4.5建立一次函数模型解决实际问题
4.5 第1课时 利用一次函数解决实际问题 湘教版数学八年级下册课时习题(含答案)
4.5 一次函数的应用第1课时利用一次比例函数解决实际问题要点感知1函数图象由两个一次函数拼接在一起,我们要按照图象实行分段处理,每段看它适合哪种函数模型.预习练习1-1如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费__________元.要点感知2 同一坐标系中若有多条直线,我们要对每条直线进行处理,重在找出这些函数的交点坐标和每个图形的起始坐标(交点的求法一般将两个函数的表达式联立在一起,组成方程组,方程组的解便是交点坐标).预习练习2-1在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为( )A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)2-2 如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须__________.知识点1 利用一次函数解决分段计费问题1.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费( )A.0.4元B.0.45元C.约0.47元D.0.5元2.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80立方米,那么这个月甲用户应交煤气费__________元.3.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费.设每户家庭月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?知识点2 利用一次函数解决相交直线问题4. “五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.当他们离目的地还有20千米时,汽车一共行驶的时间是( )A.2小时B.2.2小时C.2.25小时D.2.4小时第4题图第5题图5.某市政府决定实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图,则下列说法中错误的是( )A.甲队每天挖100米B.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当x=3时,甲、乙两队所挖管道长度相同6.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为( )A.5.5公里B.6.9公里C.7.5公里D.8.1公里7.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发________小时时,行进中的两车相距8千米.8.小李和小陆沿同一条路行驶到B地,他们离出发地的距离s和行驶时间t之间的函数关系的图象如图.已知小李离出发地的距离s和行驶时间t之间的函数关系为s=2t+10.则:(1)小陆离出发地的距离s和行驶时间t之间的函数关系为:_________________;(2)他们相遇的时间t=__________.9.学生甲、乙两人跑步的路程s与所用时间t的函数关系图象表示如图(甲为实线,乙为虚线).根据图象判断:如果两人进行一百米赛跑,当甲跑到终点时,乙落后甲多少米?10.电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差__________元.11.为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:档次第一档第二档第三档每月用电量x(度)0<x≤140(2)小明家某月用电120度,需交电费__________元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费M元,小刚家某月用电290度,交电费153元,求M的值.参考答案预习练习1-17.4预习练习2-1 D2-2大于41.A2.723.(1)当0≤x≤20时,y与x之间的函数表达式为:y=2x(0≤x≤20);当x>20时,y与x之间的函数表达式为:y=2.8(x-20)+40=2.8x-16(x>20);(2)∵小颖家四月份、五月份分别交水费45.6元、38元,∴小颖家四月份用水超过20吨,五月份用水没有超过20吨.∴45.6=2.8(x1-20)+40,38=2x2.∴x1=22,x2=19.∵22-19=3,∴小颖家五月份比四月份节约用水3吨.4.C5.D6.B7.或8.(1)s=10t(2)9.根据图形可得:甲的速度是=8(米/秒),乙的速度是:=7(米/秒),∴根据题意得:100-×7=12.5(米).当甲跑到终点时,乙落后甲12.5米.答:当甲跑到终点时,乙落后甲12.5米.10.1011.(1)140<x≤230x>230(2)54(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c,将(140,63),(230,108)代入,得解得则第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=x-7(140<x≤230).(4)根据图象可得出:用电230度,需要付费108元,用电140度,需要付费63元,故108-63=45(元),230-140=90(度),45÷90=0.5(元),则第二档电费为0.5元/度;∵小刚家某月用电290度,交电费153元,290-230=60(度),153-108=45(元),45÷60=0.75(元),M=0.75-0.5=0.25.答:M的值为0.25.。
湘教版数学八年级下册《4.5分段函数》教学设计
湘教版数学八年级下册《4.5分段函数》教学设计一. 教材分析湘教版数学八年级下册《4.5分段函数》是学生在掌握了函数概念、一次函数、二次函数的基础上,进一步学习分段函数的基本概念、表示方法和性质。
分段函数是实际问题中较为常见的一种函数形式,对于培养学生解决实际问题的能力具有重要意义。
本节课的教学内容主要包括分段函数的概念、分段函数的表示方法、分段函数的性质及分段函数的应用。
二. 学情分析学生在学习本节课之前,已经掌握了一次函数、二次函数的基本知识,具备了一定的函数观念。
但是,对于分段函数这一概念,学生可能较为陌生,需要通过实例来引导学生理解和掌握。
此外,学生对于函数的表示方法和解题策略已有了一定的基础,但如何在实际问题中灵活运用分段函数的知识,还需在本节课中进一步拓展和提高。
三. 教学目标1.理解分段函数的概念,掌握分段函数的表示方法。
2.了解分段函数的性质,能够运用分段函数解决实际问题。
3.培养学生的数学思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.分段函数的概念和表示方法。
2.分段函数的性质及其应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解分段函数的概念和应用。
2.讲练结合法:在讲解分段函数的基本概念和性质时,结合典型例题进行讲解,提高学生的解题能力。
3.小组合作学习法:引导学生分组讨论,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作生动有趣的教学课件,帮助学生直观地理解分段函数的概念和性质。
2.典型例题:挑选具有代表性的例题,用于讲解和练习。
3.学习资料:为学生提供相关的学习资料,以便于课后巩固和拓展。
七. 教学过程1.导入(5分钟)利用生活实例,如出租车计费问题,引出分段函数的概念,激发学生的学习兴趣。
2.呈现(10分钟)介绍分段函数的概念,讲解分段函数的表示方法,如分段函数的解析式和图象。
3.操练(10分钟)针对分段函数的性质,如单调性、奇偶性等,挑选典型例题进行讲解和练习。
4.5.3函数模型的应用课件(人教版)
16
已知函数模型解决实际问题,往往给出的函数解析式含有参数,需要 将题中的数据代入函数模型,求得函数模型中的参数,再将问题转化为已 知函数解析式求函数值或自变量的值.
17
1.某种商品在近 30 天内每件的销售价格 P(元)和时间 t(天)的函数关 系为:
P=t-+t2+0100<0t<2255≤,t≤30. (t∈N*) 设该商品的日销售量 Q(件)与时间 t(天)的函数关系为 Q=40- t(0<t≤30,t∈N*),求这种商品的日销售金额的最大值,并指出日销售金 额最大是第几天?
31
2.某地区不同身高的未成年男性的体重平均值如表:
身高 60 70 80 90 100 110 120 130 140 150 160 170
/cm
体重 6.13 7.90 9.90 12.15 15.02 17.50 20.92 26.86 31.11 38.85 47.25 55.05
/kg
第四章 指数函数与对数函数
4.5 函数的应用(二)
第3课时 函数模型的应用
2
学习目标
核心素养
1.会利用已知函数模型解决实际问
题.(重点) 通过本节内容的学习,使学生认识函
2.能建立函数模型解决实际问 数模型的作用,提高学生数学建模、
题.(重点、难点) 数据分析的素养.
3.了解拟合函数模型并解决实际问
车有营运利润的时间不超过
解 y≥0,得 6- 11≤x≤6+
________年.
11,所以有营运利润的时间为 2 11.
又 6<2 11<7,所以有营运利润的时
间不超过 7 年.]
12
合作探究 提素养
13
建立函数模型,解决实际问题
建立函数模型,解决实际问题建立函数模型解决实际决策型问题是实践性,创新性很强的命题亮点,其解题步骤一般如下:由实际问题⋅⋅−−−−−→分析抽象转化数学模型(如函数等)−−−→−推理演算解答数学问题−−→−校验回归实际问题。
一、建立一次函数模型例1.鞋子的“鞋码”y 与鞋长x (cm )存在一次函数的关系,下表是几组“鞋码”与鞋长的对应数值: 鞋长(cm ) 16 19 24 27 鞋码22 28 38 44 (1)请根据表格中的数值,求出y 与x 之间的函数关系式;(2)如果你需要的鞋长为26cm ,那么应该买多大码的鞋?【命题意图】本题旨在考查根据表格提供的数据,利用待定系数法建立一次函数(模型)关系,然后用所求的函数关系(模型)解决问题。
【思路点拔】可先设一次函数解析式为:y =k x +b ,根据表中所提供的数据,取两组值分别代入解析式中的x 与y 得到方程组,解方程组即可求出函数解析式解:(1)设y =k x +b ,则由题意,得⎩⎨⎧+=+=b k b k 19281622,解得:⎩⎨⎧-==102b k , ∴ y =2x -10;(2)当x =26时,y =2×26-10=42答:应该买42码的鞋。
二、建立反比例函数模型例2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (千帕)是气球体积V (米3)的反比例函数,其图象如图所示(千帕是一种压强单位).(1)写出这个函数的解析式;(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不少于多少立方米?【命题意图】本题旨在考查根据图象(点的坐标),利用待定系数法确定反比例函数关系(模型),然后用所求的函数关系(模型)解决问题。
【思路点拔】由图象中A 点的坐标求得反比例函数解析式;对于(3),可利用反比例函数的性质,先求出气压是144千帕时对应的体积,再分析出气球的体积应不小于多少.解:(1)设此反比例函数为)0(≠=k V k p . 由图象知反比例函数的图象经过点A (1.5,64),∴5.164k =,∴k=96. 故此函数的解析式为Vp 96=; (2)当V=0.8时,1208.09696===V p (千帕);(3)当p=144时,V96144=, ∴3214496==V (3米). 由图象可知,该反比例函数p 随V 的增大而减小,故为安全起见,气球的体积应不小于332m . 【解题心得】在解题时,要充分利用图象、表格中信息和文字信息,把实际问题转化为数学问题,进一步体会数与形的统一.。
中考数学复习方案 第11课时 一次函数的应用
解得x=135,175-135=40,符合题意;
当75<x≤125,175-x≤75时,2.75x-18.75+2.5(175-x)=455,
解得x=145,不符合题意,舍去;
当75<x≤125,75<175-x≤125时,2.75x-18.75+2.75(175-x)-18.75=455,此方程无解.
④交点:表示两个函数的自变量与函数值分别对应相等,这个交点是函数值大
小关系的“分界点”.
基
础
知
识
巩
固
高
频
考
向
探
究
对点演练
题组一
必会题
1.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(单位:cm)与燃
烧时间t(单位:h)(0≤t≤4)之间的关系是
h=-5t+20
.
基
础
知
识
巩
固
∴乙用户2,3月份的用气量分别是135 m3,40 m3.
每月用气量
单价(元/m3)
不超出75 m3的部分
2.5
超出75 m3不超出125 m3的部分
a
超出125 m3的部分
a+0.25
基
础
知
识
巩
固
高
频
考
向
探
究
| 考向精练 |
1.某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关
2. [八上P157问题2改编]某公司准备与汽车租赁公司签订租车合同.以每月用车里
第四章 4.5.3 函数模型的应用
(2)由求出的函数表达式,求这种放射性元素的半衰期(结果精确到0.1).
解 由题意得500×0.9t=250,即0.9t=0.5,两边取以10为底的对数, 得lg 0.9t=lg 0.5,即tlg 0.9=lg 0.5, ∴t=llgg 00..95≈6.6. 即这种放射性元素的半衰期为6.6年.
t
1 2
h,其中Ta表示环境温度,h称为半衰期,现有一杯用88
℃热水冲的
速溶咖啡,放在24 ℃的房间中,如果咖啡降温到40 ℃需要20 min,那
么降温到32 ℃时,需要多长时间?
20
解
由题意知40-24=(88-24)×
1 2
h
,
20
即14=
1 2
h
,
解得h=10,
t
故原式可化简为T-24=(88-24)×
解 画出散点图,如图所示.
(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量变化的函数 模型,并求出函数解析式;
SI KAO BIAN XI PAN DUAN ZHENG WU
1.实际问题中两个变量之间一定有确定的函数关系.( × ) 2.函数模型中,要求定义域只需使函数式有意义.( × )
3.用函数模型预测的结果和实际结果必须相等,否则函数模型就无存在
意义了.( × )
4.在选择实际问题的函数模型时,必须使所有的数据完全符合该函数模型.
知识点二 应用函数模型解决问题的基本过程
1.审题——弄清题意,分清条件和结论,理顺数量关系,初步选择模型. 2.建模——将自然语言转化为数学语言,将文字语言转化为符号语言, 利用数学知识建立相应的数学模型. 3.求模——求解数学模型,得出数学模型. 4.还原——将数学结论还原为实际问题.
构建函数模型解决实际问题
高中数学:构建函数模型解决实际问题角度1 构造一次函数、二次函数模型某创业团队拟生产A ,B 两种产品,根据市场预测,A 产品的利润与投资额成正比(如图①),B 产品的利润与投资额的算术平方根成正比(如图②).(注:利润与投资额的单位均为万元)(1)分别将A ,B 两种产品的利润f (x ),g (x )表示为关于投资额x 的函数.(2)该团队已筹集到10万元资金,并打算全部投入A ,B 两种产品的生产,问:当B 产品的投资额为多少万元时,生产A ,B 两种产品能获得最大利润?最大利润为多少?解:(1)由A 产品的利润与投资额成正比,可设f (x )=kx ,将点(1,0.25)代入,得f (x )=14x (x ≥0).由B 产品的利润与投资额的算术平方根成正比,可设g (x )=t x ,将点(4,2.5)代入,得g (x )=54x (x ≥0).(2)设B 产品的投资额为x 万元,则A 产品的投资额为(10-x )万元, 创业团队获得的利润为y 万元,则y =g (x )+f (10-x )=54x +14(10-x )(0≤x ≤10).令x =t ,则y =-14t 2+54t +52(0≤t ≤10), 即y =-14⎝ ⎛⎭⎪⎫t -522+6516(0≤t ≤10), 当t =52,即x =6.25时,y 取得最大值4.062 5.答:当B 产品的投资额为6.25万元时,创业团队获得最大利润,获得的最大利润为4.062 5万元.角度2 构造指数函数、对数函数模型候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q 10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位?解:(1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0.当耗氧量为90个单位时,速度为1 m/s ,故a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧ a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1. (2)由(1)知,v =a +b log 3Q 10=-1+log 3Q 10.所以要使飞行速度不低于2 m/s ,则有v ≥2,所以-1+log 3Q 10≥2,即log 3Q 10≥3,解得Q 10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.解:(1)设DQ =x m(x >0),则AQ =(x +20)m.∵QD DC =AQ AP ,∴x 30=x +20AP ,∴AP =30(x +20)x. ∴S =12AP ·AQ =15(x +20)2x =15⎝ ⎛⎭⎪⎫x +400x +40≥1 200, 当且仅当x =20时取等号,∴DQ 的长度为20 m 时,S 最小,S 的最小值为1 200 m 2.(2)∵S ≥1 600,∴由(1)整理得3x 2-200x +1 200≥0.解得0<x ≤203或x ≥60,即要使S 不小于1 600 m 2,则DQ 的长度范围是⎝ ⎛⎦⎥⎤0,203∪[60,+∞). 角度4 构造分段函数模型(2019·湖北孝感八校联考)共享单车是城市慢行系统的一种创新模式,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20 000元,每生产一辆新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h (x )=⎩⎨⎧ 400x -12x 2,0<x ≤400,80 000,x >400,其中x 是新样式单车的月产量(单位:辆),利润=总收益-总成本. (1)试将自行车厂的利润y (单位:元)表示为关于月产量x 的函数.(2)当月产量为多少辆时自行车厂的利润最大?最大利润是多少?解:(1)依题设知,总成本为(20 000+100x )元,则y =⎩⎨⎧ -12x 2+300x -20 000,0<x ≤400,60 000-100x ,x >400.(2)当0<x ≤400时,y =-12(x -300)2+25 000,故当x =300时,y max =25 000;当x >400时,y =60 000-100x 是减函数,故y <60 000-100×400=20 000.所以当月产量为300辆时,自行车厂的利润最大,最大利润为25 000元.1.一、二次函数模型问题的2个注意点(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错.(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法.2.指数函数、对数函数两类函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般需要先通过待定系数法确定函数解析式,再借助函数的图象求解最值问题,必要时可借助导数.3.“y=x+ax(a>0)”型函数模型的求解策略(1)“y=x+ax”型函数模型在实际问题中会经常出现.解决此类问题,关键是利用已知条件,建立函数模型,然后化简整理函数解析式,必要时通过配凑得到“y=x+ax”型函数模型.(2)求函数解析式要确定函数的定义域.对于y=x+ax(a>0,x>0)类型的函数最值问题,要特别注意定义域和基本不等式中等号成立的条件,如果在定义域内满足等号成立,可考虑用基本不等式求最值,否则要考虑函数的单调性,此时可借用导数来研究函数的单调性.4.分段函数模型的求解策略(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解.(2)构造分段函数时,要力求准确、简捷,做到分段合理、不重不漏.(3)分段函数的最值是各段最大值(或最小值)中的最大者(或最小者).(1)某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为(B) A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况解析:设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.(2)(2019·福建三明第一中学月考)某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可以近似地表示为:y =⎩⎪⎨⎪⎧ 13x 3-80x 2+5 040x ,x ∈[120,144),12x 2-200x +80 000,x ∈[144,500),且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.①当x ∈[200,300]时,判断该项目能否获利.如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?②该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?解:①当x ∈[200,300]时,该项目获利为S ,则S =200x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000=-12(x -400)2, ∴当x ∈[200,300]时,S <0,因此,该项目不会获利.当x =300时,S 取得最大值-5 000,∴政府每月至少需要补贴5 000元才能使该项目不亏损.②由题意可知,生活垃圾每吨的平均处理成本为:y x =⎩⎪⎨⎪⎧ 13x 2-80x +5 040,x ∈[120,144),12x -200+80 000x ,x ∈[144,500).当x ∈[120,144)时,y x =13x 2-80x +5 040=13(x -120)2+240,∴当x =120时,y x 取得最小值240.当x ∈[144,500)时,y x =12x -200+80 000x ≥2x 2·80 000x -200=400-200=200,当且仅当x 2=80 000x ,即x =400时,y x 取得最小值200.∵240>200,∴当每月处理量为400吨时,才能使每吨的平均处理成本最低.。
《4.5一次函数的应用》作业设计方案-初中数学湘教版12八年级下册
《一次函数的应用》作业设计方案(第一课时)一、作业目标本作业旨在巩固学生对一次函数概念的理解,加深对一次函数图像及其应用的认识,并通过实践操作和思考练习,培养学生的逻辑思维能力和解决问题的能力。
二、作业内容本次作业围绕一次函数的基本知识展开,主要内容包含以下几点:1. 掌握一次函数的基本形式,如y=kx+b,并理解k和b的物理意义。
2. 理解一次函数的图像特征,包括斜率和截距的几何意义。
3. 掌握一次函数在现实生活中的应用,如速度与时间的关系、距离与速度的关系等。
4. 完成一次函数图像的绘制,并标注关键点。
5. 通过实际问题,运用一次函数知识进行建模和求解。
三、作业要求1. 学生需自行复习课本中关于一次函数的知识点,并做好笔记。
2. 绘制一次函数y=kx+b的图像,并标注出关键点(如与x 轴、y轴的交点)。
3. 选取至少两个实际问题(如路程问题、速度问题等),运用一次函数知识进行建模和求解,并写出详细的解题过程。
4. 作业需独立完成,不得抄袭他人答案。
如有需要,可与同学讨论,但需注明讨论对象及时间。
5. 作业需按时提交,并保持字迹清晰、格式规范。
四、作业评价1. 评价标准:根据学生作业的正确性、完整性、条理性及创新性进行评价。
2. 评价方式:教师批阅与同学互评相结合。
教师批阅时需对每位学生的作业给出明确的评语及得分;同学互评时需客观公正地评价对方作业的优缺点。
3. 评价反馈:将评价结果及时反馈给学生,鼓励学生之间的交流学习,提高学生的自主学习能力。
五、作业反馈1. 教师根据学生作业情况,总结一次函数知识点的掌握情况,针对薄弱环节进行讲解和辅导。
2. 对优秀作业进行展示和表扬,激励学生相互学习、共同进步。
3. 对学生在作业中提出的问题和建议进行整理和反馈,为今后的教学提供参考。
4. 根据作业情况调整教学计划,确保学生能够更好地掌握一次函数的知识和应用。
通过本次作业的设计与实施,期望能让学生通过实践操作,真正理解一次函数的概念和其在实际生活中的应用,提高他们的数学思维能力和问题解决能力。
数学建模 建立函数模型解决实际问题
18
课前预习
课堂互动
建模选题
@《创新设计》
一、固体废物数据的搜集与处理 我们通过技术手段(代码见附件),在知名外卖网站“饿了么”上面定点抓取了一个地 区方圆7 500 m左右所有已在该网站上注册的店铺的数据约32 109条,合计月销量267 305份,并写了一个简单的基于字典的分类算法,分类了135 655份月销量,并按照一 个理想数值为每一种商品产生的垃圾进行估算.分类结果如下:
1
课前预习
课堂互动
建模选题
教材知识探究
@《创新设计》
数学建模是在20世纪60和70年代进入一些西方国家大学的,我国的 几所大学也在80年代初将数学建模引入课堂.经过30多年的发展现 在绝大多数本科院校和许多专科学校都开设了各种形式的数学建模 课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力 开辟了一条有效的途径.大学生数学建模竞赛最早是1985年在美国出现的,1989年 在几位从事数学建模教育的教师的组织和推动下,我国几所大学的学生开始参加美 国的竞赛,而且积极性越来越高,近几年参赛校数、队数占到相当大的比例.可以 说数学建模竞赛是在美国诞生,在中国开花、结果的.
数学建模 建立函数模型解决实际问题
@《创新设计》
课标要求
素养要求
收集、阅读一些现实生活、生产实际或者 通过生活中具体的数学模型,进行提出问
经济领域中的数学模型,体会人们是如何 题、分析数据、建立模型、检验模型来发
借助函数刻画实际问题,感悟数学模型中 展数据分析、数学抽象及数学建模素养.
参数的现实意义.
15
课前预习
课堂互动
建模选题
@《创新设计》
[求解模型] 所谓“错位推进法”,对于本题来说,关键点为“乙在30千米和10千米 处给甲留下食物和水”,根据分析与假设推知结论:其中的一位沙漠探险家最多可深 入沙漠65千米. [检验结果] 从“第6天走到10千米处吃1份,然后回出发点”,感觉似乎还有10千米 可以走,但已经回出发点了,考虑一下甲还可以再往前推进5千米吗?
数学八年级下册《建立一次函数的模型解决实际问题》课件
典例精析 例:请每位同学伸出一只手掌,把大拇指与小拇指尽
量张开,两指间的距离称为指距. 已知指距与身高具 有如下关系:
指距x(cm) 19
20
21
身高y(cm) 151 160 169
(1)求身高y与指距x之间的函数表达式; (2)当李华的指距为22cm时,你能预测他的身高吗?
9 cm 10 cm
一次函数模型的应用
现实生活或具体情境中的很多问题或现象都可
以抽象成数学问题,并通过建立合适的数学模型来
表示数量关系和变化规律,再求出结果并讨论结果
的意义.
下面有一个实际
问题,你能否利用已
学的知识给予解决?
问题:奥运会每4年举办一次,奥运会的游泳成 绩在不断的被刷新,如男子400m自由泳项目, 2016年的奥运冠军马克-霍顿的成绩比1984年的 约提高了30s,下面是该项目冠军的一些数据:
b=231.23, 6k+b=221.86. 解得k=-1.56, b=231.23 所以,一次函数的解析式为y=-1.56x+231.23.
(3) 当把1984年的x值作为0,以后每增加4年得x的一 个值,这样2016年时的x值为8,把x=8代入上式,得 y=-1.56×8+231.23=218.74(s)
年份
冠军成绩/s
年份
冠军成绩/s
1984 1988
231.23 226.95
2004 2008
223.10 221.86
1992 1996 2000
225.00 227.97 220.59
2012 2016 2020
4.5.3 函数模型的应用-学生版
1.常见函数模型题型一一次函数与二次函数模型的应用例1某水果批发商销售每箱进价为40元的苹果,假设每箱售价不得低于50元且不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱.价格每提高1元,平均每天少销售3箱.①求平均每天的销售量y(箱)与销售单价x(元/箱)之间的函数关系式;②求该批发商平均每天的销售利润w(元)与销售单价x(元/箱)之间的函数关系式;③当每箱苹果的售价为多少元时,可以获得最大利润?最大利润是多少?跟踪训练一1、商店出售茶壶和茶杯,茶壶定价为每个20元,茶杯每个5元,该商店推出两种优惠办法:①买一个茶壶赠一个茶杯;②按总价的92%付款.某顾客需购买茶壶4个,茶杯若干个(不少于4个),若购买茶杯x(个),付款y(元),试分别建立两种优惠办法中y与x之间的函数解析式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更优惠?题型二分段函数模型的应用例2某公司生产一种产品,每年投入固定成本0.5万元,此外每生产100件这种产品还需要增加投资0.25万元,经预测可知,市场对这种产品的年需求量为500件,当出售的这种产品的数量为t(单位:百件)时,销售所得的收入约为5t-t2(万元).(1)若该公司的年产量为x(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量x的函数;(2)当这种产品的年产量为多少时,当年所得利润最大?跟踪训练二1.甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(单位:百台),其总成本为G(x)(单位:万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)=假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入-总成本).(2)甲厂生产多少台新产品时,可使盈利最多?题型三指数或对数函数模型的应用例3一片森林原来的面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?跟踪训练三1.大西洋鲑鱼每年都要逆流而上,游回产地产卵.记鲑鱼的游速为v(单位:m/s),鲑鱼的耗氧量的单位数为Q,研究中发现v与log3成正比,且当Q=900时,v=1.(1)求出v关于Q的函数解析式;(2)计算一条鲑鱼的游速是1.5 m/s时耗氧量的单位数;(3)一条鲑鱼要想把游速提高1 m/s,其耗氧量的单位数应怎样变化?例4某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%。
一次函数模型的实际应用
一次函数模型的实际应用1. 购买方案问题(中考临沂)新农村社区改造中,有一部分楼盘要对外销售. 某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/m2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120m2. 若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送 a 元装修基金;方案二:降价10%,没有其他赠送.(1) 请写出售价y(元/m2)与楼层x(1叹w 23 x取整数)之间的函数关系式;(2) 老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.跟踪训练1.(中考孝感)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A, B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380 元.(1) 求A种,B种树木每棵各多少元.(2) 因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.2 .仲考包头)甲、乙两个商场出售相同的某种商品,每件售价均为3 000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时, 甲商场收费为y1元,乙商场收费为y2元.(1) 分别求出y1, y2与X之间的关系式.(2) 当甲、乙两个商场的收费相同时,所买商品为多少件?(3) 当所买商品为5 件时,选择哪个商场更优惠?请说明理由.2. 利润方案问题(中考 济宁)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题: 服装店准备购进甲、乙两种服装,甲种每件进价 80元,售价120元;乙种每件进价 60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于 65件.(1)若购进这100件服装的费用不得超过 7 500元,则甲种服装最多购进多少件? ⑵在⑴的条件下,该服装店对甲种服装以每件优惠 a(0 v a v 20)元的价格进行优惠促销活动,乙种服装价格不变, 那么该服装店应如何调整进货方案才能获得最大利润?跟踪训练“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继 投放市场,顺风车行经营的 A 型车2017年6月份销售总额为 3.2万元,今年经过改造升级后 A 型车每辆销售价比去年增加400元,若今年6月份2与去年6月份卖出的A 型车数量相同,则今年 6 月份A 型车销售总额将比去年 6月份销售总额增加 25%.(1)求今年A 型车每辆销售价为多少元(用列方程的方法解答);B 型车共50辆,且B 型车的进货数量不超过 A 型车数量的两倍,应如何3. 租车方案问题(中考广安)为了贯彻落实市委市政府提出的 精准扶贫”精神.某校特制定了一系列关于帮扶A ,B 两贫困村的计划,现决定从某地运送152箱鱼苗到A , B 两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗•已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A , B 两村的运费如下表:(1) 求这15辆车中大小货车各多少辆?(2) 现安排其中的10辆货车前往A 村,其余货车前往 B 村,设前往A 村的大货车为x 辆,前往A , B 两村总费用为y 元,试求出y 与x 的函数表达式.⑶在(2)的条件下,若运往 A 村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少总费用.(2)该车行计划7月份新进一批A 型车和 进货才能使这批车获利最多?A 、B 两种型号车的进货和销售价格如下表:跟踪训练(中考 甘孜州)某学校计划组织 500人参加社会实践活动,与某公交公司接洽后,得知该公司有 A , B 型两种客车,它们的载客量和租金如下表所示:经测算,租用 A , B 型客车共13辆较为合理,设租用 A 型客车x 辆,根据要求回答下列问题: (1)用含x 的代数式填写下表:⑵采用怎样的租车方案可以使总的租车费用最低,最低为多少?跟踪训练(中考 阜新)随着人们生活水平的提高,轿车已进入平常百姓家,我市家庭轿车的拥有量也逐年增加.某汽车经销 商计划用不低于228万元且不高于240万元的资金订购30辆甲、乙两种新款轿车.两种轿车的进价和售价如下表: (1)请你帮助经销商算一算共有哪几种进货方案?⑵如果按表中售价全部卖出,哪种进货方案获利最多?并求出最大利润.(注:其他费用不计,利润=售价-进价 )4. 合理决策问题现从A, B 两个蔬菜市场向甲、 乙两地运送蔬菜, 乙地需要蔬菜13吨,从A 蔬菜市场到甲地的运费为 运费为60元/吨,到乙地的运费为 45元/吨.A ,B 两个蔬菜市场各有蔬菜 14吨,其中甲地需要蔬菜 15吨, 50元/吨,到乙地的运费为 30元/吨;从B 蔬菜市场到甲地的(1) 设A 蔬菜市场向甲地运送蔬菜 x 吨,请完成下表:(2) 设总运费为 W 元,请写出 W 与x (3)怎样调运蔬菜才能使总运费最少?5. 选择方案问题(中考 黄冈)我市某风景区门票价格如图所示•黄冈赤壁旅游公司有甲、乙两个旅行团队,计划在五一小黄金周期间到该景点游玩,两团队游客人数之和为 120人,乙团队人数不超过 50人•设甲团队人数为 x 人,如果甲、乙两团队分别购买门票,两团队门票款之和为W 元.(1)求W 关于x 的函数关系式,并写出自变量x 的取值范围;⑵若甲团队人数不超过 100人,请说明甲、乙两团队联合购票比分别购票最多可节约多少钱; (3) 五一小黄金周之后,该风景区对门票价格作了如下调整:人数不超过 人但不超过100人时,每张门票降价 a 元;人数超过100人时,每张门票降价 个旅行团队五一小黄金周之后去游玩,最多可节约呂屮 ----70 ------ 勺 -- •--------- -; ------ 9-跟踪训练某区人畜饮用水紧张.每天需从社区外调运饮用水120吨,有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂每天最多可调出 80吨,乙厂每天最多可调出 90吨.从两水厂运水到该社区供水点的路程和运费如下 表:(1) 若某天调运水的总运费为 26 700元,则从甲、乙两水厂各调运了多少吨饮用水?(2) 设从甲厂调运饮用水 x 吨,总运费为 W 元.试写出 W 关于x 的函数关系式,怎样安排调运方案才能使每天 的总运费最省?50人时,门票价格不变;人数超过 502a 元.在(2)的条件下,若甲、乙两3 400元,求a 的值.。
4.5.3函数模型的应用课件(人教版)
y=55196e0.021876t,t∈[0,9].
(2)分别取t=1,2,…,8,由:y=55196e0.021876t 可得我国在
1951~1958年间的各年末人口总数;查阅国家统计局网站,
得到我国在1951~1958年各年末人口总数,如表所示:
关系?
思考1:上表提供的数据对应的散点图大致如何?
体重(kg)
o
身 高 ( cm )
思考2:根据这些点的散布情况,可以选用那个函数模型进行拟合,
使它能比较近似地反应这个地区未成年男性体重与身高的函数
关系?
体 重 ( kg )
指数型函数模型y=a·bx,因为它的
图象与散点的变化趋势最类似.
o
思考3:如何求出函数关系式中参数a,b?
A.70元
B.65元
C.60元
D.55元
解析:设该商品每件单价提高x元,销售该商品的月利润为y元,
则y=(10+x)(500-10x)=-10x2+400x+5 000
=-10(x-20)2+9 000
∴当x=20时,ymax=9 000,此时每件定价为50+20=70元.
2.以每秒a米的速度从地面垂直向上发射子弹,t秒后的高度x米
(3)以(1)中的模型作预测,大约在什么时候我国的人口总数
到达13亿?
设置探究问题:
(1)本例中所涉及的数量有哪些?
答:经过t年后的人口数y,y0;人口年平均增长率r;经过的
时间t以及1950~1959年我国的人口数据.
(2)描述所涉及数量之间关系的函数模型是否是确定的?确定
这种函数模型需要几个因素?
下表是1951~1958年我国的人口数据资料:
17-5-3 建立一次函数的模型解决实际问题课件2022-2023学年华东师大版八年级数学下册
0
10 20 40 60
V(cm3) 998.3 999.2 999.6 1000 1000.3 1000.7 1001.6 1002.3
能否据此求出V和t的函数关系?
你能不能根据表中数据猜想 V和t之间是什么函数关系?
分析:在平面直角坐标系中描出这些数值所对应的点.
V(cm3)
1002.0 1001.5 1001.0 1000.5 1000.0 999.5 999.0 998.5
3.由于持续高温和连日无雨,某水库的蓄水量随时间的变化而减少.蓄水 量 V (万m3) 与干旱持续时间 t (天) 的关系如图所示,根据图象回答下列 问题: (4) 按照这个规律,预计干旱持续多少 天水库将干涸?
解:(4) 预计干旱持续 60 天水库将 干涸.
4.刘老师开车上班,最初以某一速度匀速行进,中途由于汽车发生故障,停下修车 耽误了一会儿.为了按时到校,老师加快了速度,仍保持匀速行进,结果准时到校. 在课堂上,刘老师请学生画出汽车行进路程s(千米)与行进时间t(小时)的凳高x(cm) 37.0
桌高y(cm) 70.0
第二档 40.0 74.8
第三档 42.0 78.0
第四档 45.0 82.8
档次 高度
凳高x(cm)
桌高y(cm)
第一档
37.0 70.0
第二档
40.0 74.8
第三档
42.0 78.0
第四档
45.0 82.8
(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这 个一次函数的关系式(不要求写出x的取值范围); (2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm, 凳子的高度为43.5cm,请你判断它们是否配套?说明理由.
建立函数模型解决实际问题(课件+教案+视频素材,共3份) 人教课标版精品课件
也许经常有这样的场景,喧嚣的闹市,聚会上,热闹非凡,尽情的喝着酒,各种嘈杂,殊不知在心里巴不得这聚会早点结束就好,想着明天还要早起上班,想着家里的妻儿还在幽幽的盼着,而你自己也根本就不喜欢这样的场合,偶尔还可以,时间长了,你已经不知该怎样去选择。年纪越大,时间越来越少,身体越来越没以前那么能抗,而自己明白的事情却越来越迷茫,入夜时分,站在这个城市的中央,越来越觉得生活的选择已经不由的我们自己来做主,只剩下了莫名的伤感。
是的,折枝的命运阻挡不了。人世一生,不堪论,年华将晚易失去,听几首歌,描几次眉,便老去。无论天空怎样阴霾,总会有几缕阳光,总会有几丝暗香,温暖着身心,滋养着心灵。就让旧年花落深掩岁月,把心事写就在素笺,红尘一梦云烟过,把眉间清愁交付给流年散去的烟山寒色,当冰雪消融,自然春暖花开,拈一朵花浅笑嫣然。
听这位老友,絮絮叨叨地讲述老旧的故事,试图找回曾经的踪迹,却渐渐明白了流年,懂得了时光。过去的沟沟坎坎,风风雨雨,也装饰了我的梦,也算是一段好词,一幅美卷,我愿意去追忆一些旧的时光,有清风,有流云,有朝露晚霞,我确定明亮的东西始终在。静静感念,不着一言,百转千回后心灵又被唤醒,于一寸笑意中悄然绽放。
千米)的函数,当桥上的车流密度达到200辆/千米 时,造成堵塞,此时车流速度为0;当车流密度不 超过20辆/千米时,车流速度为60千米/小时,研究
表明:当20≤x≤200时,车流速度v是车流密度x的
一次函数。
(1)当0≤x≤200时,求函数v(x)的表达式; (2)当车流密度x为多大时,车流量(单位时间内通 过桥上某测观点的车辆数,单位:辆/小时) f (x) =xv(x)可以达到最大,并求出最大值.(精确到1
数学建模课引--建立函数模型解决实际问题
模型.
由图可以看出,5个点显示出随着旋钮角度逐渐增大,燃气量
有一个从大到小又从小到大的过程.在我们学习过的函数图
象中,二次函数的图象与之最接近,所以可以用二次函数
y=ax2+bx+c(a≠0)近似地表示这种变化(其中x表示旋钮角
度,y表示燃气量).
所获纯利润与投资金额有关,随投资金额的变化而变化,二者
之间存在某种函数关系,但这种函数关系没有明确给出,我们
可以根据给出的数据画出散点图,借助散点图直观地分析这
组数据的变化规律,从而帮助我们选择函数模型.
以投资额x为横坐标,纯利润y为纵坐标,在平面直角坐标系中
画出散点图如下图.
由散点图可知,可以用二次函数模型近似表示投资A种商品所
= . × - ,
解得 = -. × - ,
= . × - .
故函数解析式为 y=1.903 3×10-5x2-1.472 2×10-3x+1.503 3×10-1.
检验模型 将已知的表中数据代入上述得到的函数解析式,或
者画出函数的图象,可以发现,这个函数模型与实际数据基本
建立函数模型的过程:首先要对实际问题中的变化过程进行
分析,析出其中的常量、变量及其相互关系;明确其运动变化
的基本特征,从而确定它的运动变化类型;然后根据分析结果,
选择适当的函数类型构建数学模型,将实际问题化归为数学
问题;通过运算、推理,求解函数模型;最后利用函数模型的解
说明实际问题的变化规律,达到解决问题的目的.在构建函数
算得y≈63.98,因为78÷63.98≈1.22>1.2,所以这个男性体型偏胖.
湘教版数学八年级下册4.5《一次函数的应用》说课稿1
湘教版数学八年级下册4.5《一次函数的应用》说课稿1一. 教材分析湘教版数学八年级下册 4.5《一次函数的应用》是本册教材中的一个重要内容。
本节课主要让学生了解一次函数在实际生活中的应用,通过实际问题引导学生运用一次函数的知识解决问题。
教材通过丰富的实例,使学生感受到一次函数与生活的紧密联系,培养学生的数学应用意识。
二. 学情分析八年级的学生已经学习了平面直角坐标系、函数的概念和性质等基础知识,对一次函数有一定的了解。
但学生在实际应用一次函数解决生活中的问题时,还缺乏必要的操作能力和思维能力。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生将理论知识与实际问题相结合,提高学生的应用能力。
三. 说教学目标1.知识与技能:让学生掌握一次函数在实际生活中的应用,能运用一次函数解决简单的生活问题。
2.过程与方法:通过实例分析,培养学生从实际问题中提出数学模型的能力,提高学生的数学思维能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,增强学生学习数学的兴趣,培养学生的数学应用意识。
四. 说教学重难点1.教学重点:一次函数在实际生活中的应用。
2.教学难点:如何将实际问题转化为一次函数模型,以及运用一次函数解决实际问题。
五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、实物模型和教学卡片等辅助教学。
六. 说教学过程1.导入新课:通过展示生活中的一些实例,引导学生发现一次函数的应用,激发学生的学习兴趣。
2.知识讲解:讲解一次函数在实际生活中的应用,引导学生理解一次函数模型的建立过程。
3.实例分析:分析具体的生活问题,引导学生运用一次函数模型解决问题。
4.小组讨论:让学生分组讨论,分享各自在生活中发现的一次函数应用实例,互相学习,提高认识。
5.总结提升:总结一次函数在实际生活中的应用,强调数学与生活的紧密联系。
6.课堂练习:布置一些实际问题,让学生运用一次函数模型解决,巩固所学知识。
湘教版八年级数学下册《 一次函数 4.5 一次函数的应用 4.5建立一次函数模型解决实际问题》公开课教案_5
重点
一次函数图象的应用
难点
会从不同信息中获取一次函数表达式
数学方法
引导发现,讲练结合
课型
教具
教学过程:
一、复习导入
课题
一次函数的应(二)
教学目标
知识与技能:使学生了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题。
过程与方法:1、通过函数图象获取信息,进一步培养学生的数形结合意识。2、通过函数图象解决实际问题,进一步发展学生的数学应用能力。
解:(略)
三、应用迁移、巩固提升
已知雅美服装厂现有A种布数70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号的时装需用A种布料1.1米,B种布数0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元,设生产M型号的时装套数为x,用这批布料生产丙种型号的时装所获得的总利润为y元。
问题:
(1)什么是一次函数?
(2)一次函数的性质是什么?
(3)怎样求一次函数的表达式?
在实际生活中,往往涉及一次函数的应用问题,怎样解决呢?
二、合作交流、解读探究
例1、现行固定网通电话的通话收费标准为:前3分钟(不是3分钟按3分钟计)0.22元。3分钟后每分钟按0.11元(不是1分钟按1分钟计)
(1)请填写下面的表格
100
60
50
设计意图
《4.5一次函数的应用》作业设计方案-初中数学湘教版12八年级下册
《一次函数的应用》作业设计方案(第一课时)一、作业目标本作业设计旨在通过一次函数的应用练习,使学生能够:1. 理解一次函数的概念及其图像特征;2. 掌握一次函数在实际问题中的应用方法;3. 提高学生运用数学知识解决实际问题的能力。
二、作业内容本次作业内容主要包括一次函数的基本概念和实际应用。
具体包括:1. 一次函数定义及性质:学生需回顾一次函数的定义,理解其斜率和截距的意义,并能够根据给定的信息写出一次函数的表达式。
2. 一次函数图像:学生需通过绘制一次函数的图像,加深对一次函数性质的理解。
3. 实际问题中的应用:设计多个与生活相关的实际问题,如速度、距离与时间的关系,水费、电量与用量的关系等,让学生运用一次函数知识进行分析和解答。
三、作业要求1. 学生需独立完成作业,不得抄袭他人答案;2. 对于每个问题,学生需清晰写出解题步骤和答案,并附上必要的解释或说明;3. 对于实际问题应用部分,学生需结合实际生活情境,运用一次函数知识进行分析和解答;4. 学生在完成作业后,需进行自我检查,确保答案的准确性和完整性;5. 作业需按时提交,迟到或未提交作业将按照班级规定进行处理。
四、作业评价1. 教师将根据学生的作业完成情况,对每个学生的作业进行评分;2. 评分将综合考虑学生的知识掌握程度、解题思路、答案准确性以及作业的整洁度等方面;3. 教师将对学生在实际问题应用部分的答案进行重点评价,以鼓励学生将数学知识与实际生活相结合;4. 教师将在评讲课上对共性问题进行讲解,并选出优秀作业进行展示。
五、作业反馈1. 教师将对每位学生的作业进行详细批改,指出错误并给出正确答案;2. 对于学生在作业中出现的共性问题,教师将在评讲课上进行重点讲解;3. 学生需根据教师的反馈,及时订正作业中的错误,并反思自己在解题过程中的不足;4. 教师将根据学生的作业完成情况和订正情况,对学生进行适当的表扬或鼓励,以激发学生的学习积极性。
专题:利用一次函数解决实际问题 含答案
专题:利用一次函数解决实际问题——明确不同类型的图象的端点、折点、交点等的意义◆类型一费用类问题一、建立一次函数模型解决问题1.(2016·攀枝花中考)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价;(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数解析式;(3)小明家5月份用水26吨,则他家应交水费多少元?二、分段函数问题2.(2016·荆州中考)为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数解析式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.三、两个一次函数图象结合的问题3.随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有()A.1个B.2个C.3个D.4个四、分类讨论思想4.(2017·天门中考)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?一、两个一次函数图象结合的问题5.(2017·青岛中考)A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h,乙的速度是________km/h;(2)甲出发多长时间两人恰好相距5km?二、分段函数问题6.(2016·新疆中考)暑假期间,小刚一家乘车去离家380km的某景区旅游,他们离家的距离y(km)与汽车行驶的时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5h后离目的地有多远?一、两个一次函数图象结合的问题7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲、乙两队所挖管道长度都相差100米.正确的有________(填序号).二、分段函数问题8.(2016·绍兴中考)根据卫生防疫部门的要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数解析式.参考答案与解析1.解:(1)设每吨水的政府补贴优惠价为m 元,市场价为n 元.由题意得⎩⎪⎨⎪⎧14m +(20-14)n =49,14m +(18-14)n =42,解得⎩⎪⎨⎪⎧m =2,n =3.5. 答:每吨水的政府补贴优惠价为2元,市场价为3.5元.(2)当0≤x ≤14时,y =2x ;当x >14时,y =14×2+(x -14)×3.5=3.5x -21.综上所述,y =⎩⎪⎨⎪⎧2x (0≤x ≤14),3.5x -21(x >14). (3)∵26>14,∴小明家5月份水费为3.5×26-21=70(元). 答:小明家5月份应交水费70元.2.解:(1)当0≤x ≤20时,设y 与x 的函数解析式为y =ax ,把(20,160)代入y =ax 中,得a =8.即y 与x 的函数解析式为y =8x ;当x >20时,设y 与x 的函数解析式为y =kx +b ,把(20,160),(40,288)代入y =kx +b 中,得⎩⎪⎨⎪⎧20k +b =160,40k +b =288,解得⎩⎪⎨⎪⎧k =6.4,b =32,即y 与x 的函数解析式为y =6.4x +32.综上所述,y 与x 的函数解析式为y =⎩⎪⎨⎪⎧8x (0≤x ≤20),6.4x +32(x >20).(2)∵B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,∴⎩⎪⎨⎪⎧x ≤35,x ≥45-x ,∴22.5≤x ≤35.设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347.∵k =-0.6<0,∴y 随x 的增大而减小,∴当x =35,45-x =10时,总费用最低,即购买B 种树苗35棵,A 种树苗10棵时,总费用最低,W 最低=-0.6×35+347=326(元).3.D4.解:(1)设y 甲=kx ,把(2000,1600)代入,得2000k =1600,解得k =0.8,所以y 甲=0.8x .当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000k =2000,解得k =1,所以y 乙=x .当x ≥2000时,设y 乙=mx +n ,把(2000,2000),(4000,3400)代入,得⎩⎪⎨⎪⎧2000m +n =2000,4000m +n =3400,解得⎩⎪⎨⎪⎧m =0.7,n =600,所以y 乙=⎩⎪⎨⎪⎧x (0<x <2000),0.7x +600(x ≥2000).(2)当0<x <2000时,0.8x <x ,到甲商店购买更省钱;当x ≥2000时,若到甲商店购买更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.5.解:(1)l 2 30 20 解析:由题意可知,乙的函数图象是l 2,甲的速度是602=30(km/h),乙的速度是603=20(km/h).故答案为l 2,30,20.(2)设甲出发x h 两人恰好相距5km.由题意30x +20(x -0.5)+5=60或30x +20(x -0.5)-5=60,解得x =1.3或1.5.答:甲出发1.3h 或1.5h 两人恰好相距5km. 6.解:(1)从小刚家到该景区乘车一共用了4h.(2)设线段AB 对应的函数解析式为y =kx +b .把点A (1,80),B (3,320)代入得⎩⎪⎨⎪⎧k +b =80,3k +b =320,解得⎩⎪⎨⎪⎧k =120,b =-40.∴y =120x -40(1≤x ≤3). (3)当x =2.5时,y =120×2.5-40=260,380-260=120(km).故小刚一家出发2.5h 后离目的地120km.7.①②④8.解:(1)暂停排水需要的时间为2-1.5=0.5(h).∵排水时间为3.5-0.5=3(h),一共排水900m 3,∴排水孔的排水速度是900÷3=300(m 3/h).(2)当2≤t ≤3.5时,设Q 关于t 的函数解析式为Q =kt +b ,易知图象过点(3.5,0).∵当t =1.5时,排水300×1.5=450(m 3),此时Q =900-450=450,∴点(2,450)在直线Q =kt +b 上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎪⎨⎪⎧2k +b =450,3.5k +b =0,解得⎩⎪⎨⎪⎧k =-300,b =1050,∴Q 关于t 的函数解析式为Q =-300t +1050.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有可能相等.当两值相等时 y x ,解得 y 40.
即当华氏温度为-40˚F时,摄氏温度为-40˚C ,温度值相等.
1、取若干个形如图中的小梯形,按下图的方式排列, 随着小梯形个数的增加,所拼得的四 边形的周长也不断增加。
(1)完成下面的表格
梯形个数n 1 2 3 4 5 6 …
所拼得四 边形的周 5
所以甲种树苗至多购买320株.
例1 山青林场计划购买甲、乙两种树苗共800株,甲种树 苗每株24元,一种树苗每株30元.根据相关资料,甲、乙两 种树苗的成活率分别是85%,90%.
(3)在(2)的条件下,应如何选购树苗,使购买树苗 的费用最低?并求最低费用. (3)设购买甲种树苗t株,购买树苗的费用为w元,由题 意得 w=24t+30×(800-t)==-6t+24000,
(1)观察上表,如果表中的摄氏温度与华氏温度都看作变量, 那么它们之间的函数关系是一次函数吗?你是如何探索的到的?
由于在上表中摄氏温度所取的值中包含0˚C,为了方便,可把摄氏温度 作为自变量x,用横轴表示,华氏温度y看作x的函数,用纵轴表示,建 立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐 标系中描出表中相应的点,观察这些点是否同在一条直线上.
20 30
10 (10)
30 10
定(0,32) 这对值,同样有
50 32 10 0
1.8,68 32 20 0
14 32 1.8,10 0
1.8.
设摄氏温度为x,相应的华氏温度为y,则有
y 32 x0
1.8,整理得
y=1.8x+32,因此y是x的一次函数.
所以w是t的一次函数,且由于k=-6<0,因此w随t增大而 减小.由(2)知t≤320,因此,当t最大即t=320时,w最小.这 是800-320=480,w=-6×320+24000=22080.
所以购买甲种树苗320株、乙种树苗480株,费用最低, 最低费用为22080元.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学 符号建立函数表达式,表示数学问题中变量之间的数量关系和变化 规律.因此函数也是一种重要的数学模型.
因为一次函数的图像是一条直线,它具有增减的单调 性。所以,在某一个x的取值范围内,这段函数是有最 大(小)值的!只需把这个取值范围的两端x的值代入 函数解析式y=kx+b即可。
热热身
为了迎接新学年的到来,时代中学计划开学前购买篮 球和排球共20个,已知篮球每个80元,排球每个60元, 设购买篮球x个,购买篮球和排球的总费用为y元.
一次函数的应用
学习目标
1.通过观察与思考中的实例,让学生体会一次函数是刻画现实 世界数量关系的模型。 2.通过例1的学习,提高学生分析问题和解决问题的能力,增强 应用意识。 3.能用一次函数解决简单的实际问题。
1.一次函数图象的画法.
通常过
(-
b k
,0)
,(0,b) 两点画一
条 直线 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法. 先设出表达式中的 未知数 ,再根据所给条件,利
用 方程或方程组 确定这些未知数.这种方法叫待 定法.
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一 条 直线 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 k>0 时,y 随x的 增大 而 增大 ;当 k<0 时,y随x的增大 而 减小 .
(2)你能利用(1)中的图象,写出y与 x的函数表达式吗? (3)除了小亮所说的方法外,你能通过 分析上表中两个变量间的数量关系,判断 它们之间是一次函数关系吗?
通过观察上表,可以发现两个变量对应数值之差的比是一个常
数,如 68 86 1.8, 50 14 1.8, 86 50 1.8,⋯特别地,如果固
苗每株24元,一种树苗每株30元.根据相关资料,甲、乙两
种树苗的成活率分别是85%,90%.
(2)如果为了保证这批树苗的总成活率不低于88%,甲 种树苗至多购买多少注?
(2)设购买甲种树苗z株,乙种树苗(800-z) 株,由题意得
0.85z+0.9×(800-z)≥0.88×800, 解得 z≤320.
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温
度是多少度?
当y=0时,0=1.8x+32,解得x=
温度为0
˚F
时,摄氏温度是
160 9
160
,所以华氏
9
˚C.
(5)华氏温度的值与对应的摄氏温度的值有相等的可
能吗?你会用哪几种方法解决这个问题?与同学交流.
y 1.8x 32
x 40
下面有两种移动电话计费方式:
全球 神州
通
行
月租 费
本地
通话 费
50
元/月 0.40 元/分
0
0.60 元/分
你知道如何选择计费方式更省钱吗?
我们知道,世界各国温度的计量单位尚不统一,常用的有摄氏温 度(˚C)和华氏温度( ˚F)两种.它们之间的换算关系如下表所示:
摄氏温度/˚C ⋯ -10 0 10 20 30 ⋯ 华氏温度/˚F ⋯ 14 32 50 68 86 ⋯
长L
8 11 14
17 20 …
(2)你能探索L与n之间的函数解析式吗?这个函 数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
例1
山青林场计划购买甲、乙两种树苗共800株,甲种树
苗每株24元,一种树苗每株30元.根据相关资料,甲、乙两
种树苗的成活率分别是85%,90%.
(1)如果购买这两种树苗共用去21000元,甲、乙两种 树苗各买了多少株?
(2)如果为了保证这批树苗的总成活率不低于88%, 甲种树苗至多购买多少注?
(3)在(2)的条件下,应如何选购树苗,使购买树苗 的费用最低?并求最低费用.
例1 山青林场计划购买甲、乙两种树苗共800株,甲 种树苗每株24元,一种树苗每株30元.根据相关资料, 甲、乙两种树苗的成活率分别是85%,90%.
(1)如果购买这两种树苗共用去21000元,甲、乙两种
树苗各买了多少株?
(1)设购买甲种树苗x株,乙种树苗y株,根据
题意,得
x y 800
24x 30 y 21000
解得 x 500
y 300
经检验,方程组的解符合题意.所以购买甲 种树苗500株,乙种树苗300株.
例1
山青林场计划购买甲、乙两种树苗共800株,甲种树