水中总铁含量的测定
铁的测定及预处理方法
水质中铁含量的测定一、实验原理该方法采用邻菲罗啉光度法,水中的铁有二价和三价形式,在检测前需用盐酸羟胺将高价铁还原为二价铁。
在PH值4~5的乙酸-乙酸铵缓冲溶液中,二价铁和邻菲啰啉反应,生成橙红色有机物,可使用510nm 的光进行比色,测量范围:0.02~2.5mg/L。
二、水样预处理1)总铁的测定水样处理:采样后立即将样品用盐酸酸化至pH<1,分析时取50ml混合水样于150ml锥形瓶中,加入1+3盐酸1ml,10%的盐酸羟按1ml,加热煮沸至体积减少到15ml左右,以保证全部铁的溶解和还原成二价铁。
若有沉淀产生可过滤去除,水样处理完毕后按铁的测定步骤进行实验操作。
2)纯亚铁测定水样前处理:采样时将2ml盐酸放入一个100ml的具塞的水样瓶中,再放入水样至注满整个水样瓶,以防止水样中的亚铁转化成三价铁。
水样处理完毕后按铁的测定步骤进行实验操作。
注意事项:①本方法测定的是亚铁,测定时注意水样的前处理;②含氰离子和硫离子的水样酸化时,必须小心进行,因为会产生有毒气体。
三、实验耗材及设备使用铁测定的仪器:5B-3B(V8)铁测定使用的试剂LH-Fe测铁试剂四、测定步骤1.打开主机开关,进行预热。
2.准备数支反应管,置于冷却架的空冷槽上。
3.准确量取10mL纯水加到“0”号反应管中。
4.然后分别准确量取各水样10mL,依次加入到其他反应管中。
5.依次向各个反应管中加入2.5mL LH-Fe测铁试剂,摇匀,静置10分钟。
6.打开5B-3B(V8)仪器开关预热10分钟,在初始界面下按设置键进入铁测定模式。
7.测定并打印铁的结果。
总铁在环境水质的标准国标
总铁在环境水质的标准国标1. 范围本标准适用于饮用水、地表水、地下水等各类环境水体中总铁的监测和评价。
2. 术语和定义2.1 总铁:指水中溶解态和悬浮态的所有铁化合物的总和。
2.2 健康限值:指总铁含量达到该值以下时对人体健康无害的标准。
3. 健康限值和监测方法3.1 健康限值3.1.1 饮用水:总铁限值为0.3 mg/L。
3.1.2 地表水:总铁限值为0.5 mg/L。
3.1.3 地下水:总铁限值为0.2 mg/L。
3.2 监测方法3.2.1 采用标准方法测定总铁含量,其中适用的方法包括原子吸收光谱法、电感耦合等离子体发射光谱法等。
3.2.2 监测频率:针对饮用水,每季度进行监测;针对地表水,每半年进行监测;针对地下水,每年进行监测。
4. 健康风险评估与控制4.1 当总铁含量超过健康限值时,应进行相关健康风险评估,并采取相应的控制措施,确保水源安全。
4.2 控制措施可以包括但不限于:水源治理、水处理工艺优化、水质监测及分析等。
5. 标志与标识5.1 相关部门应在供水单位的饮用水供应设施和环境水体周围建立标志和标识,以提醒人们关注总铁的含量。
5.2 标志和标识的设计应符合相关规范和标准的要求。
6. 引用标准本标准引用以下文件:×××国家标准编号1×××国家标准编号2×××国家标准编号3注:以上引用标准为示例,并非真实存在的国家标准。
备注:此标准仅为参考,实际使用中应根据具体情况和相关法律法规进行调整。
水中铁的测定
总铁离子的测定—邻菲罗啉分光光度法此法适用于一般环境水和废水中铁的监测,最低检出浓度为0.03mg/L,测定上限为5.00mg/L的水样,可适当稀释后再按本方法进行测定。
1、原理:亚铁离子在PH值3~9的条件下,与邻菲罗啉(1,10—二氮杂菲)反应,生成桔红色络合离子:3C12H8N2+Fe2+→[Fe(C12H8N2)3]2+此络合离子在PH值3~4.5时最为稳定。
水中三价铁离子用盐酸羟胺还原成亚铁离子,即可测定总铁。
2、试剂2、1 1+1盐酸溶液。
2、2 1+1氨水。
2、3 刚果红试纸。
2、4 10%盐酸羟胺溶液。
2、5 0.12%邻菲罗啉溶液。
2、6 铁标准溶液的配制:称取0.864g硫酸铁铵[FeNH4(SO4)2·12H2O]溶于水,加2.5mL硫酸,移入1000mL 容量瓶中,稀释至刻度。
此溶液为1mL含0.1铁标准溶液。
吸取上述铁标准溶液10mL,移入100mL容量瓶中用水稀释至刻度,此溶液为1mL含0.01mg铁标准溶液。
3、干扰及消除强氧化剂,氰化物,亚硝酸盐,焦磷酸盐,偏聚磷酸盐及某些重金属离子会干扰测定,经过加酸煮沸,可将氰化物及亚硝酸盐除去,并使焦磷酸,偏聚磷酸盐转化为正磷酸盐以减轻干扰,加入盐酸羟胺则可消除强氧化剂的影响. 邻菲罗啉能与某些金属离子形成有色络合物而干扰测定.但在乙酸-乙酸胺的缓冲溶液中,不大于铁浓度10倍的铜,锌,钴,铬及小于2mg/L的镍,不干扰测定,当浓度再高时,可加入过量显色剂予以消除.汞,隔,银等能与邻沸罗啉形成沉淀,若浓度低时,可加过量邻沸罗啉来消除;浓度高时,可将沉淀过滤除去.水样有底色,可用不加邻菲罗啉的试液作参比,对水样的底色进行校正.5、仪器5、1 分光光度计。
测量波长为510nm6、分析步骤6、1 标准曲线的绘制分别吸取1mL含0.01mg铁标准溶液0,1.0,2.0,3.0,4.0,5.0mL于6只50m容量瓶中,加水至约25mL,各加1毫米长的刚果红试低,在试纸呈蓝色时,各瓶加1mL10%盐酸羟胺溶液,2mL0.12%邻菲罗啉溶液,混匀后用1+1氨水调节使刚果红试纸呈紫红色,再加1滴1+1氨水,使试纸呈红色,用水稀释至刻度。
循环水中总铁测定方法及影响因素讨论
循循循循循循循循循循循循循循循循循总铁是指循环水中铁的所有形态(包括溶解铁和不溶解铁)的含量。
循环水中总铁的测定方法主要有以下几种:
1.颜色比较法:将循环水中的铁和标准溶液进行颜色比较
,通过颜色的变化来测定总铁含量。
2.还原法:将循环水中的铁还原为铁粉,再用称量法测定
总铁含量。
3.直接滴定法:使用试剂将循环水中的铁直接滴定,再用
称量法测定总铁含量。
4.电位滴定法:使用试剂将循环水中的铁进行电位滴定,
再用称量法测定总铁含量。
影响循环水中总铁测定结果的因素有以下几个:
1.水质:循环水中的其他成分可能会干扰铁的测定结果。
2.测定方法:不同的测定方法可能会导致测定结果的差异。
3.样品处理:样品的储存和处理方式会影响测定结果。
4.试剂稳定性:使用过期的试剂或不稳定的试剂会导致测
定结果的偏差。
5.仪器精度:使用不精确的仪器会导致测定结果的偏差。
水中铁含量的国标方法
水中铁含量的国标方法水中铁含量的国标方法是指对水样中铁元素的含量进行测定和评估的一套规范和标准。
水中铁含量是衡量水质的重要指标之一,对水体的环境保护和水质安全有着重要的意义。
本文将介绍水中铁含量的国家标准方法及其应用。
水中铁含量的国标方法主要有以下几种:1. 原子吸收光谱法:该方法是目前水质监测中常用且准确度较高的一种分析方法。
原子吸收光谱法利用原子吸收仪对溶液样品中的金属元素进行分析,其中包括铁元素。
该方法操作简便,结果精确可靠。
2. 高效液相色谱法:该方法是通过色谱柱对样品中的化合物进行分离和定量分析的一种分析方法。
高效液相色谱法在水处理领域中广泛应用于铁元素的测定。
该方法具有灵敏度高、操作简便、准确性好等优点。
3. 电感耦合等离子体质谱法:该方法是通过电感耦合等离子体质谱仪对样品中的金属元素进行定量分析的方法。
电感耦合等离子体质谱法具有高灵敏度、选择性好等优点,能够准确测定水中铁的含量。
4. 氢化物发生原子荧光光谱法:该方法是利用氢化物发生反应将水中的铁化合物转化为挥发性铁化合物,然后经过发生器进入原子荧光光谱仪进行分析的方法。
该方法具有高灵敏度、准确性高等优点,适用于测定水中微量铁含量。
5. 化学计量法:该方法是通过加入化学试剂与水中铁元素进行反应,然后通过比色计对反应产物的光谱进行测定,并根据光谱结果计算出铁的含量的方法。
化学计量法操作简单、便于实施,适用于水质监测和水处理中铁元素的测定。
这些国标方法经过长期实践和验证,已经成为水中铁含量测定的标准方法。
在实际应用中,根据需要选择合适的方法进行铁含量的测定。
水中铁含量的国标方法的应用具有重要的意义。
首先,通过测定水中铁含量可以评估水的质量,判断其是否符合安全、卫生的标准要求。
水中铁元素超标可能会对人体健康产生不良影响,例如引起铁中毒等。
其次,水中铁含量的测定可以用于水环境的污染监测和评估,为环境保护提供科学依据。
此外,水中铁含量的测定也是水处理和净化过程中的关键环节,可以帮助水厂和水处理设施调整工艺参数,确保水质的安全和合格。
水中铁含量的测定方法 4种
1. 水中铁含量的测定方法:〔实验原理〕常以总铁量(mg/L)来表示水中铁的含量。
测定时可以用硫氰酸钾比色法。
Fe3++3SCN-=Fe(SCN)3(红色)〔实验操作〕1.准备有关试剂(1)配制硫酸铁铵标准液称取0.8634 g分析纯的NH4Fe(SO4)2·12H2O溶于盛在锥形瓶中的50 mL蒸馏水中,加入20 mL 98%的浓硫酸,振荡混匀后加热,片刻后逐滴加入0.2 mol/L的KMnO4溶液,每加1滴都充分振荡混匀,直至溶液呈微红色为止。
将溶液注入l 000 mL的容量瓶,加入蒸馏水稀释至l 000 mL。
此溶液含铁量为0.1 mg/mL。
(2)配制硫氰酸钾溶液称取50 g分析纯的硫氰酸钾晶体,溶于50 mL蒸馏水中,过滤后备用。
(3)配制硝酸溶液取密度为1.42 g/cm3的化学纯的硝酸191 mL慢慢加入200 mL蒸馏水中,边加边搅拌,然后用容量瓶稀释至500 mL。
2.配制标准比色液取六支同规格的50 mL比色管,分别加入0.1 mL、0.2 mL、0.5 mL、1.0 mL、2.0 mL、4.0 mL硫酸铁铵标准液,加蒸馏水稀释至40 mL后再加5 mL硝酸溶液和1滴2 mol/L KMnO4溶液,稀释至50 mL,最后加入l mL硫氰酸钾溶液混匀,放在比色架上作比色用。
3.测定水样的含铁总量取水样40 mL装入洁净的锥形瓶中,加入5 mL硝酸溶液并加热煮沸数分钟。
冷却后倾入与标准比色液所用相同规格的比色管中,用蒸馏水稀释至50 mL处,最后加入1 mL硫氰酸钾溶液,混匀后与上列比色管比色,得出结果后用下式进行计算并得到结论。
式中“相当的硫酸铁铵标准液量”指的是配制标准比色液时所用的硫酸铁铵标准液的体积。
2, 铁离子测定仪/ShowProduct.asp?ProductID=158技术指标测量范围 0.00to5.00mg/LFe 0to400μg/LFe解析度0.01mg/L 1μg/L0.01mg/L精度读数的±2%±0.04mg/L 读数的±8%±10μg/L波长/光源 470nm硅光源 555nm硅光源标准配置主机、HI93721-01试剂、HI731313玻璃比色皿两个、9V电池主机、HI93746-01试剂、HI731313玻璃比色皿两个、9V电池测量方法采用EPA推荐的方法中用于天然水和处理水的315B法,铁和试剂反应使样剂呈淡蓝色采用EPA推荐的方法中用于天然水和处理水的315B法,铁和试剂反应使样剂呈淡蓝色3. 水中铁离子含量测定方法-- 二氮杂菲分光光度法铁在深层地下水中呈低价态,当接触空气并在pH大于5时, 便被氧化成高铁并形成氧化铁水合物(Fe2O3?3H2O)的黄棕色沉淀,暴露于空气的水中, 铁往往也以不溶性氧化铁水合物的形式存在。
水中铁含量的测定实验报告
水中铁含量的测定实验报告
《水中铁含量的测定实验报告》
在日常生活中,我们经常会接触到各种各样的水源,包括自来水、河水、湖水等。
然而,这些水源中往往会含有各种各样的杂质,其中包括铁元素。
铁元素
在水中的含量不仅会影响水的味道和颜色,还可能对人体健康造成影响。
因此,对水中铁含量的测定就显得尤为重要。
为了准确测定水中铁的含量,我们进行了一项实验。
首先,我们收集了来自不
同水源的样本,包括自来水、河水和湖水。
然后,我们使用了一种叫做原子吸
收光谱法的方法来进行测定。
这种方法可以通过测量样品中铁元素的吸收光谱
来确定其含量。
在实验中,我们首先将样品进行预处理,去除其中的杂质和有机物。
然后,我
们将样品转化成气态,并通过原子吸收光谱仪进行测定。
通过对比样品的吸收
光谱和标准溶液的吸收光谱,我们得出了水中铁的含量。
通过实验,我们发现不同水源中的铁含量差异很大。
自来水中的铁含量较低,
而河水和湖水中的铁含量则较高。
这说明水源的不同会直接影响水中铁的含量。
因此,我们应该根据实际情况选择合适的水源,并进行必要的水质处理,以确
保饮用水的安全和健康。
总的来说,通过这次实验,我们对水中铁含量的测定有了更深入的了解,也增
强了对水质安全的重视。
希望我们的实验报告能够为相关领域的研究和实践提
供一定的参考和借鉴。
水中总铁的测定
编写:郑金兰翁春海编号:Q/SBJ4(品)-3.29-2010版本:2.0第1页共3页名称:水质总铁检测方法发布日期:保密水质总铁检测方法1.目的本方法规定了用二氮杂菲分光光度法检测工厂生产用水及生活饮用水的铁含量。
2.范围本方法适用于工厂所有生产用水及生活饮用水。
3.原理在pH3~9条件下,低铁离子能与二氮杂菲生成稳定的橙红色络合物,在波长510nm处有最大吸光度,二氮杂菲过量时,控制溶液pH为2.9~3.5,可使显色加快。
4.安全及环保要求4.1.配制化学品试剂及检测过程,遵照MSDS要求佩戴耐酸碱手套、防烫手套。
5.试剂5.1.(1+1)盐酸溶液。
此试剂贮存于玻璃瓶中,有效期2个月。
5.2.二氮杂菲溶液(1.0g/L):称取0.1g二氮杂菲溶解于加有2滴浓盐酸的纯水中,并稀释至100ml。
二氮杂菲又名1,10二氮杂菲(邻菲绕啉),有水合物(C8H8N2•H2O)及盐酸盐(C8H8N2•HCl)两种都可用。
此试剂贮存于棕色玻璃瓶中,有效期2个月。
5.3.盐酸羟胺溶液(100g/L):称取10g盐酸羟胺(NH2OH·HCl)溶于纯水中,并稀释至100mL。
此试剂贮存于玻璃瓶中,有效期2个月。
5.4.乙酸铵缓冲液(pH=4.2):称取250g乙酸铵(NH4C2H3O2)溶于150ml纯水中,再加入700ml冰乙酸混匀备用。
此试剂贮存于玻璃瓶中,有效期2个月。
5.5.铁标准储备溶液[ρ(Fe)=100ug/mL]:称取0.7022g硫酸亚铁铵[Fe(NH4)2(SO4)2•6H2O]溶于少量纯水,加3mL盐酸[ρ20=1.19g/mL],移入容量瓶中,用纯水定容1000mL。
此试剂贮存于玻璃瓶中,有效期2个月。
编写:郑金兰翁春海编号:Q/SBJ4(品)-3.29-2010版本:2.0第1页共3页名称:水质总铁检测方法发布日期:保密5.6.铁标准使用溶液[ρ(Fe)=10.0ug/mL](使用时现配):吸取10.00mL铁标准储备溶液,移入容量瓶中,用纯水定容至100mL。
水中全铁和铜含量的测定
水中全铁含量的测定-二氮菲测光法-一、原理水中铁份在酸中煮沸溶解后, 以氢氯化羟胺(hydroxylamine hydrochloride,NH 2OH ‧HCl)还原为正二价亚铁,在pH 3.2-3.3,每一Fe 原子与三分子1,10 二氮菲 (1,phenanthroline) 形成橘红色复合物, 此颜色于 pH 3-9 中稳定发色, 于波长 510nm 测定吸光度; 此发色符合Beer 定律, 在 pH 2.9-3.5 有过量的二氮菲存在时显色明显快速, 并能稳定发色至少6个月。
反应式: Fe(OH)3+3H +Fe +3+ 3 H 2O 4Fe +3+ 2 NH 2OH4 Fe +2 + N 2O +H 2O + 4H +二、设备(1)锥形瓶(2)量瓶 (或奈色勒比色管 Nessler Tube), 50 ml 。
(3)光电比色计, 波长 510nm, 1 cm 测试管 (cell)。
三、试药(1)盐酸, HCl (1+1)(2)过氧化氢, H 2O 2 (3﹪)(3)氢氯化羟胺溶液 (10﹪)溶解 50g NH 2OH ‧HCl 于 500 ml 水中。
(4)二氮菲溶液 (0.1﹪)溶解 0.5g 1,10 单水二氮菲, C 12H 8N 2‧H 2O 于水, 加 0.5 ml 浓盐酸后加水稀释至500 ml。
(5)醋酸铵缓冲溶液溶解250g 醋酸铵NH4C2H3O2于150ml 水, 加入700ml冰醋酸。
(6)氢氧化铵, NH4OH(1+1) (7)铁标准溶液正确称取纯铁丝(99.99﹪以上) 1.000g 溶于100ml 6N H2SO4,加水稀释至1000ml, 配成1ml = 1.0mg Fe 标准溶液, 再正确稀释至100倍, 配成1ml = 10 gFe标准溶液四、测定步骤A) 总铁量( Total Iron )原水样V ml于锥形瓶HCl(1+1) 2.0 mlH2O2(3﹪) 1.0 ml置于电热板煮沸20氢氯化羟胺 2.0 ml继续煮沸至全体积约10 - 20 ml冷却二氮菲 5.0 ml醋酸铵缓冲液2.0 ml NH4OH(1+1) 5 ml混合均匀, 移入50ml 量瓶, 加水稀释至刻线,至少放置10 分钟, 于波长510nm 测定吸光度,由仪器内设检量线读出Fe量mg/l五、计算:50Fe,ppm = 读值×───水量ml六、检量线绘制于一系列锥形瓶分别吸取铁标准溶液( 1ml = 10 μgFe) 0, 5.0, 10.0,15.0、20.0 及25.0 ml, (即取0-5 mg/lFe),加水稀释至约50 ml,依总铁量测定吸光度,以mg/l Fe对照吸光度绘制检量线。
总铁含量测定操作规程
1 范围
本标准规定了污水中总铁含量的测定操作步骤。
本标准适用于油田污水处理后水质的测定。
2 仪器
含铁比色系列一套、测试管若干
3 操作步骤
3.1 用取样杯取10ml水样,用测试管在杯中搅匀,等待5分钟,让水中的铁充分溶解。
3.2 将测试管带有易折断的尖端,插入取样水杯中,折断测试管尖端部分,水样自动进入管内。
3.3 取出测试管,来回颠倒数次,每次让管中气泡从管子一端运行到另一端,使显色剂和水样充分混合。
3.4 两分钟后,将测试管和标准比色管比色,含量小于1ppm用圆筒形标准比色管,含量大于1ppm用板形标准比色管,色度相同者即为水样含铁量,介于两个标准之间的取平均值。
水中总铁的测定
感谢您的观看
THANKS
详细描述
在测定水中总铁时,误差可能来源于多个方面,如仪器精度、操作方法、环境因素等。为了减小误差,可以采用 高精度的测量仪器,定期对仪器进行校准和维护。同时,在操作过程中要严格遵守操作规程,避免操作失误。对 于环境因素引起的误差,可以通过多次测量求平均值的方法减小误差。
问题二:测定方法的比较和选择
城市污水处理不彻底可 能导致铁元素排入水体。
采矿过程中可能将含铁 矿物带入地表水体。
影响铁含量的因素
水温
水温升高可能导致水中溶解氧 含量降低,影响铁的氧化还原
平衡。
pH值
水体pH值的变化可影响铁的存 在形态和溶解度。
氧化还原条件
水体中的氧化还原条件对铁的 溶解度和存在形态有重要影响 。
共存离子
水体中其他离子(如氯离子、 硫酸根离子等)的存在可能影
02
03
准确性评估
精密度评估
误差分析
将测定结果与标准值或已知值进 行比较,评估测定结果的准确性。
通过多次重复测定同一样品,计 算结果的变异系数(CV)来评估 测定结果的精密度。
分析测定过程中可能存在的误差 来源,如仪器误差、操作误差等, 并对误差进行合理评估。
结果的应用和意义
指导水质监测
测定水中总铁的含量,有助于了解水质状况,为水处 理和环境监测提供依据。
要点一
总结词
要点二
详细描述
不同的测定方法具有不同的优缺点,需要根据实际情况选 择合适的方法。
在测定水中总铁时,有多种方法可供选择,如原子吸收光 谱法、分光光度法、电化学法等。每种方法都有其独特的 优点和局限性。例如,原子吸收光谱法具有高精度和高灵 敏度,但仪器成本较高;分光光度法操作简便,但易受干 扰物质影响。因此,在选择测定方法时,需要根据实际需 求和条件进行综合考虑,选择最适合的方法。
水中总铁的测定
7
试剂及仪器—邻菲罗啉分光光度法
分光光度计 DR3900可见光光度计
10mm 比色皿。
8
分析步骤
1 总铁的测定
采样后立即将样品用盐酸(3.1)酸化至 pH<1(含 CN-或 S2-离 子的水样酸化时,必须小心进行, 因为会产生有毒气体),分析时取 50.0mL 混匀水样于 150mL 锥形瓶中,加(1+3)盐酸(3.2) 1mL,盐酸羟胺溶液(3.3)1mL,加热煮沸至体积减少到 15mL 左 右,以保证全部铁的溶解和还原。若仍有沉淀应过滤除去。冷却至室 温,定量转移至 50mL 具塞比色管中。加一小片刚果红试纸,滴加饱 和乙酸钠溶液至试纸刚刚变红,加入 5mL 缓冲溶液(3.4)、0.5% 邻菲啰啉溶液(3.5)2mL,加水至标线,摇匀。显色 15min 后,用 10mm 比色皿(若水样含铁量较高,可适当稀释;浓度低时可换用 30mm 或50mm 的比色皿),以水为参比,在 510nm 处测量吸 光度,由经过空白校正的吸光度对铁的微克数作图。各批试剂的铁含 量如不同,每新配一次试液,都需重新绘制校准曲线。
4
测定原理
1.邻菲罗啉分光光度法原理:用还原剂盐酸痉胺将Fe3+还 原为Fe2 +,亚铁离子在 pH3~9 之间的溶液中与邻菲啰 啉生成稳定的橙红色络合物。因形成的配合物十分稳定 ,所以重现性很好。其反应方程式如下:
5
因为溶液中的 Fe3+也可与邻菲罗啉结合生成 淡蓝色的配合物,所以一般采用加入盐酸羟胺的 方法将其还原Fe2+: 4 Fe3++2NH2OH=4 Fe2++N2O+H2O+4H+ 测定时,采用加入 NaAc 的方法控制溶液酸 度在 pH=3~9 较适宜,酸度过高,反应速度慢 ,酸度太低,则Fe2+水解,影响显色。
分光光度法测定水中总铁
分光光度法测定水中总铁指导老师:严吉林实验人:王壮同组实验:余晓波实验时间:2016.4.25一.实验目的1. 掌握选择分光光度分析的条件及分光光度测定铁的方法。
2. 掌握分光光度计的性能、结构及其使用方法。
二.实验原理水合铁离子具有一定的颜色,在浓度不高时,颜色不深,如果直接以该吸收作为定量依据,检测灵敏度低。
1,10-二氮菲是测定铁的一种很好的显色剂,在pH=2~9(一般维持pH=5~6)时,与二价铁生成稳定的红色配合物:其lg =21.3K 稳,在510 nm 下摩尔吸光系数41.110/()e L mol cm =⨯⋅。
用盐酸羟胺将Fe(Ⅲ)还原为Fe(II),用1,10-二氮菲作显色剂,可测定试样中总铁。
本法选择性高,相当于铁量40倍的锡(II)、铝(Ⅲ)、钙(II)、镁(II),锌(II)、硅(II),20倍的铬(VI)、钒(V)、磷(V),5倍的钴(II)、镍(II)、铜(II)不干扰测定。
为了使测定结果有较高的灵敏度和准确度,必须选择适宜的测量条件,主要包括入射光波长、显色剂用量、有色溶液的稳定性、溶液酸度等。
1.入射光波长为了使测定结果有较高的灵敏度,应选择被测物质的最大吸收波长的光作为入射光。
这样,不仅灵敏度高,准确度也好。
当在最大吸收波长处有干扰物质吸收存在时,不能选择最大吸收波长,可根据“吸收最大,干扰最小”的原则来选择测定波长。
2.显色剂用量加入过量显色剂,能保证显色反应进行完全,但过量太多,也会带来副反应,如增加空白溶液的颜色、改变组成等。
显色剂的合适用量可通过实验来确定。
由一系列被测元素浓度相同、不同显色剂用量的溶液分别测其吸光度,作吸光度一显色剂用量曲线,找出曲线平坦部分,选择一个合适用量即可。
3.有色配合物的稳定性有色配合物的颜色应当稳定足够的时间,至少应保证在测定过程中吸收度基本不变,以保证测定结果的准确度。
4.溶液酸度许多有色物质的颜色随溶液的pH 而改变,如酸碱指示剂的颜色与pH 有关。
水中铁含量的测定
2.20 铁2.20.1方法一磺基水杨酸法(高含量铁)1) 范围本法规定了锅炉水中总铁、工业循环水预膜时总铁含量的测定方法。
本法适用于含铁0 —3mg/L的水样。
铁的含量高低是衡量设备管道腐蚀程度的重要依据。
2) 原理在PH=8.5 —11.5时,三价铁离子Fe3+与磺基水杨酸生成黄色络合物,可进行比色测定。
此络合物最大吸收波长为420nm。
水样中的亚铁可氧化为高铁后进行测定。
0HC00H3) 试剂和溶液3.1) 100g/L 磺基水杨酸:称取10g磺基水杨酸溶解稀释至100mL纯水中。
3.2) 1+1 氨水3.3) 浓硝酸(分析纯)3.4) 铁标准溶液:称取0.8634g 硫酸高铁铵[Fe(NH4)(SO4)2?12H 2O]溶于100mL1mol/L 的盐酸中,待溶解后转入1L的容量瓶中,用蒸馏水稀释至刻度,此液1mL=0.1mg 铁。
3.5) 铁标准工作液:将上述溶液稀释10倍,得1mL=0.01mg 铁标准工作液。
4) 仪器4.1) 分光光度计,3cm吸收池。
4.2) 一般实验室仪器和玻璃量器。
4.3) 电炉。
5) 测定步骤5.1) 标准曲线的绘制分别吸取0.01mg/mL 铁标准溶液0、1.00、2.00、3.00、4.00、5.00mL 于100mL的烧杯中,各加入浓硝酸6滴,用蒸馏水稀释至25mL,加热煮沸约3分钟,冷却后移入50mL比色管中,各加入100g/L磺基水杨酸5mL,摇动片刻,再加入1+1氨水5mL,稀释至刻度摇匀,放置15分钟,以试剂空白为参比,在420nm 波长下,用3cm比色皿测定其吸光度,以吸光度为纵坐标,铁含量(mg )为横坐标绘制标准曲线。
5.2) 水样的测定吸取水样25mL于100mL的烧杯中,加浓硝酸6滴,加热煮沸3分钟,其它步骤同5.1。
6) 分析结果的表述试样中总铁含量,以铁(Fe3+)的质量浓度(mg/L)表示,按下式计算:Fe3 (mg/L) m 1000 二耳 B 50V 25式中:m ------从工作曲线上查得Fe3+的质量,mgV——取样体积,mL。
水中二价铁、三价铁及总铁离子的测定
水中二价铁、三价铁及总铁离子的测定(邻菲罗啉分光光度法)本方法适用于循环冷却水和天然水中总铁离子的测定,其中含量小于1mg/L。
1、原理亚铁离子在pH值3-9的条件下,与邻菲罗琳反应,生成桔红色络合离子,此络合离子在pH值3-4.5时最为稳定。
水中三价铁离子用盐酸羟胺还原成亚铁离子,即可测定总铁。
2、试剂2.1、HAc-NaAc缓冲溶液(pH≈5.0):称取136g醋酸钠,加水使之溶解,在其中加入120 mL冰醋酸,加水稀释至500mL。
2.2 、HCl溶液(1+1)。
2.3、盐酸羟胺溶液(10%):新鲜配制。
2.4、邻二氮菲溶液(0.15%):新鲜配制2.5、铁标准溶液的配制铁标准储备液:准确称取0.7020g硫酸亚铁铵(NH4)2Fe(SO4)2.6H2O],溶于1+1硫酸50mL中,转移至1000mL容量瓶中,加水至标线,摇匀.此溶液每毫升含铁0.1mg.吸取上述铁标准溶液10mL,移入100mL容量瓶中用水稀释至刻度,此溶液为1mL含0.01mg铁标准溶液。
3、仪器3.1、分光光度计4、分析步骤4.1标准曲线的绘制分别取1mL含0.01mg铁标准溶液0、2、4、6、8、10mL于6只50mL 比色管中,加水至约25mL分别依次加入1mL 10%盐酸羟胺溶液,稍摇动;加入2.0mL 0.15%邻二氮菲溶液及5mL HAc-NaAc缓冲溶液,加水稀释至刻度,充分摇匀。
放置10min后于510nm处,用比色皿,以试剂空白作参比,测其吸光度,以吸光度为纵坐标,铁离子毫克数为横坐标,绘制标准曲线。
4.2水样的测定取水样50mL于150mL锥形瓶中,用盐酸调节使水呈酸性,p H<3,刚果红试纸显蓝色。
加热煮沸10分钟,冷却后移入50mL比色管中,加10%盐酸羟胺溶液1mL(测二价铁时不加),摇匀,1分钟后再加0.15%邻菲罗琳溶液2mL,及5mL HAc-NaAc缓冲溶液后用水稀释至刻度。
10分钟后于510nm处,以试剂空白作参比,测其吸光度。
水中铁含量的测定方法种
1. 水 中 铁 含 量 地 测 定 方 法 : 〔实验原理〕 常以总铁量 <mg/L )来表示水中铁地含量 .测定时可以用硫氰酸钾比色法 . Fe3++3SCN-=Fe (SCN>3< 红 色 ) 〔实验操作〕 1.准备有关试剂 <1 )配制硫酸铁铵标准液 称取 0.8634 g 分析纯地 NH4Fe (SO4>2 -12H2O 溶于盛在锥形瓶中地 50 mL 蒸馏水中,加入20 mL 98 %地浓硫酸,振荡 混匀后加热 ,片刻后逐滴加入 0.2 mol/L 地 KMnO4 溶液 ,每加 1 滴都充分振荡混匀 ,直至溶液 呈微红色为止•将溶液注入I 000 mL 地容量瓶,加入蒸馏水稀释至I 000 mL.此溶液含铁量为 0.1 mg/mL. <2 )配制硫氰酸钾溶液 称取 50 g 分析纯地硫氰酸钾晶体 ,溶于 50 mL 蒸馏水中 , 过滤后备用 . <3 )配制硝酸溶液 取密度为 1.42 g/cm3 地化学纯地硝酸 191 mL 慢慢加入200 mL 蒸馏水中 ,边加边搅拌 ,然后用容量瓶稀释至 500 mL. 2.配制标准比色液 取六支同规格地 50 mL 比色管,分别加入 0.1 mL 、0.2 mL 、0.5 mL 、1.0 mL 、2.0 mL 、4.0 mL 硫酸铁铵标 准液 ,加蒸馏水稀释至 40 mL 后再加 5 mL 硝酸溶液和 1 滴 2 moI/L KMnO4 溶液 ,稀释至 50mL , 最后加入 I mL 硫氰酸钾溶液混匀 ,放在比色架上作比色用 . 3.测定水样地含铁总量 取水 样 40 mL 装入洁净地锥形瓶中 ,加入 5 mL 硝酸溶液并加热煮沸数分钟 .冷却后倾入与标准比 色液所用相同规格地比色管中,用蒸馏水稀释至 50 mL 处,最后加入 1 mL 硫氰酸钾溶液 ,混匀后与上列比色管比色 ,得出结果后用下式进行计算并得到结论. 式中 “相当地硫酸铁铵标准液量 ”指 地 是 配 制 标 准 比 色 液 时 所 用 地 硫 酸 铁 铵 标 准 液 地 体 积 .2,0.00to5.00mg/LFe解析度0.01mg/L1 卩 g/L0.01mg/L精度读 数地±2%±0.04mg/L读 数地土 8%h 10卩g/L波 长/光源 470nm 硅光源555nm 硅 光 源标准配置主机、HI93721-01试剂、 HI731313 玻璃比色皿两个、 9V 电池主机、 HI93746-01 试剂、 HI731313 玻璃 比色 皿两 个、9V 电池测量方法 采用 EPA 推荐地方法中用于天然水和处理水地315B 法,铁和试剂反应使铁在深层地下水中呈低价态 ,当接触空气并在 pH 大于 5时, 便被氧化成高铁并形成氧化铁水0to400g/LFe样剂呈淡蓝色采用EPA 推荐地方法中用于天然水和处理水地315B 法,铁试剂反应使样剂呈淡蓝色3. 水中铁离子含量测 定方法氮杂菲分光光度合物(Fe2O3?3H2O>地黄棕色沉淀,暴露于空气地水中,铁往往也以不溶性氧化铁水合物地形式存在.当pH 值小于5 时,高铁化合物可被溶解. 因而铁可能以溶解态、胶体态、悬浮颗粒等形式存在于水体中,水样中高铁和低铁有时同时并存. 二氮杂菲分光光度法可以分别测定低铁和高铁,适用于较清洁地水样。
分光光度法测定水中总铁
• 试剂
• • • • 硫酸亚铁铵标准溶液(分析纯):准确称取0.1750g的硫酸亚铁铵,用去离子水溶解, 加入1:1HCI溶液20ml,定量转移到250ml容量瓶中(100ug/ml),用去离子水稀释至刻度, 摇匀。 邻二氮菲:0.15%新配置的水溶液 盐酸羟胺:10%水溶液(现用现配)。 醋酸钠溶液:1mol/L
12
分光光度法测定水中总铁
31.03.2019
Analytical chemistry
1
实验目的
学习确定实验条件的方法,掌握邻二氮 菲分光光度法测定微量铁的方法原理。
掌握T6型紫外可见分光光度计的使用
方法,并了解此仪器的主要构造。
31.03.2019
Analytical chemistry
2
实验原理
A~c 图,在相同条件下测定样品溶液的吸光度,从
曲线上可查出被测样品的浓度。
31.03.2019
Analytical chemistry
4
• 工作曲线图
吸 光 度
浓度(c)
31.03.2019
Analytical chemistry
5
仪器与主要试剂
• 仪器
• T6新世纪紫外可见分光光度计(北京普析通用仪器有限公司);石英玻璃比 色皿
2Fe3++2NH2OH·HCl→2Fe2++N2+H2O+4H++ 2ClFe2+ + 3phen → Fe(phen)32+
1,10-二氮菲 橙红色配合物
总铁离子:Fe(Ⅱ)、Fe(Ⅲ)
31.03.2019
Analytical chemistry
自来水与饮用水中总铁含量的测定
广西现代职业技术学院毕业论文题目自来水与饮用水中总铁含量的测定系别资源工程系专业班级_________学号___________________学生姓名________________完成时间2012年9月23日指导老师易灵红_____________广西现代职业技术学院毕业论文评定表自来水与饮用水中总铁含量的测定(广西现代职业技术学院资源工程系10丄分班)摘要:本文主要采用了用分光光度法测定水中总铁含量的分析方法,采用了邻菲啰卩林作显色,盐酸疑胺作还原剂.以工作曲线法测定水中总铁含量,且讨论了测定的最佳条件。
方法灵墩,可靠。
关键词:总铁含量;饮用水:自来水:引言水中铁含量是极其重要的水质指标。
铁及其化合物均为低毒性和微毒性,所以在生活饮用水中要控制铁含量。
循环水中铁含量预示腐蚀加重,脱盐水铁含量高可使树脂中毒,因此,准确分析水中铁含量很有必要。
现行的分析方法具有简便快速的特点,用于分析溶解样品和铁标准中铁含量基本能满足要求。
铁在水中的存在形式水中铁的存在形式多种多样,可以在真溶液中以简单的水合离子和复杂的无机、有机络合物形式存在,铁在深层地下水中呈低价态,当接触空气并在pH>5 时,便被氧化成高铁并形成氧化物,暴露于空气的水中,铁往往以不溶性氧化铁水合物的形式存在。
当pHv5时,高铁化合物可被洛解,因而铁可能以洛解态、胶体态、悬浮颗粒等形式存在于水体中。
水样中高铁和低铁有时同时并存,可能是2价,也可能是3价。
1实验部分1、1实验试剂与仪器硫酸亚铁钱盐酸疑胺邻菲啰吟醋酸一醋酸钠缓冲溶液分光光度计容量瓶比色管移液管电子分析天平烧杯玻璃棒电炉锥形瓶去离子水量筒1.2实验原理用盐酸疑胺将试样中三价铁离子还原成二价铁原子,在PH为2.5~9时,铁离子与邻菲啰吟生成橙色配合物,在最大吸收波长(510nm)处,用分光光度计测其吸光度。
有关化学反应式如下:13实验试剂配置方法铁准溶液(0.01mg/ml):称取O.7O2Og 硫酸亚铁讓(NH4)2Fe(SO4)2.6H2O],溶于水,加水10ml硫酸溶液(1+1)移入1000ml容量瓶中,稀释至刻度。
水质中总铁含量的测定
水质中总铁含量的测定一、操作流程取样→做样→计算二、操作步骤根据酸性介质中三价铁和硫氰化钾作用生成红色地硫氰化铁铬合物地原理,用比色法测定其含量。
1.取水样1ml于25ml比色管中。
2.在水样中加入浓度为1:1地盐酸10滴。
3.在水样中加入0.5%高锰酸钾1滴使溶液呈微红色。
4.在水样中加入20%硫氰化钾5滴摇匀。
5.另取一支25ml比色管,加入1ml蒸馏水,按上述方法分别加入试剂后,用微量滴定管加入标铁溶液,并注意观察溶液颜色变化,当颜色与水样加入试剂后地颜色一致时,记下标准铁液用量(体积ml),进行比色。
(注意在用标铁滴定地同时,水样比色管地液面要加蒸馏水保持此管液位与加标铁比色管地液面平齐)6.最后比色时,两只比色管液面要一致。
7. 计算总铁含量:总铁含量(mg/l)= 1000×标准铁液浓度(mg/l)×标准铁液消耗量(ml)水样体积(ml)三、风险控制点防止化验药品溅出灼伤皮肤检测水样中机械杂质的操作规程一、操作流程取样→做样→计算二、操作步骤1、穿戴好劳保、2、认真检查、准备工具,确保工具无损伤。
3、取水样50ml装入50ml的比色管中,分别与2mg/l、3mg/l、5mg/l、10mg/l 四种不同浓度的标准液对比,对比时要轻轻摇动,待水样中无汽泡时进行比较。
4、若水样浑浊程度与某一标准液的浑浊程度一样时,水样含杂质地多少就等同于标准液含杂质的多少。
5、当水样地浑浊程度比所有标准液都大时,再取一定样水样放入50ml地比色管中,用蒸馏水稀释至50ml,然后与标准液对比,若水样浑浊程度与某一标准液相同时,此时,此水样所含机械杂质为:悬浮物含量(mg/l)= 稀释释体(ml)×标准系列水样体积(ml)当水样浑浊程度很大时,稀释一次不行,还可以稀释第二次、第三次……,其计算方法同上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、水中总铁含量的测定
(一)、说明
(1)本题满分40分,完成时间100分钟。
(2)考核成绩为操作过程评分、测定结果评分和考核时间评分之和。
(二)、操作步骤
1、吸收曲线的制作(找出最大吸收波长)
取5.00ml含铁20.00mg/L=20.00ug/mL标准溶液于1个50ml容量瓶中,向容量瓶中加入10%盐酸羟胺1ml,乙酸铵缓冲溶液5mL,混合后加入0.1%邻菲啰啉溶液2mL,用水稀释至刻度,摇匀。
放置15分钟,用分光光度计于420-550波长处,以纯试剂作参比溶液,测量吸
结论:
2、实验条件的确定:最佳pH值的确定
各取5.00ml铁标准溶液于5个50ml容量瓶中,向各容量瓶中加入10%盐酸羟胺1 mL,乙酸钠缓冲溶液0.00、2.00、4.00、6.00、8.00 mL,混合后加入0.1%邻菲啰啉溶液2 mL,用水稀释至刻度,摇匀。
放置15分钟,用分光光度计于510 nm波长处,以纯试剂作参比溶液,测量吸光度。
记录读数。
作出乙酸钠缓冲溶液与吸光度的关系曲线,确定缓冲溶液的用量。
结论:
3、实验条件的确定:显色剂的用量的确定(用移液管移取)
各取5.00ml铁标准溶液于5个50 mL容量瓶中,向各容量瓶中加入10%盐酸羟胺1 mL,乙酸铵缓冲溶液5.00mL,混合后加入0.1%邻菲啰啉溶液0.50、1.00、1.50、2.00、2.50 ml,用水稀释至刻度,摇匀。
放置15分钟,用分光光度计于510 nm波长处,以纯试剂作参比溶液,测量吸光度。
记录读数。
作出显色剂与吸光度的关系曲线,确定显色剂的用量。
结论
4、显色时间的确定:
取5.00ml铁标准溶液于1个50ml容量瓶中,向各容量瓶中加入10%盐酸羟胺1ml,乙酸铵缓冲溶液5.00mL,混合后加入0.1%邻菲啰啉溶液2.00 mL,用水稀释至刻度,摇匀。
放置0、5、10、15、20、25分钟,用分光光度计于510 nm波长处,以纯试剂作参比溶液,测量吸光度。
记录读数。
作出显色时间与吸光度的关系曲线,确定显色时间。
结论:
5、
(1)工作曲线的绘制
分别取0.00(空白)、0.25、0.50、1.00.、2.00、3.00、4.00、5.00ml铁标准溶液于八个50ml容量瓶中,向各容量瓶中加入10%盐酸羟胺1ml,乙酸钠缓冲溶液5ml ,混合后加入0.1%邻菲啰啉溶液2 ml,用水稀释至刻度,摇匀。
放置15分钟,用分光光度计于510 nm 波长处,以试剂空白作参比溶液,测量吸光度。
记录读数。
(2)总铁的测定
分别取25.00ml水样于50m容量瓶中,(删加入1+1盐酸4 ml),再加入10%盐酸羟胺1ml,乙酸铵缓冲溶液5ml ,混合后加入0.1%邻菲罗啉溶液2 ml,用水稀释至刻度,摇匀,再按工作曲线的绘制操作步骤,在相同条件下测量水样的吸光度。
记录读数。
以测得的标准系列的吸光度为纵坐标,相对应的50ml 溶液含铁量(ug )为横坐标绘制工作曲线。
从工作典线上查出所测水样吸光度对应的含铁量。
水样中总铁含量x 以mg/L 表示,按下计算:
V m x
式中:m —工作曲线上查得的以ug 表示的含铁量:。