柱体、锥体和台体的表面积的计算
柱体、锥体、台体、球的体积与球的表面积
柱体、锥体、台体、球的体积与球的表面积学习目标 1.掌握柱体、锥体、台体的体积公式,会利用它们求有关几何体的体积.2.了解球的表面积与体积公式,并能应用它们求球的表面积及体积.3.会求简单组合体的体积及表面积.知识点一 柱体、锥体、台体的体积公式1.柱体的体积公式V =Sh (S 为底面面积,h 为高); 2.锥体的体积公式V =13Sh (S 为底面面积,h 为高);3.台体的体积公式V =13(S ′+S ′S +S )h (S ′、S 为上、下底面面积,h 为高);4.柱体、锥体、台体的体积公式之间的关系V =ShV =13(S ′+S ′S +S )hV =13Sh .知识点二 球的表面积和体积公式1.球的表面积公式S =4πR 2(R 为球的半径); 2.球的体积公式V =43πR 3.类型一 柱体、锥体、台体的体积例1 (1)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312B.34C.612D.64答案 A解析 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312.(2)现有一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的圆锥形铅锤,铅锤完全浸没在水中.当铅锤从水中取出后,杯里的水将下降( )A .0.6 cmB .0.15 cmC .1.2 cmD .0.3 cm 答案 A解析 设杯里的水下降h cm ,由题意知π(202)2h =13×20×π×32,解得h =0.6 cm.反思与感悟 (1)常见的求几何体体积的方法 ①公式法:直接代入公式求解.②等积法:如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可. ③分割法:将几何体分割成易求解的几部分,分别求体积. (2)求几何体体积时需注意的问题柱、锥、台体的体积的计算,一般要找出相应的底面和高,要充分利用截面、轴截面,求出所需要的量,最后代入公式计算.跟踪训练1 (1)如图所示,在长方体ABCD -A ′B ′C ′D ′中,用截面截下一个棱锥C -A ′DD ′,求棱锥C -A ′DD ′的体积与剩余部分的体积之比.解 设AB =a ,AD =b ,AA ′=c , ∴V C -A ′D ′D =13CD ·S △A ′D ′D =13a ·12bc =16abc ,∴剩余部分的体积为V ABCD -A ′B ′C ′D ′-V C -A ′D ′D =abc -16abc =56abc ,∴棱锥C -A ′DD ′的体积与剩余部分的体积之比为1∶5.(2)已知一个三棱台上、下底面分别是边长为20 cm 和30 cm 的正三角形,侧面是全等的等腰梯形,且侧面面积等于上、下底面面积之和,求棱台的高和体积.解 如图,在三棱台ABC -A ′B ′C ′中,取上、下底面的中心分别为O ′,O ,BC ,B ′C ′的中点分别为D ,D ′,则DD ′是梯形BCC ′B ′的高. 所以S 侧=3×12×(20+30)×DD ′=75DD ′.又因为A ′B ′=20 cm ,AB =30 cm ,则上、下底面面积之和为S 上+S 下=34×(202+302)=3253(cm 2).由S 侧=S 上+S 下,得75DD ′=3253,所以DD ′=1333(cm),O ′D ′=36×20=1033(cm),OD =36×30=53(cm), 所以棱台的高h =O ′O =D ′D 2-(OD -O ′D ′)2 =(1333)2-(53-1033)2=43(cm). 由棱台的体积公式,可得棱台的体积为V =h 3(S 上+S 下+S 上·S 下)=433×(34×202+34×302+34×20×30)=1 900(cm 3).类型二 球的表面积与体积命题角度1 与球有关的切、接问题例2 (1)求球与它的外切等边圆锥(轴截面是正三角形的圆锥叫等边圆锥)的体积之比.解 如图等边△ABC 为圆锥的轴截面,截球面得圆O . 设球的半径OE =R , OA =OE sin 30°=2OE =2R ,∴AD =OA +OD =2R +R =3R , BD =AD ·tan 30°=3R , ∴V 球=43πR 3,V 圆锥=13π·BD 2×AD =13π(3R )2×3R =3πR 3,则V 球∶V 圆锥=4∶9.(2)设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 2 答案 B解析 长方体的体对角线是其外接球的直径,由长方体的体对角线为(2a )2+a 2+a 2=6a , 得球的半径为62a ,则球的表面积为4π(62a )2=6πa 2. 反思与感悟 (1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r 1=a2,过在一个平面上的四个切点作截面如图①. (2)球与正方体的各条棱相切球与正方体的各条棱相切于各棱的中点,过球心作正方体的对角面有r 2=22a ,如图②. (3)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为a ,b ,c ,则过球心作长方体的对角面有球的半径为r 3=12a 2+b 2+c 2,如图③.(4)正方体的外接球正方体棱长a 与外接球半径R 的关系为2R =3a . (5)正四面体的外接球正四面体的棱长a 与外接球半径R 的关系为2R =62a . 跟踪训练2 (1)正方体的内切球与其外接球的体积之比为( ) A .1∶ 3 B .1∶3 C .1∶3 3 D .1∶9 答案 C解析 设正方体的棱长为1,则正方体内切球的半径为棱长的一半即为12,外接球的直径为正方体的体对角线, ∴外接球的半径为32, ∴其体积比为43π×(12)3∶43π×(32)3=1∶3 3.(2)长方体的共顶点的三个侧面面积分别为3、5、15,则它的外接球表面积为_______. 答案 9π解析 设长方体共顶点的三条棱长分别为a 、b 、c ,则⎩⎨⎧ab =3,bc =5,ac =15,解得⎩⎨⎧a =3,b =1,c =5,∴外接球半径为a 2+b 2+c 22=32,∴外接球表面积为4π×(32)2=9π.命题角度2 球的截面例3 在球内有相距9 cm 的两个平行截面面积分别为49π cm 2和400π cm 2,求此球的表面积. 解 方法一 (1)若两截面位于球心的同侧,如图(1)所示的是经过球心O 的大圆截面,C ,C 1分别是两平行截面的圆心,设球的半径为R cm ,截面圆的半径分别为r cm ,r 1 cm.由πr 21=49π,得r 1=7(r 1=-7舍去), 由πr 2=400π,得r =20(r =-20舍去).在Rt △OB 1C 1中,OC 1=R 2-r 21=R 2-49,在Rt △OBC 中,OC =R 2-r 2=R 2-400.由题意可知OC 1-OC =9,即R 2-49-R 2-400=9, 解此方程,取正值得R =25.(2)若球心在截面之间,如图(2)所示,OC 1=R 2-49,OC =R 2-400.由题意可知OC 1+OC =9, 即R 2-49+R 2-400=9.整理,得R 2-400=-15,此方程无解,这说明第二种情况不存在.综上所述,此球的半径为25 cm.∴S球=4πR2=4π×252=2 500π(cm2).方法二(1)若截面位于球心的同侧,同方法一,得OC21=R2-49,OC2=R2-400,两式相减,得OC21-OC2=400-49⇔(OC1+OC)(OC1-OC)=351.又OC1-OC=9,∴OC1+OC=39,解得OC1=24,OC=15,∴R2=OC2+r2=152+202=625,∴R=25 cm.(以下略)反思与感悟设球的截面圆上一点A,球心为O,截面圆心为O1,则△AO1O是以O1为直角顶点的直角三角形,解答球的截面问题时,常用该直角三角形求解,并常用过球心和截面圆心的轴截面.跟踪训练3把本例的条件改为“球的半径为5,两个平行截面的周长分别为6π和8π”,则两平行截面间的距离是()A.1 B.2 C.1或7 D.2或6答案 C解析画出球的截面图,如图所示.两平行直线是球的两个平行截面的直径,有两种情形:①两个平行截面在球心的两侧,②两个平行截面在球心的同侧.对于①,m=52-32=4,n=52-42=3,两平行截面间的距离是m+n=7;对于②,两平行截面间的距离是m-n=1.故选C.类型三组合体的体积例4某几何体的三视图如图所示,则该几何体的体积为()A.13+π B.23+π C.13+2π D.23+2π 答案 A解析 由三视图可知该几何体是一个三棱锥与半个圆柱的组合体,V =12π×12×2+13×(12×1×2)×1=π+13.故选A.反思与感悟 此类问题的关键是把三视图还原为空间几何体,再就是代入公式计算,注意锥体与柱体两者的体积公式的区别.解答组合体问题时,要注意知识的横向联系,善于把立体几何问题转化为平面几何问题,运用方程思想与函数思想解决,融计算、推理、想象于一体. 跟踪训练4 如图,是一个奖杯的三视图(单位:cm),底座是正四棱台,求这个奖杯的体积.解 三视图复原的几何体下部是底座是正四棱台,中部是圆柱,上部是球. 这个奖杯的体积V =13h (S 上+S 上S 下+S 下)+22π·16+4π3×33=336+100π(cm 3).1.已知一个铜质的五棱柱的底面积为16 cm 2,高为4 cm ,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是( ) A .2 cm B .3 cm C .4 cm D .8 cm 答案 C解析 ∵铜质的五棱柱的底面积为16 cm 2,高为4 cm , ∴铜质的五棱柱的体积V =16×4=64(cm 3), 设熔化后铸成一个正方体的铜块的棱长为a cm , 则a 3=64,解得a =4 cm ,故选C.2.已知高为3的棱柱ABC —A 1B 1C 1的底面是边长为1的正三角形(如图),则三棱锥B 1—ABC 的体积为( )A.14B.12C.36D.34答案 D解析 V =13Sh =13×34×3=34.3.将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) A .2π B .4π C .8π D .16π答案 B解析 体积最大的球是其内切球,即球的半径为1,所以表面积为S =4π×12=4π.4.如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的体积之比为________.答案 3∶1∶2解析 设球的半径为R ,则V 柱=πR 2·2R =2πR 3,V 锥=13πR 2·2R =23πR 3,V 球=43πR 3,故V 柱∶V锥∶V 球=2πR 3∶23πR 3∶43πR 3=3∶1∶2.5.某几何体的三视图如图所示,则其表面积为________.答案 3π解析 由三视图可知,该几何体是一个半径为1的半球,其表面积为半个球面面积与截面面积的和,即12×4π+π=3π.1.柱体、锥体、台体的体积之间的内在关系为V 柱体=Sh ←―――S ′=S V 台体=13h (S +SS ′+S ′)――→S ′=0V 锥体=13Sh .2.在三棱锥A -BCD 中,若求点A 到平面BCD 的距离h ,可以先求V A -BCD ,h =3V S △BCD.这种方法就是用等体积法求点到平面的距离,其中V 一般用换顶点法求解,即V A -BCD =V B -ACD =V C -ABD =V D -ABC ,求解的原则是V 易求,且△BCD 的面积易求.3.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.4.利用球的半径、球心到截面圆的距离、截面圆的半径可构成直角三角形,进行相关计算. 5.解决球与其他几何体的切接问题时,通常先作截面,将球与几何体的各量体现在平面图形中,再进行相关计算.课时作业一、选择题1.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( ) A .π B .2π C .4π D .8π 答案 B解析 设圆柱母线长为l ,底面半径为r ,由题意得⎩⎪⎨⎪⎧ l =2r ,2πrl =4π,解得⎩⎪⎨⎪⎧r =1,l =2.∴V 圆柱=πr 2l =2π.2.如图,在正方体中,四棱锥S -ABCD 的体积占正方体体积的( )A.12B.13C.14 D .不确定 答案 B解析 由于四棱锥S -ABCD 的高与正方体的棱长相等,底面是正方形,根据柱体和锥体的体积公式,得四棱锥S -ABCD 的体积占正方体体积的13,故选B.3.如图是某几何体的三视图,则该几何体的体积为( )A.92π+12 B.92π+18 C .9π+42 D .36π+18答案 B解析 由三视图可知该几何体是一个长方体和球构成的组合体,其体积V =43π(32)3+3×3×2=92π+18. 4.如图,ABC -A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34答案 C解析 ∵V C -A ′B ′C ′=13V ABC -A ′B ′C ′=13,∴V C -AA ′B ′B =1-13=23.5.一平面截一球得到直径为6 cm 的圆面,球心到这个圆面的距离是4 cm ,则该球的体积是( ) A.100π3 cm 3B.208π3 cm 3C.500π3 cm 3D.4163π3cm 3答案 C解析 如图,根据题意, |OO 1|=4 cm ,|O 1A |=3 cm ,∴|OA |=R =|OO 1|2+|O 1A |2=5(cm), 故球的体积V =43πR 3=500π3(cm 3).故选C.6.一个正四棱柱的各个顶点都在一个半径为2 cm 的球面上,如果正四棱柱的底面边长为2 cm ,那么该棱柱的表面积为( ) A .(2+42) cm 2 B .(4+82) cm 2 C .(8+162) cm 2 D .(16+322) cm 2答案 C解析 ∵一个正四棱柱的各个顶点都在一个半径为2 cm 的球面上,正四棱柱的底面边长为2 cm ,球的直径为正四棱柱的体对角线,∴正四棱柱的体对角线为4,正四棱柱的底面对角线长为22,∴正四棱柱的高为16-8=22,∴该棱柱的表面积为2×22+4×2×22=8+162,故选C.7.如图,在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.23πB.43πC.53π D .2π答案 C解析由题意,旋转而成的几何体是圆柱,挖去一个圆锥(如图),该几何体的体积为π×12×2-13×π×12×1=53π.8.一个表面积为36π的球外切于一圆柱,则圆柱的表面积为()A.45π B.27π C.36π D.54π答案 D解析因为球的表面积为36π,所以球的半径为3,因为该球外切于圆柱,所以圆柱的底面半径为3,高为6,所以圆柱的表面积S=2π×32+2π×3×6=54π.二、填空题9.如图,三棱柱A1B1C1-ABC中,已知D,E,F分别为AB,AC,AA1的中点,设三棱锥A -FED的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2的值为________.答案124解析设三棱柱的高为h,∵F是AA1的中点,则三棱锥F-ADE的高为h2,∵D,E分别是AB,AC的中点,∴S△ADE=14S△ABC,∵V1=13S△ADE·h2,V2=S△ABC·h,∴V1V2=16S△ADE·hS△ABC·h=124.10.圆锥的侧面展开图为扇形,若其弧长为2π cm,半径为 2 cm,则该圆锥的体积为___ cm3. 答案π3解析∵圆锥的侧面展开图的弧长为2π cm,半径为 2 cm,故圆锥的底面周长为2π cm,母线长为 2 cm ,则圆锥的底面半径为1,高为1,则圆锥的体积V =13·π·12·1=π3.11.已知某几何体的三视图如图所示,其中正视图、侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为________.答案2π6+16解析 由已知的三视图可知原几何体的上方是三棱锥,下方是半球,∴V =13×(12×1×1)×1+[43π(22)3]×12=16+2π6. 12.若一个四面体的四个面中,有两个面都是直角边长为1的等腰直角三角形,另两个面都是直角边长分别为1和2的直角三角形,则该四面体的外接球的表面积为________. 答案 3π解析 满足题意的四面体为如图所示的正方体中的三棱锥V -ABC ,所以VA =AB =BC =1,VB =AC =2,其外接球即为该正方体的外接球,故其半径为R =32, 所以该四面体外接球的表面积为4π×(32)2=3π. 三、解答题13.如图所示,半径为R 的半圆内的阴影部分是以直径AB 所在直线为轴,旋转一周得到的一几何体,求该几何体的表面积和体积.(其中∠BAC =30°)解 过C 作CO 1⊥AB 于点O 1,由已知得∠BCA =90°, ∵∠BAC =30°,AB =2R , ∴AC =3R ,BC =R ,CO 1=32R . ∴S 球=4πR 2,1圆锥侧AO S =π×32R ×3R =32πR 2, 1圆锥侧BO S =π×32R ×R =32πR 2,∴11几何体表球圆锥侧圆锥侧=++AO BO S S S S=4πR 2+32πR 2+32πR 2=11+32πR 2.又∵V 球=43πR 3,1圆锥AO V =13·AO 1·π·CO 21=14πR 2·AO 1, 1圆锥BO V =13·BO 1·π·CO 21=14πR 2·BO 1, ∴V 几何体=V 球-()11圆锥圆锥+AO BO V V =56πR 3.四、探究与拓展14.圆柱形容器内盛有高度为6 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,如图所示.则球的半径是( )A .1 cmB .2 cmC .3 cmD .4 cm答案 C解析 设球半径为r ,则由3V 球+V 水=V 柱,可得 3×43πr 3+πr 2×6=πr 2×6r ,解得r =3. 15.如图所示,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体(不要求写画法); (2)求这个几何体的表面积及体积. 解 (1)这个几何体如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q -A 1D 1P 的组合体. 由P A 1=PD 1= 2 cm ,A 1D 1=AD =2 cm , 可得P A 1⊥PD 1.故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),所求几何体的体积V =23+12×(2)2×2=10(cm 3).。
柱锥台表面积及体积
S侧= rl
S表= r 2 rl
S表 (r12 r12 r1 r2 )l
an'y S侧 (r1 r提升
an'y
学习新知
巩固新知
总结提升
解:一个花盆需要涂漆的面积为: S= ( 10+5) 10+ 52 - 12 =150 +25 - =174 cm2
an'y
3 2 2 6 1 6 3 cm3 4
4
cm3
学习新知
巩固新知
总结提升
2 cm
96 cm
2
an'y
a 6
3
学习新知
巩固新知
总结提升
知识总结:
an'y
思想方法总结:“分割思想”、“补体思想 ”及“等价转化思想”.
100个花盆需要油漆: 1 100 174 100=174 ml 10000
an'y
学习新知
巩固新知
总结提升
an'y
学习新知
巩固新知
总结提升
解:正六棱柱的体积 V1 =S底 h 圆柱的体积 1 2 V2 =S底 h = ( )1= cm3 2 4 所以螺帽的体积为 V V1 V2 6 3
圆台
S侧 (r1 r2 )l
r'0
圆锥
S侧 rl
预习落实
学习新知
巩固新知
总结提升
柱体 简单几何 体的体积 锥体
V柱 =Sh
1 V锥 = Sh 3 1 V台 = (S+ S S' +S’ )h 3
一底面为零
台体
柱体、椎体、台体的表面积
S 2 r (r
【计算公式】
圆台表面积
S (r r r l rl )
2 2
棱柱、棱锥表面积 各面积之和,由于各面均为三角形,四边形,五 边形等等,所以在这里就不以公式形式列出.
柱体、椎体、台体的表面积
2r)×4=24π(cm2)
柱体、椎体、台体的表面积
【变形训练】 圆锥的底面半径为5 cm,高为12 cm,当它的 内接圆柱的底面半径为何值时,圆锥的内接圆 柱全面积有最大值?最大值是多少? 解:如图SAB是圆锥的轴截面,
其中SO=12,OB=5.设圆锥内
接圆柱底面半径为O1C=x,由
△SO1C∽△SOB,
知识点柱体椎体台体的表面积柱体椎体台体的表面积计算公式圆柱圆锥表面积2srrlsrrl柱体椎体台体的表面积计算公式圆台表面积22srrrlrl棱柱棱锥表面积各面积之和由于各面均为三角形四边形五边形等等所以在这里就不以公式形式列出
柱体、椎体、台体 的表面积
知识点——
柱体、椎体、台体的表面积
【计算公式】 圆柱,圆锥表面积
SO1 SO SO 12 , SO1 O1C x, 则 O1C OB OB 5
柱体、椎体、台体的表面积
【变形训练】
12 x ,则圆柱的 ∴OO1=SO-SO1=12- 5 12 x ) x+ 全面积S=S侧+2S底=2π(12- 5 7
2πx2=2π(12x-
5 30 360 cm2. 当x= cm时,S取到最大值 7 7 x ).
【典型例题】
3、已知圆台的母线长为4 cm,母线与轴的夹角 1 为30°,上底面半径是下底面半径的 ,求这 2 个圆台的侧面积. 解:如图是将圆台还原为圆锥 后的轴截面, 由题意知AC=4 cm, ∠ASO=30°, 1 O1C= OA,
柱体、锥体、台体的表面积与体积(附答案)
柱体、锥体、台体的表面积与体积[学习目标] 1.通过对柱、锥、台体的研究,掌握柱、锥、台体的表面积的求法.2.了解柱、锥、台体的表面积和体积计算公式;能运用柱、锥、台的表面积和体积公式进行计算和解决有关实际问题.知识点一 多面体的表面积多面体的表面积就是各个面的面积的和,也就是展开图的面积. 知识点二 旋转体的表面积思考 求圆柱、圆锥、圆台的表面积时,要求的关键量是什么?答 求圆柱、圆锥的表面积时,关键是求其母线长与底面的半径;求圆台的表面积时,关键是求其母线长与上、下底面的半径. 知识点三 体积公式1.柱体:柱体的底面面积为S ,高为h ,则V =Sh .2.锥体:锥体的底面面积为S ,高为h ,则V =13Sh .3.台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V 3思考 简单组合体分割成几个几何体,其表面积如何变化?其体积呢? 答 表面积变大了,体积不变.题型一 空间几何体的表面积例1 圆台的母线长为8 cm ,母线与底面成60°角,轴截面两条对角线互相垂直,求圆台的表面积.解 如图所示的是圆台的轴截面ABB 1A 1,其中∠A 1AB =60°,过A 1作A 1H ⊥AB 于H ,则O 1O =A 1H =A 1A ·sin 60°=43(cm), AH =A 1A ·cos 60°=4(cm), 即r 2-r 1=AH =4.① 设A 1B 与AB 1的交点为M , 则A 1M =B 1M . 又∵A 1B ⊥AB 1,∴∠A 1MO 1=∠B 1MO 1=45°. ∴O 1M =O 1A 1=r 1. 同理OM =OA =r 2.∴O 1O =O 1M +OM =r 1+r 2=43,② 由①②可得r 1=2(3-1),r 2=2(3+1).∴S 表=πr 21+πr 22+π(r 1+r 2)l =32(1+3)π(cm 2).跟踪训练1 已知棱长为a ,各面均为等边三角形的四面体SABC (即正四面体SABC ),求其表面积.解 由于四面体SABC 的四个面是全等的等边三角形, 所以四面体的表面积等于其中任何一个面面积的4倍. 先求△SBC 的面积,过点S 作SD ⊥BC ,交BC 于点D ,如图所示.因为BC =a ,SD =SB 2-BD 2=a 2-⎝⎛⎭⎫a 22=32a ,所以S △SBC =12BC ·SD =12a ×32a =34a 2.因此,四面体SABC 的表面积为S =4×34a 2=3a 2.题型二 空间几何体的体积例2 在Rt △ABC 中,AB =3,BC =4,∠ABC =90°,把△ABC 绕其斜边AC 所在的直线旋转一周后,所形成的几何体的体积是多少?解 如图所示,两个圆锥的底面半径为斜边上的高BD , 且BD =AB ·BC AC =125,两个圆锥的高分别为AD 和DC , 所以V =V 1+V 2=13πBD 2·AD +13πBD 2·CD=13πBD 2·(AD +CD )=13πBD 2·AC =13π×⎝⎛⎭⎫1252×5=485π. 故所形成的几何体的体积是485π. 跟踪训练2 如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,求A 到平面A 1BD 的距离d .解 在三棱锥A 1-ABD 中,AA 1⊥平面ABD ,AB =AD =AA 1=a , A 1B =BD =A 1D =2a , ∵11--=,A ABD A A BD V V∴13×12a 2·a =13×12×2a ×32·2a ·d . ∴d =33a .∴A 到平面A 1BD 的距离为33a . 题型三 与三视图有关的表面积、体积问题例3 (1)某几何体的三视图如图所示(单位:cm),则该几何体的表面积等于( ) A.8π cm 2 B.7π cm 2 C.(5+3)π cm 2D.6π cm 2(2)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.答案 (1)B (2)6+π解析 (1)此几何体是由一个底面半径为1,高为2的圆柱与一个底面半径为1,母线长为2的圆锥组合而成的,故S 表=S 圆柱侧+S 圆锥侧+S 底=2π×1×2+π×1×2+π×12=7π. (2)由三视图可知该几何体是组合体.下面是长方体,长、宽、高分别为3,2,1;上面是一个圆锥,底面圆半径为1,高为3,所以该几何体的体积为3×2×1+13π×12×3=(6+π) m 3.跟踪训练3 某几何体的三视图如图所示,则该几何体的体积是________.答案 16π-16解析 由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,故题中几何体的体积为16π-16.分割转化求体积例4 如图所示,已知ABCD -A 1B 1C 1D 1是棱长为a 的正方体,E ,F 分别为AA 1,CC 1的中点,求四棱锥A 1-EBFD 1的体积.分析 本题若直接求解较为困难,这里利用“割”的思想,将四棱锥的体积转化为两个等底的三棱锥的体积之和,从而简化求解步骤. 解 因为EB =BF =FD 1=D 1E = a 2+⎝⎛⎭⎫a 22=52a ,D 1F ∥EB ,所以四边形EBFD 1是菱形. 连接EF ,则△EFB ≌△EFD 1.易知三棱锥A 1-EFB 与三棱锥A 1-EFD 1的高相等, 故111122---==.A EBFD A EFB F EBA V V V 又因为1∆EBA S =12EA 1·AB =14a 2,则1-F EBA V =112a 3,所以111122---==A EBFD A EFB F EBA V V V =16a 3.圆柱体积的求解例5 把长、宽分别为4,2的矩形卷成一个圆柱的侧面,求这个圆柱的体积. 分析 利用底面的周长,求得底面半径,利用圆柱的体积公式求解. 解 设圆柱的底面半径为r ,母线长为l ,高为h .如图①所示,当2πr =4,l =2时,r =2π,h =l =2,所以V 圆柱=πr 2h =8π;如图②所示,当2πr =2,l =4时,r =1π,h =l =4;所以,此时V 圆柱=πr 2h =4π.1.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比是( ) A.1+2π2π B.1+2π4π C.1+2ππ D.1+4π2π2.如图,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,则该几何体的体积为( )A.5πB.6πC.20πD.10π3.一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积为( )A.12πB.18πC.24πD.36π4.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.5.如图,在上、下底面对应边的比为1∶2的三棱台中,过上底面一边作一个平行于棱CC 1的平面A 1B 1EF ,这个平面分三棱台成两部分,这两部分的体积之比为________.一、选择题1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( ) A.4π B.3π C.2π D.π2.已知高为3的直棱柱ABC -A 1B 1C 1的底面是边长为1的正三角形,则三棱锥B 1-ABC 的体积为( ) A.14 B.12C.36D.343.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的表面积是( ) A.3π B.33π C.2π D.9π4.在一个长方体中,过一个顶点的三条棱长的比是1∶2∶3,它的体对角线长是214,则这个长方体的体积是( ) A.6 B.12 C.24 D.485.一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+ 3B.18+3C.21D.186.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积是( )A.54B.54πC.58D.58π7.某三棱锥的三视图如图所示,则该三棱锥的体积是( )A.16B.13C.23D.1二、填空题8.一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和正三角形,则它们的表面积之比为________.9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.10.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.11.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________. 三、解答题12.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形. (1)求该几何体的体积V ;(2)求该几何体的侧面积S .13.已知底面半径为 3 cm ,母线长为 6 cm 的圆柱,挖去一个以圆柱上底面圆心为顶点,下底面为底面的圆锥,求所得几何体的表面积及体积.当堂检测答案1.答案 A解析 设底面圆半径为r ,母线长为h ,∴h =2πr ,则S 表S 侧=2πr 2+2πrh 2πrh =r +h h =r +2πr 2πr =1+2π2π.2.答案 D解析 用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π. 3.答案 C解析 由三视图知该几何体为圆锥,底面半径r =3,母线l =5,∴S 表=πrl +πr 2=24π.故选C. 4.答案 12解析 设正六棱锥的高为h ,侧面的斜高为h ′.由题意,得13×6×12×2×2×32×h =23,∴h =1.∴斜高h ′=12+⎝⎛⎭⎫2×322=2,∴S 侧=6×12×2×2=12.5.答案 3∶4(或4∶3)解析 设三棱台的上底面面积为S 0,则下底面面积为4S 0,111-A B C ABC V 三棱柱=S 0h .111-ABC A B C V 三棱台=73S 0h .设剩余的几何体的体积为V , 则V =73S 0h -S 0h =43S 0h ,体积之比为3∶4或4∶3.课时精练答案一、选择题 1.答案 C解析 底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.故选C. 2.答案 D 解析 S 底=12×1×1-⎝⎛⎭⎫122=34,所以1B ABC V -三棱锥=13S 底·h =13×34×3=34.3.答案 A解析 设圆锥底面的半径为R ,则由12×2R ×3R =3,得R =1.所以S圆锥表=πRl +πR 2=π×1×2+π=3π. 4.答案 D解析 设长方体的三条棱长分别为a,2a,3a ,那么a 2+(2a )2+(3a )2=214.解得a =2,长方体的体积为V =2×4×6=48. 5.答案 A解析 由三视图可知,该多面体为一个边长为2的正方体在左下角与右上角各切去一个三棱锥,因此该多面体的表面积为6×⎝⎛⎫4-12+12×2×62×2=21+ 3. 6.答案 A解析 设上底面半径为r ,则由题意求得下底面半径为3r ,设圆台高为h 1,则52=13πh 1(r 2+9r 2+3r ·r ),∴πr 2h 1=12.令原圆锥的高为h ,由相似知识得r 3r =h -h 1h ,∴h =32h 1,∴V 原圆锥=13π(3r )2×h =3πr 2×32h 1=92×12=54.7.答案 B解析 如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,故其体积V =13×12×1×1×2=13,故选B. 二、填空题 8.答案 2∶1解析 S 圆柱=2·π⎝⎛⎭⎫a 22+2π·a 2·a =32πa 2, S 圆锥=π⎝⎛⎭⎫a 22+π·a 2·a =34πa 2, ∴S 圆柱∶S 圆锥=2∶1. 9.答案7解析 设新的底面半径为r ,则有13×πr 2×4+πr 2×8=13×π×52×4+π×22×8,解得r =7.10.答案 83π11 解析 由三视图可知原几何体是由两个圆锥和一个圆柱组成的,它们有共同的底面,且底面半径为1,圆柱的高为2,每个圆锥的高均为1,所以体积为2×13π×12×1+π×12×2=8π3(m 3). 11.答案 32解析 设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2.由S 1S 2=94,得πr 21πr 22=94,∴r 1r 2=32. 由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2.∴V 1V 2=πr 21h 1πr 22h 2=r 1r 2=32. 三、解答题12.解 由已知可得该几何体是一个底面为矩形、高为4、顶点在底面的投影是矩形中心的四棱锥V -ABCD .(1)V =13×(8×6)×4=64. (2)该四棱锥的两个侧面VAD ,VBC 是全等的等腰三角形,且BC 边上的高为h 1= 42+⎝⎛⎭⎫822=42,另两个侧面VAB ,VCD 也是全等的等腰三角形,AB 边上的高为h 2= 42+⎝⎛⎭⎫622=5.因此S 侧=2⎝⎛⎭⎫12×6×42+12×8×5=40+24 2. 13.解 作轴截面如图,设挖去的圆锥的母线长为l ,底面半径为r ,则l =(6)2+(3)2=9=3(cm).故几何体的表面积为S =πrl +πr 2+2πr ·AD=π×3×3+π×(3)2+2π×3× 6=33π+3π+62π =(33+3+62)π(cm 2).几何体的体积为V =V 圆柱-V 圆锥=π·r 2·AD -13πr 2AD =π×3×6-13×π×3× 6 =26π(cm 3).。
柱体、锥体和台体的表面积的计算
台体的表面积
定义和特点
台体是由两个平行的圆形底 面和它们之间的侧面组成的 立体。
表面积计算公式
台体的表面积 = π(R + r)l + πR² + πr²,其中 R 是上底圆 的半径,r 是下底圆的半径, l 是台体的斜高。
示例
如果台体的上底圆半径为 4 米,下底圆半径为 3 米,斜 高为 6 米,则表面积为 191.03 平方米。
使用公式计算表面积的注意事项
1 单位一致
确保所有的尺寸都使用同 一种单位(如米、厘米) 进行计算和输入。
2 精确度
在计算过程中保持足够的 精确度,以避免计算结果 的误差。
3 要素考虑
根据不同几何体的表面积 计算公式,确保将所有必 要的参数(如底面半径、 高度、斜高)全部考虑进 去。
表面积计算应用举例
柱体、锥体和台体的表面 积的计算
欢迎来到本次演讲,我们将深入探讨柱体、锥体和台体的表面积计算方法以 及它们的定义和特点。
柱体的表面积
1 定义和特点
柱体是一个横截面为圆形的立体,表面由两个圆和一个侧面组成。
2 表面积计算公式
柱体的表面积 = 2πr² + 2πrh,其中 r 是底面圆的半径,h 是柱体的高度。
3 示例
如果柱体的半径为 3 米,高度为 5 米,则表面积为 94.25 平方米。
锥体的表面积
定义和特点
锥体是一个横截面为圆形且垂直 于底面的立体,表面由一个底面 圆和一个侧面组成。
表面积计算公式
锥体的表面积 = πr² + πrl,其中 r 是底面圆的半径,l 是锥体的斜 高。
示例
如果锥体的底面半径为 4 米,斜 高为 5 米,则表面积为 94.97 平 方米。
【高中数学】柱、锥、台的表面积与体积
S (r'2 r2 r'l rl)
x 2r'
r ' O’
2r
l
rO
r' x
r xl
rx r' x r'l
S侧 r(l x) r' x (rl rx r' x)
(r'l rl)
圆柱、圆锥、圆台的表面积公式之间有什么 关系?
r O
r 'O’
上底扩大
l
l 上底缩小
解:六角螺帽的体积是六棱柱 的体积与圆柱体积之差,即:
V 3 122 610 3.14 (10 )2 10
4
2
2956 (mm3)
2.956 (cm3)
例1: 一个几何体的三视图及相关尺寸如图所示:
正视图
2cm
侧视图
2 cm
2cm
俯视图
这个几何体是 _正_四__棱_锥__,
它的表面积是 _________,
直,侧棱长为 2cm ,求:
(1) 此棱锥的体积V; (2) 点S到底面ABC的距离。
V = V S-ABC
B-SAC
= VA-SBC
A
= VC-SAB
S
C O
B
【总一总★成竹在胸】
1.柱体、椎体、台体的表面积公式; 2.柱体、椎体、台体的体积公式; 3.台体与柱体和椎体之间的转换关系.
一、棱柱、棱锥、棱台的展开图及表面积的求法:
在初中学过正方体和长方体的表面积以及展开图, 正方体和长方体的展开图与其表面积的关系吗?
几何体表面积
展开图 平面图形面积
空间问题
平面问题
探究:棱柱、棱锥、棱台也是由多个平 面图形围成的多面体,它们的展开图是 什么?如何计算它们的表面积?
:1.3.1.1柱体、椎体、台体的表面积
(2)面积:台体的表面积 S 表=S 侧+S 上底+S 下底.特别地,圆台的上、下 底面半径分别为 r',r,母线长为 l,则侧面积 S 侧=π(r+r')l,表面积 S 表 =π(r2+r'2+rl+r'l).
【检测 3】 圆台的上、下底面半径分别是 3 和 4,母线长为 6,
则其表面积等于( )
底面积:S 底=πr2 侧面积:S 侧=2πrl 表面积:S=2πr(r+l)
底面积:S 底=πr2 侧面积:S 侧=πrl 表面积:S=πr(r+l)
上底面面积:������上底=πr'2 下底面面积:������下底=πr2
侧面积:S 侧=πr'l+πrl 表面积:S=π(r'2+r2+r'l+rl)
求组合体的表面积时,通常先将所给组合体分成基本的柱、锥、
台体,再通过这些基本的柱、锥、台体的表面积,进行求和或作差,从 而获得组合体的表面积.本题中将组合体的表面积表达为正方体的 表面积与圆柱侧面积的和是非常有创意的想法,如果忽略正方体没 有被打透这一点,思考就会变得复杂,当然结果也会是错误的.
题型二
A.72
B.42π
C.67π
D.72π
小结:本节课你学到什么?
多面体的展开 图及其表面积
公式
圆锥的侧 面展开图 及其侧面、 表面积公
式
圆柱的侧 面展开图 及侧面、 表面积公
式
圆台的侧 面展开图 及其侧面、 表面积公
式
图形 多面体
表面积公式
多面体的表面积就是各个面 的面积的和,也就是多面体展开图 的面积
高三数学教案 柱体、椎体、台体的表面积与体积公式推导过程
柱体、椎体、台体的表面积与体积
•侧面积和全面积的定义:
(1)侧面积的定义:把柱、锥、台的侧面沿着它们的一条侧棱或母线剪开,所得到的
展开图的面积,就是空间几何体的侧面积.
(2)全面积的定义:空间几何体的侧面积与底面积的和叫做空间几何体的全面积,
柱体、锥体、台体的表面积公式(c为底面周长,h为高,h′为斜高,l为母线)
柱体、锥体、台体的体积公式:
•多面体的侧面积与体积:
直棱柱的侧面展开图是矩形
棱
柱
棱锥正棱柱的侧面展开图是一些全等的等腰三角形,
棱台正棱台的侧面展开图是一些全等的等腰梯形,
•旋转体的侧面积和体积:
圆
柱
圆柱的侧面展开图的矩形:
圆
锥
圆锥的侧面展开图是扇形:
圆台的侧面展开图是扇环:圆
台
球
•。
2023年高考数学二轮复习第一部分专题攻略专题四立体几何第一讲空间几何体的表面积与体积
专题四 立体几何第一讲 空间几何体的表面积与体积——小题备考微专题1 空间几何体的表面积和体积常考常用结论1.柱体、锥体、台体、球的表面积公式: ①圆柱的表面积S =2πr (r +l ); ②圆锥的表面积 S =πr (r +l );③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ④球的表面积S =4πR 2.2.柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 球=43πR 3.保 分 题1.[2022·山东枣庄三模]若圆锥的母线长为2,侧面积为2π,则其体积为( ) A .√6π B .√3π C .√63π D .√33π2.[2022·河北保定一模]圆柱的底面直径与高都等于球的直径,则球的表面积与圆柱的侧面积的比值为( )A .1∶1B .1∶2C .2∶1D .2∶33.[2022·湖北武汉二模]如图,在棱长为2的正方体中,以其各面中心为顶点构成的多面体为正八面体,则该正八面体的体积为( )A .2√23B .43 C .4√23D .83提分题例1 (1)[2022·河北张家口三模]如图,在三棱柱ABC A1B1C1中,过A1B1的截面与AC交于点D,与BC交于点E,该截面将三棱柱分成体积相等的两部分,则CDAC=()A.13B.12C.2−√32D.√3−12(2)[2022·湖南雅礼中学二模]某圆锥高为1,底面半径为√3,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为()A.2 B.√3C.√2D.1听课笔记:【技法领悟】1.求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.2.求不规则几何体的体积,常用分割或补形的方法,将不规则几何体转化为规则几何体,易于求解.巩固训练11.[2022·山东菏泽一模]如图1,在高为h的直三棱柱容器ABC A1B1C1中,AB=AC=2,AB⊥AC.现往该容器内灌进一些水,水深为2,然后固定容器底面的一边AB于地面上,再将容器倾斜,当倾斜到某一位置时,水面恰好为A 1B 1C (如图2),则容器的高h 为( )A .3B .4C .4√2D .62.[2022·福建福州三模]已知AB ,CD 分别是圆柱上、下底面圆的直径,且AB ⊥CD ,O 1,O 分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A BCD 的体积为18,则该圆柱的侧面积为( )A .9πB .12πC .16πD .18π微专题2 与球有关的切、接问题常考常用结论1.球的表面积S =4πR 2,体积V =43πR 3.2.长方体、正方体的体对角线等于其外接球的直径. 3.n 面体的表面积为S ,体积为V ,则内切球的半径r =3VS .4.直三棱柱的外接球半径:R =√r 2+(L2)2,其中r 为底面三角形的外接圆半径,L 为侧棱长,如果直三棱柱有内切球,则内切球半径R ′=L2.5.正四面体中,外接球和内切球的球心重合,且球心在高对应的线段上,它是高的四等分点,球心到顶点的距离为外接球的半径R =√64a (a 为正四面体的棱长),球心到底面的距离为内切球的半径r =√612a ,因此R ∶r =3∶1.保 分 题1.[2022·广东深圳二模]已知一个球的表面积在数值上是它的体积的√3倍,则这个球的半径是( )A .2B .√2C .3D .√32.已知正四棱锥P ABCD 中,AB =√6,P A =2√3,则该棱锥外接球的体积为( )A.4π B.32π3C.16π D.16π33.[2022·天津红桥一模]一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1、√2、3,则此球的体积为________.提分题例2 (1)[2022·江苏苏州三模]《九章算术》卷第五《商功》中,有“贾令刍童,上广一尺,袤二尺,下广三尺,袤四尺,高一尺.”,意思是:“假设一个刍童,上底面宽1尺,长2尺;下底面宽3尺,长4尺,高1尺.”(注:刍童为上下底面为相互平行的不相似长方形,两底面的中心连线与底面垂直的几何体),若该几何体所有顶点在一球体的表面上,则该球体的体积为()立方尺A.√41πB.41π3D.3√41πC.41√41π6(2)[2022·山东泰安三模]如图,已知三棱柱ABC A1B1C1的底面是等腰直角三角形,AA1⊥底面ABC,AC=BC=2,AA1=4,点D在上底面A1B1C1(包括边界)上运动,则三棱锥D ABC 的外接球表面积的最大值为()π B.24πA.814C.243π D.8√6π16听课笔记:【技法领悟】1.确定球心的位置,弄清球的半径(直径)与几何体的位置和数量关系.2.求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.3.补成正方体、长方体、正四面体、正棱柱、圆柱等规则几何体.巩固训练21.已知圆柱的轴截面为正方形,其外接球为球O,球O的表面积为8π,则该圆柱的体积为()A.√22π B.√2πC.2π D.2√2π2.[2022·广东潮州二模]已知△ABC是边长为3的等边三角形,三棱锥P ABC全部顶点都在表面积为16π的球O的球面上,则三棱锥P ABC的体积的最大值为()A.√3B.3√32C.9√34D.√32专题四 立体几何第一讲 空间几何体的表面积与体积微专题1 空间几何体的表面积和体积保分题1.解析:设圆锥的底面半径为r ,高为h ,则πr ×2=2π,可得r =1,则h =√22−r 2=√3,因此,该圆锥的体积为V =13πr 2h =13π×12×√3=√33π. 答案:D2.解析:设球的半径为r ,依题意圆柱的底面半径也是r ,高是2r , 圆柱的侧面积=2πr ·2r =4πr 2 ,球的表面积为4πr 2 , 其比例为1∶1. 答案:A3.解析:该正八面体是由两个同底的正四棱锥组成,且正四棱锥的底面是边长为√2的正方形,棱锥的高为1,所以该正八面体的体积为2×13×√2×√2×1=43.答案:B提分题[例1] 解析:(1)由题可知平面A 1B 1ED 与棱柱上、下底面分别交于A 1B 1,ED , 则A 1B 1∥ED ,ED ∥AB , 显然CDE - C 1A 1B 1是三棱台,设△ABC 的面积为1,△CDE 的面积为S ,三棱柱的高为h , ∴12·1·h =13h (1+S +√S ), 解得√S =√3−12,由△CDE ∽△CAB ,可得CD AC =√S√1=√3−12. (2)如图,截面为△P AB ,设C 为AB 中点,设OC =x ,x ∈[0,√3),则AB =2√3−x 2,PC =√x 2+1,则截面面积S =12×2√3−x 2×√x 2+1=√−(x 2−1)2+4,则当x 2=1时,截面面积取得最大值为2. 答案:(1)D (2)A[巩固训练1]1.解析:在图1中V 水=12×2×2×2=4,在图2中,V 水=V ABC − A 1B 1C 1− V C − A 1B 1C 1=12×2×2×h -13×12×2×2×h =43h , ∴43h =4,∴h =3.答案:A2.解析:分别过A ,B 作圆柱的母线AE ,BF ,连接CE ,DE ,CF ,DF ,设圆柱的底面半径为r ,则三棱锥A - BCD 的体积为两个全等四棱锥C - ABFE 减去两个全等三棱锥A - CDE , 即2×13×r ×2r ×r -2×13×r ×12×2r ×r =23r 3=18,则r =3,圆柱的侧面积为2πr ×r =18π答案:D微专题2 与球有关的切、接问题保分题1.解析:设球的半径为R ,则根据球的表面积公式和体积公式, 可得,4πR 2=43πR 3×√3,化简得R =√3. 答案:D2.解析:正方形ABCD 的对角线长√6+6=2√3,正四棱锥的高为 √(2√3)2−(2√32)2=3,设外接球的半径为R ,则(3-R )2+(2√32)2=R 2⇒R =2, 所以外接球的体积为4π3×23=32π3.答案:B3.解析:长方体外接球的直径为√12+(√2)2+32=2√3,所以外接球半径为√3,所以球的体积为4π3×(√3)3=4√3π.答案:4√3π提分题[例2] 解析:(1)作出图象如图所示:由已知得球心在几何体的外部, 设球心到几何体下底面的距离为x , 则R 2=x 2+(52)2=(x +1)2+(√52)2,解得x =2,∴R 2=414, ∴该球体的体积V =4π3×(√412)3=41√41π6.(2)因为△ABC 为等腰直角三角形,AC =BC =2,所以△ABC 的外接圆的圆心为AB 的中点O 1, 且AO 1=√2,连接O 1与A 1B 1的中点E ,则O 1E ∥AA 1,所以O 1E ⊥平面ABC , 设球的球心为O ,由球的截面性质可得O 在O 1E 上, 设OO 1=x ,DE =t (0≤t ≤√2),半径为R , 因为OA =OD =R ,所以√2+x 2=√(4−x )2+t 2, 所以t 2=8x -14,又0≤t ≤√2, 所以74≤x ≤2,因为R 2=2+x 2,所以8116≤R 2≤6,所以三棱锥D -ABC 的外接球表面积的最大值为24π. 答案:(1)C (2)B [巩固训练2]1.解析:设外接球的半径为R ,圆柱底面圆的半径为r ,因为圆柱的轴截面为正方形,所以圆柱的高h =2r ,由球O 的表面积S =4πR 2=8π,得R =√2,又R = √(h2)2+r 2=√2r ,得r =1,所以圆柱的体积V =πr 2·2r =2πr 3=2π.答案:C2.解析:球O 的半径为R ,则4πR 2=16π,解得:R =2,由已知可得:S △ABC =√34×32=9√34,其中AE =23AD =√3,球心O 到平面ABC 的距离为√R 2−(√3)2=1, 故三棱锥P - ABC 的高的最大值为3, 体积最大值为13S △ABC ·3=9√34.答案:C。
1.3柱、锥、台的表面积与体积
10cm
15cm 7.5cm
圆柱、圆锥、圆台的表面积公式之间的关系
r 'O’
l
上底扩大
r
O
l
上底缩小
l
OHale Waihona Puke '2r O
r
'
O
S (r r r l rl )
2
r/=r
S 2 r 2 2 rl 2 r (r l )
r/=0
S r 2 rl r (r l )
2
球的表面积 S 4R
球的体积
4 3 定理:半径是 R的球的体积为: V R 3
球的表面积
定理:半径是R的球的表面积为:S 4R
2
影响球的表面积及体积的只有一个元素,就是球的半径.
随堂练习
(1)若球的表面积变为原来的2倍,则半径变为原来的 2 倍. (2)若球半径变为原来的2倍,则表面积变为原来的
4 倍.
S r rl r (r l )
2
r
O
2r'
r ' O’
l
2r
S圆台侧=S扇环=(r r )l
/
r
O
S ( r r r l rl )
'2 2 '
典型例题
例2 如下图, 一个圆台形花盆直径为 20cm, 盆底 直径为15cm, 底部渗水圆孔直径为 1.5cm, 盆壁长 15cm.那么花盆的表面积约是 多少平方厘米( 取 3.14, 结果精确到 1cm) ?
S ABC ,则它的
3 2 a 4 ①底面积为_______,
S
3 3 2 a 4 ②侧面积为_______,
柱体锥体台体的表面积与体积
侧面积表面积03表面积01平截面02斜截面平截面$n\pi r^{2}h$斜截面$\frac{1}{3}\pi rh^{2}$体积$n\pi r^{2}h + \frac{2}{3}\pi rh^{2}$底面积侧面积表面积侧面积表面积底面积1 2 3体积公式适用范围注意事项体积公式01适用范围02注意事项03圆台表面积计算公式$S$$r$$l$圆台的表面积圆锥台表面积计算公式$S=1/2l(r₁+r₂)+πr ₁r₂$圆锥台表面积圆锥台母线长度圆锥台底面半径圆锥台顶面半径$S$$r₁$$r₂$$l$圆锥台的表面积$V$:圆台体积$r ₂$:圆台底面半径圆台体积计算公式:²+r ₂²)$$:圆台顶面半径010203040506圆台的体积圆锥台体积计算公式$V$$h$$r$ $r₁$ $l$圆锥台的体积圆柱的表面积圆柱的侧面积加上上下底面的面积,公式为$2\p i r h+2\p i r^{2}$,其中$r$为底面半径,$h$为高。
体积为底面积乘高,公式为$\pi r^{2}h$。
圆锥的表面积圆锥的侧面积加上底面的面积,公式为$\pi rl + \pi r^{2}$,其中$r$为底面半径,$l$为母线长。
体积为$\frac{1}{3}\pi r^{2}h$,其中$h$为高。
圆台的表面积圆台的侧面积加上两个圆底面的面积,公式为$\pi(r_{1}+r_{2})l +\pi r_{1}^{2} + \pi r_{2}^{2}$,其中$r_{1}$、$r_{2}$分别为圆台的上下底面半径,$l$为圆台的母线长。
体积为$\frac{1}{3}\pih(r_{1}^{2}+r_{2}^{2}+r_{1}r_{2})$,其中$h$为高。
旋转体的表面积与体积平行投影柱体锥体台体的表面积与体积平行投影柱体的表面积平行投影台体的表面积组合体的表面积组合体的体积组合体的表面积与体积面积和体积的计算有助于了解其特性。
柱,锥,台的体积及球的表面积和体积
[例2] 如图,圆柱的底面直径与高
都等于球的直径.
求证:(1) 球的
体积等于圆柱体积
的 2;
O
3
(2) 球] 如图,圆柱的底面直径与高
都等于球的直径.
***补例*** 1. 若圆台的高是3,一个底面半径
是另一个底面半径的2倍,母线与下底 面所成的角是45°,求这个圆台的侧 面积.
***补例***
2. 如图,一块正方形薄铁片的边长
为22cm,以它的一 个顶点为圆心,一
22cm
边长为半径画弧.沿
弧剪下一扇形,围
成一锥筒.求它的侧面积和体积.
1
V锥 3 sh V台 3 h(s s' ss')
1 V锥 3 sh
s'=0
1 V台体 3 h(s s' ss')
V柱 sh
s'=s
V圆锥
1 3
R2h
r=0
V圆台
1 3
h(r 2
R
R2
)
V圆柱 R2h
r=R
三、 球的表面积、体积公式
S球表 4R2
V球
4 R3
3
典型例题 [例1] 有一堆规格相同的铁制六角
1、多面体的表面积公式是什么?
S多面体表 底面面积 侧面面积
2、圆柱体的表面积公式是什么?
S圆柱表 2 r(r l)
3、圆锥体的表面积公式是什么?
S圆锥表 r(r l)
4、圆台的表面积公式是什么?
S圆台表(r'2 r2 r'l rl)
柱、锥、台表面积体积公式
圆柱体体积公式
圆柱体体积公式
$V = pi r^{2}h$
解释
其中,$V$表示圆柱体的体积,$pi$是圆周率,$r$是底面圆的半径,$h$是圆柱的高。
棱柱体表面积公式
棱柱体表面积公式
根据棱柱的形状和尺寸有所不同,需 要具体问题具体分析。
解释
棱柱体的表面积由底面和顶面的面积 以及侧面的面积组成,具体计算方法 需要根据棱柱的具体形状和尺寸来确 定。
03
台体表面积体积公式
圆台体表面积公式
总结词
圆台体表面积公式是计算圆台侧面积和两个底面积的总和。
详细描述
圆台体表面积公式为 S = π * (r1 + r2) * l,其中 r1 和 r2 分别为圆台上下底面的半径, l 为圆台母线长度。
圆台体体积公式
总结词
圆台体体积公式是计算圆台所占三维空间的 大小。
物理学
在计算物体之间的相互作用力、热传导、电磁波的传播等物理现象 时,需要使用表面积和体积公式来描述物体的大小和形状。
化学工程
在化学工程领域,表面积和体积的计算对于反应器设计、传热传质计 算等方面具有重要意义。
表面积和体积公式的推导过程
要点一
柱体
柱体的表面积由底面和侧面组成,侧面 面积是高乘以底面周长,底面周长是 2πr(r为底面半径),所以侧面面积 是2πrh(h为高),底面面积是πr^2, 所以柱体表面积是2πrh+πr^2,体积 是底面积乘以高,即πr^2h。
棱台体体积公式
总结词
棱台体体积公式是计算棱台所占三维空间的 大小。
详细描述
棱台体体积公式为 V = (1/3) * (a1 + a2) * l * h,其中 a1 和 a2 分别为棱台上下底面的边
空间几何体的表面积与体积公式大全
外接球的半径
4
(3)规律:
:u 正四而体
=3 品 兀:2
① 正四面体的内切球与外接球的球心为同一点;
② 正四面体的内切球与外接球的球心在高线上;
③ 正四面体的内切球与外接球的的半径之和等于高;
④ 正四面体的内切球与外接球的半径之比等于 1: 3
⑤ 正四面体内切球与外接球体积之比为:1: 27
(2)外接球
正方体与其体内最大的正四而体有相同的外接球。(理由:过不共面的
四点确定一个球。)正方体与其体内最大的正面体有四个公共顶点。所 以它们共球。
回顾:①两点定线②三点定面③三点定圆④四点定球
如图:
(a) 正方体的体对角线=球直径 (b) 正四面体的外接球半径二?高
4
(C)正四面体的棱长=正方体棱长 X 72 (d) 正方体体积:正四面体体积=3: 1 (e) 正方体外接球半径与
1
方法 1:展平分析:(最重要的方法) 如图:取立体图形中的关键平面图形进行分析!
/ Ft''、、 /』)''、、、
连接 DO 并延长交平面 ABC 于点 G,连接 GO, /
X:;盖]
连接 DO,并延长交 BC 于点 E,则 A、G、E B 笔共线< J A —c 在平面 AED 中,由相似
知识可得:
成正方体进行分析。如图:
1 文档来源为:从网络收集整理.word 版本可编借.
文档收集于互联网,已重新整理排版 word 版本可编辑•欢迎下载支持. 此时,正四面体与正方体有共同的外接球。
正四面体的棱长为“,则正方体棱长
正方体的外接球直径为其体对角线 D 亠嗨号
•••正四面体的外接球半径为: 2=也
柱体、椎体、台体的表面积与体积
A’
1
A
A’
A’
3
C’
2 B’
B’
C 三棱锥1、2的底
C
C
△ABA’、△B’A’B
的面积相等。
B
B
A’
A’ A’ A’ A’ A’ A’ A’ A’ A’
高
3
C’
2
2B’
B’
2
2 B’2B’
B’
2
B’
2
2B’2 B’ B’
1
A
C
C C C C C C C CC
三棱锥B2、3的B底B△BBCB’B 、B △BC’BB’BC的B 面积相等。 高也相等(顶点都是A’)。
圆柱的侧面展开图是矩形
S圆柱表面积 2r 2 2rl 2r(r l )
圆锥的表面积
2r
l r
圆锥的侧面展开图是扇形
S圆锥表面积 r 2 rl r(r l)
圆台的表面积
r'
l
r
圆台的侧面展开图是扇环
S圆台表面积 (r2 r 2 rl rl )
圆柱、圆锥、圆台表面积
V球 = 4 R3 3
例4、如图,圆柱的底面直径与高都等于球的直径, 求证:(1)球的表面积等于圆柱的侧面积.
(2)球的表面积等于圆柱全面积的三分之二.
证明: (1)设球的半径为R, 则圆柱的底面半径为R,高为2R.
得: S球 4R2
RO
S圆柱侧 2R 2R 4R2
S球 S圆柱侧
(2)
A’
C’
把三棱锥
B’
以△ABC为
底面、AA1
为侧棱补
成一个三
A
C 棱柱
B
连接B’C,然后
柱体、锥体、台体的表面积和体积 课件
[知识提炼Байду номын сангаас梳理]
1.棱柱、棱锥、棱台的表面积 棱柱、棱锥、棱台都是由多个平面图形围成的多面 体,因此它们的表面积等于各个面的面积之和,也就是 展开图的面积.
2.圆柱、圆锥、圆台的表面积
底面积:S 底=πr2 圆
侧面积:S 侧=2πrl 柱
表面积:S=2πrl+2πr2 底面积:S 底=πr2 圆 侧面积:S 侧=2πrl 锥 表面积:S=πrl+πr2
所以 r=4.则 h=4. 故圆锥的体积 V 圆锥=13πr2h=634π. 答案:A
[迁移探究 1] (变换条件,改变问法) 将典例 2 中 第(2)题的条件“侧面积是 16 2π”改为“若其体积为 3 π”,求该圆锥的侧面积.
解:设圆锥的底面半径为 r,则高 h=r,母线 l=PB
= 2r.
[变式训练] 圆台的上、下底面半径分别是 10 cm 和 20 cm,它的侧面展开图的扇环的圆心角是 180°,求圆 台的表面积.
解:如图所示,设圆台的上底面周长为 c cm,由于 扇环的圆心角是 180°,则 c=π·SA=2π×10,解得 SA= 20(cm).
同理可得 SB=40(cm), 所以 AB=SB-SA=20(cm). 所以 S 表=S 侧+S 上+S 下= π×(10+20)×20+π×102+π×202= 1 100π(cm2).
2+5 则 S 底= 2 ×4=14,高 h=4. 所以 V 四棱柱=S 底·h=56.
归纳升华 1.求解柱体体积的关键是根据条件找出相应的底面 积和高,对于旋转体要充分利用旋转体的轴截面,将待求 的量转化到轴截面内求. 2.求解锥体体积的关键是明确锥体的底面是什么图 形,特别是三棱锥,哪个三角形作为底面是解题的关键点.
柱体锥体台体的公式大全
柱体锥体台体的公式大全
一、柱体:
柱体是一个由两个平行的、相等的圆形底面和连接两个底面的侧面组成的几何体。
柱体的体积和表面积的公式如下:
1.柱体的体积公式:
V=πr²h
2.柱体的表面积公式:
S=2πr²+2πrh
其中,S代表柱体的表面积,r代表柱体的底面半径,h代表柱体的高度。
二、锥体:
锥体是一个由一个圆形底面和连接底面和顶点的侧面组成的几何体。
锥体的体积和表面积的公式如下:
1.锥体的体积公式:
V=(1/3)πr²h
2.锥体的表面积公式:
S=πr(r+l)
其中,S代表锥体的表面积,r代表锥体的底面半径,l代表锥体的斜高(从顶点到底边的距离)。
三、台体:
台体是一个由两个平行、相等的圆形底面和连接两个底面的侧面以及一个横截面为矩形的侧面组成的几何体。
1.台体的体积公式:
V=(1/3)π(r₁²+r₂²+r₁r₂)h
2.台体的表面积公式:
S=π(r₁+r₂)l+πr₁²+πr₂²
其中,S代表台体的表面积,r₁和r₂分别代表台体的上底半径和下底半径,l代表侧面的斜高。
需要注意的是,以上公式的单位应保持一致,如使用米,则体积的单位为立方米,表面积的单位为平方米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件
正棱 柱、 正棱锥 和正 棱 台的侧 面积公 式之间 的关 系 可用图 表示.
S正棱柱 侧 ch
c`c
S正 棱 台侧 12cc`h`
c` 0
1 S正 棱 锥 侧2ch`
精品课件
例1:已知棱长为a,各面均为等边三角形
有什么关系?
精品课件
圆柱、圆锥、圆台三者的表面积公式 之间的关系。
rO
r’
l 上底=扩大r
O
r 'O’
rO
l r’=0
上底缩小
l rO
S柱2r(rl) S 台 (r2r2rlr)lS锥r(rl)
精品课件
示范例题
例2:(见P25)一圆台形花盆,盆口直径20cm, 盆底直径15cm,底部渗水圆孔直径1.5cm,盆
S圆
台侧
1 2
cl
x
1 2
c`x
1 2
cl
1 2
c
c`x,
其中 ,x为图 1311中小圆锥的.母线
由相似三角形的性质可 知,
r x l,即 c x l,所 c c 以 ` l,
r` x c ` x
c ` x
故 cc`xc`l.
于是 S 圆 1 2 台 c 1 2 d 侧 c ` l 精品1 2 课 c 件 c ` l ,或 S 圆 台 r r ` 侧 l .
22 2
2
1000(cm2)0.1(m2).
涂100个这样的花盘需油漆: 0.1×100×100=1000(毫升). 答:涂100个这样的花盘需油漆 1000毫升.
20cm
15cm
15cm
变式训练:若内外涂,涂100个这样的花盘需 要多少油漆?
精品课件
练习加深:指导学生完成P27页练习第1、2题。
正(长)方体的表面积等于它们的展开图的面积
精品课件
提出问题:柱体,锥体,台体的侧面展开图 是怎样的?你能否计算? 正棱柱的展开图
棱柱的侧面展开图是什么?如何计算它的表面积?
棱柱的
h
表面积
等于它
的侧面
积加底
面积
精品课件
棱锥的展开图
h'
精品课件
h'
棱台的展开图 侧面展开
h' h'
精品课件
棱柱的侧面展开图是由平行四边形组 成的平面图形,棱锥的侧面展开图是 由三角形组成的平面图形,棱台的侧 面展开图是由梯形组成的平面图形。
的四面体S-ABC,求它的表面积.
分析:四面体的表面积等于其中任何一个面面积
的4倍。
S
解:先求△SBC的面积,过点S作
SD⊥BC,交BC于点D. 因为BC=a,
A
SDSB2BD 2a2(a)2 3aB 22
DC
所以:SS C1B C SD 1a3a3a2
2
22 4
因此,四面体的表面积 精品课件
S4 3a2 3a2 4
探究圆台的表面积的求法
2r'
r 'O’
2r
lrOLeabharlann 圆台的侧面展开图是扇环S 圆台 表 (精r 品课件2面 r2 积 rl r)l
练一练:一个圆台,上、下底面半径分别 为10、20,母线与底面的夹角为60°,求 圆台的表面积.
O`
变式:想一想,你能求
O
出切割之前的圆锥的
表面积吗?试试看!
思考:圆柱、圆锥、圆台三者的表面积公式之间
弧长等于圆锥底面的周长c2r,故圆
锥的侧面积为 1
S圆 锥侧2精c品l课件rl.
2r
l rO
圆锥的侧面展开图是扇形
S 圆锥 表 r精2 品课 件面 r 积 lr(r l)
c2r c`2r`
x r` rl
圆 台 侧 面 展 开 图 是 扇 环,其 面
积 为 两 个 扇 形 面 积 之 差 ,即
壁长15cm.. 为美化外表而涂油漆,若每平方米
用100毫升油漆,涂100个这样的花盘要多少油
漆?
(π取3.14,结果精确到1毫升)
20cm
分析、思考:油漆位置在 什么地方?→ 如何求花盆 外壁表面积?
15cm
15cm
精品课件
解:如图,由圆台的表面积公式得一个花盆
外壁的表面积
S[(15)215152015](1.5)2
精品课件
d R
c2r
l r
圆 锥 、 圆 台 侧 面 积 公 式 的 推 导
先 考 察 半R,径 弧为 长d为 的 扇 形 的 面 积
图139. 因 为 弧 长 2R等 的于 扇圆 形 的 面 积 为
R2,所 以 弧 长d的 为扇 形 的 面 积 为 S扇 形 2dRR212Rd.
圆锥侧面展开图是扇形,这 个扇形的半径为圆锥的母线长l,扇形的
r 'l rl )
初中阶段所学的有关公式
矩形面积公式:S ab
三角形面积公式:S 1 a h
2
圆面积公式: S r2
圆周长公式: C2r
扇形面积公式: S 1 r l 2
梯形面积公式:S 1 (a b)h 2
扇环面积公式:S 1(l l ')(rr') 2 精品课件
小结归纳: 多面体的表面积
棱柱 :棱柱的表面积等于它的侧面积加底面积
棱锥:棱锥的表面积等于它的侧面积加底面积
棱台:棱台的表面积等于它的侧面积加底面积
旋转体的表面积
圆柱:见下图
圆锥:见下图
精品课件
S 2 r 2 2 rl S r 2 rl S ( r '2 r 2
2 r(r l) r ( r l ) 精品课件
练习:一个三棱柱的底面是正三角形,边长为4, 侧棱与底面垂直,侧棱长10,求其表面积. 想一想:三棱柱的 展开图是什么?
想一想:如何求圆柱、圆锥、圆台的侧 面积及表面积?
精品课件
探究圆柱的表面积的求法:
rO l
2r
O
圆柱的侧面展开图是矩形
S 圆柱 2 表 r 2 2 面 r 积 l2 r (r l)