中考一次函数反比例函数的图象和性质专题复习题及答案
中考数学复习《反比例函数》专项测试卷(带答案)
中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。
中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案
中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角坐标系xOy 中,一次函数1y ax b (a ,b 为常数,且0a ≠)与反比例函数2m y x=(m 为常数,且0m ≠)的图象交于点()2,1A -和()1,B n .(1)求反比例函数与一次函数的解析式.(2)连接OA 、OB ,求△AOB 的面积.(3)直接写出当12y y <时,自变量x 的取值范围.2.定义:在平面直角坐标系中,如果一个点的纵坐标等于它的横坐标的三倍,则称该点为“纵三倍点”.例如()()()1,3,2,6,2,32--都是“纵三倍点”. (1)下列函数图象上只有一个“纵三倍点”的是______;(填序号)△21y x =-+;△21y x=;△21y x x =++. (2)已知抛物线2y x mx n =++(,m n 均为常数)与直线4y x =+只有一个交点,且该交点是“纵三倍点”,求抛物线的解析式;(3)若抛物线232y ax bx (,a b 是常数,0a >)的图象上有且只有一个“纵三倍点”,令226w b b a =-+,是否存在一个常数t ,使得当1t b t ≤≤+时,w 的最小值恰好等于t ,若存在,求出t 的值;若不存在,请说明理由.3.如图,点A 在反比例函数()0k y x x=>的图象上,AB y ⊥轴于点B ,且24OB AB ==.(1)求反比例函数的解析式; (2)点C 在这个反比例函数图象上,连接AC 并延长交x 轴于点D ,且45ADO ∠=︒,求点C 的坐标. 4.如图,在平面直角坐标系中,一次函数3yx 的图象与反比例函数(0)k y x x=>的图象交于点(,4)A a ,求此反比例函数的表达式.5.如图,一次函数()10y mx n m =+≠的图象与反比例函数()20k y k x=≠的图象交于(),1A a -,()1,3B -两点,且一次函数的图象交x 轴于点C ,交y 轴于点D .(1)求一次函数和反比例函数的解析式;(2)在第四象限的反比例图象上有一点P ,使得4=△△OCP OBD S S ,请求出点P 的坐标;(3)对于反比例函数()20k y k x=≠,当3y ≤时,直接写出x 的取值范围. 6.如图,已知反比例函数11k y x =的图象与直线22y k x b =+相交于()1,3A -,(3,)B n 两点.(1)求反比例函数与一次函数的解析式; (2)求△AOB 的面积;(3)直接写出当12y y >时,对应的x 的取值范围.7.如图,在平面直角坐标系中,一次函数1y k x b =+(10k ≠)的图象与反比例函数2k y x=(20k ≠)的图象相交于()3,4A ,()4,B m -两点.(1)求一次函数和反比例函数的解析式,并直接写出一次函数的值大于反比例函数的值时x 的取值范围;(2)若点D 在x 轴上,位于原点右侧,且OA OD =,求:ABO ABD S S △△.8.如图,一次函数5y x =-+的图象与函数(0,0)n y n x x=>>的图象交于点(4,)A a 和点B .(1)求n 的值;(2)若0x >,根据图象直接写出当5n x x-+>时x 的取值范围; (3)点P 在线段AB 上,过点P 作x 轴的垂线,交函数n y x =的图象于点Q ,若POQ △的面积为1,求点P 的坐标.9.如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点()2,3A 和(),1B a -,设直线AB 交x 轴于点C .(1)求反比例函数和一次函数的表达式;(2)若点P 是反比例函数图象上的一点,且POC △是以OC 为底边的等腰三角形,求P 点的坐标. 10.如图,在平面直角坐标系xOy 中,一次函数1152y x =+和22y x =-的图象相交于点A ,反比例函数3k y x =的图象经过点A .(1)则反比例函数的表达式为________;(2)当13y y <时,x 的取值范围为________.(3)求AOB 的面积.11.如图,已知反比例函数k y x=的图象与一次函数y mx =图象的一个交点为()4,,A m AB x ⊥轴,且AOB 的面积为4.(1)求k 和m 的值;(2)若两函数图象的另一交点为C ,直接写出点C 的坐标__________.12.已知 ()()4428A B --,,,是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式;(2)求AOC 的面积;(3)结合图象直接写出不等式m kx b x +>的解集. 13.如图,直线32y x =与双曲线(0)k y k x=≠交于A ,B 两点,点A 的坐标为(,3)m -,点C 是双曲线第一象限分支上的一点,连结BC 并延长交x 轴于点D ,且2BC CD =.(1)求k 的值,并直接写出点B 的坐标;(2)点G 是y 轴上的动点,连结GB ,GC ,求GB GC +的最小值和点G 坐标;(3)P 是坐标轴上的点,Q 是平面内一点,是否存在点P ,Q ,使得四边形ABPQ 是矩形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.14.如图,直线3y x b =+与x 轴交于点()1,0A -,与反比例函数()0ky x x=>的图象相交于点()1,B m .(1)求反比例函数的表达式;(2)C 是反比例函数()0k y x x=>的图象上的一点,连接AC ,若45CAO ∠=︒,求直线BC 的函数表达式. 15.如图,一次函数1=y ax b +的图象过点()40A -,,与y 轴交于点B ,与反比例函数(2>0)k y x x =的图象交于点C .D 为AB 的中点,过点D 作x 轴的平行线,交反比例函数的图象于点E ,连接OE .(1)当=3OB ,=6DE 时,求k 的值;(2)若635OB OE ==,,求一次函数的解析式和点C 的坐标.参考答案: 1.(1)2y x=- =1y x -- (2)1.5(3)20x -<<或1x >2.(1)△△(2)238y x x =-+(3)1t =3.(1)8y x= (2)()4,2C4.反比例函数的表达式为4y x =. 5.(1)一次函数的解析式为12y x =-+;(2)点P 的坐标为3,44⎛⎫- ⎪⎝⎭(3)1x ≤-或0x >6.(1)13y x=- 22y x =-+; (2)4;(3)10x -<<或3x >.7.(1)一次函数的关系式为1y x =+;40x -<<或3x >(2)1:68.(1)4(2)14x <<(3)(2,3)P 或(3,2)9.(1)6y x = 122y x =+(2)()2,3P --10.(1)38y x =-(2)8x <-或20x -<<(3)1511.(1)18,2k m ==(2)()4,2--12.(1)16y x = 24y x =+(2)8(3)40x -<<或2x >13.(1)623k B =,,(2)217(3)存在,点P 的坐标为1302⎛⎫ ⎪⎝⎭, 或1303⎛⎫⎪⎝⎭,14.(1)反比例函数的表达式为6y x =;(2)直线BC 的函数表达式为39y x =-+.15.(1)6k =(2)162y x =+,点C 的坐标为()29,。
2023年九年级中考数学专题专练--反比例函数与一次函数的综合【含答案】
2023年九年级中考数学专题专练--反比例函数与一次函数的综合1.如图,在平面直角坐标系中,点A(m ,n)(m >0)在双曲线y = 上.4x (1)如图1,m =1,∠AOB =45°,点B 正好在y = (x >0)上,求B 点坐标; 4x (2)如图2,线段OA 绕O 点旋转至OC ,且C 点正好落在y = 上,C(a ,b),试求m 与a4x 的数量关系.2.如图,一次函数y=kx+3的图象与反比例函数y= 的图象交于P 、Q 两点,PA ⊥x 轴于点A ,mx 一次函数的图象分别交x 轴、y 轴于点C ,点B,其中OA=6,且 .12OC CA(1)求一次函数和反比例函数的表达式; (2)求△APQ 的面积;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值.3.如图,已知一次函数y 1=k 1x+b (k 1为常数,且k 1≠0)的图象与反比例函数y 2= (k 2为常数,2k x 且k 2≠0)的图象相交于A (1,2),B (m ,﹣1)两点.(1)求一次函数和反比例函数的解析式;(2)若A 1(m 1,n 1),A (m 2,n 2),A 3(m 3,n 3)为反比例函数图象上的三点,且m 1<m 2<0<m 3,请直接写出n 1、n 2、n 3的大小关系式;(3)结合图象,请直接写出关于x 的不等式k 1x+b > 的解集.2k x 4.如图,在平面直角坐标系xOy 中,直线y=x﹣2与双曲线y= (k≠0)相交于A,B 两点,且点Akx 的横坐标是3.(1)求k 的值;(2)过点P(0,n)作直线,使直线与x 轴平行,直线与直线y=x﹣2交于点M ,与双曲线y=kx (k≠0)交于点N ,若点M 在N 右边,求n 的取值范围.5.已知双曲线y= 和直线y=kx+4.6x (1)若直线y=kx+4与双曲线y= 有唯一公共点,求k 的值.6x(2)若直线y=kx+4与双曲线交于点M (x 1,y 1),N (x 2,y 2).当x 1>x 2,请借助图象比较y 1与y 2的大小.6.如图,已知A (﹣2,﹣2),B (1,4)是一次函数y =kx+b (k≠0)的图象和反比例函数(m≠0)的图象的两个交点,直线AB 与y 轴交于点C.my x =(1)求一次函数和反比例函数的解析式;(2)求△AOC 的面积;(3)结合图象直接写出不等式的解集.mkx b x +<7.如图,在平面直角坐标系系中,一次函数y 1=kx+b(k0)与反比例函数y 2= (m≠0)的图象交mx 于第二、第四象限A ,B 两点,过点A 作AD ⊥x 轴,垂足为D ,AD=4,sin ∠AOD= ,且点B 的45坐标为(n ,-2).(1)求一次函数与反比例函数的表达式;(2)将一次函数y 1=kx+b(k0)向下移动2个单位的函数记为y 3,当y 3<y 2时,求x 的取值范围。
中考数学复习专题09反比例函数
反比例函数一、单选题1.(2021·山西)已知反比例函数6y x=,则下列描述不正确的是( ) A .图象位于第一,第三象限 B .图象必经过点34,2⎛⎫⎪⎝⎭C .图象不可能与坐标轴相交D .y 随x 的增大而减小【答案】D【分析】根据反比例函数图像的性质判断即可. 【详解】解:A 、反比例函数6y x=,0k >,经过一、三象限,此选项正确,不符合题意; B 、将点34,2⎛⎫⎪⎝⎭代入6y x =中,等式成立,故此选项正确,不符合题意;C 、反比例函数不可能坐标轴相交,此选项正确,不符合题意;D 、反比例函数图像分为两部分,不能一起研究增减性,故此选项错误,符合题意;故选:D . 【点睛】本题主要考查反比例函数图像的性质,熟知反比例函数的图像的性质是解题关键.2.(2021·四川达州市)在反比例函数21k y x+=(k 为常数)上有三点()11,A x y ,()22,B x y ,()33,C x y ,若1230x x x <<<,则1y ,2y ,3y 的大小关系为( ) A .123y y y << B .213y y y << C .132y y y << D .321y y y <<【答案】C【分析】根据k >0判断出反比例函数的增减性,再根据其坐标特点解答即可. 【详解】解:∵210k +>,∴反比例函数图象的两个分支在第一、三象限,且在每个象限内y 随x 的增大而减小, ∵B (x 2,y 2),C (x 3,y 3)是双曲线ky x=上的两点,且320x x >>,∴点B 、C 在第一象限,0<y 3<y 2,∵A (x 1,y 1)在第三象限,∵y 1<0,∴132y y y <<.故选:C .【点睛】本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,理解基本性质是解题关键.3.(2021·浙江杭州市)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是( )A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x =-和21y x =--D .11y x=-和21y x =-+【答案】A【分析】根据题中所给定义及一元二次方程根的判别式可直接进行排除选项.【详解】解:当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=, 对于A 选项则有210m m +-=,由一元二次方程根的判别式可得:241450b ac -=+=>,所以存在实数m ,故符合题意;对于B 选项则有210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意; 对于C 选项则有110m m---=,化简得:210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意; 对于D 选项则有110m m--+=,化简得:210m m -+=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;故选A .【点睛】本题主要考查一元二次方程根的判别式、二次函数与反比例函数的性质,熟练掌握一元二次方程根的判别式、二次函数与反比例函数的性质是解题的关键.4.(2021·天津)若点()()()1235,,1,,5,A y B y C y -都在反比例函数5y x=-的图象上,则123,,y y y 的大小关系是( ) A .123y y y << B .231y y y <<C .132y y y <<D .312y y y <<【答案】B【分析】将A 、B 、C 三点坐标代入反比例函数解析式,即求出123、、y y y 的值,即可比较得出答案.【详解】分别将A 、B 、C 三点坐标代入反比例函数解析式得:1515y =-=-、2551y =-=-、3515y =-=-.则231y y y <<.故选B . 【点睛】本题考查比较反比例函数值.掌握反比例函数图象上的点的坐标满足其解析式是解答本题的关键.5.(2021·四川乐山市)如图,直线1l 与反比例函数3(0)y x x=>的图象相交于A 、B 两点,线段AB 的中点为点C ,过点C 作x 轴的垂线,垂足为点D .直线2l 过原点O 和点C .若直线2l 上存在点(,)P m n ,满足APB ADB ∠=∠,则m n +的值为( )A .3B .3或32C .3+3D .3【答案】A【分析】根据题意,得()1,3A ,()3,1B ,直线2l :y x =;根据一次函数性质,得m n =;根据勾股定理,得PC =连接PA ,PB ,FB ,根据等腰三角形三线合一性质,得()2,2C ,OC AB ⊥;根据勾股定理逆定理,得90ABD ∠=︒;结合圆的性质,得点A 、B 、D 、P 共圆,直线2l 和AB 交于点F ,点F 为圆心;根据圆周角、圆心角、等腰三角形的性质,得2FC =;分PC PF FC =+或PC PF FC =-两种情况,根据圆周角、二次根式的性质计算,即可得到答案.【详解】根据题意,得3,33A ⎛⎫ ⎪⎝⎭,33,3B ⎛⎫⎪⎝⎭,即()1,3A ,()3,1B∵直线2l 过原点O 和点C ∴直线2l :y x = ∵(,)P m n 在直线2l 上∴m n = ∴PC =连接PA ,PB ,FB ∴PA PB =,线段AB 的中点为点C ∴()2,2C ,OC AB ⊥ 过点C 作x 轴的垂线,垂足为点D ∴()2,0D ∴AD ==,AB ==BD ==∴222AD AB BD =+ ∴90ABD ∠=︒∴点A 、B 、D 、P 共圆,直线2l 和AB 交于点F ,点F为圆心∴cos BD ADB AD ∠==∵AC BC =,12FB FA AD ==∴12BFC AFB ∠=∠ ∵APB ADB ∠=∠,且12APB AFB ∠=∠ ∴APB ADB BFC ∠=∠=∠∴cos cos FC APB BFC FB ∠=∠===FC = ∴PC PF FC =+或PC PF FC =- 当PC PF FC =-时,APB ∠和ADB ∠位于直线AB 两侧,即180APB ADB ∠+∠=︒ ∴PC PF FC=-不符合题意∴22PC PF FC =+=+,且2m <∴)2PC m==-)22m -=∴32m =∴23m n m +==A .【点睛】本题考查了圆、等腰三角形、反比例函数、一次函数、三角函数、勾股定理、二次根式的知识;解题的关键是熟练掌握圆心角、圆周角、等腰三角形三线合一、三角函数、勾股定理的性质,从而完成求解.6.(2021·重庆)如图,在平面直角坐标系中,菱形ABCD 的顶点D 在第二象限,其余顶点都在第一象限,AB ∥X 轴,AO ⊥AD ,AO =A D .过点A 作AE ⊥CD ,垂足为E ,DE =4CE .反比例函数()0ky x x=>的图象经过点E ,与边AB 交于点F ,连接OE ,OF ,EF .若118EOFS=,则k 的值为( )A .73B .214C .7D .212【答案】A【分析】延长EA 交x 轴于点G ,过点F 作x 轴的垂线,垂足分别为H ,则可得△DEA ≌△AGO ,从而可得DE =AG ,AE =OG ,若设CE =a ,则DE =AG =4a ,AD =DC =DE +CE =5a ,由勾股定理得AE =OG =3a ,故可得点E 、A 的坐标,由AB 与x 轴平行,从而也可得点F 的坐标,根据EOFEOGFOHEGHF SSS S=+-梯形 ,即可求得a 的值,从而可求得k 的值.【详解】如图,延长EA 交x 轴于点G ,过点F 作x 轴的垂线,垂足分别为H∵四边形ABCD 是菱形∴CD =AD =AB ,CD ∥AB ∵AB ∥x 轴,AE ⊥CD ∴EG ⊥x 轴,∠D +∠DAE =90゜∵OA ⊥AD ∴∠DAE +∠GAO =90゜∴∠GAO =∠D ∵OA =OD ∴△DEA ≌△AGO (AAS )∴DE =AG ,AE =OG设CE =a ,则DE =AG =4CE =4a ,AD =AB =DC =DE +CE =5a在Rt △AED 中,由勾股定理得:AE =3a ∴OG =AE =3a ,GE =AG +AE =7a ∴A (3a ,4a ),E (3a ,7a ) ∵AB ∥x 轴,AG ⊥x 轴,FH ⊥x 轴∴四边形AGHF 是矩形 ∴FH =AG =3a ,AF =GH∵E点在双曲线()0ky x x=>上∴221k a= 即221a y x=∵F 点在双曲线221a y x =上,且F 点的纵坐标为4a ∴214a x = 即214a OH =∴94a GH OH OG =-=∵EOFEOGFOHEGHF SSS S=+-梯形∴1191211137(74)4224248a a a a a a a ⨯⨯++⨯-⨯⨯= 解得:219a = ∴217212193k a ==⨯= 故选:A .【点睛】本题是反比例函数与几何的综合题,考查了菱形的性质,矩形的判定与性质,三角形全等的判定与性质等知识,关键是作辅助线及证明△DEA ≌△AGO ,从而求得E 、A 、F 三点的坐标.7.(2021·江苏扬州市)如图,点P 是函数()110,0k y k x x =>>的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数()220,0ky k x x=>>的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中12k k >,下列结论:①//CD AB ;②122OCDk kS -=;③()21212DCPk k Sk -=,其中正确的是( )A .①②B .①③C .②③D .①【答案】B 【分析】设P (m ,1k m),分别求出A ,B ,C ,D 的坐标,得到PD ,PC ,PB ,P A 的长,判断PD PB和PCPA 的关系,可判断①;利用三角形面积公式计算,可得△PDC 的面积,可判断③;再利用OCD OAPB OBD OCA DPC S S S S S =---△△△△计算△OCD 的面积,可判断②.【详解】解:∵PB ⊥y 轴,P A ⊥x 轴,点P 在1k y x =上,点C ,D 在2k y x =上,设P (m ,1km), 则C (m ,2k m ),A (m ,0),B (0,1k m ),令12k km x =,则21k m x k =,即D (21k m k ,1k m ),∴PC =12k k m m -=12k k m -,PD =21k m m k -=()121m k k k -,∵()121121m k k k k k PD PB m k --==,121211k k k k PC m k PA k m--==,即PD PCPB PA=, 又∠DPC =∠BP A ,∴△PDC ∽△PBA ,∴∠PDC =∠PBC ,∴CD ∥AB ,故①正确;△PDC 的面积=12PD PC ⨯⨯=()1212112m k k k k k m --⨯⨯=()21212k k k-,故③正确; OCDOAPB OBD OCA DPC S S S S S =---△△△△=()112221222112k k k k k k ----=()2121122k k k k k ---=()()21121112222k k k k k k k ---=()22112211222k k k k k k ---=221212k k k -,故②错误;故选B . 【点睛】此题主要考查了反比例函数的图象和性质,k 的几何意义,相似三角形的判定和性质,解题关键是表示出各点坐标,得到相应线段的长度.8.(2021·浙江宁波市)如图,正比例函数()1110y k x k =<的图象与反比例函数()2220k y k x=<的图象相交于A ,B 两点,点B 的横坐标为2,当12y y >时,x 的取值范围是( )A .2x <-或2x >B .20x -<<或2x >C .2x <-或02x <<D .20x -<<或02x << 【答案】C【分析】根据轴对称的性质得到点A 的横坐标为-2,利用函数图象即可确定答案. 【详解】解:∵正比例函数与反比例函数都关于原点对称,∴点A 与点B 关于原点对称, ∵点B 的横坐标为2,∴点A 的横坐标为-2,由图象可知,当2x <-或02x <<时,正比例函数()1110y k x k =<的图象在反比例函数()2220k y k x=<的图象的上方,∴当2x <-或02x <<时,12y y >,故选:C . 【点睛】此题考查正比例函数与反比例函数的性质及相交问题,函数值的大小比较,正确理解图象是解题的关键.9.(2021·浙江金华市)已知点()()1122,,,A x y B x y 在反比例函数12y x=-的图象上.若120x x <<,则( ) A .120y y << B .210y y <<C .120y y <<D .210y y <<【答案】B【分析】根据反比例函数的图象与性质解题. 【详解】解:反比例函数12y x=-图象分布在第二、四象限,当0x <时,0y > 当0x >时,0y < 120x x <<120y y ∴>>故选:B .【点睛】本题考查反比例函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.10.(2021·江苏连云港市)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点(1,1)-;乙:函数图像经过第四象限; 丙:当0x >时,y 随x 的增大而增大.则这个函数表达式可能是( )A .y x =-B .1y x=C .2yxD .1y x=-【答案】D【分析】根据所给函数的性质逐一判断即可.【详解】解:A .对于y x =-,当x =-1时,y =1,故函数图像经过点(1,1)-;函数图象经过二、四象限;当0x >时,y 随x 的增大而减小.故选项A 不符合题意;B .对于1y x=,当x =-1时,y =-1,故函数图像不经过点(1,1)-;函数图象分布在一、三象限;当0x >时,y 随x 的增大而减小.故选项B 不符合题意; C .对于2yx ,当x =-1时,y =1,故函数图像经过点(1,1)-;函数图象分布在一、二象限;当0x >时,y 随x 的增大而增大.故选项C 不符合题意;D .对于1y x=-,当x =-1时,y =1,故函数图像经过点(1,1)-;函数图象经过二、四象限;当0x >时,y 随x 的增大而增大.故选项D 符合题意;故选:D【点睛】本题考查的是一次函数、二次函数以及反比例函数性质,熟知相关函数的性质是解答此题的关键.11.(2021·浙江温州市)如图,点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,AC x⊥轴于点C ,BD x ⊥轴于点D ,BE y ⊥轴于点E ,连结AE .若1OE =,23OC OD =,AC AE =,则k 的值为( )A .2B .2C .94D .【答案】B【分析】设OD =m ,则OC =23m ,设AC =n ,根据213m n m =⨯求得32n =,在Rt △AEF 中,运用勾股定理可求出m =2,故可得到结论.【详解】解:如图,设OD =m ,∵23OC OD =∴OC =23m∵BD x ⊥轴于点D ,BE y ⊥轴于点E ,∴四边形BEOD 是矩形∴BD =OE =1∴B (m ,1)设反比例函数解析式为ky x=,∴k =m ×1=m 设AC =n ∵AC x ⊥轴∴A (23m ,n )∴23m n k m ==,解得,n =32,即AC =32∵AC =AE ∴AE =32在Rt △AEF 中,23EF OC m ==,31122AF AC FC =-=-=由勾股定理得,222321()()()232m =+ 解得,2m =(负值舍去)∴2k =故选:B 【点睛】此题考查了反比例函数的性质、待定系数法求函数的解析式.此题难度较大,注意掌握数形结合思想与方程思想的应用.12.(2021·浙江嘉兴市)已知三个点()11,x y ,()22,x y ,()33,x y 在反比例函数2y x=的图象上,其中1230x x x <<<,下列结论中正确的是( )A .2130y y y <<<B .1230y y y <<<C .3210y y y <<<D .3120y y y <<< 【答案】A【分析】根据反比例函数图像的增减性分析解答. 【详解】解:反比例函数2y x=经过第一,三象限,在每一象限内,y 随x 的增大而减小, ∴当1230x x x <<<时,2130y y y <<<故选:A .【点睛】本题考查反比例函数的图像性质,掌握反比例函数的图像性质,利用数形结合思想解题是关键.13.(2021·重庆)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数(0,0)ky k x x=>>的图象经过顶点D ,分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,AEF 的面积为1,则k 的值为( )A .125B .32C .2D .3【答案】D【分析】设D 点坐标为()ka a,,表示出E 、F 、B 点坐标,求出ABF 的面积,列方程即可求解.【详解】解:设D 点坐标为()ka a,,∵四边形ABCD 是矩形,则A 点坐标为(0)a ,,C 点纵坐标为k a,∵点E 为AC 的中点,则E 点纵坐标为022k k a a+=,∵点E 在反比例函数图象上,代入解析式得2k ka x=,解得,2x a =, ∴E 点坐标为(2)2k a a ,,同理可得C 点坐标为(3)ka a,,∵点F 在反比例函数图象上,同理可得F 点坐标为(3)3ka a,,∵点E 为AC 的中点,AEF 的面积为1, ∴2ACFS=,即122CF AB ⋅=,可得,1()(3)223k ka a a a--=,解得3k =,故选:D .【点睛】本题考查了反比例函数的性质和矩形的性质,解题关键是设出点的坐标,依据面积列出方程.14.(2021·四川自贡市)已知蓄电池的电压为定值,使用蓄电池时,电流O (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )A .函数解析式为13I R=B .蓄电池的电压是18VC .当10A I ≤时, 3.6R ≥ΩD .当6R =Ω时,4A I = 【答案】C【分析】将将()4,9代入UI R=求出U 的值,即可判断A ,B ,D ,利用反比例函数的增减性可判断C .【详解】解:设U I R=,将()4,9代入可得36I R =,故A 错误;∴蓄电池的电压是36V ,故B 错误;当10A I ≤时, 3.6R ≥Ω,该项正确; 当当6R =Ω时,6A I =,故D 错误,故选:C .【点睛】本题考查反比例函数的实际应用,掌握反比例函数的图象与性质是解题的关键. 15.(2021·浙江丽水市)一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力F F F F 丁乙甲丙、、、,将相同重量的水桶吊起同样的高度,若 F F F F <<<甲丁丙乙,则这四位同学对杆的压力的作用点到支点的距离最远的是( )A .甲同学B .乙同学C .丙同学D .丁同学【答案】B【分析】根据物理知识中的杠杆原理:动力×动力臂=阻力×阻力臂,力臂越大,用力越小,即可求解.【详解】解:由物理知识得,力臂越大,用力越小,根据题意,∵ F F F F <<<甲丁丙乙,且将相同重量的水桶吊起同样的高度, ∴乙同学对杆的压力的作用点到支点的距离最远,故选:B .【点睛】本题考查反比例函数的应用,属于数学与物理学科的结合题型,立意新颖,掌握物理中的杠杆原理是解答的关键. 二、填空题1.(2021·浙江绍兴市)如图,在平面直角坐标系中,正方形ABCD 的顶点A 在x 轴正半轴上,顶点B ,C 在第一象限,顶点D 的坐标5(,2)2. 反比例函数k y x=(常数0k >,0x >)的图象恰好经过正方形ABCD 的两个顶点,则k 的值是_______.【答案】5或22.5【分析】先设一个未知数用来表示出B 、C 两点的坐标,再利用反比例函数图像恰好经过B 、C 、D 的其中两个点进行分类讨论,建立方程求出未知数的值,符合题意时进一步求出k 的值即可.【详解】解:如图所示,分别过B 、D 两点向x 轴作垂线,垂足分别为F 、E 点,并过C 点向BF 作垂线,垂足为点G ;∵正方形ABCD ,∴∠DAB =90°,AB =BC =CD =DA ,∴∠DAE +∠BAF =90°, 又∵∠DAE +∠ADE =90°,∠BAF +∠ABF =90°, ∴∠DAE =∠ABF ,∠ADE =∠BAF ,∴ADE ≌BAF ,同理可证△ADE ≌△BAF ≌△CBG ;∴DE =AF =BG ,AE =BF =CG ;设AE =m ,∵点D 的坐标 (52,2) ,∴OE=52,DE =AF =BG =2,∴B (92m +,m ),C (92,2m +), ∵5252⨯=,当()9252m +=时,809m =-<,不符题意,舍去;当952m m ⎛⎫+= ⎪⎝⎭时,由0m ≥解得m =,符合题意;故该情况成立,此时 5k =; 当()99222m m m ⎛⎫+=+ ⎪⎝⎭时,由 0m ≥解得3m =,符合题意,故该情况成立,此时()93222.52k =⨯+=;故答案为:5或22.5.【点睛】本题综合考查了全等三角形的判定与性质、正方形的性质、反比例函数的图像与性质、解一元二次方程等内容,解题的关键是牢记相关概念与性质,能根据题意建立相等关系列出方程等,本题涉及到了分类讨论和数形结合的思想方法等. 2.(2021·湖南)在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则m 的取值范围是________. 【答案】m <3【分析】根据反比例函数的增减性,列出关于m 的不等式,进而即可求解. 【详解】解:∵在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,∴m -3<0,即:m <3.故答案是:m <3.【点睛】本题主要考查反比例函数的性质,掌握反比例函数ky x=,在反比例函数的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则k <0,是解题的关键.3.(2021·湖北武汉市)已知点()1,A a y ,()21,B a y +在反比例函数21m y x +=(m是常数)的图象上,且12y y <,则a 的取值范围是__________. 【答案】10a -<<【分析】根据反比例函数的增减性解答.【详解】解:∵210m +>,∴图象经过第一、三象限,在每个象限内,y 随着x 的增大而减小,∵点()1,A a y ,()21,B a y +在反比例函数21m y x+=(m是常数)的图象上,且12y y <,1a a <+ ,∴010a a <⎧⎨+>⎩,∴10a -<<,故答案为:10a -<<. 【点睛】此题考查反比例函数的性质:当0k >时,在每个象限内y 随着x 的增大而增大;当0k <时,在每个象限内y 随x 的增大而减小.4.(2021·湖南株洲市)点()11,A x y 、()121,B x y +是反比例函数ky x=图像上的两点,满足:当1>0x 时,均有12y y <,则k 的取值范围是__________.【答案】k <0【分析】先分析该两点所在的图像的象限和增减性,最后确定k 的取值范围即可. 【详解】解:因为当10x >时,110x +>,说明A 、B 两点同时位于第一或第四象限, ∵当10x >时,均有12y y <,∴在该图像上,y 随x 的增大而增大, ∴A 、B 两点同时位于第四象限,所以k <0,故答案为:k <0.【点睛】本题考查了反比例函数的图像和性质,解决本题的关键是理解并牢记反比例函数的图像和性质,能根据点的坐标情况分析其图像特点等,涉及了数形结合的思想方法. 5.(2021·陕西)若()11,A y ,()23,B y 是反比例函数2112m y m x -⎛⎫=< ⎪⎝⎭图象上的两点,则1y 、2y 的大小关系是1y ______2y (填“>”、“=”或“<”) 【答案】<【分析】先根据不等式的性质判断2-10m <,再根据反比例函数的增减性判断即可. 【详解】解:∵12m <∴1222m <⨯即2-10m < ∴反比例函数图像每一个象限内,y 随x 的增大而增大∵1<3∴1y <2y 故答案为:<.【点睛】本题考查反比例函数的增减性、不等式的性质、熟练掌握反比例函数的性质是关键. 6.(2021·浙江宁波市)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y ,我们把点11,B x y ⎛⎫⎪⎝⎭称为点A 的“倒数点”.如图,矩形OCDE 的顶点C 为()3,0,顶点E 在y 轴上,函数()20=>y x x的图象与DE 交于点A .若点B 是点A 的“倒数点”,且点B 在矩形OCDE 的一边上,则OBC 的面积为_________.【答案】14或32【分析】根据题意,点B 不可能在坐标轴上,可对点B 进行讨论分析:①当点B 在边DE 上时;②当点B 在边CD 上时;分别求出点B 的坐标,然后求出OBC 的面积即可.【详解】解:根据题意,∵点11,B x y ⎛⎫⎪⎝⎭称为点(),A x y 的“倒数点”,∴0x ≠,0y ≠,∴点B 不可能在坐标轴上; ∵点A 在函数()20=>y x x 的图像上,设点A 为2(,)x x ,则点B 为1(,)2x x , ∵点C 为()3,0,∴3OC =,①当点B 在边DE 上时;点A 与点B 都在边DE 上,∴点A 与点B 的纵坐标相同,即22xx =,解得:2x =, 经检验,2x =是原分式方程的解;∴点B 为1(,1)2,∴OBC 的面积为:133122S =⨯⨯=;②当点B 在边CD 上时;点B 与点C 的横坐标相同,∴13x =,解得:13x =,经检验,13x =是原分式方程的解;∴点B 为1(3,)6,∴OBC 的面积为:1113264S =⨯⨯=;故答案为:14或32.【点睛】本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析.7.(2021·云南)若反比例函数的图象经过点()1,2-,则该反比例函数的解析式(解析式也称表达式)为_________.【答案】2y x=-【分析】先设ky x=,再把已知点的坐标代入可求出k 值,即得到反比例函数的解析式. 【详解】解:设反比例函数的解析式为ky x =(k ≠0),∵函数经过点(1,-2),∴21k -=,得k =-2,∴反比例函数解析式为2y x =-,故答案为:2y x=-. 【点睛】此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点. 三、解答题1.(2021·湖北随州市)如图,一次函数1y kx b =+的图象与x 轴、y 轴分别交于点A ,B ,与反比例函数2my x=(0m >)的图象交于点()1,2C ,()2,D n .(1)分别求出两个函数的解析式;(2)连接OD ,求BOD 的面积. 【答案】(1)22y x=,13y x =-+;(2)3 【分析】(1)将点C 、D 的横、纵坐标代入反比例函数的解析式,求得m 、n 的值,从而点D 纵坐标已知,将点C 、D 的横、纵坐标代入一次函数的解析式,求得k 、b 的值,从而两个函数解析式可求;(2)求出点B 的坐标,可知OB 的长,利用三角形的面积公式可求三角形BOD 的面积. 【详解】解:(1)∵双曲线2my x=(m >0)过点C (1,2)和D (2,n ), ∴212mm n ⎧=⎪⎪⎨⎪=⎪⎩,解得,21m n =⎧⎨=⎩.∴反比例函数的解析式为22y x =.∵直线1y kx b =+过点C (1,2)和D (2,1),∴221k b k b +=⎧⎨+=⎩,解得,13k b =-⎧⎨=⎩.∴一次函数的解析式为13y x =-+.(2)当x =0时,y 1=3,即B (0,3).∴3OB =.如图所示,过点D 作DE ⊥y 轴于点E .∵D (2,1),∴DE =2.∴1132322BOD S OB DE ==⨯⨯=△.【点睛】本题考查了待定系数法求函数解析式、二元一次方程组、三角形的面积等知识点,熟知解析式、点坐标、线段长三者的相互转化是解题的关键.2.(2021·湖北恩施州)如图,在平面直角坐标系中,Rt ABC 的斜边BC 在x 轴上,坐标原点是BC 的中点,30ABC ∠=︒,4BC =,双曲线ky x=经过点A .(1)求k ;(2)直线AC 与双曲线y =D .求ABD △的面积.【答案】(1)k =(2)ABD △的面积【分析】(1)过点A 作AE ⊥x 轴于点E ,由题意易得2,60AC ACB =∠=︒,进而可得1,==CE AE (A ,最后问题可求解;(2)由(1)可先求出直线AC 的解析式为y =+,然后联立直线AC 的解析式与反比例函数y =D 的坐标,最后利用割补法求解三角形的面积即可.【详解】解:(1)过点A 作AE ⊥x 轴于点E ,如图所示:∵30ABC ∠=︒,4BC =,90BAC ∠=︒, ∴122AC BC ==,60ACB ∠=︒,∴30EAC ∠=︒,∴112EC AC ==, ∴在Rt △AEC中,AE ==∵点O 是BC 的中点,∴OC =2,∴OE =1,∴(A,∴1k == (2)由(1)可得:(A ,()2,0C ,∴设直线AC 的解析式为y kx b =+,则把点A 、C代入得:20k b k b ⎧+=⎪⎨+=⎪⎩k b ⎧=⎪⎨=⎪⎩,∴直线AC的解析式为y =+,联立y =+与反比例函数y =+=, 解得:123,1x x ==-(不符合题意,舍去),∴点(3,D ,∴142ABDABCBCDSSS=+=⨯⨯=【点睛】本题主要考查反比例函数与几何的综合及含30°直角三角形的性质、勾股定理,熟练掌握反比例函数与几何的综合及含30°直角三角形的性质、勾股定理是解题的关键. 3.(2021·四川广安市)如图,一次函数()1y kx b k 0=+≠的图象与反比例函数()2my m 0x=≠的图象交于()1,A n -,()3,2B -两点.(1)求一次函数和反比例函数的解析式;(2)点P 在x 轴上,且满足ABP △的面积等于4,请直接写出点P 的坐标.【答案】(1)124y x =-+,26y x=-;(2)(1,0)或(3,0)【分析】(1)根据点B 坐标求出m ,得到反比例函数解析式,据此求出点A 坐标,再将A ,B 代入一次函数解析式;(2)设点P 的坐标为(a ,0),求出直线AB 与x 轴交点,再结合△ABP 的面积为4得到关于a 的方程,解之即可.【详解】解:(1)由题意可得:点B (3,-2)在反比例函数2my x=图像上, ∴23m-=,则m =-6,∴反比例函数的解析式为26y x=-, 将A (-1,n )代入26y x=-,得:661n =-=-,即A (-1,6),将A ,B 代入一次函数解析式中,得236k b k b -=+⎧⎨=-+⎩,解得:24k b =-⎧⎨=⎩,∴一次函数解析式为124y x =-+;(2)∵点P 在x 轴上,设点P 的坐标为(a ,0),∵一次函数解析式为124y x =-+,令y =0,则x =2,∴直线AB 与x 轴交于点(2,0), 由△ABP 的面积为4,可得:()1242A B y y a ⨯-⨯-=,即18242a ⨯⨯-=,解得:a =1或a =3, ∴点P 的坐标为(1,0)或(3,0).【点睛】本题考查一次函数和反比例函数相交的有关问题;通常先求得反比例函数解析式;较复杂三角形的面积可被x 轴或y 轴分割为2个三角形的面积和.4.(2021·浙江杭州市)在直角坐标系中,设函数11ky x =(1k 是常数,10k >,0x >)与函数22y k x=(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为()1,2-,①求1k ,2k 的值.②当12y y <时,直接写出x 的取值范围. (2)若点B 在函数33k y x=(3k 是常数,30k ≠)的图象上,求13k k +的值. 【答案】(1)①12k =,22k =;②1x >;(2)0【分析】(1)①根据点A 关于y 轴的对称点为点B ,可求得点A 的坐标是()1,2,再将点A 的坐标分别代入反比例函数、正比例函数的解析式中,即可求得12k =,22k =;②观察图象可解题;(2)将点B 代入33k y x=,解得3k 的值即可解题. 【详解】解(1)①由题意得,点A 的坐标是()1,2, 因为函数11k y x=的图象过点A ,所以12k =,同理22k =. ②由图象可知,当12y y <时,反比例函数的图象位于正比例函数图象的下方,即当12y y <时,1x >.(2)设点A 的坐标是()00,x y ,则点B 的坐标是()00,x y -,所以100k x y =,300k x y =-,所以310k k +=.【点睛】本题考查关于y 轴对称的点的特征、待定系数法求反比例函数、正比例函数的解析式等知识,是重要考点,难度较易,掌握相关知识是解题关键.5.(2021·山东临沂市)已知函数()()()31 31131x x y x x x x ⎧≤-⎪⎪=-⎨⎪⎪≥⎩<<(1)画出函数图象;列表:描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由; (3)设1122(,),(,)x y x y 是函数图象上的点,若120x x +=,证明:120y y +=.【答案】(1)见解析;(2)有,当1x =时,最大值为3;当1x =-时,函数有最小值3-;(3)见解析【分析】(1)选取特殊值,代入函数解析式,求出y 值,列表,在图像中描点,画出图像即可; (2)观察图像可得函数的最大值;(3)根据120x x +=,得到1x 和2x 互为相反数,再分111x -<<,11x ≤-,11x ≥,分别验证120y y +=.【详解】解:(1)列表如下:函数图像如图所示:(2)根据图像可知:当x =1时,函数有最大值3;当1x =-时,函数有最小值3-; (3)∵1122(,),(,)x y x y 是函数图象上的点,120x x +=,∴1x 和2x 互为相反数, 当111x -<<时,211x -<<,∴113y x =,223y x =,∴()1212123330y y x x x x +=+=+=; 当11x ≤-时,21x ≥,则()121212123330x x y y x x x x ++=+==; 同理:当11x ≥时,21x ≤-,()121212123330x x y y x x x x ++=+==,综上:120y y +=.【点睛】本题主要考查正比例函数,反比例函数的图像和性质,描点法画函数图像,准确画出图像,理解120x x +=是解题的关键.6.(2021·安徽)已知正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (m ,2).(1)求k ,m 的值;(2)在图中画出正比例函数y kx =的图象,并根据图象,写出正比例函数值大于反比例函数值时x 的取值范围.【答案】(1),k m 的值分别是23和3;(2)30x -<<或3x > 【分析】(1)把点A (m ,2)代入6y x=求得m 的值,从而得点A 的坐标,再代入(0)y kx k =≠求得k 值即可;(2)在坐标系中画出y kx =的图象,根据正比例函数(0)y kx k =≠的图象与反比例函数6y x=图象的两个交点坐标关于原点对称,求得另一个交点的坐标,观察图象即可解答. 【详解】(1)将(,2)A m 代入6y x=得62m =, 3m ∴=, (3,2)A ∴,将(3,2)A 代入y kx =得23k =, 23k ∴=, ,k m ∴的值分别是23和3.(2)正比例函数23y x =的图象如图所示,∵正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (3,2),∴正比例函数(0)y kx k =≠与反比例函数6y x=的图象的另一个交点坐标为(-3,-2), 由图可知:正比例函数值大于反比例函数值时x 的取值范围为30x -<<或3x >.【点睛】本题是正比例函数与反比例函数的综合题,利用数形结合思想是解决问题的关键. 7.(2021·浙江)已知在平面直角坐标系xOy 中,点A 是反比例函数1(0)y x x=>图象上的一个动点,连结,AO AO 的延长线交反比例函数(0,0)ky k x x=><的图象于点B ,过点A 作AE y ⊥轴于点E .(1)如图1,过点B 作BF x ⊥轴于点F ,连结EF .①若1k =,求证:四边形AEFO 是平行四边形;②连结BE ,若4k =,求BOE △的面积.(2)如图2,过点E 作//EP AB ,交反比例函数(0,0)ky k x x=><的图象于点P ,连结OP .试探究:对于确定的实数k ,动点A 在运动过程中,POE △的面积是否会发生变化?请说明理由. 【答案】(1)①证明见解析,②1;(2)不改变,见解析【分析】(1)①计算得出AE OF a ==,利用平行四边形的判定方法即可证明结论;②证明AEO BDO ∽,利用反比例函数k 的几何意义求得212()2AO BO=,即可求解; (2)点A 的坐标为1()a a ,,点P 的坐标为()k b b,,可知四边形AEGO 是平行四边形,由AEO GHP ∽,利用相似三角形的性质得到关于ba 的一元二次方程,利用三角形的面积公式即可求解.【详解】(1)①证明:设点A 的坐标为1()a a,,则当1k =时,点B 的坐标为1()a a--,,AE OF a ∴==,AE y ⊥轴,//AE OF ∴,∴四边形AEFO 是平行四边形; ②解:过点B 作BD y ⊥轴于点D ,AE y ⊥轴,//AE BD ∴,AEO BDO ∴∽, 2()AEO BDOSAO SBO∴=, ∴当4k =时,则212()2AO BO=,即12AO BO =.21BOEAOES S∴==;(2)解 不改变. 理由如下:过点P 作PH x ⊥轴于点H PE ,与x 轴交于点G ,设点A 的坐标为1()a a ,,点P 的坐标为()k b b,,则1kAE a OE PH a b ===-,,,OH =b ,由题意,可知四边形AEGO 是平行四边形,∴OG =AE =a ,∠HPG =∠OEG =∠EOA ,且∠PHG =∠OEA =90°,∴AEO GHP ∽, AE EOGH a b GH PH=--=,,即1a a k ab b=---, ∴1b a k a b +=,2()0b b k a a ∴+-=,解得12b a -±=, a b ,异号,0k ≥,b a ∴=,111()22POEb S b a a ∴=⨯⨯-=-⨯=∴对于确定的实数k ,动点A 在运动过程中,POE △的面积不会发生变化.。
中考数学教材重点--- 反比例函数与一次函数的综合真题练习(含答案解析)
中考数学教材重点--- 反比例函数与一次函数的综合真题练习(含答案解析)1.(2023•攀枝花模拟)如图,已知直线y=mx与双曲线的一个交点坐标为(﹣1,3),则它们的另一个交点坐标是()A.(1,3)B.(3,1)C.(1,﹣3)D.(﹣1,3)【分析】反比例函数的图像是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:因为直线y=mx过原点,双曲线的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(﹣1,3),另一个交点的坐标为(1,﹣3).故选:C.2.(2023•滨湖区一模)在平面直角坐标系xOy中,反比例函数与一次函数y =ax+b(a>0)的图像相交于A(﹣8,m)、B(﹣2,n)两点,若△AOB面积为15,则k的值为()A.﹣8B.﹣7.5C.﹣6D.﹣4【分析】过点A、B分别作y轴的垂线,垂足分别为C、D,根据点A(﹣8,m)、B(﹣2,n)都在反比例函数的图像上,推出n=4m,根据S梯形ACDB=S△OAB=15,求得n﹣m=3,进一步计算即可求解.【解答】解:∵反比例函数与一次函数y=ax+b(a>0)的图像相交于A (﹣8,m)、B(﹣2,n)两点,∴A(﹣8,m)、B(﹣2,n)两点在第二象限,过点A、B分别作y轴的垂线,垂足分别为C、D,则AC=8,BD=2,OC=m,OD=n,∴CD=n﹣m,∵点A(﹣8,m)、B(﹣2,n)都在反比例函数的图像上,∴S△AOC=S△BOD,﹣8m=﹣2n,即n=4m,∵S△AOC+S梯形ACDB=S△BOD+S△OAB,∴S梯形ACDB=S△OAB=15,即,∴n﹣m=3,∴4m﹣m=3,解得m=1,∴A(﹣8,1),∴k=﹣8×1=﹣8.故选:A.3.(2023•宁波模拟)如图,一次函数y1=x﹣1的图像与反比例函数的图像交于点A (2,m),B(n,﹣2),当y1>y2时,x的取值范围是()A.x<﹣1或x>2B.x<﹣1或0<x<2C.﹣1<x<0或0<x<2D.﹣1<x<0或x>2【分析】先把B(n,﹣2)代入y1=x﹣1,求出n值,再根据图像直接求解即可.【解答】解:把B(n,﹣2)代入y1=x﹣1,得﹣2=n﹣1,解得:n=﹣1,∴B(﹣1,﹣2),∵图像交于A(2,m)、B(﹣1,﹣2)两点,∴当y1>y2时,﹣1<x<0或x>2.故选:D.4.(2023•宁德模拟)如图,已知直线l与x,y轴分别交于A,B两点,与反比例函数的图像交于C,D两点,连接OC,OD.若△AOC和△COD的面积都为3,则k的值是()A.﹣2B.﹣3C.﹣4D.﹣6【分析】由S△AOC=S△COD得,AC=CD,设C(,m),A(0,n),由中点坐标公式得,D(,2m﹣n),代入解析式得到n=m,过点作CH⊥y轴于H,利用S△AOC=3,可求出k.【解答】解:如图,∵S△AOC=S△COD,以AC,CD作底,高相同∴AC=CD,即C为AD的中点,设C(,m),A(0,n),由中点坐标公式得,D(,2m﹣n),∵D(,2m﹣n)在反比例函数y=的图像上,∴,∴n=m过点作CH⊥y轴于H,则CH=﹣,OA=n=m,∵S△AOC=3,∴OA•CH=3,∴×m×(﹣)=3,∴k=﹣4.故选:C.5.(2023•宿迁模拟)如图,在平面直角坐标系中,直线l与函数的图像交于A、B两点,与x轴交于C点,若OA=AB,且∠OAB=90°,则tan∠AOC的值为()A.B.C.D.【分析】作AE⊥x轴于E,BF⊥y轴于F,交于点D,设A(m,),则OE=m,AE=,通过证得△AOE≌△BAD(AAS),求得B(),代入,即可得到(m﹣)(m+)=k,整理得m2﹣=k,方程两边同除k得﹣=1,设=y,则方程变为﹣y=1,化为y2+y﹣1=0,解得y=,即可求得tan∠AOC ====.【解答】解:作AE⊥x轴于E,BF⊥y轴于F,交于点D,设A(m,),则OE=m,AE=,∵∠OAB=90°,∴∠OAE+∠DAB=90°,∵∠OAE+∠AOE=90°,∴∠DAB=∠AOE,∵OA=AB,∠AEO=∠ADB=90°,∴△AOE≌△BAD(AAS),∴AD=OE=m,BD=AE=,∴B(),∵函数的图像过B点,∴(m﹣)(m+)=k,整理得m2﹣=k,方程两边同除以k得﹣=1,设=y,则方程变为﹣y=1,化为y2+y﹣1=0,解这个方程得y=,∴k>0,∴>0,∴=,∴tan∠AOC====.故选:A.6.(2023•呼和浩特一模)如图,在平面直角坐标系中,直线y=﹣3x+3交x轴于A点,交y轴于B点,以AB为边在第一象限作正方形ABCD,其中顶点D恰好落在双曲线上,现将正方形ABCD沿y轴向下平移a个单位,可以使得顶点C落在双曲线上,则a的值为()A.B.C.2D.【分析】作CE⊥y轴于点E,作DF⊥x轴于点F,作CH⊥x轴于点H,交双曲线于点G,由函数解析式确定B的坐标是(0,3),A的坐标是(1,0),根据全等三角形的判定和性质得出△OAB≌△FDA≌△BEC,AF=OB=EC=3,DF=OA=BE=1,结合图形求解即可.【解答】解:作CE⊥y轴于点E,作DF⊥x轴于点F,作CH⊥x轴于点H,交双曲线于点G在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3),令y=0,解得:x=1,即A的坐标是(1,0),则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△EBC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4),代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把x=3代入y=得:y=.即G的坐标是,∴CG=4﹣=,∴a=,故选:A.7.(2023•徐州模拟)如图,一次函数的图像与反比例函数的图像交于点A,与y轴交于点C,AD⊥x轴于点D,点D坐标为(4,0),则△ADC的面积为()A.3B.6C.8D.12【分析】根据AD⊥x轴,D(4,0)求出点A的横坐标,代入一次函数表达式中求出点A纵坐标,再利用三角形面积公式计算.【解答】解:∵AD⊥x轴,D(4,0),∴x A=4,代入中,∴,即A(4,3),∴△ADC的面积为,故选:B.8.(2023•茅箭区一模)如图已知反比例函数C1:的图像如图所示,将该曲线绕点O顺时针旋转45°得到曲线C2,点N是由曲线C2上一点,点M在直线y=﹣x 上,连接MN、ON,若MN=ON,△MON的面积为,则k的值为()A.B.C.﹣2D.﹣1【分析】将直线y=﹣x和曲线C2绕点O逆时针旋转45°,则直线y=﹣x与x轴重合,曲线C2与曲线C1重合,即可求解.【解答】解:∵将直线y=﹣x和曲线C2绕点O逆时针旋转45°后直线y=﹣x与x轴重合,∴旋转后点N落在曲线C1上,点M落在x轴上,如图所示,设点M和点N的对应点分别为点M'和N',过点N'作N'P⊥x轴于点P,连接ON',M'N',∵MN=ON,∴M'N'=ON',M'P=OP,∴S△MON=2S△PN'O=2×=|k|=,∵k<0,∴k=﹣.故选:B.9.(2023•西安二模)如图,在平面直角坐标系中,直线y=﹣x+1与x轴,y轴分别交于点A,B,与反比例函数的图像在第二象限交于点C,若AB=BC,则k的值为﹣2.【分析】过点C作CH⊥x轴于点H.求出点C的坐标,可得结论.【解答】解:过点C作CH⊥x轴于点H.∵直线y=﹣x+1与x轴,y轴分别交于点A,B,∴A(1,0),B(0,1),∴OA=OB=1,∵OB∥CH,∴△AOB∽△AHC,∴,∴==1,∴OA=OH=1,∴CH=2OB=2,∴C(﹣1,2),∵点C在y=的图像上,∴k=﹣2,故答案为:﹣2.10.(2023•双流区模拟)如图,已知一次函数的图像与反比例函数图像交于A,B两点.若AC∥x轴,且AC=BC,则△ABC面积的最小值为4.【分析】由题意设点A的坐标为(m,m+b),点B的坐标为(n,n+b),即可推出m+n=﹣,mn=﹣3,利用勾股定理求得AB2=4b2+16,进而推出S△ABC =AB•CT=AB2=b2+4,利用二次函数的性质即可求得△ABC的面积有最小值为4.【解答】解:由题意设点A的坐标为(m,m+b),点B的坐标为(n,n+b),联立,得x2+3bx﹣9=0,∴m+n=﹣,mn=﹣3,∴AB2=(m﹣n)2+(m+b﹣n﹣b)2=(m﹣n)2=[(m+n)2﹣4mn]=4b2+16,如图,过点C作CT⊥AB于点T,∵AC=BC,∴AT=BT=AB,由一次函数可知,∠CAB=30°,∴CT=AT=AB,∴S△ABC=AB•CT=AB2=b2+4,∴当b=0时,△ABC的面积有最小值为4,故答案为:4.11.(2023•青羊区模拟)如图,在平面直角坐标系中,一次函数y=3x与反比例函数的图像交于A,B两点,C是反比例函数位于第一象限内的图像上的一点,作射线CA交y轴于点D,连接BC,BD,若,△BCD的面积为30,则k=6.【分析】作CF⊥y于点I,BF⊥x,交CI的延长线于点F,作AE⊥CF于点E,设BC交y轴于点M,设A(m,3m),则B(﹣m,﹣3m),k=3m2,设点C的横坐标为a,则C (a,),可证明tan∠CAE=tan∠CBF=,则∠CAE=∠CBF,即可推导出∠CDM =∠CMD,则CD=CM,所以===,则CI=4FI,所以a=4m,C(4m,),由=tan∠CMD=tan∠CBF=,得DI=MI=3m,则DM=6m,于是得×6m ×m+×6m×4m=30,则m2=2,所以k=3m2=6.【解答】解:作CF⊥y于点I,BF⊥x,交CI的延长线于点F,作AE⊥CF于点E,设BC交y轴于点M,∵直线y=3x经过原点,且与双曲线y=交于A,B两点,∴点A与点B关于原点对称,设A(m,3m),则B(﹣m,﹣3m),k=3m2,设点C的横坐标为a,则C(a,),F(﹣m,),∵tan∠CAE===,tan∠CBF===,∴tan∠CAE=tan∠CBF,∴∠CAE=∠CBF,∵AE∥BF∥DM,∠CAE=∠CDM,∠CBF=∠CMD,∴∠CDM=∠CMD,∴CD=CM,∵===,∴CI=4FI,∴a=4m,∴C(4m,),∵=tan∠CMD=tan∠CBF===,∴DI=MI=CI=×4m=3m,∴DM=DI+MI=6m,∵DM•FI+DM•CI=S△BCD=30,∴×6m×m+×6m×4m=30,∴m2=2,∴k=3m2=3×2=6,故答案为:6.12.(2023•余姚市校级模拟)如图,点A在y=(x>0)的图像上,点B,C在y=(x <0)的图像上(C在B左边),直线AB经过原点O,直线AC交y轴于点M,直线BC 交x轴于点N.则=;=m,=n,则=.【分析】作AD⊥y轴交y轴于D,BE⊥x轴交x轴于E,CF⊥x轴交x轴于F,CG⊥y 轴交y轴于G,再设点A的坐标为(a,),点B的坐标为(b,),点C的坐标为(c,),从而可以表示出AD=a,OE=﹣bCG=﹣c,CF=﹣,BE=﹣,再根据三角形相似的判定定理得出△BEO∽△ODA,△CGM∽△ADM,△NCF∽△NBE,可分别表示出OA:OB,MC:MA,NB:NC,再由直线AB经过原点O,可以表示出及的值,最后代入即可得到答案.【解答】解:如图所示,作AD⊥y轴交y轴于D,BE⊥x轴交x轴于E,CF⊥x轴交x 轴于F,CG⊥y轴交y轴于G,设点A的坐标为(a,),点B的坐标为(b,),点C的坐标为(c,),则AD=a,OE=﹣b,CG=﹣c,CF=﹣,BE=﹣,∵BE⊥x轴,∴BE∥y轴,∴∠EBO=∠BOG,∵∠BOG=∠DOA,∴∠EBO=∠DOA,∵AD⊥y轴,∴∠BEO=∠ODA=90°,∴△BEO∽△ODA,∴OA:OB=AD:OE=﹣,∵AD⊥y轴,CG⊥y轴,∴△CGM∽△ADM,∴==﹣=m,∵BE⊥x,CF⊥x轴,∴△NCF∽△NBE,∴====n,∴==﹣,∵直线AB经过原点O,∴=,=,∴=,=,由图像可知,a>0,c<b<0,∴=﹣,=﹣,∴=﹣=,=﹣=,故答案为:;.13.(2023•岳阳一模)如图,已知正比例函数y1=x的图像与反比例函数y2=的图像相交于点A(3,n)和点B.(1)求n和k的值;(2)请结合函数图像,直接写出不等式x﹣<0的解集;(3)如图,以AO为边作菱形AOCD,使点C在x轴正半轴上,点D在第一象限,双曲线交CD于点E,连接AE、OE,求△AOE的面积.【分析】(1)先把点A(3,n)代入正比例函数解析式求出n的值,再把求出的点A坐标代入反比例函数解析式即可求出k值;(2)根据正比例函数和反比例函数都是关于原点成中心对称的,可得出点B的坐标,然后根据图像即可写出解集;(3)根据题意作出辅助线,然后求出OA的长,根据菱形的性质求出OC的长,可推出,然后求出菱形的面积即可求出△AOE的面积.【解答】解:(1)把点A(3,n)代入正比例函数可得:n=4,∴点A(3,4),把点A(3,4)代入反比例函数,可得:k=12;(2)∵点A与点B是关于原点对称的,∴点B(﹣3,﹣4),∴根据图像可得,不等式x﹣<0的解集为:x<﹣3或0<x<3;(3)如图所示,过点A作AG⊥x轴,垂足为G,∵A(3,4),∴OG=3,AG=4在Rt△AOG中,AO==5∵四边形AOCD是菱形,∴OC=OA=5,,∴.14.(2023•锦江区模拟)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图像与x 轴交于点A(﹣2,0),与反比例函数交于点B(1,m).(1)求反比例函数的表达式;(2)点M为反比例函数在第一象限图像上的一点,过点M作x轴垂线,交一次函数y =2x+b图像于点N,连接BM,若△BMN是以MN为底边的等腰三角形,求△BMN的面积;(3)点P为反比例函数图像上一点,连接PB,若∠PBA=∠BAO,求点P的坐标.【分析】(1)用待定系数法即可求解;(2)若△BMN是以MN为底边的等腰三角形,则点B在MN的中垂线上,进而求解;(3)取AB的中点M,过点M作MH⊥AB交x轴于点H,点M是AB的中点且MH⊥AB,则∠PBA=∠BAO,进而求解.【解答】解:(1)将点A的坐标代入一次函数表达式得:0=﹣4+b,解得:b=4,即一次函数的表达式为:y=2x+4,当x=1时,y=2x+4=6,则点B(1,6),将点B的坐标代入反比例函数表达式得:k=1×6=6,即反比例函数表达式为:y=;(2)设点N的坐标为(t,2t+4),则点M(t,),若△BMN是以MN为底边的等腰三角形,则点B在MN的中垂线上,则(2t+4+)=6,解得:t=1(舍去)或3,则点M、N的坐标分别为:(3,10)、(3,2),则△BMN的面积=MN•(x M﹣x B)=(10﹣2)×(3﹣1)=8;(3)取AB的中点M,过点M作MH⊥AB交x轴于点H,∵点M是AB的中点且MH⊥AB,则∠PBA=∠BAO,由中点坐标公式得,点M(﹣,3),在Rt△AMH中,由AB的表达式知,tan∠BAO=2,则tan∠MHA=,则直线MH表达式中的k值为﹣,则直线MH的表达式为:y=﹣(x+)+3,令y=﹣(x+)+3=0,则x=,即点H(,0),由点B、H的坐标得,直线BH的表达式为:y=﹣x+,联立y=﹣x+和y=并解得:x=1(舍去)或,则点P的坐标为:(,).。
中考一次函数与反比例函数[含答案]
反比例函数与一次函数综合题针对演练1. 已知正比例函数y =2x 的图象与反比例函数y =k x(k ≠0)在第一象限内的图象交于点A ,过点A 作x 轴的垂线,垂足为点P ,已知△OAP 的面积为1. (1)求反比例函数的解析式;(2)有一点B 的横坐标为2,且在反比例函数图象上,则在x 轴上是否存在一点M ,使得MA +MB 最小若存在,请求出点M 的坐标;若不存在,请说明理由.第1题图2. 如图,反比例函数2y x=的图象与一次函数y =kx +b 的图象交于点A 、B ,点A 、B 的横坐标分别为1、-2,一次函数图象与y 轴交于点C ,与x 轴交于点D . (1)求一次函数的解析式;(2)对于反比例函数2y x=,当y <-1时,写出x 的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA若存在,请求出点P的坐标;若不存在,请说明理由.第2题图3. 已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=nx(n为常数且n≠0)的图象在第二象限交于点⊥x轴,垂足为D.若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式:kx+b≤nx的解集.4. 如图,点A (-2,n ),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y=mx的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围;(3)若C 是x 轴上一动点,设t =CB -CA ,求t 的最大值,并求出此时点C 的坐标.第4题图5. 如图,直线y 1=14x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=m x (x >0)的图象交于点P ,过点P 作PB ⊥x 轴于点B ,且AC =BC . (1)求点P 的坐标和反比例函数y 2的解析式; (2)请直接写出y 1>y 2时,x 的取值范围;(3)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形如果存在,求出点D 的坐标;如果不存在,说明理由.第5题图6. 如图,直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线y=mx(x<0)交于点A(-1,n).(1)求直线与双曲线的解析式;(2)连接OA,求∠OAB的正弦值;(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形△OAB相似若存在求出D点的坐标,若不存在,请说明理由.第6题图7. 如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称并说明理由.第7题图8. 如图,已知双曲线y=kx经过点D(6,1),点C是双曲线第三象限上的动点,过点C作CA⊥x轴,过点D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.第8题图9. 如图,点B 为双曲线y =kx(x >0)上一点,直线AB 平行于y 轴,交直线y =x于点A ,交x 轴于点D ,双曲线y =k x与直线y =x 交于点C ,若OB 2-AB 2=4.(1)求k 的值;(2)点B 的横坐标为4时,求△ABC 的面积;(3)双曲线上是否存在点P ,使△APC ∽△AOD 若存在,求出点P 的坐标;若不存在,请说明理由.第9题图答案1.解:(1)设A点的坐标为(x,y),则OP=x,PA=y,∵△OAP的面积为1,∴12xy=1,∴xy=2,即k=2,∴反比例函数的解析式为2yx;(2)存在,如解图,作点A关于x轴的对称点A′,连接A′B,交x轴于点M,此时MA+MB最小,∵点B的横坐标为2,∴点B的纵坐标为y=22=1,即点B的坐标为(2,1).又∵两个函数图象在第一象限交于A点,∴2 2xx=,解得x1=1,x2=-1(舍去).∴y=2,∴点A的坐标为(1,2),∴点A关于x轴的对称点A′(1,-2),设直线A′B的解析式为y=kx+b,代入A′(1,-2),B(2,1)得,23,215k b kk b b+=-=⎧⎧⎨⎨+==-⎩⎩解得,∴直线A′B的解析式为y=3x-5,令y=0,得x=53,∴直线y=3x-5与x轴的交点为(53,0),即点M的坐标为(53,0).第1题解图2.解:(1)∵反比例函数y=2x图象上的点A、B的横坐标分别为1、-2,∴点A的坐标为(1,2),点B的坐标为(-2,-1),∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1;(2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x<0;(3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA ,∴12×1×(-n )=2×12×1×1,∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m, ∴m =-1,∴点P 的坐标为(-1,-2). 3.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0).将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分) 将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10).将点C (-2,10)代入y =nx ,得10=2n -,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分) (2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分)将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分) (3)-2≤x<0或x≥5. …………………………………… (10分)【解法提示】不等式kx +b ≤nx的解集,即是直线位于双曲线下方的部分所对应的自变量x 的取值范围,也就是-2≤x <0或x ≥5.4.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x=-,∴n =1,∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求,∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n ,1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53,令y=0,得x=-5,则C点坐标为(-5,0),∴t的最大值为A′B=(-2-1)2+(-1+2)2=10.第4题解图5.解:(1)∵一次函数y1=14x+1的图象与x轴交于点A,与y轴交于点C,∴A(-4,0),C(0,1),又∵AC=BC,CO⊥AB,∴O为AB的中点,即OA=OB=4,且BP=2OC=2,∴点P的坐标为(4,2),将点P(4,2)代入y2=mx,得m=8,∴反比例函数的解析式为y2=8 x;(2)x>4;【解法提示】由图象可知,当y1>y2时,即是直线位于双曲线上方的部分,所对应的自变量x的取值范围是x>4.(3)存在.假设存在这样的D点,使四边形BCPD为菱形,如解图,连接DC 与PB交于点E,∵四边形BCPD为菱形,∴CE=DE=4,∴CD=8,∴D点的坐标为(8,1),将D(8,1)代入反比例函数8yx=,D点坐标满足函数关系式,即反比例函数图象上存在点D,使四边形BCPD为菱形,此时D点坐标为(8,1).第5题解图6.解:(1)∵直线y=x+b与x轴交于点C(4,0),∴把点C(4,0)代入y=x+b,得b=-4,∴直线的解析式为y=x-4,∵直线也过A点,∴把点A(-1,n)代入y=x-4,得n=-5,∴A(-1,-5),将A(-1,-5)代入y=mx(x<0),得m=5,∴双曲线的解析式为5yx=;(2)如解图,过点O作OM⊥AC于点M,∵点B是直线y=x-4与y轴的交点,∴令x=0,得y=-4,∴点B(0,-4),∴OC=OB=4,∴△OCB是等腰直角三角形,∴∠OBC=∠OCB=45°,∴在△OMB中,sin45°=OMOB=4OM,∴OM=22,∵AO=12+52=26,∴在△AOM中,sin∠OAB=OMOA=2226=21313;第6题解图(3)存在.如解图,过点A作AN⊥y轴于点N,则AN=1,BN=1,∴AB=12+12=2,∵OB=OC=4,∴BC=42+42=42,又∵∠OBC=∠OCB=45°,∴∠OBA=∠BCD=135°,∴△OBA∽△BCD或△OBA∽△DCB,∴OBBC=BACD或OBDC=BABC,即442=2CD或4DC=242,∴CD=2或CD=16,∵点C(4,0),∴点D的坐标是(6,0)或(20,0).7.解:(1)当y =0时,得0=33x -3,解得x =3.∴点A 的坐标为(3,0); ……………………………………(2分) (2)①如解图,过点C 作CF ⊥x 轴于点F . 设AE =AC =t , 点E 的坐标是(3,t ).在Rt △AOB 中, tan ∠OAB =OB OA =33,∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°,∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是(3+32t ,12t ).∵点C 、E 在y =kx 的图象上,∴(3+32t )×12t =3t ,解得t 1=0(舍去),t 2=23,∴k =3t =63; …………………………………………… (5分) ②点E 与点D 关于原点O 成中心对称,理由如下: 由①知,点E 的坐标为(3,23), 设点D 的坐标是(x ,33x -3),∴x (33x -3)=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是(-3,-23),∴点E 与点D 关于原点O 成中心对称.…………………(8分)第7题解图8.解:(1)∵双曲线y =kx 经过点D (6,1),∴6k =1,解得k =6;(2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴, ∴BD =6,∴S △BCD =12×6×h =12,解得h =4,∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1,∴点C 的纵坐标为1-4=-3,∴6x=-3,解得x =-2,∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得,∴直线CD 的解析式为y =12x -2; (3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c),∴点A 、B 的坐标分别为A (c ,0),B (0,1), 设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得,∴直线AB 的解析式为y =-1x c+1,设直线CD 的解析式为y =ex +f ,则16,661e ec f cc c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c +,∵AB 、CD 的解析式中k 都等于1c-,∴AB 与CD 的位置关系是AB ∥CD . 9.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =kx(x >0)上一点,∴A 点坐标为(a ,a ),B 点坐标为(a ,k a),∴AB =a -k a ,BD =k a ,在Rt △OBD 中,OB 2=BD 2+OD 2=(k a)2+a 2,∵OB 2-AB 2=4,∴(k a )2+a 2-(a -k a)2=4,∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M ,,2y xy x =⎧⎪⎨=⎪⎩联立2222x x y y ⎧⎧==⎪⎪⎨⎨==⎪⎪⎩⎩解得(舍去),∴C 点坐标为(2,2), 第9题解图∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12),∴AB =4-12=72,CM =4-2,∴S △ABC =12CM ·AB =12×(4-2)×72 =7-724;(3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形,∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP ,设P 点坐标为(a ,2a ),则A 点坐标为(a ,a ),∴AP =|a -2a|,∵C 点坐标为(2,2),∴CM =|a -2|,∴|a -2|=12|a -2a|,∴(a -2)2=14×222(2)a a -,即(a -2)2=14×222((a a a +⨯-,∴4a 2-(a +2)2=0,解得a =2或a =-23(舍去),∴P 点坐标为(2,2),则此时点C 与点P 重合,所以不能构成三角形,故不存在.。
中考数学总复习《反比例函数的性质》练习题及答案
中考数学总复习《反比例函数的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.对于反比例函数y=2x,下列说法正确是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大2.对于反比例函数y=2x,下列说法不正确的是()A.当x<0时,y随x的增大而减小B.点(-2,-1)在它的图象上C.它的图象在第一、三象限D.当x>0时,y随x的增大而增大3.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=4x和y=2x的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.64.已知反比例函数y=k x的图象如图所示,则一次函数y=kx+k的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限5.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为()A.8B.﹣8C.﹣7D.56.函数y=1x+√x的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限7.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。
D.当y增大时,BE·DF的值不变。
8.已知函数y=−k 2+1x的图象经过点P1(x1,y1),P2(x2,y2),如果x2<0<x1,那么()A.0<y2<y1B.y1>0>y2C.y2<y1<0D.y1<0<y29.已知双曲线y=k−1x向右平移2个单位后经过点(4,1),则k的值等于()A.1B.2C.3D.510.对于反比例函数y=k x(k≠0),下列说法正确的是()A.当k>0时,y随x增大而增大B.当k<0时,y随x增大而增大C.当k>0时,该函数图象在二、四象限D.若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上11.下列关于反比例函数y=8x的描述,正确的是()A.它的图象经过点(12,4)B.图象的两支分别在第二、四象限C.当x>2时,0<y<4D.x>0时,y随x的增大而增大12.反比例函数y= 1x的图象的两个分支分别位于()象限.A.一、二B.一、三C.二、四D.一、四二、填空题13.如图,已知点A、B在双曲线y= k x(x>0)上,AC△x轴于点C,BD△y轴于点D,AC与BD 交于点P,P是AC的中点,若△ABP的面积为3,则k=.14.如图,矩形ABCD的顶点A和对称中心在反比例函数y=k x(k≠0,x>0)的图象上,若矩形ABCD的面积为16,则k的值为.15.已知反比例函数y= k x(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.16.若反比例函数y=﹣mx的图象经过点(﹣3,﹣2),则当x<0时,y随x的增大而.17.若点(4,m)与点(5,n)都在反比例函数y=8x(x≠0)的图象上,则m n(填>,<或=).18.如图,A(1,1),B(2,2),双曲线y= k x与线段AB有公共点,则k的取值范围是。
2022年中考数学复习《一次函数与反比例函数综合》(2)
专题51 一次函数与反比例函数综合(2)【典例分析】例1、一次函数y 1=k 1x +b 和反比例函数y 2=k 2x (k 1⋅k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A. −2<x <0或x >1B. −2<x <1C. x <−2或x >1D. x <−2或0<x <1【答案】D【解析】解:如图所示:若y 1>y 2,则x 的取值范围是:x <−2或0<x <1.故选:D .直接利用两函数图象的交点横坐标得出y 1>y 2时,x 的取值范围.此题主要考查了反比例函数与一次函数的交点,正确利用函数图象分析是解题关键.例2、点A(a,b)是一次函数y =−x +3与反比例函数y =2x 的交点,则1a +1b 的值________.【答案】32【解析】【分析】本题考查反比例函数与由此函数的交点坐标,解题的关键是学会利用方程组求两个函数的交点坐标,属于基础题.由{y =2x y =−x +3解得{x =1y =2或{x =2y =1,可得A(1,2)或(2,1),由此即可解决问题. 【解答】解:由{y =2x y =−x +3解得{x =1y =2或{x =2y =1, ∴A(1,2)或(2,1),∴1a +1b =32,故答案为:32.例3、如图,正比例函数y 1=−3x 的图象与反比例函数y 2=k x 的图象交于A 、B 两点.点C 在x 轴负半轴上,AC =AO ,△ACO 的面积为12.(1)求k 的值;(2)根据图象,当y 1>y 2时,写出x 的取值范围.【答案】解:(1)如图,过点A 作AD ⊥OC ,∵AC =AO ,∴CD =DO ,∴S △ADO =S △ACD =6,∴k =−12;(2)联立得:{y =−12x y =−3x, 解得:{x =2y =−6或{x =−2y =6,即A(−2,6),B(2,−6), 根据图象得:当y 1>y 2时,x 的范围为x <−2或0<x <2.【解析】本题考查了反比例函数与正比例函数的交点问题,考查了反比函数系数k 的几何意义,利用了数形结合的思想,熟练掌握各函数的性质是解本题的关键,属于中档题.(1)过点A作AD垂直于OC,由AC=AO,得到CD=DO,确定出三角形ADO与三角形ACD面积,即可求出k的值;(2)根据函数图象,找出满足题意x的范围即可.【好题演练】一、选择题(k>0)有以下四个结论:1.对于函数y=3x+kx①这是y关于x的反比例函数;②当x>0时,y的值随着x的增大而减小;③函数图象与x轴有且只有一个交点;④函数图象关于点(0,3)成中心对称.其中正确的是().A. ①②B. ③④C. ①②③D. ②③④(k>0)的图象交于A,B两点,2.如图,一次函数y=2x与反比例函数y=kx点P在以C(−2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ,则k的值为()长的最大值为32A. 4932B. 2518C. 3225D. 98(m≠0)的图象相交于点A(2,3),3.如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y=mxB(−6,−1),则不等式kx+b>m的解集为()xA. x<−6B. −6<x<0或x>2C. x>2D. x<−6或0<x<2(k≠0)图象上的两点,延长线段AB4.如图,点A、B是反比例函数y=kx交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A. −12B. −10C. −9D. −65.如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=k的图象在同一直角坐标系中,x若y3>y1>y2,则自变量x的取值范围是()A. x<−1B. −0.5<x<0或x>1C. 0<x<1D. x<−1或0<x<1二、填空题6.如图,一次函数y=k1x+b与反比例函数y=k2的图象交于A、B两点,x<0的解集是其横坐标分别为1和5,则关于x的不等式k1x+b−k2x______.7.如图,正比例函数y1=k1x的图象与反比例函数y2=k2x(x>0)的图象相交于点A(√3,2√3),点B是反比例函数图象上一点,它的横坐标是3,连接OB,AB,则△AOB的面积是______.8.如图,一次函数y1=kx+b的图象与反比例函数y2=4x的图象交于A(1,m),B(4,n)两点.则不等式kx+b−4x≥0的解集为______.9.如图,直线y=x+2与反比例函数y=kx的图象在第一象限交于点P,若OP=√10,则k的值为______.10.如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x 和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是______.三、解答题11.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A﹙−2,−5﹚,C﹙5,n﹚,交y轴于点B,交x轴于点D.(1)求反比例函数y=m和一次函数y=kx+b的表达式;x(2)连接OA,OC.求△AOC的面积.(3)当kx+b>m时,请写出自变量x的取值范围.x(a为常数)的图象经过点B(−4,2).12.已知反比例函数y=a+4x(1)求a的值;(2)如图,过点B作直线AB与函数y=a+4的图象交于点A,与x轴交于点C,且AB=3BC,过点Ax作直线AF⊥AB,交x轴于点F,求线段AF的长.(x>0)的图象交于A、13.如图,在平面直角坐标系中,一次函数y=−x+m的图象与反比例函数y=kxB两点,已知A(2,4).(1)求一次函数和反比例函数的解析式;(2)求B点的坐标;(3)连接AO、BO,求△AOB的面积.14.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x函数y=kx,点B的轴于点H,点O是线段CH的中点,AC=4√5,cos∠ACH=√55坐标为(4,n).(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积.15.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别(n为常数,且n≠0)的图象在第交于A、B两点,且与反比例函数y=nx二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤n的解集.x。
一次函数和反比例函数综合练习含答案
《一次函数和反比例函数》中考题1、已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (-2,0),与反比例函数在第一象限内的图象交于点B (2,n ),连结BO ,若4=AOB S △。
(1)求该反比例函数的解析式和直线AB 的解析式;(2)若直线AB 与y 轴的交点为C ,求△OCB 的面积.【思路分析】(1)先由A (﹣2,0),得OA=2,点B (2,n ),S △AOB =4,得OA•n=4,n=4,则点B 的坐标是(2,4),把点B (2,4)代入反比例函数的解析式为y=,可得反比例函数的解析式为:y=;再把A (﹣2,0)、B (2,4)代入直线AB 的解析式为y=kx+b 可得直线AB 的解析式为y=x+2.(2)把x=0代入直线AB 的解析式y=x+2得y=2,即OC=2,可得S △OCB =OC×2=×2×2=2.【解】(1)由A (-2,0),得OA =2.∵点B (2,n )在第一象限内,4=AOB S △。
∴21OA ×n=4,∴n=4。
∴点B 的坐标为(2,4)………………(2分)设反比例函数的解析式为y=x8(a ≠0) 将点B 的坐标代入,得4=2a ,∴a=8。
∴反比例函数的解析式为y=x 8………………(4分) 设直线AB 的解析式为y=kx+b(k ≠0)将点A 、B 的坐标分别代入,得⎩⎨⎧=+=+-.42,02b k b k解得⎩⎨⎧==.2,1b k ∴直线AB 的解析式为y=x+2. ………………(6分)(2)在y=x+2中,;令x =0,得y=2。
∴点C 的坐标是(0,2),∴OC =2。
∴2222121=⨯⨯=⨯=B OCB x OC S △.………………(10分) 2、如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数xk y =(x >0,k ≠0)的图像经过线段BC 的中点D 。
中考数学综合题专题复习【反比例函数】专题解析附答案
一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2= ,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.3.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)解:过点F作FC⊥NB于点C,∵点N在抛物线上,∴点N的纵坐标为: a2+a+2,即点N(a, a2+a+2)在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+(a+2)2,=( a2+a)2+(a2+4a)+4,而NB2=( a2+a+2)2,=( a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB(3)解:连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴ = ,PF2=PA×PB= ,过点F作FG⊥x轴于点G,在Rt△PFG中,PG= = ,∴PO=PG+GO= ,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,∴直线PF:y= x+ ,解方程 x2+x+2= x+ ,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y= ,∴M(﹣3,).【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。
中考《第五讲:一次函数与反比例函数》专题复习含答案
中考数学专题辅导第五讲应用题(一次函数与反比例函数专题)选讲此部分内容包括:函数的应用(主要是一次函数与反比例函数),则属于中档题。
真题再现:1.(2008年苏州•本题8分)如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点.训练时要求A、B两船始终关于O点对称.以O为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A、B两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A、B两船恰好在直线上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,A、B、C三船可分别用A、B、C三点表示).(1)发现C船时,A、B、C三船所在位置的坐标分别为A( ,)、B( ,)和C( ,);(2)发现C船,三船立即停止训练,并分别从A、O、B三点出发沿最短路线同时前往救援,设A、B两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
2.(2010年苏州•本题8分) 如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、MA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.3.(2014年•苏州•本题7分)如图,已知函数y=-x+b的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P (a,0)(其中a>2),过点P作x轴垂线,分别交函数y=-x+b和y=x的图象于点C,D.(1)求点A的坐标;(2)若OB=CD,求a的值.x4yx=y x=kyx=kyx=12124.(2014年•苏州• 8分)如图,已知函数y=(x>0)的图象经过点A ,B ,点A 的坐标为(1,2).过点A 作AC ∥y 轴,AC =1(点C 位于点A 的下方),过点C 作CD ∥x 轴,与函数的图象交于点D ,过点B 作BE ⊥CD ,垂足E 在线段CD 上,连接OC ,OD . (1)求△OCD 的面积; (2)当BE =AC 时,求CE 的长.5.(2015年苏州•本题满分8分)如图,已知函数(x >0)的图像经过点A 、B ,点B 的坐标为(2,2).过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥y 轴,垂足为D ,AC 与BD 交于点F .一次函数y=ax +b 的图像经过点A 、D ,与x 轴的负半轴交于点E .(1)若AC =OD ,求a 、b 的值; (2)若BC ∥AE ,求BC 的长.6.(2016年苏州•本题满分8分)如图一次函数的图像与轴交于点A ,与反比例函数的图像交干点B (2,n).过点B 作轴于点P ,P 是该反比例函数图像上的一点,且∠PBC=∠ABC .求反比例函数和一次函数的表达式.7.(2017年苏州•本题满分8分)如图,在中,,轴,垂足为.反比例函数()的图像经过点,交于点.已知,. kx12ky x=326y kx =+x (0)my x x=>BC x ⊥(34,1)n -C ∆AB C C A =B x AB ⊥A k y x =0x >C AB D 4AB =5C 2B =(1)若,求的值;(2)连接,若,求的长.8. (2017年南京市•本题满分3分)如图,已知点A 是一次函数y =x (x ≥0)图像上一点,过点A 作x 轴的垂线l ,B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数(k )0)的图像过点B 、C ,若△OAB 的面积为6,求△ABC 的面积.9.(2017年南京市•本题满分8分)如图,已知一次函数y =kx +b 的图像与x 轴交于点A ,与反比例函数y =(x <0)的图像交于点B (-2,n ),过点B 作BC ⊥x 轴于点C ,点D (3-3n ,1)是该反比例函数图像上一点. (1)求m 的值;(2)若∠DBC =∠ABC ,求一次函数y =kx +b 的表达式.10.(2017年无锡市•本题满分12分)操作:“如图1,P 是平面直角坐标系中一点(x 轴上的点除外),过点P 作PC ⊥x 轴于点C ,点C 绕点P 逆时针旋转60°得到点Q .”我们将此由点P 得到点Q 的操作称为点的T 变换.(1)点P (a ,b )经过T 变换后得到的点Q的坐标为 ;若点M 经过T 变换后得到点N (6,﹣),则点M 的坐标为 . (2)A 是函数y =x 图象上异于原点O 的任意一点,经过T 变换后得到点B .①求经过点O ,点B 的直线的函数表达式;②如图2,直线AB 交y 轴于点D ,求△OAB 的面积与△OAD 的面积之比.11.(2017年泰州市•本题满分12分)阅读理解:如图①,图形l 外一点P 与图形l 上各点连接的所有线段中,若线段PA 1最短,则线段PA 1的长度称为点P 到图形l 的距离.4OA =k C O D C B =B C O 12ky x=mx例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)模拟训练:1.(2017年常熟市•本题满分8分)如图,点、分别在轴和轴上, (点和点在直线的两侧),点的坐标为(4,).过点的反比例函数的图像交边于点. (1)求反比例函数的表达式; (2)求点的坐标.2.(2018年蔡老师预测•本题满分8分如图,正比例函数y=2x 的图象与反比例函数y=的图象交于点A 、B ,AB=2,(1)求k 的值;(2)若反比例函数y=的图象上存在一点C ,则当△ABC 为直角三角形,请直接写出点C 的坐标.3.( 2017年张家港•本题满分8分) 货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发3h 后休息,直至与货车相遇后,以原速度继续行驶.设货车出发h 后,货车、轿车分别到达离甲地km 和km 的地方,图中的线段、折线分别表示、与之间的函数关系.(1)求点的坐标,并解释点的实际意义;(2)求线段所在直线的函数表达式; (3)当货车出发 h 时,两车相距50km.4.(2017年苏州市区•本题满分8分)如图,在平面直角坐标系中,函数(,是常数)的图像经过,,其中.过点作轴垂线,垂足为,过点作轴垂线,垂足为,AC 与BD 交于点E ,连结,,.A B y x BC AB ⊥C O AB C n C (0)m y x x =>AC 1(,3)3D n +B x 1y 2y OA BCDE 1y 2y x D D DE ky x=0x >k (26)A ,(,)B m n 2m >A x C B y D AD DC CB(1)若的面积为3,求的值和直线的解析式;(2)求证:; (3)若∥ ,求点B 的坐标 .5.(2017年昆山市•吴江区••本题满分7分)如图,在平面直角坐标系中,矩形的对角线相交于点,且,(1)求证:四边形是菱形;(2)如果,求出经过点的反比例函数解析式.6.(2017年高新区•本题满分8分) 如图,反比例函数y =的图象与一次函数y =kx +b 的图象交于A ,B 两点,点A 的坐标为(2,6),点B 的坐标为(n ,1).(1)求反比例函数与一次函数的表达式;(2)点E 为y 轴上一个动点,若S △AEB =10,求点E 的坐标.7.(2017年吴中区•本题满分8分)如图,一次函数的图象与反比例(为常数,且)的图象交于,两点。
中考数学复习《反比例函数》专题练习-附带参考答案
中考数学复习《反比例函数》专题练习-附带参考答案一、选择题1.下列函数关系式中,y 是x 的反比例函数的是( )A .y =x +3B .y =x 3C .y =3x 2D .y =3x 2.若反比例函数y=6x 的图像经过点(﹣2,a ),则a 的值是( )A .6B .﹣2C .﹣3D .3 3.已知反比例函数y =−1x ,下列结论不正确...的是( ) A .该函数图象经过点(−1,1)B .该函数图象位于第二、四象限C .y 的值随着x 值的增大而增大D .该函数图象关于原点成中心对称 4.反比例函数(其中),当时,y 随x 的增大而增大,那么m 的取值范围是( ) A . B .C .D . 5.在同一直角坐标系中,函数y =−kx +k 与y =k x (k ≠0)的大致图象可能为( )A .B .C .D .6.反比例函数y =6x 图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y 3)其中y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 3<x 1<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1 7.如图,A 、B 是第二象限内双曲线y =k x 上的点,A 、B 两点的横坐标分别是a ,3a ,线段AB 的延长线交x轴于点C ,S △AOC =12.则k 的值为( )A .﹣6B .﹣5C .﹣4D .﹣38.如图,矩形OABC与反比例函数y1=k1x(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=k2x(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3 B.﹣3 C.32D.−32二、填空题9.已知点A(−3,2)在反比例函数y=kx的图象上,则k的值为.10.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=kx(k<0)的图象上,则m n.(填“>”,“<”或“=”)11.正比例函数y=k1x(k1≠0)和反比例函数y= k2x(k2≠0)的一个交点为(m,n),则另一个交点为12.如图,在平面直角坐标系中,点A是x轴上任意一点,BC∥x轴,分别交y=2x (x>0),y=kx(x<0)的图象于B,C两点,若△ABC的面积是3,则k的值为.13.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为.三、解答题14.如图,一次函数的图象与反比例函数的图象在第一象限交于点,与轴的负半轴交于点,且.(1)求一次函数与反比例函数的表达式;(2)请直接写出不等式的解集.15.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“嗐转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(x>0)的反比例函数,y与x之间有如表关系:请根据表中的信息解决下列问题:(1)求出y与x之间的函数解析式;(2)若某人蒙上眼睛走出的大圆圈的半径为35米,则其两腿迈出的步长之差是多少厘米?(k>0).16.如图,设反比例函数的解析式为y=3kx(1)若反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若反比例函数的图象与过点M (﹣2,0)的直线l :y =kx+b 的图象交于A 、B 两点,如图,当△ABO 的面积为12时,求直线l 的解析式.17.某医药研究所研制了一种新药,在试验药效时发现:成人按规定剂量服用后,检测到从第10分钟起每分钟每毫升血液中含药量增加0.3微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1) ; (2)分别求出当和时,y 与x 之间的函数关系式; (3)如果每毫升血液中含药量不低于12微克时是有效的,求一次服药后的有效时间是多少分钟?18.如图,一次函数 y ax b =+ 的图象与反比例函数 k y x=的图象交于第一象限C ,D 两点,坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点).(1)利用图中条件,求反比例函数的解析式和m 的值;(2)求△DOC 的面积.(3)双曲线上是否存在一点P ,使得△POC 和△POD 全等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.参考答案1.B2.C3.C4.A5.D6.C7.A8.B9.k=-610.>11.(-m,-n).12.−413.1014.(1)解:点在反比例函数的图象上反比例函数解析式为;OA=OB,点在轴负半轴上点.把点、代入中得解得:一次函数的解析式为;(2) 15.(1)解:设y 与x 之间的函数解析式为y =k x 将(2,7)代入得7=k 2∴k =14∴y 与x 之间的函数解析式为y =14x . (2)解:当y =35时,即14x =35,解得x =0.4∴某人蒙上眼睛走出的大圆圈的半径为35米,其两腿迈出的步长之差是0.4厘米.16.(1)解:∵反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2 把y =2代入y =2x 求得x =1∴反比例函数与正比例函数y =2x 的图象交点的坐标为(1,2)把(1,2)代入y =3k x (k >0),得到3k =2 ∴k =23;(2)解:把M (﹣2,0)代入y =kx+b ,可得b =2k∴y =kx+2k解{y =3k x y =kx +2k 得{x =−3y =−k 或{x =1y =3k∴B (﹣3,﹣k ),A (1,3k )∵△ABO 的面积为12∴12•2•3k+12•2•k =12解得k =3∴直线l 的解析式为y =3x+6.17.(1)27(2)解:当时,设y 与x 之间的函数关系式为∵经过点 ∴解得:,∴解析式为;当时,y 与x 之间的函数关系式为∵经过点∴解得:∴函数的解析式为; (3)解:令解得:令,解得:∴分钟 ∴服药后能持续175分钟.18.(1)∵点C (1,2)在反比例函数 图象上 ∴k=2∴反比例函数解析式为 2y x= ∵点B (2,m )在反比例函数 图象上 ∴m= 22=1. (2)如图,过点C 作⊥OA 于E ,过点D 作DF ⊥OA 于 Fk y x =2y x =∵C (1,2),D (2,1)∴CE=2,DF=1∵C 、D 在一次函数 的图象上∴221a b a b +=⎧⎨+=⎩解得: 13a b =-⎧⎨=⎩∴一次函数解析式为y=-x+3当y=0时,x=3∴A 点坐标为(3,0)∴OA=3∴DOC S =S △AOC -S △AOD = 1122OA CE OA DF ⋅-⋅ = 11323122⨯⨯-⨯⨯ =1.5.(3)设点P 坐标为(n , 2n )∵C (2,1),D (1,2)∴OC=OD∵△POC 和△POD 全等∴PC=PD ∴222222(1)(2)(2)(1)n n n n -+-=-+-解得: 2n =∴P (, )或P ( 2 , ) ∴双曲线上存在一点P ,使得△POC 和△POD 全等,P ( , )或P ( , ). y ax b =+222-2222。
《一次函数和反比比例函数》中考题含答案
《一次函数和反比比例函数》综合题1、(2015•四川攀枝花)如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD的中点.(1)求一次函数y1=k1x+b与反比例函数y2=解析式;(2)求△COD的面积;(3)直接写出y1>y2时自变量x的取值范围.解答:解:∵点D(2,﹣3)在反比例函数y2=的图象上,∴k2=2×(﹣3)=﹣6,∴y2=﹣;作DE⊥x轴于E,∵D(2,﹣3),点B是线段AD的中点,∴A(﹣2,0),∵A(﹣2,0),D(2,﹣3)在y1=k1x+b的图象上,∴,解得k1=﹣,b=﹣,∴y1=﹣x﹣;(2)由,解得,,∴C(﹣4,),∴S△COD=S△AOC+S△AOD=×+×2×3=;(3)当x<﹣4或0<x<2时,y1>y2.2、(2015•四川遂宁)如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.解答:解:(1)把A(1,4)代入y=得:m=4,∴反比例函数的解析式为:y=;(2)把B(4,n)代入y=得:n=1,∴B(4,1),把A(1,4),B(4,1)代入y=kx+b得,∴,∴一次函数的解析式为:y=﹣x+5;(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,由作图知,B′(4,﹣1),∴直线AB′的解析式为:y=﹣x+,当y=0时,x=,∴P(,0).3、(2015•山东德州)如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB,(1)求证:四边形AEBD是菱形;(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.解答:(1)证明:∵BE∥AC,AE∥OB,∴四边形AEBD是平行四边形,∵四边形OABC是矩形,∴DA=AC,DB=OB,AC=OB,AB=OC=2,∴DA=DB,∴四边形AEBD是菱形;(2)解:连接DE,交AB于F,如图所示:∵四边形AEBD是菱形,∴AB与DE互相垂直平分,∵OA=3,OC=2,∴EF=DF=OA=,AF=AB=1,3+=,∴点E坐标为:(,1),设经过点E的反比例函数解析式为:y=,把点E(,1)代入得:k=,∴经过点E的反比例函数解析式为:y=.点评:本题是反比例函数综合题目,考查了平行四边形的判定、菱形的判定、矩形的性质、坐标与图形特征以及反比例函数解析式的求法;本题综合性强,有一定难度,特别是(2)中,需要作辅助线求出点E的坐标才能得出结果.4、(2015•山东泰安)一次函数y=kx+b与反比例函数y=的图象相交于A(﹣1,4),B(2,n)两点,直线AB交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.解答:解:(1)把A(﹣1,4)代入反比例函数y=得,m=﹣1×4=﹣4,所以反比例函数的解析式为y=﹣;把B(2,n)代入y=﹣得,2n=﹣4,解得n=﹣2,所以B点坐标为(2,﹣2),把A(﹣1,4)和B(2,﹣2)代入一次函数y=kx+b得,,解得,所以一次函数的解析式为y=﹣2x+2;(2)∵BC⊥y轴,垂足为C,B(2,﹣2),∴C点坐标为(0,﹣2).设直线AC的解析式为y=px+q,∵A(﹣1,4),C(0,﹣2),∴,解,∴直线AC的解析式为y=﹣6x﹣2,当y=0时,﹣6x﹣2=0,解答x=﹣,∴E点坐标为(﹣,0),∵直线AB的解析式为y=﹣2x+2,∴直线AB与x轴交点D的坐标为(1,0),∴DE=1﹣(﹣)=,∴△AED的面积S=××4=.5、(2015•东营)如图是函数y=与函数y=在第一象限内的图象,点P是y=的图象上一动点,PA⊥x轴于点A,交y=的图象于点C,PB⊥y轴于点B,交y=的图象于点D.(1)求证:D是BP的中点;(2)求四边形ODPC的面积.解答: (1)证明:∵点P 在函数y=上,∴设P 点坐标为(,m ).∵点D 在函数y=上,BP ∥x 轴,∴设点D 坐标为(,m ),由题意,得BD=,BP==2BD ,∴D 是BP 的中点.(2)解:S 四边形OAPB =•m=6,设C 点坐标为(x ,),D 点坐标为(,y ),S △OBD =•y •=,S △OAC =•x •=, S 四边形OCPD =S 四边形PBOA ﹣S △OBD ﹣S △OAC =6﹣﹣=3.6、(2015年浙江舟)如图,直线2y x =与反比例函数()0,>0k y k x x =≠ 的图象交于点A (1,a ),B 是反比例函数图象上一点,直线OB 与x 轴的夹角为α,1tan 2α=. (1)求k 的值;(2)求点B 的坐标;(3)设点P (m ,0),使△PAB 的面积为2,求m 的值.【答案】解:(1)∵直线2y x =与反比例函数()0,>0k y k x x=≠ 的图象交于点A (1,a ), ∴21a k a =⎧⎪⎨=⎪⎩,解得22a k =⎧⎨=⎩. ∴2k =.(2)如答图1,过点B 作BC ⊥x 轴于点C ,∵点B 在反比例函数2y x=的图象上, ∴可设点B 的坐标为2,b b ⎛⎫ ⎪⎝⎭,即2,OC b BC b == . ∵1tan 2α=,即12BC OC =,∴212b b =,解得1b =±. 又∵>0b ,∴1b =. ∴点B 的坐标为()2, 1.(3)如答图2,设所在直线AB 与x 轴交于点D ,∵A (1,2),B ()2, 1,∴()3,3,0AB y x D =-+ .∵P (m ,0),2PAB S ∆=,且PAB PAD PBD S S S ∆∆∆=-, ∴()()113231222m m ⋅-⋅-⋅-⋅=, 得7m =. 7、(2015•宜昌)如图,已知点A (4,0),B (0,4),把一个直角三角尺DEF 放在△OAB 内,使其斜边FD 在线段AB 上,三角尺可沿着线段AB 上下滑动.其中∠EFD=30°,ED=2,点G 为边FD 的中点.(1)求直线AB的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k≠0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由.解答:解:(1)设直线AB的解析式为y=kx+b,∵A(4,0),B(0,4),∴,解得:,∴直线AB的解析式为:y=﹣x+4;(2)∵在Rt△DEF中,∠EFD=30°,ED=2,∴EF=2,DF=4,∵点D与点A重合,∴D(4,0),∴F(2,2),∴G(3,),∵反比例函数y=经过点G,∴k=3,∴反比例函数的解析式为:y=;(3)经过点G的反比例函数的图象能同时经过点F;理由如下:∵点F在直线AB上,∴设F(t,﹣t+4),又∵ED=2,∴D(t+2,﹣t+2),∵点G为边FD的中点.∴G(t+1,﹣t+3),若过点G的反比例函数的图象也经过点F,设解析式为y=,则,整理得:(﹣t+3)(t+1)=(﹣t+4)t,解得:t=,∴m=,∴经过点G的反比例函数的图象能同时经过点F,这个反比例函数解析式为:y=.8、(2015•江苏镇江)如图,点M(﹣3,m)是一次函数y=x+1与反比例函数y=(k≠0)的图象的一个交点.(1)求反比例函数表达式;(2)点P是x轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.①当a=4时,求△ABC′的面积;②当a的值为3时,△AMC与△AMC′的面积相等.解答:解:(1)把M(﹣3,m)代入y=x+1,则m=﹣2.将(﹣3,﹣2)代入y=,得k=6,则反比例函数解析式是:y=;(2)①连接CC′交AB于点D.则AB垂直平分CC′.当a=4时,A(4,5),B(4,1.5),则AB=3.5.∵点Q为OP的中点,∴Q(2,0),∴C(2,3),则D(4,3),∴CD=2,∴S△ABC=AB•CD=×3.5×2=3.5,则S△ABC′=3.5;②∵△AMC与△AMC′的面积相等,∴=,解得a=3.9、(2015•甘肃天水)如图,点A(m,6)、B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m、n的值并写出该反比例函数的解析式.(2)点E在线段CD上,S△ABE=10,求点E的坐标.解答:解:(1)由题意得:,解得:,∴A(1,6),B(6,1),设反比例函数解析式为y=,将A(1,6)代入得:k=6,则反比例解析式为y=;(2)设E(x,0),则DE=x﹣1,CE=6﹣x,∵AD⊥x轴,BC⊥x轴,∴∠ADE=∠BCE=90°,连接AE,BE,则S△ABE=S四边形ABCD﹣S△ADE﹣S△BCE=(BC+AD)•DC﹣DE•AD﹣CE•BC=×(1+6)×5﹣(x﹣1)×6﹣(6﹣x)×1=﹣x=10,解得:x=3,则E(3,0).10、(2015·湖北省咸宁市)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.解:(1)如图1,均是正整数新函数的两条性质:①函数的最小值为0;②函数图象的对称轴为直线x=﹣3;由题意得A点坐标为(﹣3,0).分两种情况:①x≥﹣3时,显然y=x+3;②当x<﹣3时,设其解析式为y=kx+b.在直线y=x+3中,当x=﹣4时,y=﹣1,则点(﹣4,﹣1)关于x轴的对称点为(﹣4,1).把(﹣4,1),(﹣3,0)代入y=kx+b,得,解得,∴y=﹣x﹣3.综上所述,新函数的解析式为y=;(2)如图2,①∵点C(1,a)在直线y=x+3上,∴a=1+3=4.∵点C(1,4)在双曲线y=上,∴k=1×4=4,y=.∵点D是线段AC上一动点(不包括端点),∴可设点D的坐标为(m,m+3),且﹣3<m<1.∵DP∥x轴,且点P在双曲线上,∴P(,m+3),∴PD=﹣m,∴△PAD的面积为S=(﹣m)×(m+3)=﹣m2﹣m+2=﹣(m+)2+,∵a=﹣<0,∴当m=﹣时,S有最大值,为,又∵﹣3<﹣<1,∴△PAD的面积的最大值为;②在点D运动的过程中,四边形PAEC不能为平行四边形.理由如下:当点D为AC的中点时,其坐标为(﹣1,2),此时P点的坐标为(2,2),E点的坐标为(﹣5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.。
中考数学反比例函数综合经典题及答案
中考数学反比例函数综合经典题及答案一、反比例函数1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.2.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.4.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.5.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,∵直线l经过点C(1,0),∴0=+b,∴b=,∴直线l的解析式为y=x−(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),∵C(1,0),∴AC=,②如图1中,作CE∥OA,∴∠ACE=∠OAC,∵tan∠OAC=,∴∠OAC=30°,∴∠ACE=30°,∴α=30°(3)解:①如图2中,当α=15°时,∵CE∥OD,∴∠ODC=15°,∵∠OAC=30°,∴∠ACD=∠ADC=15°,∴AD=AC=AB,∴△ADB,△ADC是等腰三角形,∵OD垂直平分BC,∴DB=DC,∴△DBC是等腰三角形;②当α=60°时,易知∠DAC=∠DCA=30°,∴DA=DC=DB,∴△ABD、△ACD、△BCD均为等腰三角形;③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;④当α=150°时,易知△BDC是等边三角形,∴AB=BD=DC=AC,∴△ABD、△ACD、△BCD均为等腰三角形,综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.10.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.11.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。
2024年中考数学《反比例函数及其应用》真题含解析
专题反比例函数及其应用(41题)一、单选题1.(2024·安徽·中考真题)已知反比例函数y=kxk≠0与一次函数y=2-x的图象的一个交点的横坐标为3,则k的值为()A.-3B.-1C.1D.3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出y=2-3=-1,代入反比例函数求解即可【详解】解:∵反比例函数y=kxk≠0与一次函数y=2-x的图象的一个交点的横坐标为3,∴y=2-3=-1,∴-1=k3,∴k=-3,故选:A2.(2024·重庆·中考真题)反比例函数y=-10x的图象一定经过的点是()A.1,10B.-2,5C.2,5D.2,8【答案】B【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当x=1时,y=-101=-10,图象不经过1,10,故A不符合要求;当x=-2时,y=-10-2=5,图象一定经过-2,5,故B符合要求;当x=2时,y=-102=-5,图象不经过2,5,故C不符合要求;当x=2时,y=-102=-5,图象不经过2,8,故D不符合要求;故选:B.3.(2024·天津·中考真题)若点A x1,-1,B x2,1,C x3,5都在反比例函数y=5x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x1<x3<x2C.x3<x2<x1D.x2<x1<x3【答案】B【分析】本题主要考查了比较反比例函数值的大小,根据反比例函数性质即可判断.【详解】解:∵k=5>0,∴反比例函数y =5x的图象分布在第一、三象限,在每一象限y 随x 的增大而减小,∵点B x 2,1 ,C x 3,5 ,都在反比例函数y =5x的图象上,1<5,∴x 2>x 3>0.∵-1<0,A x 1,-1 在反比例函数y =5x的图象上,∴x 1<0,∴x 1<x 3<x 2.故选:B .4.(2024·广西·中考真题)已知点M x 1,y 1 ,N x 2,y 2 在反比例函数y =2x的图象上,若x 1<0<x 2,则有()A.y 1<0<y 2B.y 2<0<y 1C.y 1<y 2<0D.0<y 1<y 2【答案】A【分析】本题考查了反比例函数的图象,熟练掌握反比例函数图象上点的坐标特征是解题的关键.根据点M x 1,y 1 ,N x 2,y 2 在反比例函数图象上,则满足关系式y =2x,横纵坐标的积等于2,结合x 1<0<x 2即可得出答案.【详解】解:∵点M x 1,y 1 ,N x 2,y 2 在反比例函数y =2x的图象上,∴x 1y 1=2,x 2y 2=2,∵x 1<0<x 2,∴y 1<0,y 2>0,∴y 1<0<y 2.故选:A .5.(2024·浙江·中考真题)反比例函数y =4x的图象上有P t ,y 1 ,Q t +4,y 2 两点.下列正确的选项是()A.当t <-4时,y 2<y 1<0B.当-4<t <0时,y 2<y 1<0C.当-4<t <0时,0<y 1<y 2D.当t >0时,0<y 1<y 2【答案】A【分析】本题考查了反比例函数图象上的点的坐标特征,由于反比例函数y =4x,可知函数位于一、三象限,分情况讨论,根据反比例函数的增减性判断出y 1与y 2的大小.【详解】解:根据反比例函数y =4x,可知函数图象位于一、三象限,且在每个象限中,y 都是随着x 的增大而减小,反比例函数y =4x的图象上有P t ,y 1 ,Q t +4,y 2 两点,当t<t+4<0,即t<-4时,0>y1>y2;当t<0<t+4,即-4<t<0时,y1<0<y2;当0<t<t+4,即t>0时,y1>y2>0;故选:A.6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A.若x=5,则y=100B.若y=125,则x=4C.若x减小,则y也减小D.若x减小一半,则y增大一倍【答案】C【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x度,能使用y天.∴xy=500,∴y=500x,当x=5时,y=100,故A不符合题意;当y=125时,x=500125=4,故B不符合题意;∵x>0,y>0,∴当x减小,则y增大,故C符合题意;若x减小一半,则y增大一倍,表述正确,故D不符合题意;故选:C.7.(2024·四川泸州·中考真题)已知关于x的一元二次方程x2+2x+1-k=0无实数根,则函数y=kx与函数y=2x的图象交点个数为()A.0B.1C.2D.3【答案】A【分析】本题考查了根的判别式及一次函数和反比例函数的图象.首先根据一元二次方程无实数根确定k 的取值范围,然后根据一次函数和反比例函数的性质确定其图象的位置.【详解】解:∵方程x2+2x+1-k=0无实数根,∴Δ=4-41-k<0,解得:k<0,则函数y=kx的图象过二,四象限,而函数y=2x的图象过一,三象限,∴函数y=kx与函数y=2x的图象不会相交,则交点个数为0,故选:A.8.(2024·重庆·中考真题)已知点-3,2 在反比例函数y =kxk ≠0 的图象上,则k 的值为()A.-3B.3C.-6D.6【答案】C【分析】本题考查了待定系数法求反比例解析式,把-3,2 代入y =kxk ≠0 求解即可.【详解】解:把-3,2 代入y =kxk ≠0 ,得k =-3×2=-6.故选C .9.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数y =kx的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,OE =2AE ,若四边形ODAF 的面积为2,则k 的值是()A.25B.35C.45D.85【答案】D【分析】本题考查了矩形的性质、三角形面积的计算、反比例函数的图象和性质、相似三角形的判定和性质;熟练掌握矩形的性质和反比例函数的性质是解决问题的关键.过点E 作EM ⊥OC ,则EM ∥AC ,设E a ,k a ,由△OME ∽△OCA ,可得OC =32a ,AC =32⋅ka,再由S 矩形OBAC =S △OBD +S △OCF +S 四边形ODAF ,列方程,即可得出k 的值.【详解】过点E 作EM ⊥OC ,则EM ∥AC ,∴△OME ∽△OCA ,∴OM OC =EM AC =OEOA设E a ,k a ,∵OE =2AE ∴OM OC =EM AC=23,∴OC =32a ,AC =32⋅ka∴S 矩形OBAC =S △OBD +S △OCF +S 四边形ODAF =32a ⋅32⋅ka即k 2+k 2+2=32a ⋅32⋅k a ,解得:k =85故选D10.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线y =12xx >0 经过A 、B 两点,连接OA 、AB ,过点B 作BD ⊥y 轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则△AEB 的面积是()A.4.5B.3.5C.3D.2.5【答案】A【分析】本题考查了反比例函数,相似三角形的判定与性质等知识,过点A 作AF ⊥BD ,垂足为F ,设A a ,12a ,证明△AFE ∽△ODE ,有AF OD =AE OE=EF DE ,根据E 为AO 的中点,可得AF =OD ,EF =DE ,进而有EF =DE =12DF =12a ,AF =OD =12y A =6a ,可得y B =OD =6a ,x B=2a ,则有BE =BD -DE=32a ,问题随之得解.【详解】如图,过点A 作AF ⊥BD ,垂足为F ,设A a ,12a,a >0,∵BD ⊥y 轴,AF ⊥BD ,∴AF ∥y 轴,DF =a ,∴△AFE ∽△ODE ,∴AF OD =AE OE=EFDE ,∵E 为AO 的中点,∴AE =OE ,∴AF OD =AE OE=EFDE =1,∴AF =OD ,EF =DE ∴EF =DE =12DF =12a ,AF =OD =12y A =6a,∵OD =y B ,∴y B =OD =6a,∴xB =2a ,∴BD=x B=2a,∴BE=BD-DE=32a,∴S△ABE=12×AF×BE=12×6a×32a=92=4.5,故选:A.11.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数y=4x+2的图像与坐标轴的交点个数是()A.0B.1C.2D.4【答案】B【分析】根据函数表达式计算当x=0时y的值,可得图像与y轴的交点坐标;由于4x+2的值不可能为0,即y≠0,因此图像与x轴没有交点,由此即可得解.本题主要考查了函数图像与坐标轴交点个数,掌握求函数图像与坐标轴交点的计算方法是解题的关键.【详解】当x=0时,y=42=2,∴y=4x+2与y轴的交点为0,2;由于4x+2是分式,且当x≠-2时,4x+2≠0,即y≠0,∴y=4x+2与x轴没有交点.∴函数y=4x+2的图像与坐标轴的交点个数是1个,故选:B.12.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O是坐标原点,点A4,2在函数y=k xk>0,x>0的图象上.将直线OA沿y轴向上平移,平移后的直线与y轴交于点B,与函数y=k xk>0,x>0的图象交于点C.若BC=5,则点B的坐标是()A.0,5B.0,3C.0,4D.0,25【答案】B【分析】本题主要考查反比例函数、解直角三角形、平移的性质等知识点,掌握数形结合思想成为解题的关键.如图:过点A作x轴的垂线交x轴于点E,过点C作y轴的垂线交y轴于点D,先根据点A坐标计算出sin∠OAE、k值,再根据平移、平行线的性质证明∠DBC=∠OAE,进而根据sin∠DBC=CDBC=sin∠OAE求出CD,最后代入反比例函数解析式取得点C的坐标,进而确定CD=2,OD=4,再运用勾股定理求得BD,进而求得OB即可解答.【详解】解:如图,过点A作x轴的垂线交x轴于点E,过点C作y轴的垂线交y轴于点D,则AE∥y轴,∵A4,2,∴OE=4,OA=22+42=25,∴sin∠OAE=OEOA =425=255.∵A4,2在反比例函数的图象上,∴k=4×2=8.∴将直线OA向上平移若干个单位长度后得到直线BC,∴OA∥BC,∴∠OAE=∠BOA,∵AE∥y轴,∴∠DBC=∠BOA,∴∠DBC=∠OAE,∴sin∠DBC=CDBC =sin∠OAE=255,∴CD5=255,解得:CD=2,即点C的横坐标为2,将x=2代入y=8x,得y=4,∴C点的坐标为2,4,∴CD=2,OD=4,∴BD=BC2-CD2=1,∴OB=OD-BD=4-1=3,∴B0,3故选:B.13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC中,AB=AC,反比例函数y=kxk≠0的图象经过点A、B及AC的中点M,BC∥x轴,AB与y轴交于点N.则ANAB的值为()A.13B.14C.15D.25【答案】B【分析】本题考查反比例函数的性质,平行线分线段成比例定理,等腰三角形的性质等知识,找到坐标之间的关系是解题的关键.作辅助线如图,利用函数表达式设出A 、B 两点的坐标,利用D ,M 是中点,找到坐标之间的关系,利用平行线分线段成比例定理即可求得结果.【详解】解:作过A 作BC 的垂线垂足为D ,BC 与y 轴交于E 点,如图,在等腰三角形ABC 中,AD ⊥BC ,D 是BC 中点,设A a ,k a,B b ,kb ,由BC 中点为D ,AB =AC ,故等腰三角形ABC 中,∴BD =DC =a -b ,∴C 2a -b ,kb,∵AC 的中点为M ,∴M 3a -b 2,ka +kb 2 ,即3a -b 2,k a +b 2ab,由M 在反比例函数上得M 3a -b 2,k 3a -b2,∴k a +b 2ab=k3a -b 2,解得:b =-3a ,由题可知,AD ∥NE ,∴AN AB=DE BD =a a -b =a a +3a =14.故选:B .二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数y =kxk ≠0 的图象经过点3,y 1 和-3,y 2 ,则y1+y2的值是.【答案】0【分析】本题考查了反比例函数图象上点的坐标特征,已知自变量求函数值,熟练掌握反比例函数的性质是解题的关键.将点3,y1和-3,y2代入y=kxk≠0,求得y1和y2,再相加即可.【详解】解:∵函数y=kxk≠0的图象经过点3,y1和-3,y2,∴有y1=k3,y2=-k3,∴y1+y2=k3-k3=0,故答案为:0.15.(2024·云南·中考真题)已知点P2,n在反比例函数y=10x的图象上,则n=.【答案】5【分析】本题考查反比例函数图象上点的坐标特征,将点P2,n代入y=10x求值,即可解题.【详解】解:∵点P2,n在反比例函数y=10x的图象上,∴n=102=5,故答案为:5.16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线y1=ax+b a≠0与双曲线y2=kxk≠0交于点A-1,m,B2,-1.则满足y1≤y2的x的取值范围.【答案】-1≤x<0或x≥2【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当-1≤x<0或x≥2时,y1≤y2,∴满足y1≤y2的x的取值范围为-1≤x<0或x≥2,故答案为:-1≤x<0或x≥2.17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f与弦长l成反比例关系,即f=kl(k为常数.k≠0),若某乐器的弦长l为0.9米,振动频率f为200赫兹,则k的值为.【答案】180【分析】本题考查了待定系数法求反比例函数解析式,把l=0.9,f=200代入f=kl求解即可.【详解】解:把l=0.9,f=200代入f=kl,得200=k0.9,解得k=180,故答案为:180.18.(2024·陕西·中考真题)已知点A-2,y1和点B m,y2均在反比例函数y=-5x的图象上,若0<m<1,则y1+y20.【答案】</小于【分析】本题主要考查了反比例函数的性质,先求出y1=52,y2=-5m,再根据0<m<1,得出y2<-5,最后求出y1+y2<0即可.【详解】解:∵点A-2,y1和点B m,y2均在反比例函数y=-5x的图象上,∴y1=52,y2=-5m,∵0<m<1,∴y2<-5,∴y1+y2<0.故答案为:<.19.(2024·湖北武汉·中考真题)某反比例函数y=kx具有下列性质:当x>0时,y随x的增大而减小,写出一个满足条件的k的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当x>0时,y随x的增大而减小,∴k>0故答案为:1(答案不唯一).20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数y=kx(x<0)的图象经过平行四边形ABCO的顶点A,OC在x轴上,若点B-1,3,S▱ABCO=3,则实数k的值为.【答案】-6【分析】本题考查了反比例函数,根据A ,B 的纵坐标相同以及点A 在反比例函数上得到A 的坐标,进而用代数式表达AB 的长度,然后根据S ▱ABCO =3列出一元一次方程求解即可.【详解】∵ABCO 是平行四边形∴A ,B 纵坐标相同∵B -1,3∴A 的纵坐标是3∵A 在反比例函数图象上∴将y =3代入函数中,得到x =k 3∴A k 3,3∴AB =-1-k 3∵S ▱ABCO =3,B 的纵坐标为3∴AB ×3=3即:-1-k 3×3=3解得:k =-6故答案为:-6.21.(2024·内蒙古包头·中考真题)若反比例函数y 1=2x ,y 2=-3x,当1≤x ≤3时,函数y 1的最大值是a ,函数y 2的最大值是b ,则a b =.【答案】12/0.5【分析】此题主要考查了反比例函数的性质,负整数指数幂,正确得出a 与b 的关系是解题关键.直接利用反比例函数的性质分别得出a 与b ,再代入a b 进而得出答案.【详解】解:∵函数y 1=2x,当1≤x ≤3时,函数y 1随x 的增大而减小,最大值为a ,∴x =1时,y 1=2=a ,∵y 2=-3x ,当1≤x ≤3时,函数y 2随x 的增大而减大,函数y 2的最大值为y 2=-1=b ,∴a b =2-1=12.故答案为:12.22.(2024·四川遂宁·中考真题)反比例函数y =k -1x 的图象在第一、三象限,则点k ,-3 在第象限.【答案】四/4【分析】本题考查了反比例函数的性质,点所在的象限,根据反比例函数的性质得出k >1,进而即可求解.【详解】解:∵反比例函数y =k -1x的图象在第一、三象限,∴k -1>0∴k >1∴点k ,-3 在第四象限,故答案为:四.23.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数y =k x (x >0)的图像上,BC ⊥x 轴于点C ,∠BAC =30°,将△ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为.【答案】23【分析】本题考查了反比例函数k 的几何意义,掌握求解的方法是解题的关键.如图,过点D 作DE ⊥x 轴于点E .根据∠BAC =30°,BC ⊥x ,设BC =a ,则AD =AC =3a ,由对称可知AC =AD ,∠DAB =∠BAC =30°,即可得AE =32a ,DE =32a ,解得B (1+3a ,a ),D 1+32a ,32a ,根据点B 的对应点D 落在该反比例函数的图像上,即可列方程求解;【详解】解:如图,过点D 作DE ⊥x 轴于点E .∵点A 的坐标为(1,0),∴OA =1,∵∠BAC =30°,BC ⊥x 轴,设BC =a ,则AD =AC =BC tan30°=3a ,由对称可知AC =AD ,∠DAB =∠BAC =30°,∴∠DAC =60°,∠ADE =30°,∴AE =32a ,DE =AD ·sin60°=32a ,∴B (1+3a ,a ),D 1+32a ,32a ,∵点B 的对应点D 落在该反比例函数的图像上,∴k =a 1+3a =32a ⋅1+32a,解得:a =233,∵反比例函数图象在第一象限,∴k =2331+233×3 =23,故答案为:23.24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为5,0 ,2,6 ,过点B 作BC ∥x 轴交y 轴于点C ,点D 为线段AB 上的一点,且BD =2AD .反比例函数y =k x(x >0)的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是.【答案】12【分析】本题主要考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数k 的几何意义,作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,则DN ∥BM ,由点A ,B 的坐标分别为5,0 ,2,6 得BC =OM =2,BM =OC =6,AM =3,然后证明△ADN ∽△ABM 得DN BM =AN AM =AD AB ,求出DN =2,则ON =OA -AN =4,故有D 点坐标为4,2 ,求出反比例函数解析式y =8x ,再求出E 43,6 ,最后根据S 四边形ODBE =S 梯形OABC -S △OCE -S △OAD 即可求解,熟练掌握知识点的应用是解题的关键.【详解】如图,作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,则DN ∥BM ,∵点A ,B 的坐标分别为5,0 ,2,6 ,∴BC =OM =2,BM =OC =6,AM =3,∵DN ∥BM ,∴△ADN ∽△ABM ,∴DN BM =AN AM =AD AB,∵BD =2AD ,∴DN 6=AN 3=13,∴DN =2,AN =1,∴ON =OA -AN =4,∴D 点坐标为4,2 ,代入y =k x 得,k =2×4=8,∴反比例函数解析式为y =8x,∵BC ∥x 轴,∴点E 与点B 纵坐标相等,且E 在反比例函数图象上,∴E 43,6,∴CE =43,∴S 四边形ODBE =S 梯形OABC -S △OCE -S △OAD =12×2+5 ×6-12×6×43-12×5×2=12,故答案为:12.25.(2024·四川广元·中考真题)已知y =3x 与y =k x x >0 的图象交于点A 2,m ,点B 为y 轴上一点,将△OAB 沿OA 翻折,使点B 恰好落在y =k x x >0 上点C 处,则B 点坐标为.【答案】0,4【分析】本题考查了反比例函数的几何综合,折叠性质,解直角三角形的性质,勾股定理,正确掌握相关性质内容是解题的关键.先得出A 2,23 以及y =43xx >0 ,根据解直角三角形得∠1=30°,根据折叠性质,∠3=30°,然后根据勾股定理进行列式,即OB =OC =23 2+22=4.【详解】解:如图所示:过点A 作AH ⊥y 轴,过点C 作CD ⊥x 轴,∵y =3x 与y =k xx >0 的图象交于点A 2,m ,∴把A 2,m 代入y =3x ,得出m =3×2=23,∴A 2,23 ,把A 2,23 代入y =k xx >0 ,解得k =2×23=43,∴y =43xx >0 ,设C m ,43m,在Rt △AHO ,tan ∠1=AH OH =223=33,∴∠1=30°,∵点B 为y 轴上一点,将△OAB 沿OA 翻折,∴∠2=∠1=30°,OC =OB ,∴∠3=90°-∠1-∠2=30°,则CD OD=tan ∠3=33=43m m ,解得m =23(负值已舍去),∴C 23,2 ,∴OB =OC =23 2+22=4,∴点B 的坐标为0,4 ,故答案为:0,4 .26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,tan ∠AOC =43,且点A 落在反比例函数y =3x 上,点B 落在反比例函数y =k x k ≠0 上,则k =.【答案】8【分析】本题主要考查反比例函数与几何的综合及三角函数;过点A 、B 作x 轴的垂线,垂足分别为D 、E ,然后根据特殊三角函数值结合勾股定理求得A 32,2 ,OA =52,再求得点B 4,2 ,利用待定系数法求解即可.【详解】解:过点A 、B 作x 轴的垂线,垂足分别为D 、E ,如图,∵tan ∠AOC =43,∴AD OD =43,∴设AD =4a ,则OD =3a ,∴点A 3a ,4a,∵点A 在反比例函数y =3x 上,∴3a ⋅4a =3,∴a =12(负值已舍),则点A 32,2,∴AD =2,OD =32,∴OA =OD 2+AD 2=52,∵四边形AOCB 为菱形,∴AB =OA =52,AB ∥CO ,∴点B 4,2 ,∵点B 落在反比例函数y =k x k ≠0 上,∴k =4×2=8,故答案为:8.27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数y =k x(x >0)的图象上,A (1,0),C (0,2).将线段AB 沿x 轴正方向平移得线段A B (点A 平移后的对应点为A ),A B 交函数y =k x (x >0)的图象于点D ,过点D 作DE ⊥y 轴于点E ,则下列结论:①k =2;②△OBD 的面积等于四边形ABDA 的面积;③A E 的最小值是2;④∠B BD =∠BB O .其中正确的结论有.(填写所有正确结论的序号)【答案】①②④【分析】由B 1,2 ,可得k =1×2=2,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,利用k 的几何意义可得△OBD 的面积等于四边形ABDA 的面积;故②符合题意;如图,连接A E ,证明四边形A DEO 为矩形,可得当OD 最小,则A E 最小,设D x ,2xx >0 ,可得A E 的最小值为2,故③不符合题意;如图,设平移距离为n ,可得B n +1,2 ,证明△B BD ∽△A OB ,可得∠B BD =∠B OA ,再进一步可得答案.【详解】解:∵A (1,0),C (0,2),四边形OABC 是矩形;∴B 1,2 ,∴k =1×2=2,故①符合题意;2如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,05∵S △AOB =S △A OD =12×2=1,∴S △BOK =S 四边形AKDA,∴S △BOK +S △BKD =S 四边形AKDA+S △BKD ,∴△OBD 的面积等于四边形ABDA 的面积;故②符合题意;如图,连接A E ,∵DE ⊥y 轴,∠DA O =∠EOA =90°,∴四边形A DEO 为矩形,∴A E =OD ,∴当OD 最小,则A E 最小,设D x ,2x x >0 ,∴OD 2=x 2+4x 2≥2⋅x ⋅2x =4,∴OD ≥2,∴A E 的最小值为2,故③不符合题意;如图,设平移距离为n ,∴B n +1,2 ,∵反比例函数为y =2x,四边形A B CO 为矩形,∴∠BB D =∠OA B =90°,D n +1,2n +1 ,∴BB =n ,OA =n +1,B D =2-2n +1=2n n +1,A B =2,∴BB OA =n n +1=2n n +12=B D A B,∴△B BD ∽△A OB ,∴∠B BD =∠B OA ,∵B C ∥A O ,∴∠CB O =∠A OB ,∴∠B BD =∠BB O ,故④符合题意;故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点0,1 是函数y =x +1图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是(填序号);①y =-x +3;②y =2x;③y =-x 2+2x -1.(2)若一次函数y =mx -3m 图象上存在“近轴点”,则m 的取值范围为.【答案】③-12≤m <0或0<m ≤12【分析】本题主要考查了新定义--“近轴点”.正确理解新定义,熟练掌握一次函数,反比例函数,二次函数图象上点的坐标特点,是解决问题的关键.(1)①y =-x +3中,取x =y =1.5,不存在“近轴点”;②y =2x,由对称性,取x =y =±2,不存在“近轴点”;③y =-x 2+2x -1=-x -1 2,取x =1时,y =0,得到1,0 是y =-x 2+2x -1的“近轴点”;(2)y =mx -3m =m x -3 图象恒过点3,0 ,当直线过1,-1 时,m =12,得到0<m ≤12;当直线过1,1 时,m =-12,得到-12≤m <0.【详解】(1)①y =-x +3中,x =1.5时,y =1.5,不存在“近轴点”;②y =2x,由对称性,当x =y 时,x =y =±2,不存在“近轴点”;③y =-x 2+2x -1=-x -1 2,x =1时,y =0,∴1,0 是y =-x 2+2x -1的“近轴点”;∴上面三个函数的图象上存在“近轴点”的是③故答案为:③;(2)y =mx -3m =m x -3 中,x =3时,y =0,∴图象恒过点3,0 ,当直线过1,-1 时,-1=m 1-3 ,∴m =12,∴0<m ≤12;当直线过1,1 时,1=m 1-3 ,∴m =-12,∴-12≤m <0;∴m 的取值范围为-12≤m <0或0<m ≤12.故答案为:-12≤m <0或0<m ≤12.三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,与反比例函数y =k x x >0 的图象交于点A 2,4 .过点B 0,2 作x 轴的平行线分别交y =ax +b 与y =k xx >0 的图象于C ,D 两点.(1)求一次函数y =ax +b 和反比例函数y =k x的表达式;(2)连接AD ,求△ACD 的面积.【答案】(1)一次函数y =ax +b 的解析式为y =12x +3;反比例函数y =k x x >0 的解析式为y =8xx >0 ;(2)6【分析】本题主要考查了一次函数与反比例函数综合:(1)先根据一次函数图象的平移规律y =ax +b =ax +3,再把点A 的坐标分别代入对应的一次函数解析式和反比例函数解析式中,利用待定系数法求解即可;(2)先分别求出C 、D 的坐标,进而求出CD 的长,再根据三角形面积计算公式求解即可.【详解】(1)解:∵将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,∴y =ax +b =ax +3,把A 2,4 代入y =ax +3中得:2a +3=4,解得a =12,∴一次函数y =ax +b 的解析式为y =12x +3;把A 2,4 代入y =k x x >0 中得:4=k 2x >0 ,解得k =8,∴反比例函数y =k x x >0 的解析式为y =8xx >0 ;(2)解:∵BC ∥x 轴,B 0,2 ,∴点C 和点D 的纵坐标都为2,在y =12x +3中,当y =12x +3=2时,x =-2,即C -2,2 ;在y =8x x >0 中,当y =8x =2时,x =4,即D 4,2 ;∴CD =4--2 =6,∵A 2,4 ,∴S △ACD =12CD ⋅y A -y C =12×6×4-2 =6.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y =-x +b 和反比例函数y =9x 的图象相交于点A 1,m ,B n ,1 .(1)求点A ,点B 的坐标及一次函数的解析式;(2)根据图象,直接写出不等式-x +b >9x的解集.【答案】(1)A 1,9 ,B 9,1 ,y =-x +10(2)x <0或1<x <9【分析】本题主要考查了一次函数与反比函数的交点问题:(1)分别把点A 1,m ,点B n ,1 代入y =9x,可求出点A ,B 的坐标,即可求解;(2)直接观察图象,即可求解.【详解】(1)解:把点A 1,m 代入y =9x 中,得:m =91=9,∴点A 的坐标为1,9 ,把点B n ,1 代入y =9x 中,得:n =91=9,∴点B 的坐标为9,1 ,把x =1,y =9代入y =-x +b 中得:-1+b =9,∴b =10,∴一次函数的解析式为y =-x +10,(2)解:根据一次函数和反比例函数图象,得:当x <0或1<x <9时,一次函数y =-x +b 的图象位于反比例函数y =9x的图象的上方,∴-x +b >9x的解集为x <0或1<x <9.31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围).(2)当电阻R 为3Ω时,求此时的电流I .【答案】(1)I =36R(2)12A【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当R =3Ω时I 的值即可得到答案.【详解】(1)解:设这个反比例函数的解析式为I =URU ≠0 ,把9,4 代入I =U RU ≠0 中得:4=U9U ≠0 ,解得U =36,∴这个反比例函数的解析式为I =36R;(2)解:在I =36R中,当R =3Ω时,I =363=12A ,∴此时的电流I 为12A .32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数y =2x +b 与y =kx部分自变量与函数值的对应关系:x -72a12x +ba1________kx________________7(1)求a、b的值,并补全表格;(2)结合表格,当y=2x+b的图像在y=kx的图像上方时,直接写出x的取值范围.【答案】(1)a=-2b=5,补全表格见解析(2)x的取值范围为-72<x<0或x>1;【分析】本题考查的是一次函数与反比例函数的综合,利用图像法写自变量的取值范围;(1)根据表格信息建立方程组求解a,b的值,再求解k的值,再补全表格即可;(2)由表格信息可得两个函数的交点坐标,再结合函数图像可得答案.【详解】(1)解:当x=-72时,2x+b=a,即-7+b=a,当x=a时,2x+b=1,即2a+b=1,∴a-b=-72a+b=1,解得:a=-2b=5,∴一次函数为y=2x+5,当x=1时,y=7,∵当x=1时,y=kx=7,即k=7,∴反比例函数为:y=7x,当x=-72时,y=7÷-72=-2,当y=1时,x=a=-2,当x=-2时,y=-7 2,补全表格如下:x-72-212x+b-217kx-2-7 27(2)由表格信息可得:两个函数的交点坐标分别为-72,-2,1,7 ,∴当y=2x+b的图像在y=kx的图像上方时,x的取值范围为-72<x<0或x>1;33.(2024·湖北·中考真题)一次函数y=x+m经过点A-3,0,交反比例函数y=kx于点B n,4.(1)求m,n,k;(2)点C在反比例函数y=kx第一象限的图象上,若S△AOC<S△AOB,直接写出C的横坐标a的取值范围.【答案】(1)m=3,n=1,k=4;(2)a>1.【分析】本题主要考查了一次函数和反比例函数的综合,求反比例函数解析式,解题的关键是熟练掌握数形结合的思想.(1)利用一次函数y=x+m经过点A-3,0,点B n,4,列式计算求得m=3,n=1,得到点B1,4,再利用待定系数法求解即可;(2)利用三角形面积公式求得S△AOB=6,得到32y C<6,据此求解即可.【详解】(1)解:∵一次函数y=x+m经过点A-3,0,点B n,4,∴-3+m=0 n+m=4 ,解得m=3 n=1 ,∴点B1,4,∵反比例函数y=kx经过点B1,4,∴k=1×4=4;(2)解:∵点A-3,0,点B1,4,∴AO =3,∴S △AOB =12AO ×y B =12×3×4=6,S △AOC =12AO ×y C =32y C ,由题意得32y C<6,∴y C <4,∴x C >1,∴C 的横坐标a 的取值范围为a >1.34.(2024·四川凉山·中考真题)如图,正比例函数y 1=12x 与反比例函数y 2=kxx >0 的图象交于点A m ,2 .(1)求反比例函数的解析式;(2)把直线y 1=12x 向上平移3个单位长度与y 2=kxx >0 的图象交于点B ,连接AB ,OB ,求△AOB 的面积.【答案】(1)y 2=8x(2)6【分析】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,一次函数的平移等知识,熟练掌握函数的平移法则是关键.(1)待定系数法求出反比例函数解析式即可;(2)先得到平移后直线解析式,联立方程组求出点B 坐标,根据平行线间的距离可得S △AOB =S △ADO ,代入数据计算即可.【详解】(1)解:∵点A (m ,2)在正比例函数图象上,∴2=12m ,解得m =4,∴A (4,2),∵A (4,2)在反比例函数图象上,∴k =8,∴反比例函数解析式为y 2=8x.(2)解:把直线y 1=12x 向上平移3个单位得到解析式为y =12x +3,令x =0,则y =3,∴记直线与y 轴交点坐标为D (0,3),连接AD ,联立方程组y =8xy =12x +3,解得x =2y =4,x =-8y =-1 (舍去),∴B (2,4),由题意得:BD ∥AO ,∴△AOB ,△AOD 同底等高,∴S △AOB =S △ADO =12OD ⋅x A =12×3×4=6.35.(2024·贵州·中考真题)已知点1,3 在反比例函数y =kx的图象上.(1)求反比例函数的表达式;(2)点-3,a ,1,b ,3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)y =3x(2)a <c <b ,理由见解析【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点1,3 代入y =kx可得k 的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【详解】(1)解:把1,3 代入y =k x ,得3=k 1,∴k =3,∴反比例函数的表达式为y =3x;(2)解:∵k =3>0,∴函数图象位于第一、三象限,∵点-3,a ,1,b ,3,c 都在反比例函数的图象上,-3<0<1<3,∴a <0<c <b ,∴a <c <b .36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数y =kxx >0 的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为.【答案】(1)y =6x(2)见解析(3)92【分析】本题考查了待定系数法求反比例函数解析,画反比例函数图象,平移的性质等知识,解题的关键是:(1)利用待定系数法求解即可;(2)分别求出x =1,x =2,x =6对应的函数值,然后描点、连线画出函数图象即可;(3)求出平移后点E 对应点的坐标,利用平移前后对应点的横坐标相减即可求解.【详解】(1)解:反比例函数y =kx的图象经过点A 3,2 ,∴2=k3,∴k =6,∴这个反比例函数的表达式为y =6x;(2)解:当x =1时,y =6,当x =2时,y =3,当x =6时,y =1,∴反比例函数y =6x的图象经过1,6 ,2,3 ,6,1 ,画图如下:(3)解:∵E 6,4 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当y =4时,4=6x,解得x =32,∴平移距离为6-32=92.故答案为:92.37.(2024·四川乐山·中考真题)如图,已知点A 1,m 、B n ,1 在反比例函数y =3xx >0 的图象上,过点A 的一次函数y =kx +b 的图象与y 轴交于点C 0,1 .(1)求m 、n 的值和一次函数的表达式;(2)连接AB ,求点C 到线段AB 的距离.【答案】(1)m =3,n =3,y =2x +1(2)点C 到线段AB 的距离为322【分析】(1)根据点A 1,m 、B n ,1 在反比例函数y =3x图象上,代入即可求得m 、n 的值;根据一次函数y =kx +b 过点A 1,3 ,C 0,1 ,代入求得k ,b ,即可得到表达式;(2)连接BC ,过点A 作AD ⊥BC ,垂足为点D ,过点C 作CE ⊥AB ,垂足为点E ,可推出BC ∥x 轴,BC 、AD 、DB 的长度,然后利用勾股定理计算出AB 的长度,最后根据S △ABC =12BC ⋅AD =12AB ⋅CE ,计算得CE 的长度,即为点C 到线段AB 的距离.【详解】(1)∵点A 1,m 、B n ,1 在反比例函数y =3x图象上。
中考数学专题复习《一次函数与反比例函数的综合》检测题真题(含答案)
一次函数与反比例函数的综合运用(2016·青海西宁·2分)如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A坐标代入一次函数y=x+m与反比例函数y=,分别求得m及k的值;(2)令直线解析式的函数值为0,即可得出x的值,从而得出点C坐标,根据图象即可得出不等式组0<x+m≤的解集.【解答】解:(1)由题意可得:点A(2,1)在函数y=x+m的图象上,∴2+m=1即m=﹣1,∵A(2,1)在反比例函数的图象上,∴,∴k=2;(2)∵一次函数解析式为y=x﹣1,令y=0,得x=1,∴点C的坐标是(1,0),由图象可知不等式组0<x+m≤的解集为1<x≤2.m(m≠0)(2016·贵州安顺·10分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=x的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标.解:(1)过点A作AD⊥x轴,垂足为D由A(n,6),C(﹣2,0)可得,OD=n,AD=6,CO=2∵tan∠ACO=2∴=2,即=2∴n=1∴A(1,6)将A(1,6)代入反比例函数,得m=1×6=6∴反比例函数的解析式为将A(1,6),C(﹣2,0)代入一次函数y=kx+b,可得解得∴一次函数的解析式为y=2x+4(2)由可得,解得x1=1,x2=﹣3∵当x=﹣3时,y=﹣2∴点B坐标为(﹣3,﹣2)(2016·四川泸州)如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.解:(1)∵点A(4,1)在反比例函数y=的图象上,∴m=4×1=4,∴反比例函数的解析式为y=.(2)∵点B在反比例函数y=的图象上,∴设点B的坐标为(n,).将y=kx+b代入y=中,得:kx+b=,整理得:kx2+bx﹣4=0,∴4n=﹣,即nk=﹣1①.令y=kx+b中x=0,则y=b,即点C的坐标为(0,b),∴S△B O C=bn=3,∴bn=6②.∵点A(4,1)在一次函数y=kx+b的图象上,∴1=4k+b③.联立①②③成方程组,即,解得:,∴该一次函数的解析式为y=﹣x+3.4.(2016·四川南充)如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.【分析】(1)把A坐标代入直线解析式求出m的值,确定出A坐标,即可确定出双曲线解析式;(2)设P(x,0),表示出PC的长,高为A纵坐标,根据三角形ACP面积求出x的值,确定出P坐标即可.【解答】解:(1)把A(m,3)代入直线解析式得:3=m+2,即m=2,∴A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=;(2)对于直线y=x+2,令y=0,得到x=﹣4,即C(﹣4,0),设P(x,0),可得PC=|x+4|,∵△ACP面积为3,∴|x+4|3=3,即|x+4|=2,解得:x=﹣2或x=﹣6,则P坐标为(﹣2,0)或(﹣6,0).【点评】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,以及三角形面积求法,熟练掌握待定系数法是解本题的关键.5.(2016·四川攀枝花)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.【考点】反比例函数与一次函数的交点问题;反比例函数图象上点的坐标特征.【分析】(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;(2)由m的值,可找出点A的坐标,由此即可得出线段OB、AB的长度,通过解直角三角形即可得出结论;(3)由m的值,可找出点C、D的坐标,设出过点C、D的一次函数的解析式为y=ax+b,由点C、D的坐标利用待定系数法即可得出结论.【解答】解:(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数y=的函数图象上,∴,解得:.∴反比例函数的解析式为y=.(2)∵m=1,∴点A的坐标为(4,4),∴OB=4,AB=4.在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴OA==4,cos∠OAB===.(3))∵m=1,∴点C的坐标为(2,2),点D的坐标为(4,1).设经过点C、D的一次函数的解析式为y=ax+b,则有,解得:.∴经过C、D两点的一次函数解析式为y=﹣x+3.(2016·重庆市A卷·10分)在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B 的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.解:(1)由OH=3,tan∠AOH=,得AH=4.即A(﹣4,3).由勾股定理,得AO==5,△AHO的周长=AO+AH+OH=3+4+5=12;(2)将A点坐标代入y=(k≠0),得k=﹣4×3=﹣12,反比例函数的解析式为y=;当y=﹣2时,﹣2=,解得x=6,即B(6,﹣2).将A、B点坐标代入y=ax+b,得,解得,一次函数的解析式为y=﹣x+1.(2016·山东省菏泽市·3分)如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.解:(1)∵点A 的坐标是(﹣1,a ),在直线y =﹣2x +2上, ∴a =﹣2×(﹣1)+2=4,∴点A 的坐标是(﹣1,4),代入反比例函数y =, ∴m =﹣4.(2)解方程组解得:或,∴该双曲线与直线y =﹣2x +2另一个交点B 的坐标为(2,﹣2).(2016·山东省东营市·9分)如图,在平面直角坐标系中,直线AB 与x 轴交于点B ,与y 轴交于点A ,与反比例函数y =x m 的图象在第二象限交于点C ,CE ⊥x 轴,垂足为点E ,tan ∠ABO =12,OB =4,OE =2. (1)求反比例函数的解析式;(2)若点D 是反比例函数图象在第四象限上的点,过点D 作DF ⊥y 轴,垂足为点F ,连接OD 、BF ,如果S △BAF =4S △DFO ,求点D 的坐标.(l )∵OB =4,OE =2,∴BE =OB +OE =6. ∵CE ⊥x 轴,∴∠CEB =90°.在Rt △BEC 中,∵tan ∠ABO =12,∴CE BE =12.即CE 6=12,解得CE =3. 结合图象可知C 点的坐标为(一2,3),将C (―2,3)代入反比例函数解析式可得3=m-2.解得m =-6.反比例函数解析式为y =-6x .(2)解:方法一:∵点D 是y =-6x 的图象上的点,且DF ⊥y 轴, ∴S △DFO =12×|-6|=3.∴S △BAF =4S △DFO =4×3=12.∴12AF •OB =12.∴12×AF ×4=12. ∴AF =6.∴EF =AF -OA =6-2=4. ∴点D 的纵坐标为-4.把y =-4代入y =-6x ,得 -4=-6x .∴x =32. ∴D (32,一4).方法二:设点D 的坐标为(a ,b ).∵S △BAF =4S △DFO ,∴12AF •OB =4×12OF •FD .∴(AO +OF ) OB =4OF •FD . ∴[2+(-b )]×4=-4ab .∴8-4b =-4ab .又∵点D 在反比例函数图象上,∴b =-6a .∴ab =-6.∴8-4b =24.解得:b =-4. 把b =-4代ab =-6中,解得:a =32. ∴D (32,一4).(2016·四川宜宾)如图,一次函数y =kx +b 的图象与反比例函数y =(x >0)的图象交于A (2,﹣1),B (,n )两点,直线y =2与y 轴交于点C .(1)求一次函数与反比例函数的解析式; (2)求△ABC 的面积.解:(1)把A (2,﹣1)代入反比例解析式得:﹣1=,即m =﹣2,∴反比例解析式为y =﹣,把B (,n )代入反比例解析式得:n =﹣4,即B (,﹣4),把A 与B 坐标代入y =kx +b 中得:,解得:k =2,b =﹣5,则一次函数解析式为y =2x ﹣5; (2)∵A (2,﹣1),B (,﹣4),直线AB 解析式为y =2x ﹣5,∴AB ==,原点(0,0)到直线y =2x ﹣5的距离d ==,则S △A B C =AB •d =.(2015呼和浩特,23,7分)7分)如图,在平面直角坐标系中A 点的坐标为(8,y ) ,AB ⊥x 轴于点B , sin ∠OAB = 45 ,反比例函数y = kx 的图象的一支经过AO 的中点C ,且与AB 交于点D. (1)求反比例函数解析式;(2)若函数y = 3x 与y = kx 的图象的另一支交于点M ,求三角形OMB 与四边形OCDB 的面积的比. 解:(1) ∵A (8,y ) 又∵AB ⊥x 轴于点B∴点B 横坐标为8,∴∠ ABO =90° 又∵点B 在x 轴上 ∴OB =8.在Rt △ABO 中, ∵sin ∠OAB = 45 =OAOB∴OA =8×54 =10 ∴.∴A (8,6)又∵C 点为OA 的中点,O 点为坐标原点∴C (4,3)又∵C (4,3)在函数y = kx 上 ∴3=4k,即k =12 ∴反比例函数解析式为y =x12.(2)法一:将四边形切成两个三角形,算△OCB 的面积和△BCD 的面积,再求和 先求直线y = 3x 与y =x12的交点M 的坐标,列如下方程组∴M (2,6)或M (-2,-6) 又∵M 为函数y = 3x 与函数y =x12在第三象限的交点 ∴M (-2,-6).∴S △OMB = 12·OB·|-6| = 12×8×6 =24 ∵S 四边形OCDB = S △OBC +S △BCD =12+12·DB ·4 又∵D 在双曲线上,且D 点横坐标为8 ∴D (8,32),即BD =32 ∴S 四边形OCDB =12+3=15 ∴S △OMB S 四边形OCDB = 85 .法二:算出△ABO 的面积,再减去△ACD 的面积 先求直线y = 3x 与y =x12的交点M 的坐标,列如下方程组∴M (2,6)或M (-2,-6) 又∵M 为函数y = 3x 与函数y =x12在第三象限的交点 ∴M (-2,-6).∴S △OMB = 12·OB·|-6| = 12×8×6 =24 又 ∵D 在双曲线上,且D 点横坐标为8∴D (8,32),即AD =AB -BD =6-32=29 ∴S △ACD = 12·AD·|8-4|=12×29×4=9 又∵S △ABO = 12·OB·AB = 12×8×6 =24 ∴S 四边形OCDB = S △ABO -S △ACD =24-9=15∴S △OMB S 四边形OCDB = 85 .(2015•四川广安,第20题6分)如图,一次函数的图象与x 轴、y 轴分别相交于A 、B 两点,且与反比例函数y =(k ≠0)的图象在第一象限交于点C ,如果点B 的坐标为(0,2),OA =OB ,B 是线段AC 的中点.(1)求点A 的坐标及一次函数解析式.(2)求点C 的坐标及反比例函数的解析式.解:(1)∵OA =OB ,点B 的坐标为(0,2),∴点A (﹣2,0),点A 、B 在一次函数y =kx +b (k ≠0)的图象上,∴,解得k =1,b =2,∴一次函数的解析式为y =x +2.(2)∵B 是线段AC 的中点,∴点C 的坐标为(2,4),又∵点C 在反比例函数y =(k ≠0)的图象上,∴k =8;∴反比例函数的解析式为y =.(2015•四川泸州,第23题8分)如图,一次函数(0)y kx b k =+<的图象经过点C (3,0),且与两坐标轴围成的三角形的面积为3.(1)求该一次函数的解析式;(2)若反比例函数myx的图象与该一次函数的图象交于二、四象限内的A、B两点,且AC=2BC,求m的值。
中考数学复习课一次函数与反比例函数综合(含答案)
反比例函数与一次函数综合复习课学习目标: 能够应用一次函数与反比例函数的图象与性质分析解决一次函数与反比例函数的综合题。
重点:熟练应用一次函数与反比例函数的图象与性质进行解题 难点:进一步利用数形结合的思想方法进行解题一、知识回顾 1.若反比例函数x k y =与一次函数y =3x +b 都经过点(1,4),则kb =________. 2.反比例函数xy 6-=的图象一定经过点(-2,________).3.若点A (7,y 1),B (5,y 2)在双曲线xy 3-=上,则y 1、y 2中较小的是________.4.如图,反比例函数的图象在第一象限内经过点A ,过点A 分别向x 轴、y 轴作垂线,垂足分别P 、Q ,若矩形APOQ 的面积为8,则这个反比例函数的解析式为________. 二、学习新知:1.如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函数y=xm 的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-xm <0的解集(直接写出答案).第4题2.已知:如图,一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A 、B 两点,与y 轴交于点C ,与x 轴交于点D .OB =10,tan ∠DOB =31. (1)求反比例函数的解析式:(2)设点A 的横坐标为m ,△ABO 的面积为S ,求S 与m 的函数关系式,并写出自变量m 的取值范围; (3)当△OCD 的面积等于2S 时,试判断过A 、B 两点的抛物线在x 轴上截得的线段能否等于3.如果能,求此时抛物线的解析式;如果不能,请说明理由. 解:(1)过点B 作BH ⊥x 轴于点H . ………1分 在Rt △OHB 中, HO =3BH . ………………2分由勾股定理,得 BH 2+HO 2=OB 2. 又∵ OB =10.∴ BH 2+(3BH )2=(10)2. ∵ BH >0, ∴ BH =1,HO =3. ∴ 点B (-3,-1). ………………………3分 设反比例函数的解析式为xk y 1=(k ≠0).∵ 点B 在反比例函数的图象上, ∴ 反比例函数的解析式为xy 3=. ……4分(2)设直线AB 的解析式为y =k 2x +b (k ≠0). 由点A 在第一象限,得m >0. 又由点A 在函数xy 3=的图像上,可求得点A 的纵坐标为m3.∵ 点B (-3,-1),点A (m ,m3),∴ ⎪⎩⎪⎨⎧=+-=+-.,m b mk b k 31322 解关于k 2、b 的方程组,得⎪⎪⎩⎪⎪⎨⎧-==.,m m b mk 312 ∴ 直线AB 的解析式为 mm x my -+=31. ………………………5分令 y =0, 求得点D 的横坐标为 x =m -3. 过点A 作A G ⊥x 轴于点 G . S =S △BDO +S △ADO =21DO ·BH +21DO ·G A =21DO (BH +G A )=⎪⎪⎭⎫⎝⎛+-m m 31321. 由已知,直线经过第一、三、四象限, ∴ b >0时,即03>-mm .∵ m >0, ∴ 3-m >0.由此得 0<m <3. ………………………6分 ∴ S =21(3-m )(1+m3). 即 S =mm 292-(0<m <3) ………7分(3)过A 、B 两点的抛物点线在x 轴上截得的线段长不能等于3. 证明如下: S △OCD =21DO ·OC =21︱m -3︱·mm -3=()mm 232-.由 S △OCD =2S , 得()mm mm 29212322-⋅=-. 解得 m 1=1,m 2=3.经检验,m 1=1,m 2=3都是这个方程的根. ∵ 0<m <3,∴ m =3不合题意,舍去, ∴ A (1,3). ……………………………8分 设过A (1,3)、B (-3,-1)两点的抛物线的解析式y =ax 2+bx +c (a ≠0).∴ ⎩⎨⎧-=+-=++.,1393c b a c b a 由此得⎩⎨⎧-=+=.,a c a b 3221即 y =ax 2+(1+2a )x+2-3a . …………………………………9分 设抛物线与x 轴两交点的横坐标为x 1,x 2. 则 x 1+x 2=aa 21+-,x 1·x 2=aa 32-. 令 ︱x 1-x 2︱=3.则 (x 1-x 2)-4x 1x 2=9. 即 9324212=-⋅-⎪⎭⎫⎝⎛+-a a a a . 整理,得 7a 2-4a +1=0. ∵ Δ=(-4)2-4×7×1=-12<0, ∴ 方程7a 2-4a +1=0无实数根.因此过A 、B 两点的抛物线在x 轴上截得的线段长不能等于3. ………………10分三、巩固知识中考宝典P40-41 18、19题 四、感受中考20.(本题满分9分)(2009年)如图,已知反比例函数y = mx的图象经过点A (-1,3),一次函数y =kx +b 的图象经过点A 和点C (0,4),且与反比例函数的图象相交于另一点B . (1)求这两个函数的解析式; (2)求点B 的坐标. 23、(本题满分9分)(2008年)如图所示,一次函数y x m =+和反比例函数1(1)m y m x+=≠-的图象在第一象限内的交点为(,3)P a .⑴求a 的值及这两个函数的解析式;⑵根据图象,直接写出在第一象限内,使反 比例函数的值大于一次函数的值的x 的取值范围.20.(本题满分8分)(2010年) 已知点P (1,2)在反比例函数y =xk (0≠k )的图象上.(1)当x 2-=时,求y 的值;(2)当1<x <4时,求y 的取值范围.(,3)P aOxy(2011年)20、如图所示,反比例函数y=的图象与一次函数y=kx-3的图象在第一象限内相交于点A (4,m ). (1)求m 的值及一次函数的解析式;(2)若直线x=2与反比例和一次函数的图象分别交于点B 、C ,求线段BC 的长. 五、今年中考预测与以往类同,都是利用交点坐标解题 六、课后练习1.若正比例函数x k y 1=的图象与反比例函数xk y 2=的图象相交于A 、B 两点,其中点A 的坐标为(32,3),则k 1k 2=____________. 2、已知反比例函数k y x=的图象与直线y =2x 和y =x +1的图象过同一点,则k = .3、如图,是一次函数y=kx+b 与反比例函数y=2x的图象,则关于x 的方程kx+b=2x的解为( )A .x l =1,x 2= 2 ;B .x l = -2,x 2= -1 ;C .x l =1,x 2= -2D .x l =2,x 2= -1 4、 如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( ).A .x <-1B .x >2C .-1<x <0,或x >2D .x <-1,或0<x <2 5、已知120k k <<,则函数1y k x =和2k y x=的图象大致是( )6、.已知关于x 的一次函数y =-2x +m 和反比例函数xn y 1+=的图象都经过A (-2,1),则m =__,n =___.7、.直线y =2x 与双曲线xy 8=有一交点(2,4),则它们的另一交点为________.8、已知y =(a -1)x a 是反比例函数,则它的图象在( ). (A)第一、三象限 (B)第二、四象限 (C)第一、二象限 (D)第三、四象限9、观察函数xy 2-=的图象,当x =2时,y =________;当x <2时,y 的取值范围是________;当y ≥-1时,x 的取值范围是________. 10、.函数xy 2=在第一象限内的图象如图所示,在同一直角坐标系中,将直线y =-x +1沿y 轴向上平移2个单位,所得直线与函数xy 2=的图象的交点共有________个.11、如图,一次函数y =kx +b 的图象与反比例函数xm y =的图象相交于A 、B 两点,(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.xxxx)(D )第4题12、已知一次函数x y 2=的图象与反比例函数xk y =的图象交于M 、N 两点,且52=MN .(l )求反比例函数的解析式;(2)若抛物线c bx ax y ++=2经过M 、N 两点,证明:这条抛物线与x 轴一定有两个交点; (3)设(2)中的抛物线与x 轴的两个交点为A 、B (点A 在点B 左侧),与y 轴交于点C ,连结AC 、BC.若3tan tan =∠+∠CBA CAB ,求抛物线的解析式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热点5 一次函数、反比例函数的图象和性质
(时间:100分钟分数:100分)
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求的)
1.在反比例函数y=2
x
的图象上的一个点的坐标是()
A.(2,1) B.(-2,1) C.(2,1
2
) D.(
1
2
,2)
2.函数y=(a-1)x a是反比例函数,则此函数图象位于()
A.第一、三象限; B.第二、四象限; C.第一、四象限; D.第二、三象限3.已知正比例函数y=(3k-1)x,y随着x的增大而增大,则k的取值范围是()
A.k<0 B.k>0 C.k<1
3
D.k>
1
3
4.直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有()个 A.4 B.5 C.7 D.8
5.在函数y=k
x
(k>0)的图象上有三点A1(x1,y1),A2(x2,y2),A3(x3,y3),已知x1<x2<0<x3,
则下列各式中,正确的是()
A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2
6.下列说法不正确的是()
A.一次函数不一定是正比例函数 B.不是一次函数就一定不是正比例函数
C.正比例函数是特殊的一次函数 D.不是正比例函数就一定不是一次函数
7.在同一平面直角坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,下列说法正确的是()
A.通过点(-1,0)的是①③ B.交点在y轴上的是②④
C.相互平行的是①③ D.关于x轴对称的是②④
8.在直线y=1
2
x+
1
2
上,到x轴或y轴的距离为1的点有()个
A.1 B.2 C.3 D.4
9.无论m、n为何实数,直线y=-3x+1与y=mx+n的交点不可能在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.一次函数y=kx+(k-3)的函数图象不可能是()
二、填空题(本大题共8小题,每小题3分,共24分)
11.一次函数y=kx+b中,y随x的增大而减小,且kb>0,则这个函数的图象一定不经过第______象限.
12.如图6-2,点A在反比例函数y=k
x
的图象上,AB垂直于x轴,若S△AOB=4,•那么这个反
比例函数的解析式为________.
13.如图6-3,弹簧总长y(cm)与所挂质量x(kg)之间是一次函数关系,则该弹簧不挂物体时的长度为________.
14.已知函数y=(k+1)x+k2-1,当k_______时,它是一次函数;当k______时,它是正比例函数.
15.一次函数图象与y=6-x交于点A(5,k),且与直线y=2x-3无交点,则这个一次函数的
解析式为y=________.
16.已知函数y=3x+m与函数y=-3x+n交于点(a,16),则m+n=________.
17.已知直线L:y=-3x+2,现有命题:①点P(-1,1)在直线L上;②若直线L与x轴、•
y轴分别交于A、B两点,则③若点M(1
3
,1),N(a,b)都在直线L上,且
a>1
3
,则b>1;•④若点Q到两坐标轴的距离相等,且Q在L上,则点Q在第一或第四象
限.•其中正确的命题是_________.
18.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质.
甲:函数的图象经过了第一象限;乙:函数的图象也经过了第三象限;
丙:在每个象限内,y随x的增大而减小。
请你写出一个满足这三个条件的函数: ____.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)
19.已知一次函数y=x+m与反比例函数y=
1
m
x
的图象在第一象限内的交点为P(x0,3).
(1)求x0的值;(2)求一次函数和反比例函数的解析式.
20.如图,一次函数y=kx+b的图象与反比例函数y=m
x
的图象交于A(-2,1),B(•1,n)
两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.
21.已知y+a与x+b成正比例,且当x=1,-2时,y的值分别为7,4.求y与x的函数关系式.
22.图中的直线的交点可看作是方程组的解,•请用你所学的知识求出这个方程组.
23.如图,一次函数的图象与x轴、y轴分别交于点A、B,以线段AB•为边在
第一象限内作等边△ABC.
(1)求△ABC的面积.
(2)如果在第二象限内有一点P(a,1
2
),请用含a的式子表示四边形ABPO的面积,
•并求出当△ABP的面积与△ABC的面积相等时a的值.
24.某产品每件成本10元,试销阶段每件产品的销售价x(元)•与产品的日销售量y(件)之间的关系如下表:
若日销售量y是销售价x的一次函数.
(1)求出日销售量y(件)与销售价x(元)的函数关系式.
(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?
25.已知:如图,函数y=-x+2的图象与x轴、y轴分别交于点A、B,一直线L经过点C(1,0)将△AOB的面积分成相等的两部分.
(1)求直线L的函数解析式;
(2)若直线L将△AOB的面积分成1:3两部分,求直线L的函数解析式.
答案:
一、填空题
1.A 2.B 3.D 4.C 5.C 6.D 7.C 8.D 9.C 10.A
二、填空题
11.一 12.y=-
8x
13.12cm 14.≠-1 =1 15.2x-9 16.32 17.②④ 18.y=1x (•答案不唯一) 三、解答题
19.解:(1)x 0=1,(2)y=x+2,y=
3x
. 20.解:(1)把A (-2,1)代入y=m x
,得m=-2, 即反比例函数为y=-2x ,则n=21-⇒n=-2. 即B (1,-2),把A (-2,1),B (1,-2)代入y=kx+b ,
求得k=-1,b=-1,所以y=-x-1.
(2)x<-2或0<x<1.
21.解:设y+a=k (x+b ),x=1时,y=7时,7+a=k (1+b ).
x=-2,y=4时,得4+a=k (-2+b ),联立得1, 6.k b a =⎧⎨-=⎩
故y=x+6. 22.解:L 1与L 2交点坐标为(2,3),L 1与y 轴交点为(0,32
), 3,23342
y x y x ⎧=⎪⎪⎨⎪=+⎪⎩即为所求方程组. 23.解:(1)
x+1与x 轴、y 轴交于A 、B 两点, ∵A
0),B (0,1).∵△AOB 为直角三角形,∴AB=2.
∴S △ABC =
12
×2×sin60°
(2)S ABPO =S △ABO +S △BOP =12×OA×OB+12×OB×h=12
1+12×1×│a│. ∵P 在第二象限,∴S ABPO
=2-2
a , S △ABP =S ABPO -S △AOP =
(2-2a )-12×OA ×12
.
∴S △ABP =2-2a -4=4-2
a =S △ABC
∴a=-2
. 24.解:(1)y=-x+40.
(2)设日销售利润为S 元,则S=y (x-10),
把y=-x+40代入得S=(-x+40)(x-10)=-•x 2+50x-400=-(x 2-50x+400). S=-(x-25)2+225.
所以当每件产品销售价为25元时,日销售利润最大,为225元.
25.解:(1)设L 为y=kx+b ,由题意得y=2x+2.
(2)y=-x+1或x=1.。