反应8 h后得到白色乳液, 将乳液倒入3% Al2(SO4)3溶液中搅拌破乳, 通过三次的去离子水洗除去乳化剂和Al2(SO4)3, 再用无水乙醇洗涤三次后, 60 ℃下N2吹扫36 h得到白色PMMA-VAc粉末.1.2电解液的制备导电锂盐为LiPF6 (Stella Chemical, Osaka Japanese), 溶剂分别为电池级的碳酸乙烯酯(EC)、甲基乙基碳酸酯(EMC)、二甲基碳酸酯(DMC). 溶剂均重新提纯, 采用精馏结合分子筛吸附的方法至纯度≥99.95%, 纯度用气相色谱仪(GC-14C, 日本岛津)确定. 电解液的配制及电池的装配均在充满高纯氩气的手套箱(MIKROUNA)中进行, LiPF6浓度为 1 mol/L. 分别用卡尔费休(Karl Fisher)法测定水分和酸度, 仪器分别为水分测定仪KF831(瑞士万通)和电位滴定仪798 GPT Titrino(瑞士万通), 电解液水分和酸(HF)含量<20 mg/g. 文中电解液溶剂的比例均是指质量比.1.3聚合物电解质的制备将合成的PMMA-VAc粉末溶解于N,N二甲基甲酰胺(DMF)中, 并加入增塑剂二乙基碳酸酯(DEC)得到粘稠的凝胶, 将聚烯烃隔膜浸于凝胶中一定时间后取出, 于65 ℃真空下干燥16 h, 即得到双面含有聚合物的聚合物膜. 在手套箱中将膜在电解液(1 mol/L LiPF6+EC +DMC+EMC, EC∶DMC∶EMC=1∶1∶1)中浸泡一定时间, 即得到聚合物电解质.1.4性能表征单体和聚合物结构分析用红外光谱仪(FTIR-8400S, 日本岛津); 用凝胶色谱(GPC, Waters515_2410, USA)测聚合物的分子量, 溶剂为甲苯; 聚合物膜表面观察用扫描电镜(JEOL, JSM-6380LV, JAPAN), 电压15 kV; 热稳定性分析仪器为DSC/TG分析仪(NETZSCH STA 409 PC/PG), 温度范围30~600 ℃, 升温速率为10 ℃/min; 凝胶粘度测定用粘度计(BROOKFIELD, USA); 交流阻抗用2016扣式电池测量, 测量的频率范围为1 kHz到0.1 mHz, 振幅为5 mV, 测量所用仪器为Solartron1260频率响应分析仪/1287电化学界面. 文中的电位值均相对于Li/Li+而言. 电池的充放电性能和循环性能测试仪器为电池程控测试仪(PCBT-138-64D, 武汉力兴).2 结果和讨论2.1 聚合物的红外光谱图1是MMA单体、VAc单体及PMMA-VAc聚合物的红外反射光谱, 通过MMA单体谱图可以看出, 图中1730, 1639, 1301及1165 cm-1处的几个特征吸收峰分别对应于C=O的伸缩振动峰、C=C的伸缩振动峰、C—O的伸缩振动峰以及CH2的扭曲振动峰[15]; 同时VAc单体谱图中2954, 1726, 1641 cm-1处分别代表CH3不对称伸缩振动、C=O的伸缩振动峰及C=C的伸缩振动峰, 而3382 cm-1的吸收峰是O—H伸缩振动峰, 可能是在测试过程中吸收了少量空气中的水分的缘故; 当No. 6卢 雷等:锂离子电池PMMA-VAc 聚合物电解质的制备与性质研究477位移, 但MMA 单体中C =C 的伸缩振动峰的1639 cm -1吸收峰以及VAc 单体中C =C 的伸缩振动峰的1641 cm -1吸收峰明显消失, 表明MMA 和VAc 聚合反应生成PMMA-VAc 是通过打开各自的C =C 双键进行聚合的.图1 MMA 单体(a)、VAc 单体(b)及其共聚物PMMA-Vac (c)的红外反射光谱图Figure 1 FTIR spectra for MMA (a), VAc (b) and PMMA-VAc (c)2.2 聚合物的分子量图2为未加交联剂的聚合物及有交联剂的聚合物凝胶色谱. 当聚合反应中未加交联剂时, 得到的聚合物分子量为1265609; 而加了交联剂的聚合物分子量为1684508. 可见交联剂的加入, 使聚合物的分子量明显增大. 聚合物的交联有利于提高聚合物膜的力学性能及增强聚合物膜的网络结构, 从而提高了聚合物的吸液率和电导率. 扫描电镜观察也说明了聚合物膜的良好的网状结构.2.3 凝胶粘度与PMMA-VAc 含量的关系为了确定PMMA-VAc 在聚合物电解质中的最佳比例, 分别将不同量的PMMA-VAc 溶于EC/DMC/EMC (1∶1∶1)的三元混合液中, 得到一系列的凝胶. 测试凝胶的粘度, 得到结果列于表1中.图2 未加交联剂(a)与加交联剂(b)的聚合物的凝胶色谱图 Figure 2 GPC for PMMA-VAc without (a) and with (b) cross-linked reagent表1 不同含量的PMMA-VAc 凝胶的粘度测试结果 Table 1 Viscidity of gels with different PMMA-VAc concen-trationPMMA-Vac 质量分数/% 1 2 3 3.54 5粘度/(mPa•s)23.2 79.6 375 61018102950由表1可以看出, 当PMMA-VAc 含量较少时(低于3.5%), 所得到的凝胶粘度较小, 均在1000 mPa•s 以下, 粘度随PMMA-VAc 含量的增加而增加, 但增加幅度不大. 当PMMA-VAc 含量较大时(大于4%), 粘度同样随PMMA-VAc 含量的增加而增加, 但增加幅度非常显著. PMMA-VAc 含量少时, 粘度小, 聚合物难以附着于聚烯烃膜上, 同时, 若附着于膜表面的聚合物含量少时, 则难以与正负极充分接触形成稳定界面; 当PMMA- VAc 含量过高时, 得到的粘度太大, 则凝胶流动性差, 成膜不均匀, 效果不佳. 因此, 要得到综合性能良好的聚合物电解质, 制备电解质膜时必须使用PMMA-VAc 含量适当的凝胶, 本文选择聚合物含量为4%的凝胶. 2.4 PMMA-VAc 膜的性质 2.4.1 聚合物膜的形貌图3是用PMMA-VAc 含量为4%的凝胶制得的聚合物膜的扫描电镜图. 可以看出所制聚烯烃膜支撑的聚合物膜具有丰富的微孔结构, 孔径约为10 µm, 孔内还有许多交错相连的更小的孔洞, 小孔孔径约为1 µm 到5478化 学 学 报 V ol. 65, 2007次由于交联剂的加入有利于聚合物膜形成网状结构所致. 当把聚合物膜浸渍在电解液中时, 这种特殊的微孔结构使其能够吸收大量的电解液. 可以预期这种多孔膜具有很强的吸液性能.图3 聚合物膜的扫描电镜图Figure 3 SEM photographs of polymer membrane2.4.2 聚合物膜的DSC/TG 特性图4是用PMMA-VAc 含量为4%的凝胶制得的聚合物膜的DSC 和TG 曲线. 可以看出, 在100 ℃处未出现水的吸热峰, 表明聚合物膜中没有水的存在; 在137 ℃左右有4.3%的质量损失, 比照DEC 和DMF 的沸点(分别是127和153 ℃)可知, 这一质量损失对应于聚合物膜中少量未挥发完的有机溶剂DEC +DMF 的挥发; 在380和475 ℃时出现吸热峰, 应为聚合物PMMA-VAc 的分解. 显然, 制备的聚合物膜在380 ℃范围内有很好的热稳定性. 由此可见, 制备的聚合物膜可以安全地应用于锂离子电池.图4 聚合物膜的DSC 和TG 曲线Figure 4 DSC and TG curves of polymer membrane2.4.3 聚合物膜的吸液性能表2给出了不同含量的聚合物得到的聚合物膜的质量和厚度的变化. 由表2可以看出, 随着PMMA-VAc 含量增加, 聚合物膜的质量和厚度也随之增加, 这主要由于凝胶浓度的增加, 聚合物在膜上的附着量增加的缘故.表2 不同PMMA-VAc 含量的凝胶制得的聚合物膜的质量和厚度比较Table 2 Comparison of weight and thickness for polymer membrane with different PMMA-VAc content PMMA-Vac 质量分数/% 2 3 4 6 聚合物电解质膜厚度/µm 33 39.6 63 122.5厚度增加率/% 65 98 215512.5聚合物膜质量/mg 4.53 8.53 14.736.2质量增加率/%51.7 184.4 391.11106.7用不同PMMA-VAc 含量的凝胶制得的聚合物膜进行吸液能力试验. 方法如下: 把已称重的微孔聚合物膜m 1(所有实验均取厚度为20 µm, 质量为3 mg 聚合物膜), 在电解质溶液(1 mol/L LiPF 6+EC +DMC +EMC, EC ∶DMC ∶EMC =1∶1∶1)中浸泡一定时间后取出, 用滤纸轻轻吸干其表面的电解液, 称取其质量(m 2), 即得干膜对电解液的吸液率为: [(m 2-m 1)/m 1]×100%. 图5示出了不同PMMA-VAc 含量的凝胶制得的聚合物膜的吸液率与浸泡时间的关系. 由图5可以看出, 不同含量得到的聚合物膜都有很好的吸液率, 当PMMA-VAc 含量为4%时, 吸液率高达2000%以上, 远远高于一般文献报道的结果[13,14,16].聚合物膜的吸液率还与浸泡时间有关. 由图5可以看出, 浸泡过程中聚合物膜的吸液率随浸泡时间增加而增加, 但会达到最大值, 随后随浸泡时间的增加反而降低. 达到最大值的时间又与凝胶中PMMA-VAc 含量有关. 当PMMA-VAc 含量小于4%时, 聚合物膜在放置0.5 h 内吸液率达到最大值; 而当PMMA-VAc 含量大于或等于4%时, 达到最大值的时间增加. 显然, 这与聚合物膜的厚度有关, 随PMMA-VAc 含量增加, 聚合物膜上的PMMA-VAc 附着量较厚, 电解液靠近支撑膜基体的PMMA-VAc 需要时间, 所以达到最大值的时间较长.图5 聚合物膜的吸液率与浸泡时间的关系Figure 5 Relationship of electrolyte absorption rate with im-mersion timeNo. 6 卢雷等:锂离子电池PMMA-VAc聚合物电解质的制备与性质研究479聚合物膜吸液率达到最大值时, 可视为聚合物膜处于饱和的吸液状态. 随着浸泡时间的进一步延长引发吸液率变小的现象, 可解释为聚合物PMMA-VAc在电解液中的溶解.由图5还可以发现, 聚合物含量为4%时得到的聚合物膜有良好的吸液保持率, 120 h后仍有较好的吸液率, 其次是含量为2%; 但当聚合物含量达到6%时, 所得到的聚合物膜的吸液率以及保持率反而低于含量为4%的聚合物膜的吸液率和保持率. 表面成膜过程中,凝胶中的PMMA-VAc含量过高时, 成膜效果会变差.因此, 制备聚合物膜时, 以PMMA-VAc含量为4%的凝胶成膜, 聚合物膜在电解液中的浸泡时间45 min左右制得的聚合物电解质最理想.2.4.4 聚合物电解质的离子电导率凝胶聚合物电解质的电化学性能的优劣是决定聚合物锂离子电池性能的关键, 尤其是聚合物膜的离子电导率. 为了测定电导率, 将聚烯烃多孔膜支撑的凝胶聚合物电解质(GPE)夹在两个不锈钢(SS)电极之间, 组成SS/GPE/SS电池, 并封装成扣式电池(CR2016). 图6是用PMMA-VAc含量为4%的凝胶制得的聚合物膜, 在电解质1 mol/L LiPF6+EC+DMC+EMC (EC∶DMC∶EMC=1∶1∶1)中浸泡45 min制得的聚合物电解质的交流阻抗谱. 阻抗谱表现为虚部阻抗与实部阻抗成线性关系, 体现了锂离子在聚合物电解质中传质的特性. 线性与实轴的交点即为聚合物电解质的电阻. 由此可以得到聚合物电解质的的离子电导率: σ=L/(A*R)(其中L表示聚合物电解质的厚度, A为电极面积, R为聚合物电解质的电阻). 计算得到室温下聚合物膜的离子电导率σ=1.85×10-3 S•cm-1, 这也高于聚合物电解质电导率10-3 S•cm-1以上的要求, 适合于聚合物锂离子电池.图6聚合物电解质在25 ℃下的交流阻抗图Figure 6Impedance spectrum of polymer electrolyte at 25 ℃2.4.5电池性能用PMMA-VAc含量为4%的凝胶制得的聚合物膜, 在电解质1mol/L LiPF6+EC+DMC+EMC (EC∶DMC∶EMC=1∶1∶1)中浸泡45 min制得聚合物电解质, 组装成Li/聚合物电解质/LiCoO2的2016扣式电池. 图7是聚合物电解质锂离子电池和以聚烯烃膜为隔膜的液态锂离子电池的循环性能比较. 其中充放电电流为0.2 C. 从图中可以看出, 开始13个循环聚合物电解质电池与液态电池相差不大, 都有较好的循环性, 10周的容量保持率各为98.8%和95.5%; 第14个循环后, 两电池的循环稳定性开始出现差异, 但差别并不明显: 聚合物电解质锂离子电池的容量仍保持84.2%. 这主要由于扣式电池的内阻较高, 并且半电池容量低, 从而循环性能不高, 对应的液态锂离子电池在40周循环后容量保持率也只在92%也证实了扣式半电池循环性能不高. 可见聚合物电解质电池可以接近液态锂离子电池的循环性能.图7室温下聚合物电解质锂离子电池和液态锂离子电池循环稳定性对比Figure 7Comparison of cyclic stability between polymer elec-trolyte and liquid Li ion batteries图8是聚合物电解质电池的倍率放电曲线. 室温下, 以0.1 C电流充电, 分别以0.1, 0.2, 0.5及1 C电流放电. 由图8可以看出, 虽然放电平台随着放电电流的增大而降低, 但是不同放电倍率下的放电容量变化很小, 0.5和1 C电流的放电容量分别为0.1 C时的95.3%和94.7%, 而0.2 C时的放电容量与 1 C时的放电容量比高达99.4%. 显然, 所制备的聚合物电解质具有良好的倍率特性.3 结论甲基丙烯酸甲酯(MMA)和醋酸乙烯酯(VAc)单体在480化学学报V ol. 65, 2007图8室温下聚合物电解质锂离子电池的倍率放电性能Figure 8Rate discharge performance of polymer Li-ion batter-ies at room temperature十二烷基硫酸钠溶液中乳化聚合, 可制得聚甲基丙烯酸甲酯-醋酸乙烯酯聚合物PMMA-VAc, 聚合是通过打开各自的C=C双键实现的. 以聚合物凝胶在聚烯烃支撑膜上形成的聚合物膜呈多孔结构, 具有良好的热稳定性和很高的吸液性. 聚合物膜吸收电解质溶液后形成的聚合物电解质具有高的离子导电性, 以此电解质装配的聚合物锂离子电池具有良好循环稳定性和倍率放电性能.References1 Xu, K. Chem. Rev. 2004, 104, 4303.2 Huang, Y. Y.; Zhou, H. H.; Chen, J. T.; Su, G. Y.; Gao, D.S. Prog. Chem. 2005, 17(3), 406 (in Chinese).(黄友元, 周恒辉, 陈继涛, 苏光耀, 高德淑, 化学进展,2005, 17(3), 406.)3 Tang, Z. Y.; Ruan, Y. L. Acta Chim. Sinica2005, 63(16),1500 (in Chinese).(唐致远, 阮艳莉, 化学学报, 2005, 63(16), 1500.)4 Lü, D. S.; Li, W. S. Acta Chim. Sinica2003, 61(2), 225 (inChinese).(吕东生, 李伟善, 化学学报, 2003, 61(2), 225.)5 Xu, M. Q.; Zuo, X. X.; Li, W. S.; Zhou, H. J.; Liu, J. S.;Yuan, Z. Z. Acta Phys.-Chim. Sin. 2006, 22(3), 335.6 Appetecchi, G. B.; Alessandrini, F.; Passerini, S.; Caporic-cio, G.; Boutevin, B.; PietraSanta, G. F. Electrochim. Acta2005, 50, 4396.7 Lowman, G. M.; Tokuhisa, H.; Lutkenhaus, J. L.;Hammond, P. T. Langmuir2004, 20, 9791.8 Kim, J. R.; Choia, S. W.; Jo, S. M.; Lee, W. S.; Kin, B. C.Electrochim. Acta2004, 50, 69.9 Wu, Y. P.; Wan, C, R.; Jiang, C. Y. Lithium-ion SecondaryBatteries, Chemical Industry Press, Beijing, 2002, p. 172 (inChinese).(吴宇平, 万春荣, 姜长印, 锂离子二次电池, 化学工业出版社, 北京, 2002, p. 172.)10 Tiyapiboonchaiya, C.; Pringle, J. M.; Sun, J. Z.; Byrne, N.;Howlett, P. C.; Macfarlane, D. R.; Forsyth, M. Nat. Mater.2004, 3(1), 29.11 Susan, A. B. M.; Kaneko, T.; Noda, A.; Watanabe, M. J.Am. Chem. Soc. 2005, 127(13), 4976.12 Xi, J. Y.; Ma, X. M.; Cui, M. Z.; Tang, X. Z. Acta Chim.Sinica 2005, 63(5), 401 (in Chinese).(席靖宇, 马晓梅, 崔孟忠, 唐小真, 化学学报, 2005,63(5), 401.)13 Song, M. K.; Kim, Y. T.; Cho, J. Y.; Cho, B. W.; Popov, P.N.; Rhee, H. W. J. Power Sources2004, 125, 10.14 Jeong, Y. B.; Kin, D. W. J. Power Sources2004, 128, 256.15 Rajendran, S.; Sivakumar, M.; Subadevi, R. J. PowerSources2003, 124, 225.16 Liang, H. Y.; Qiu, X. P.; Zhang, S. C.; Zhu, W. T.; Chen, L.Q. J. Appl. Electrochem. 2004, 34, 1211.(A0609081 CHENG, B.; LING, J.)。

870 KF Titrino简要操作说明

870 KF Titrino简要操作说明

870 KF Titrino简要操作说明(标定卡氏试剂)1 开机后,按“OK”键两次(或一次),仪器显示主界面;2 选用标定的方法:显示屏光标在“MENU”上,按“▼”,光标显示到METHOD,按“OK”键确定,再按“▼”一次,出现titer Ipol ,按“OK”键确定,此时仪器处于标定模式。

3 按“START”,仪器处于平衡状态(消除滴定杯中存在多余的水分干扰),屏幕显示conditioning not ok。

4 当屏幕出现conditioning ok时,即可准备进标样(大约10-30mg H2O)。

5 按“START”后将标样注入反应杯。

6 输入标样重量,按“BACK”键确定,再次按下“START”键。

7 等待标定的滴定度测量结果(大约5.0000mg/mL左右)。

备注1:测量完成后,出现conditioning ok,可重复4、5、6步骤。

备注2:样品量的输入(没有订配键盘的时候):步骤6中,进完样品后,点击“OK”键,用上、下、左、右键输入对应的样品量,点击“BACK”、“START”即可;可以用“clear”进行错误样品信息的清除。

备注3:标定一般2~3次,结果相对偏差小于5%即可认定卡氏试剂滴定度准确性。

备注4:标定频次一般每天一次,或根据对应的厂标、行标、国标、国际标准执行。

备注5:从标定卡氏试剂到样品水分测定的方法转换:反复按“BACK”,回到主界面,光标显示在METHOD上,按“OK”键两次,调用KFT Ipol即可。

870 KF Titrino简要操作说明(测量水分含量)1 开机后,按“OK”键两次(或一次),仪器显示主界面。

2 显示屏光标在“MENU”上,按“▼”,光标显示到METHOD,按“OK”键确定,屏幕光标处于KFT Ipol ,按“OK”键确定,此时仪器处于样品水分测定模式。

3 按“START”,仪器处于平衡状态(消除滴定杯中存在多余的水分干扰),屏幕显示conditioning not ok。

Solution Plus Split System 商品说明书

 Solution Plus Split System 商品说明书

Split System SolutionDeveloped to meet commercial and industrial markets. All Solution Plus models were designed to offer convenient installation and maintenance, aligned to Trane’s products high reliability.Main characteristics of Solution Plus line are:- Fast Cycle, is an option with configuration standard offering quick production time.- Modular Units, factory-predefined by Client, for vertical or horizontal assembly, with many discharge options. The units are placed on galvanized steel “U”rails, which provide easy hoisting and work as a support.- O Solution Plus with Condensing Unit TRCE has 8 Models, with capacities ranging from 5 to 30 Ton, and air flows from 2.000 to 25.000 m³/h.- Solution Plus with Condensing Unit TRAE has 11 Models, with capacities ranging from 5 to 50 T on, and air flows from 2.000 to 40.000 m³/h.- Double Wall, the steel panels in coil and fan models are internally isolated with 25-mm expanded polyurethane.- Down Flow Discharge Option, the coil and fan module set has several discharge options, including the down flow discharge, offering more versatility to your job.- High-efficiency TRANE Wavy-3B Coils, the coil is built with seamless copper tubes. The copper tubes are mechanically expanded on the aluminum fins for perfect contact between fins and tubes.- Aluminum Structure, the coil and fan modules have polished, laminated aluminum structure , with internal thermoinsulating coating so as to eliminate thermal bridge.- Several Filtering Options, simple or double filtration, with permanent or throwaway filters.- Evaporator Unit with 2- or 4-pole motors, 60 Hz (IP21 and IP55), with regulating sheave.- Fans, with forward-curved blades or backward-curved blades, sized to support a total static pressure of up to 160 mmca.- Open Air Modules, cabinets prepared for outdoor operation.- Refrigerant R-407C, Solution Plus provides refrigerant R-407C.Precautions against productcorrosion It is recommended that air conditioning equipment shall not be installed in environments with a corrosive atmosphere such as acid or alkali gases and environments with a sea breeze.In need of installing air conditioning equipment in these areas, Trane of Brazil recommends the application of extra protection against corrosion, such as Phenolic protection or the application of ADSIL®.For more information, contact your local distributor.Table 01 - Combinations of Solution Plus packageM odelsJointRated Capacity(TON)M odule Condensing UnitsFoward Curved Backward Curved TRCE TRAEDXPA05 - 1 circ.5DXPA050DLPA050TRCE050 - 1 circ.TRAE050 - 1 circ.DXPA07 - 1 circ.7,5DXPA075DLPA075TRCE075 - 1 circ.TRAE075 - 1 circ.DXPA10 - 2 circ.10DXPA100DLPA100TRCE100 - 2 circ.TRAE100 - 2 circ.DXPA12 - 2 circ.12,5DXPA125DLPA125TRCE125 - 2 circ.TRAE125 - 2 circ.DXPA15 - 2 circ.15DXPA150DLPA150TRCE150 - 2 circ.TRAE150 - 2 circ.DXPA20 - 2 circ.20DXPA200DLPA2002x TRCE100 - 1 circ.TRAE200 2 circ. or 2 x TRAE100 1 circ. DXPA25 - 2 circ.25DXPA250DLPA250TRCE150 1 circ. + TRCE100 1 circ.TRAE250 2 circ.DXPA30 - 2 circ.30DXPA300DLPA300 2 x TRCE150 1 circ.TRAE300 2 circ. or 2 x TRAE150 1 circ. DXPA35 - 2 circ.35DXPA350DLPA350No Option TRAE150 1 circ. + TRAE200 1 circ. DXPA40 - 2 circ.40DXPA400DLPA400No Option 2 x TRAE200 1 circ.DXPA50 - 2 circ.50DXPA500DLPA500No Option 2 x TRAE250 1 circ.Solution Plus is a split system, designed and planned to meet most demanding market conditions. Aligning versatile installation, easy maintenance and low costs, Solution Plus is comprised of:Coil ModuleThis module consists of filter, cooling coil, expansion valve and draining tray. Alternatively, it can be supplied with heating resistances. This module has three frames for installation of up to three 1” filters in each frame.Fan ModuleIt consists of forward curved blades or backward curved blades fan (Backward-Curved), driving motor, regulating motor sheave, fan sheave and belts. The fan module has several air discharge options. It has a canvas collar to provide easier installation for air intake and return air ducts. Collar width ranges from 120 to 370 mm, depending on the model.Mixing Box Module (Optional)The mixing box is always mounted before the coil module. The mixing box is a box where air intake and return air ducts can be installed. The mixing box module has galvanized steel dampers , with opposite blades and manual or automatic driving axis for air regulation using dampers. When Solution Plus is assembled with a mixing box, filters are incorporated to the box. Both sides of the box have caps to provide easy access to the filters.Final Module FilterThis module is an option for installations that require a better air treatment. Positioned after the fan module and the module serpentine this option makes it possible to use fine filter (type pouch) and Absolute (H. E. P. A). Filters of this type should be allocated in this module because the depth of the filters do not allows to be used in another module.Return filter moduleTo the treatment of the return air there is this option of cabinet. Ditto the module final filter, the return module is used to receive filters with bigger depth (Bag F8).Empty moduleCabinet with the same characteristics of other modules (see descriptive of cabinet). It is a empty module that is used for installation of accessories in the field (attenuator noise, humidifier, electric heater, etc).Condensing Unit TRAECondensing units TRAE are equipped with Scroll-type compressors, and offer horizontal discharge for 5 to 15 T on models, and vertical discharge for over 20 Ton models . The structure is in galvanized steel and it is painted. Coils are built with Wavy-3B model aluminum fins, with 3/8” internally-rifled copper tube, mechanically expanded in the fins. Nominal CapacitiesNominal capacities for TRAE units are:TRAE 050 - 5,0 TonTRAE 075 - 7,5 TonTRAE 100 - 10,0 TonTRAE 125 - 12,5 TonTRAE 150 - 15,0 TonTRAE 200 - 20,0 TonTRAE 250 - 25,0 TonTRAE 300 - 30,0 TonCondensing Unit TRCEThe Condensing units TRCE consists basicallyin 2 modules (heat exchanger and fan), equiped with Scroll compressor, 3 possible discharges options. The structure is in galvanized steel sheet, witch recives painting. The condensing coils using the new technology called “Micro-channel” (MCHX), consisting of three main components: tube Micro-Channel plates having a plan, fins located between alternating layers of two types of tubes and manifolds “soft drinks”. All components madeof aluminium.Nominal CapacitiesNominal capacities for TRCE are:TRCE 050 - 5,0 TonTRCE 075 - 7,5 TonTRCE 100 - 10,0 TonTRCE 125 - 12,5 TonTRCE 150 - 15,0 TonIngersoll Rand develops advanced technologies that improve quality of life through integrated solutions for the creation and maintenance ofsafe, comfortable and efficient environments. Our people and our family of brands — including Club Car®, Ingersoll Rand®, Thermo King® and Trane®work together providing indoor environmental quality and comfort in houses and buildings in addition to protecting food and perishables intransportation, and increasing industrial productivity and efficiency. Trane solutions optimize indoor comfort and industrial processes with a broad portfolio of energy efficient systems and products for homes, businesses and industry, including parts and components, building automation and services.For more information visit: and .br©2016 Trane All rights reserved PKG-SLB020H EN January 2016Replaces PKG-SLB020G EN September 2015Trane has a policy of continuous improvement of products and product data and reserves the right to alter designs and specifications without notice.We are committed to environmentally friendly printing practices that reduce waste.Unit DX DLDX DL DX DLDX DL DX DL DX DLDX DL DX DLDX DLDX DLDX DLRated Capacity TON Coil Module Length mm 960112011201300143014301500150015001700200020002400240027702770277027702770277027702770Depth mm 58074074085074085074074074074074080093093093093093093093010509301050Heightmm 7307308708708708701170117011701170117011701170117011701170137013701570157017501750Copper Tube Diameter pol.RowsFPF (Fins per feet)Number of Circuits Fin Face Area m²Fan Module Length mm 960112011201300143014301500150015001700200020002400240027702770277027702770277027702770Depth mm 58074074085074085074074074074074080093093093093093093093010509301050Height mm 7308708709708708701170117011701170117013201170142011701570137015701370167013701670Qty of Fans 1111112222222232323232Motor minimum CV 121,522323252537,537,55155157,515Motor maximum CV 253557,55107,510101510251025152515402040Air F low - Min.m³/h Air F low - Max.m³/h Filters Dimension mmQuantity101008625 X 782531 X 6770202030606080810424 X 525504 X 665439 X 665462 X 477462 X 477472 X 477572 X 477531 X 477531 X 577170002100025000310003500040000120001500017500200002500040006000800010000120002000300044005500600090001,912,342,813,283,750,380,540,720,941,121,5422222214414414414414411222132132132132132144444444 1/2" 1/2" 1/2" 1/2" 1/2"444443/8" 3/8" 3/8" 3/8" 3/8"1/2"25303540503 0 0 3 504 0 0 50 0 57,51012,51520 2 50MODEL0 50 0 75 10 0 12 5150 2 0 0Table 02 - Technical Features of Solution Plus Modules (Forward-Curved and Backward-Curved)Table 03 -Technical Features of TRCE and TRAE Condensing UnitsUnit.TRAETRCE TRAE 0501C TRAE 0751C TRAE 1001C TRAE 1002C TRAE 1252C TRAE 1501C TRAE 1502C TRAE 2001C TRAE 2002C TRAE 2501C TRAE 2502C TRAE 3002C TRCE 0501C TRCE 0751C TRCE 1001C TRCE 1002C TRCE 1252C TRCE 1501C TRCE 1502C Rated Cap.TON 57,5101012,5151520202525305,07,510,010,012,515,015,0Length mm 9209301140114013501590159010671067106710671850993121714911491171217121712Depth mm 42062080080080080080010961096109610961060560560560560560560560Heightmm793895996996125012501250145214521452145216001393149415451545162018491849Compressor Type ScrollScroll Scroll Scroll Scroll Scroll Scroll Scroll Scroll Scroll Scroll Scroll Scroll Scroll Scroll Scroll Scroll Scroll Scroll Compressor QTD1112212121221112212Rows2222222222234444212FPF (Fin/feet)ft168168168168168168168204204204204168144144144144144144144Number of Circuits 1112212121221112212Face Area m20,81,011,671,672,242,242,242,972,973,333,334,50,550,830,990,991,391,721,72Qty of Fans 1111122111121122222Fan Diam.pol.22”26”30”30”30”26”26”35”35”35”35”30”- --- --- --- --- --- --- --Motor CV 0,250,750,75110,750,75111111,5344455Air Flow m3/h 59509180119001190015300183601836023800238003060030600323005500825099509950137701575015750WeightKg108127198196227335275355359360368610184210305310352400400。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档