第12章 三维刚体动力学基础
合集下载
刚体动力学
●
刚体基本动力学量
现在取 Axyz 坐标系为一个平动参考系 , 则刚体上的 R 点相对速度为 v r R =× R
dV
【定理】刚体相对动量为 p r =× mt R C
证明:pr =∫ v r R dV =∫ × R R dV
=×∫ R R dV =×m t RC(证毕)
⇒ L'A =∫ R2 I − R R ⋅ R dV =[∫ R2 I − R R R dV ]⋅
= J A⋅
(证毕)
1 1 ' 【定理】刚体相对动能为 T r = ⋅L A= ⋅J A⋅ 2 2
证明: T r=
1 1 2 v r R dV = ∫ v r⋅v r R dV ∫ 2 2 1 1 × R ⋅ v R dV = R × v r ⋅ R dV ∫ ∫ r 2 2
【推论】匀质刚体如果有一过 A 的镜像对称面,则过 A 且 与该镜像面垂直的轴是主轴;如果过 A 有两个正交的 镜像面,则两镜像面过 A 点的法线以及镜像面的交线 构成主轴系;匀质旋转体的旋转轴和任意与之正交的 两正交轴构成主轴系 . (请自己根据定义证明) 【定理】假定角速度在主轴坐标系下表示为
d d' J A⋅ 是矢量, J A⋅ = J A⋅× J A⋅ dt dt
⇒⋯⇒ J A⋅ = J XZ X J YZ Y J ZZ Z = ˙ Z ˙
d e ⋅M A ⇒ Z⋅ J A⋅= J ZZ = ≡M Z ¨ Z dt
2
J lk = J kl
(证毕)
因为:
lk =kl , Rl R k = Rk Rl
注:一般把 Jlk 称为惯量系数,由于对称性,只有 6 个是独立的 注:如果 AXYZ 不是固连在刚体上的坐标系,则 R 相对 AXYZ 有 转动,那么在 AXYZ 上看到的质量分布一般会随时间改变, 故在这个坐标系中惯量系数依赖于时间 . 注:如果 AXYZ 不是固连在刚体上的坐标系,在少数有良好对称性 的情况下 AXYZ 上看到的质量分布可能不随时间改变,此时在 这个坐标系中惯量系数是常数 .
刚体动力学
利用上述运动微分方程组并考虑运动学方程组(5)以及初始条件,即可确定刚体在空间中的一般运动。刚体 一般运动的研究对研究各种航行器轨迹和姿态运动之间的相互关系有重要意义。
以上论及的只是单刚体动力学。由于现代科学技术的发展,多刚体系统动力学的研究也正在开展中(见多刚 体系统)。
参考文献
1、词条作者:陈滨.《中国大百科全书》74卷(第一版)力学词条:刚体动力学:中国大百科全书出版社, 1987 :168-170页.
谢谢观看
逐项类比。同质点质量m对应的量是Iz。m是质点运动时惯性的度量;Iz则是刚体定轴转动时转动惯性的度量。 这正是Iz称为“转动惯量”的来由。
应用刚体定轴转动的微分方程(2)可以对物理摆的运动规律、旋转机械输入和输出功率同平衡转速的关系进 行研究。刚体定轴转动的另一重要研究课题是支承的动载荷。动载荷是与刚体转动角速度有关的载荷。当刚体既 满足静平衡——刚体的重心在转动轴上,又满足动平衡——旋转轴是惯性主轴时,支承才不受动载荷的作用。这 个结论在工程上有重要价值(见动平衡)。
刚体平面运动是机器部件一种常见的运动形态,例如曲柄连杆、滚轮等的运动。过刚体质心作刚体平面运动 的固定平面,此平面在刚体上截得一平面图形。此图形在上述固定平面上的运动完全刻画了刚体的平面运动。由 运动学可知,刚体的平面运动可由质心C在平面上相对固定坐标系Oxy的运动和刚体绕过C并同固定平面垂直的轴 Cz的转动合成(图2)。刚体的旋转轴Cz虽然在空间中变动,但它的方向不变,相对刚体的位置也不变,因而刚 体绕Cz轴旋转的转动惯量是常值Iσ,绕Cz轴的动量矩为
刚体一般运动是对惯性坐标系而言的。设C为刚体的质心,Cxyz为同刚体固联的质心惯性主轴坐标系。因刚 体一般运动可分解为平动和绕质心的转动,故应用质心运动定理和对质心的动量矩定理,可以立即建立刚体一般 运动的微分方程组:
以上论及的只是单刚体动力学。由于现代科学技术的发展,多刚体系统动力学的研究也正在开展中(见多刚 体系统)。
参考文献
1、词条作者:陈滨.《中国大百科全书》74卷(第一版)力学词条:刚体动力学:中国大百科全书出版社, 1987 :168-170页.
谢谢观看
逐项类比。同质点质量m对应的量是Iz。m是质点运动时惯性的度量;Iz则是刚体定轴转动时转动惯性的度量。 这正是Iz称为“转动惯量”的来由。
应用刚体定轴转动的微分方程(2)可以对物理摆的运动规律、旋转机械输入和输出功率同平衡转速的关系进 行研究。刚体定轴转动的另一重要研究课题是支承的动载荷。动载荷是与刚体转动角速度有关的载荷。当刚体既 满足静平衡——刚体的重心在转动轴上,又满足动平衡——旋转轴是惯性主轴时,支承才不受动载荷的作用。这 个结论在工程上有重要价值(见动平衡)。
刚体平面运动是机器部件一种常见的运动形态,例如曲柄连杆、滚轮等的运动。过刚体质心作刚体平面运动 的固定平面,此平面在刚体上截得一平面图形。此图形在上述固定平面上的运动完全刻画了刚体的平面运动。由 运动学可知,刚体的平面运动可由质心C在平面上相对固定坐标系Oxy的运动和刚体绕过C并同固定平面垂直的轴 Cz的转动合成(图2)。刚体的旋转轴Cz虽然在空间中变动,但它的方向不变,相对刚体的位置也不变,因而刚 体绕Cz轴旋转的转动惯量是常值Iσ,绕Cz轴的动量矩为
刚体一般运动是对惯性坐标系而言的。设C为刚体的质心,Cxyz为同刚体固联的质心惯性主轴坐标系。因刚 体一般运动可分解为平动和绕质心的转动,故应用质心运动定理和对质心的动量矩定理,可以立即建立刚体一般 运动的微分方程组:
《刚体动力学 》课件
牛顿第二定律
物体的加速度与作用在物 体上的力成正比,与物体 的质量成反比。
牛顿第三定律
对于任何两个相互作用的 物体,作用力和反作用力 总是大小相等,方向相反 ,作用在同一条直线上。
刚体的平动
刚体的平动是指刚体在空间中 的位置随时间的变化而变化, 而刚体的形状和大小保持不变
的运动。
刚体的平动具有三个自由度 ,即三个方向的平动。
05
刚体的动力学方程
刚体的动力学方程
牛顿第二定律
刚体的加速度与作用力成正比,与刚体质量 成反比。
刚体的转动定律
刚体的角加速度与作用力矩成正比,与刚体 对转动轴的转动惯量成反比。
刚体的动量方程
刚体的动量变化率等于作用力对时间的积分 。
刚体的自由度与约束
自由度
描述刚体运动的独立变量,如平动自由度和转动 自由度。
约束
限制刚体运动的条件,如固定约束、滑动约束等 。
约束方程
描述刚体运动受约束的数学表达式。
刚体的动力学方程的求解方法
解析法
通过代数运算求解动力学方程,适用于简单问 题。
数值法
通过迭代逼近求解动力学方程,适用于复杂问 题。
近似法
通过近似模型求解动力学方程,适用于实际问题。
06
刚体动力学中的问题与实例 分析
人工智能和机器学习的发展将为刚体 动力学的研究提供新的思路和方法, 有助于解决复杂动力学问题。
感谢您的观看
THANKS
船舶工程
在船舶工程中,刚体动力学 用于研究船舶的航行稳定性 、推进效率以及船舶结构的 安全性等。
兵器科学与技术
在兵器科学与技术领域,刚 体动力学用于研究弹药的发 射动力学、火炮的射击精度 和稳定性等。
《刚体动力学 》课件
常用方法:拉格朗日方程、 哈密顿原理等
注意事项:需要熟练掌握 数学基础
数值法
定义:数值法 是一种通过数 值计算求解刚 体动力学问题
的方法
特点:精度高、 计算速度快、 适用于复杂问
题
常用算法:有 限元法、有限 差分法、有限
体积法等
应用领域:航 空航天、机械 制造、土木工
程等领域
近似法
近似法的定义和特点
刚体转动实例
风力发电机:利用风力驱动风车叶片旋转,通过变速器和齿轮装置将动力传递至发电机,最终 转化为电能。
搅拌机:利用电动机驱动搅拌器旋转,对物料进行搅拌、混合和输送等操作。
洗衣机:利用电动机驱动洗衣机的滚筒旋转,通过水和洗涤剂的作用将衣物清洗干净。
旋转木马:利用电动机驱动旋转木马旋转,使人们能够欣赏到各种美丽的景观和音乐。
物理教师
需要了解刚体 动力学知识的
相关人员
Part Three
刚体动力学概述
刚体定义
刚体:在运动过程中,其内部任意两点间的距离始终保持不变的物体 刚体运动:刚体的运动是相对于其他物体的位置和姿态的变化
刚体动力学:研究刚体运动过程中所受到的力、力矩以及运动状态变化规律的科学
刚体动力学的研究对象:各种工程实际中的刚体,如机械零件、构件、机构等
动能定理
定义:动能定理是描述物体动能变化的定理 表达式:动能定理的表达式为ΔE=W 应用范围:动能定理适用于一切具有动能变化的物理系统 注意事项:在使用动能定理时需要注意初始和终了状态的动能
Part Five
刚体动力学应用实 例
刚体平动实例
刚体平动定义 刚体平动应用实例1 刚体平动应用实例2 刚体平动应用实例3
刚体动力学在各领 域的应用
刚体力学基础PPT课件
转动:分定轴转动和非定轴转动 刚体的平面运动
5
二、刚体定轴转动的描述
1.刚体定轴转动的特点 轴上各点都保持不动,轴外各点在同一时间间隔内转过的角度一样。
以某转动平面与转轴的交点为原点,转动平面上所有质元都绕着这个 原点作圆周运动。
2.描述 可类似地定义绕定轴转动的刚体的:
*角位置 (t)
i
ri
z
切向加速度 法向加速度
ai ri
ani ri 2
ri
vi
§3-2 定轴转动刚体的转动惯量
一、刚体定轴转动定律
(1)单个质点m
与转轴刚性连接
Ft mat mr
M rF sinθ
z
M
Ft
F
O
r
m
Fn
M rFt mr 2 M mr2
一、刚体运动分类
2.转动 如果刚体上的所有质元都绕某同一直线作圆周运动,这种运动就称之为转动,
这条直线称为转轴。
A
A
分为定轴转动和非定轴转动
*非定轴转动 若转轴方向或位置变化,这种转动称为非定轴转动
A
A
* 定轴转动 若转动轴固定不动,这种转动称为定轴转动. 这个转
轴称为固定轴,
转动平面:垂直于固定轴的平面
内力(F质i2j 量)元刚受体外力Fej ,
Mej Mij mjrj2
外力矩
内力矩
z
O rj
Fej
m j
Fij
Mej Mij mjrj2
j
j
Mij M ji Mij 0
j
《刚体动力学》课件
动量定理公式:Ft=mv
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:碰撞、打击、爆炸等 角动量定理 角动量定理
定义:角动量是物体转动惯量和角速度的乘积 单击此处输入你的项正文,文字是您思想的提炼。
角动量定理公式:L=Iω
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:行星运动、陀螺仪等
刚体的滚动和滑动摩擦
刚体滚动:刚体在平面内绕固定点转动,滚动摩擦力产生的原因和影响
刚体滑动摩擦:刚体在平面内滑动时产生的摩擦力,滑动摩擦系数与接触面材料和粗糙度等因素 的关系
刚体滚动和滑动摩擦的应用实例:例如,汽车轮胎与地面之间的滚动摩擦力,以及机械零件之间 的滑动摩擦力等
刚体滚动和滑动摩擦的实验研究:通过实验研究刚体滚动和滑动摩擦力的影响因素和规律,为实 际应用提供理论支持
04
刚体动力学基本原理
牛顿第二定律
定义:物体加速度的大小跟作用 力成正比,跟物体的质量成反比
应用:解释物体运动状态变化的 原因
添加标题
添加标题
公式:F=ma
添加标题
添加标题
注意事项:只适用于宏观低速运 动的物体
动量定理和角动量定理
定义:动量是物体质量与速度的乘积
单击此处输入你的项正文,文字是您思想的提炼。
刚体动力学研究内容
刚体的定义和性质 刚体运动的基本形式 刚体动力学的基本方程 刚体动力学的研究方法
刚体动力学发展历程
早期发展:古代力学对刚体的研究 经典力学时期:牛顿、伽利略等经典力学大师对刚体动力学的研究 弹性力学时期:弹性力学的发展对刚体动力学的影响 现代发展:计算机技术和数值模拟方法在刚体动力学中的应用
课程内容:刚体 的平动、转动、 碰撞等动力、力学等相关专 业的本科生和研 究生
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:碰撞、打击、爆炸等 角动量定理 角动量定理
定义:角动量是物体转动惯量和角速度的乘积 单击此处输入你的项正文,文字是您思想的提炼。
角动量定理公式:L=Iω
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:行星运动、陀螺仪等
刚体的滚动和滑动摩擦
刚体滚动:刚体在平面内绕固定点转动,滚动摩擦力产生的原因和影响
刚体滑动摩擦:刚体在平面内滑动时产生的摩擦力,滑动摩擦系数与接触面材料和粗糙度等因素 的关系
刚体滚动和滑动摩擦的应用实例:例如,汽车轮胎与地面之间的滚动摩擦力,以及机械零件之间 的滑动摩擦力等
刚体滚动和滑动摩擦的实验研究:通过实验研究刚体滚动和滑动摩擦力的影响因素和规律,为实 际应用提供理论支持
04
刚体动力学基本原理
牛顿第二定律
定义:物体加速度的大小跟作用 力成正比,跟物体的质量成反比
应用:解释物体运动状态变化的 原因
添加标题
添加标题
公式:F=ma
添加标题
添加标题
注意事项:只适用于宏观低速运 动的物体
动量定理和角动量定理
定义:动量是物体质量与速度的乘积
单击此处输入你的项正文,文字是您思想的提炼。
刚体动力学研究内容
刚体的定义和性质 刚体运动的基本形式 刚体动力学的基本方程 刚体动力学的研究方法
刚体动力学发展历程
早期发展:古代力学对刚体的研究 经典力学时期:牛顿、伽利略等经典力学大师对刚体动力学的研究 弹性力学时期:弹性力学的发展对刚体动力学的影响 现代发展:计算机技术和数值模拟方法在刚体动力学中的应用
课程内容:刚体 的平动、转动、 碰撞等动力、力学等相关专 业的本科生和研 究生
《大学物理期末复习》刚体动力学课件
ERA
刚体的自由振动
总结词
刚体的自由振动是指刚体在无外力作用下的振动,其振动频率由刚体的固有属性决定。
详细描述
刚体的自由振动是由其内部的弹性力和惯性力相互平衡而产生的。当刚体受到初始扰动 时,其内部的弹性力会试图将其恢复到平衡位置,而惯性力则试图保持其运动状态不变。 在无外力作用的情况下,这种相互作用会导致刚体进行周期性的振动。刚体的自由振动
自行车行驶的稳定性分析
自行车行驶的稳定性是保证骑行安全的关键因素之一。通过 刚体动力学原理,可以分析自行பைடு நூலகம்在行驶过程中的稳定性和 倾倒趋势。
在自行车倾倒过程中,车轮与地面之间的摩擦力、车身的质 心位置和转动惯量等因素都会影响自行车的稳定性。了解这 些因素之间的关系,有助于优化自行车的设计和骑行技巧, 提高行驶的安全性和稳定性。
ERA
刚体的定义与特性
刚体的定义
01
刚体是指在力的作用下,其内部任意两点之间的距离始终保持
不变的物体。
刚体的特性
02
刚体具有不可变形的特性,其形状和大小在力的作用下不会发
生改变。
刚体的运动
03
刚体的运动是指刚体在空间中的位置随时间的变化而变化的过
程。
刚体运动的基本形式
01
平动
转动
02
03
振动
刚体在空间中的位置随时间变化, 但刚体的各个点都沿着同一直线、 以相同的速度移动。
THANKS
感谢观看
《大学物理期末复习》刚
BIG DATA EMPOWERS TO CREATE A NEW
ERA
体动力学课件
• 刚体动力学概述 • 刚体的转动惯量 • 刚体的转动定律 • 刚体的振动与波动 • 刚体动力学应用实例
刚体的自由振动
总结词
刚体的自由振动是指刚体在无外力作用下的振动,其振动频率由刚体的固有属性决定。
详细描述
刚体的自由振动是由其内部的弹性力和惯性力相互平衡而产生的。当刚体受到初始扰动 时,其内部的弹性力会试图将其恢复到平衡位置,而惯性力则试图保持其运动状态不变。 在无外力作用的情况下,这种相互作用会导致刚体进行周期性的振动。刚体的自由振动
自行车行驶的稳定性分析
自行车行驶的稳定性是保证骑行安全的关键因素之一。通过 刚体动力学原理,可以分析自行பைடு நூலகம்在行驶过程中的稳定性和 倾倒趋势。
在自行车倾倒过程中,车轮与地面之间的摩擦力、车身的质 心位置和转动惯量等因素都会影响自行车的稳定性。了解这 些因素之间的关系,有助于优化自行车的设计和骑行技巧, 提高行驶的安全性和稳定性。
ERA
刚体的定义与特性
刚体的定义
01
刚体是指在力的作用下,其内部任意两点之间的距离始终保持
不变的物体。
刚体的特性
02
刚体具有不可变形的特性,其形状和大小在力的作用下不会发
生改变。
刚体的运动
03
刚体的运动是指刚体在空间中的位置随时间的变化而变化的过
程。
刚体运动的基本形式
01
平动
转动
02
03
振动
刚体在空间中的位置随时间变化, 但刚体的各个点都沿着同一直线、 以相同的速度移动。
THANKS
感谢观看
《大学物理期末复习》刚
BIG DATA EMPOWERS TO CREATE A NEW
ERA
体动力学课件
• 刚体动力学概述 • 刚体的转动惯量 • 刚体的转动定律 • 刚体的振动与波动 • 刚体动力学应用实例
《大学物理期末复习》刚体动力学课件
总结词
掌握弹性力对刚体运动的影响
详细描述
弹性力是刚体动力学中另一个重要的问题。解决这类问题需要掌握弹性力的计算方法, 包括胡克定律和弹性常数的概念,以及弹性力在不同运动状态下对刚体运动的影响。同 时,还需要考虑弹性力与刚体质量、加速度等因素的关系,以及弹性力对刚体振动和稳
定性的影响。
01
02
03
阻尼振动定义
刚体在受到阻尼作用下的 振动状态。
阻尼振动特点
振动的能量逐渐减小,最 终趋向于静止状态。
阻尼振动方程
通过求解刚体的运动方程 ,可以得到阻尼振动的解 。
05
刚体动力学中的常见问题 与解决方法
刚体在非惯性系中的运动问题
总结词
理解非惯性系中刚体的运动规律
详细描述
刚体在非惯性系中的运动问题主要涉及到相对运动和科里奥利力。解决这类问题需要理解非惯性系中 刚体的运动规律,掌握科里奥利力的计算方法,以及如何应用这些概念来分析具体的物理现象。
在实际应用中,可以通过合理设计结构、选择合适的材料、加强维护保养等方式来提高刚体的平衡与稳 定性。
刚体的平衡与稳定问题也是物理学中的一个重要研究领域,对于深入理解力学原理、发展新的技术手段 等方面具有重要意义。
04
刚体的振动与阻尼
刚体的自由振动
自由振动定义
刚体在没有任何外力作用下的振动状态。
自由振动特点
振动的周期和振幅与初始条件有关,不受外力影响。
自由振动方程
通过求解刚体的运动方程,可以得到自由振动的解。
刚体的受迫振动
1 2
受迫振动定义
刚体在外力作用下的振动状态。
受迫振动特点
振动的周期和振幅与外力有关,与初始条件无关 。
掌握弹性力对刚体运动的影响
详细描述
弹性力是刚体动力学中另一个重要的问题。解决这类问题需要掌握弹性力的计算方法, 包括胡克定律和弹性常数的概念,以及弹性力在不同运动状态下对刚体运动的影响。同 时,还需要考虑弹性力与刚体质量、加速度等因素的关系,以及弹性力对刚体振动和稳
定性的影响。
01
02
03
阻尼振动定义
刚体在受到阻尼作用下的 振动状态。
阻尼振动特点
振动的能量逐渐减小,最 终趋向于静止状态。
阻尼振动方程
通过求解刚体的运动方程 ,可以得到阻尼振动的解 。
05
刚体动力学中的常见问题 与解决方法
刚体在非惯性系中的运动问题
总结词
理解非惯性系中刚体的运动规律
详细描述
刚体在非惯性系中的运动问题主要涉及到相对运动和科里奥利力。解决这类问题需要理解非惯性系中 刚体的运动规律,掌握科里奥利力的计算方法,以及如何应用这些概念来分析具体的物理现象。
在实际应用中,可以通过合理设计结构、选择合适的材料、加强维护保养等方式来提高刚体的平衡与稳 定性。
刚体的平衡与稳定问题也是物理学中的一个重要研究领域,对于深入理解力学原理、发展新的技术手段 等方面具有重要意义。
04
刚体的振动与阻尼
刚体的自由振动
自由振动定义
刚体在没有任何外力作用下的振动状态。
自由振动特点
振动的周期和振幅与初始条件有关,不受外力影响。
自由振动方程
通过求解刚体的运动方程,可以得到自由振动的解。
刚体的受迫振动
1 2
受迫振动定义
刚体在外力作用下的振动状态。
受迫振动特点
振动的周期和振幅与外力有关,与初始条件无关 。
刚体力学基础 ppt课件
PPT课件
14
(2)用质量不计的细杆连接的五个质点, 如图55所示。转轴垂直于质点所在平面且通过o点, 转动 惯量为
JO=m.02 +2m(2l2) +3m(2l)2 +4ml2 +5m(2l2) =30ml2
2m
l
ml
l 3m
o
4m
l
5m
图5-5
PPT课件
15
例题5-2 质量连续分布刚体: J r 2dm
d( J )
dt
(5-3)
(Lz=J)
上式称为物体定轴转动方程。
对定轴转动的刚体, J为常量, d /dt=, 故式(6-16)
又可写成
M=J
(5-4)
这就是刚体定轴转动定理。
PPT课件
9
M=J
(5-4)
(5-4)表明, 刚体所受的合外力矩等于刚体的转动 惯量与刚体角加速度的乘积。
(5-6)
式中: r为刚体上的质元dm到转轴的距离。
PPT课件
12
三.平行轴定理
Jo=Jc+Md2
(5-7)
Jc 通过刚体质心的轴的转动 惯量;
M 刚体系统的总质量; d 两平行轴(o,c)间的距离。
Jo d Jc
o
C M
图5-3
PPT课件
13
例题5-1 质量离散分布刚体: J=Δmi ri2
fij ) 0
i
j( i j )
得
i
d ri Fi dt
i
( ri mii )
PPT课件
7
i
d ri Fi dt
i
刚体运动动力学
i i i i
I 0 r 2 dm
0
R
R
0
2rdr 1 m mR 2 r2 2 R 2
r
R
r dr
) d md 2 i i
2 i
平行轴定理
I MN I C md 2
L Lc L,
Lc rc mvc , L ri mi vi
i
质点系的角动量 可分解成质心角动量与质点系相对质心的角动量之和 同一参考点 质心为参考点
6
1
2010/12/17
质心参考系
质心系一般是非惯性系,引入平移惯性力
质心系中质点系动能定理
推论:刚体沿任何方向转动,绕通过质心的转轴的转动惯量最小
17 18
3
2010/12/17
对于平板刚体
z
xi
例 由柯尼希定理导出刚体的平行轴定理
ri
xi2 yi2 ri 2
x
yi
mi
y
绕任意固定轴 MN 转动的刚体的动能 此轴到刚体质心的距离 d 刚体质心的速度
Ek
1 I MN 2 2
其中
1 1 Ek mi vi2 mi vi vi i 2 i 2
L ri mi vi
i
mi
ri rc ri , vi vc vi
ri
O
ri
rC
C
1 1 Ek mi vc vc mi vc vi mi vi vi i 2 i i 2 1 2 1 mvc vc mi vi mi vi2 2 i i 2 1 2 1 , Ekc mvc , 资用能Ek mi vi 2 Ek Ekc Ek 2 i 2
I 0 r 2 dm
0
R
R
0
2rdr 1 m mR 2 r2 2 R 2
r
R
r dr
) d md 2 i i
2 i
平行轴定理
I MN I C md 2
L Lc L,
Lc rc mvc , L ri mi vi
i
质点系的角动量 可分解成质心角动量与质点系相对质心的角动量之和 同一参考点 质心为参考点
6
1
2010/12/17
质心参考系
质心系一般是非惯性系,引入平移惯性力
质心系中质点系动能定理
推论:刚体沿任何方向转动,绕通过质心的转轴的转动惯量最小
17 18
3
2010/12/17
对于平板刚体
z
xi
例 由柯尼希定理导出刚体的平行轴定理
ri
xi2 yi2 ri 2
x
yi
mi
y
绕任意固定轴 MN 转动的刚体的动能 此轴到刚体质心的距离 d 刚体质心的速度
Ek
1 I MN 2 2
其中
1 1 Ek mi vi2 mi vi vi i 2 i 2
L ri mi vi
i
mi
ri rc ri , vi vc vi
ri
O
ri
rC
C
1 1 Ek mi vc vc mi vc vi mi vi vi i 2 i i 2 1 2 1 mvc vc mi vi mi vi2 2 i i 2 1 2 1 , Ekc mvc , 资用能Ek mi vi 2 Ek Ekc Ek 2 i 2
《刚体运动教学》课件
耦合应用
在实际生活中,许多机械运动都可以看作是平动与转动的耦合,如机床的工作台、汽车的 转向等。因此,掌握平动与转动的耦合对于机械设计和制造等领域具有重要意义。
03
刚体的动力学
牛顿第二定律
总结词
描述物体运动状态改变与力之间的关系。
详细描述
牛顿第二定律指出,一个物体的加速度与作用在它上面的力成正比,与它的质 量成反比。公式表示为F=ma,其中F是力,m是质量,a是加速度。
空航天、车辆工程等领域。
06
刚体运动的实例分析
刚体的平面运动分析
平面运动定义
刚体在平面内运动,其上任意 一点都位于同一个平面上。
平面运动分类
根据刚体上任意一点是否做圆 周运动,分为刚体的平面滚动 和刚体的平面定轴转动。
平面运动特点
刚体上任意一点的速度方向与 该点所在平面的法线方向垂直 ,刚体上任意一点的加速度方 向沿该点的切线方向。
自由运动分类
根据刚体的运动状态,分为自由转 动和自由平动。
自由运动特点
自由转动中,刚体上任意一点绕通 过该点的某一轴线做匀角速度的转 动;自由平动中,刚体上任意一点 做匀速直线运动。
THANK YOU
感谢聆听
刚体的定轴转动
刚体在运动过程中,其上任意两点始 终保持相同的角速度和角加速度,这 种运动称为定轴转动。
02
刚体的运动形式
平动
01 02
平动定义
刚体上任意两点始终保持相同的距离,即刚体在运动过程中,其上任意 两点的连线在运动过程中始终保持长度不变,这种运动称为刚体的平动 。
平动特点
刚体在平动过程中,其上任意一点的运动轨迹都是一个点,即刚体的平 动不会改变其上任意一点的相对位置。
在实际生活中,许多机械运动都可以看作是平动与转动的耦合,如机床的工作台、汽车的 转向等。因此,掌握平动与转动的耦合对于机械设计和制造等领域具有重要意义。
03
刚体的动力学
牛顿第二定律
总结词
描述物体运动状态改变与力之间的关系。
详细描述
牛顿第二定律指出,一个物体的加速度与作用在它上面的力成正比,与它的质 量成反比。公式表示为F=ma,其中F是力,m是质量,a是加速度。
空航天、车辆工程等领域。
06
刚体运动的实例分析
刚体的平面运动分析
平面运动定义
刚体在平面内运动,其上任意 一点都位于同一个平面上。
平面运动分类
根据刚体上任意一点是否做圆 周运动,分为刚体的平面滚动 和刚体的平面定轴转动。
平面运动特点
刚体上任意一点的速度方向与 该点所在平面的法线方向垂直 ,刚体上任意一点的加速度方 向沿该点的切线方向。
自由运动分类
根据刚体的运动状态,分为自由转 动和自由平动。
自由运动特点
自由转动中,刚体上任意一点绕通 过该点的某一轴线做匀角速度的转 动;自由平动中,刚体上任意一点 做匀速直线运动。
THANK YOU
感谢聆听
刚体的定轴转动
刚体在运动过程中,其上任意两点始 终保持相同的角速度和角加速度,这 种运动称为定轴转动。
02
刚体的运动形式
平动
01 02
平动定义
刚体上任意两点始终保持相同的距离,即刚体在运动过程中,其上任意 两点的连线在运动过程中始终保持长度不变,这种运动称为刚体的平动 。
平动特点
刚体在平动过程中,其上任意一点的运动轨迹都是一个点,即刚体的平 动不会改变其上任意一点的相对位置。
刚体力学基础课件
2π Θ J人 (2π ) J台
2πJ人 4πm2 J台 J人 m1 2m2
例 如图,一根长为l, 质量为m1的均质细杆,可绕其一端的水平轴 O作无摩擦转动。现将另一端悬挂于一劲度系数为k的轻弹簧
下端,开始时细杆静止并处于水平状态。有一质量为m2的小 球(m2<< m1)从距杆h高处落到杆的中点,并粘于杆上和它
dJ
J2
J1(角动量定理积分形式)
z
ri
v
Pmi
z
定轴转动刚体所受合外力矩的 冲量矩等于其角动量的增量
Or
3. 刚体定轴转动的角动量守恒定律
Mz 0
dLz 0
Jω 常量
O' r' A
v
讨论:质点系角动量守恒 M zdt dLz
变形体绕某轴转动时,则变形体对该轴的动量矩
Lz rimivi ri2mii Jii C
g
2k
总伸长量为
x0
Δx
g 2k
m1
m2
m2
1
24kh
4m1 3m2
g
x l m2vl
2(J球 J杆 )
v 2gh
x0
m1g 2k
本章小结
1.刚体绕定轴转动运动学描述
(1) 角坐标
(t)
(2) 角速度 (3) 角加速度
d
dt
d
dt
d 2
dt 2
(4) 线量和角量的关系
s r v r
力矩,则系统角动量守恒。设系统绕轴转动的角速度为
,则有
m2v
l 2
(J
球
J
杆
)ω
J球
m2
l 2
2
刚体动力学基础print
(
)
(1.1.12)
x2
′ x3 ) T 和 x ′ = ( x1
′ x2
′ ) T ,则公式(1.1.12) x3
(1.1.13)
x ′ = Bx
其中,矩阵 B,
( e1 ′ ⋅ e1 ) B = (e 2 ′ ⋅ e1 ) (e ′ ⋅ e ) 3 1
(e ′ ⋅ e ) (e ′ ⋅ e ) ( e ′ ⋅ e ) ( e ′ ⋅ e ) e e e e ⋅ ⋅ ′ ′ ( ) ( )
1 2 1 3 2 2 2 3 3 2 3 3
(1.1.14)
就是基 e ′ 相对于基 e 的方向余弦矩阵。
1.1.3 并矢
依序并列的两个矢量称为并矢,一般以黑体大写字母表示。例如
D = ab
(1.1.15)
充液系统动力学——第 1 章 刚体动力学基础
1-3
对于并矢和矢量规定以下运算规则:并矢与矢量的点积为矢量,并矢与矢量的叉积为并矢。 例如,并矢 D 与矢量 r 的运算规则为
1
为简化书写,书中有时用 c、s 作为 cos 及 sin 的简写符号。
充液系统动力学——第 1 章 刚体动力学基础
1-6
( 2 ) ( 3) e3 e3
(1) e3
( 0) e3
β α
γ&
& β
Hale Waihona Puke 欧拉角是经典刚体动力学中习惯使用的广义坐 标,它特别适合于讨论章动角ϑ接近不变,进动角ψ 和自转角ϕ接近匀速增长的刚体运动。但欧拉角并不 是唯一的广义坐标。比较常用的另一种对刚体的三次
D ′ = BDB T
(1.1.30)
1.1.4 张量
大学物理刚体力学基础
i
1 2
mi
vi2
i
1 2
mi
ri
2
2
1 2
(
i
miri2 ) 2
1 J2
2
可见,刚体的转动动能等于刚体的转动惯量与角速度平方
乘积的一半。
转动动能
Ek
1 2
J2
注意比较
平动动能
Ek
1 mv 2 2
2、力矩的功
对于i 质点 其受 外力为 Fi,
dAi Fi dri Fi cosi dri Fidsi
§3-1刚体 刚体的定轴转动的描述
一、 刚体
质点模型基本上只能表征物体的平动特征。
当物体自身线度l与所研究的物体运动的空间范围r相比不 可以忽略;物体又不作平动而作转动时,即必须考虑物体 的空间方位时,我们可以引入刚体模型。
刚体是指在任何情况下,都没有形变的物体。
刚体也是一个各质点之间无相对位置变化且质量连续分布 的质点系。
大于零的常数),当ω= 1 现在经历的时间是多少?3
0
时,飞轮的角加速度是多少?从开始制动到
解 (1)由题知 M k 2 ,故由转动定律有 k2 J
即
k2
J
将
1 3
0
代入,求得这时飞轮的角加速度为
k02
9J
(2)为求经历的时间t,将转动定律写成微分方程的形式,即
M J J d
转动定律说明了 J是物体转动惯性大小的量度。因为:
M一定时J J
即 J 越大的物体,保持原来转动状态的性质就越强,转动惯性 就越大;反之,J越小,越容易改变其转动状态,保持原有状态 的能力越弱,或者说转动惯性越小。
如一个外径和质量相同的实心圆柱与空心圆筒, 若 受力和力矩一样,谁转动得快些呢?
第章刚体力学基础动量矩刚体和刚体的基本运动刚体
第5章 刚体力学基础 动量矩 §1刚体和刚体的基本运动 §2 刚体定轴转动的运动定律 §3 绕定轴转动刚体的动能 动能定理 §4 动量矩和动量矩守恒定律
刚体的定点运动---回转仪的旋进
1
角动量定理 角动量守恒定律 一、质点对定点的角动量
二、力对定点的力矩
三、质点的角动量定理 角动量守恒定律 四、质点系的角动量问题
4
讨论
1)物理量--角动量和力矩均与定点有关,
角动量也称动量矩,力矩也叫角力;
2) 对轴的角动量和对轴的力矩 在具体的坐标系中,角动量(或力矩)在各坐 标轴的分量,就叫对轴的角动量(或力矩)。
(见6
7
8 页 )
5
M r F Mxˆ x Myˆ y Mzˆ z
L r P Lx ˆ x Ly ˆ y Lz ˆ z
①刚体上任意两点的连线在平动中是平行且相等的!
②刚体上任意质元的位置矢量不同,相差一恒矢量,但各质 元的位移、速度和加速度却相同(证明见书149页)。在刚体平 动时,只要知道刚体上任意一点的运动,就可以完全确定整个刚 体的运动.因此,常用“刚体的质心”来研究刚体的平动:
Fi Mac
i
物理量
角位移θ
单位
rad
量纲
1
物理量
线位移 r
单位
m
量纲
M
角速度ω 角加速度α
rad/s rad/s
T-1 T-2
线速度 υ 线加速度 a
m/s m/s-2
MT-1 MT-2
26
进一步解释 设板面是 转动平面
r an at r
刚体的定点运动---回转仪的旋进
1
角动量定理 角动量守恒定律 一、质点对定点的角动量
二、力对定点的力矩
三、质点的角动量定理 角动量守恒定律 四、质点系的角动量问题
4
讨论
1)物理量--角动量和力矩均与定点有关,
角动量也称动量矩,力矩也叫角力;
2) 对轴的角动量和对轴的力矩 在具体的坐标系中,角动量(或力矩)在各坐 标轴的分量,就叫对轴的角动量(或力矩)。
(见6
7
8 页 )
5
M r F Mxˆ x Myˆ y Mzˆ z
L r P Lx ˆ x Ly ˆ y Lz ˆ z
①刚体上任意两点的连线在平动中是平行且相等的!
②刚体上任意质元的位置矢量不同,相差一恒矢量,但各质 元的位移、速度和加速度却相同(证明见书149页)。在刚体平 动时,只要知道刚体上任意一点的运动,就可以完全确定整个刚 体的运动.因此,常用“刚体的质心”来研究刚体的平动:
Fi Mac
i
物理量
角位移θ
单位
rad
量纲
1
物理量
线位移 r
单位
m
量纲
M
角速度ω 角加速度α
rad/s rad/s
T-1 T-2
线速度 υ 线加速度 a
m/s m/s-2
MT-1 MT-2
26
进一步解释 设板面是 转动平面
r an at r
《刚体动力学》PPT课件
ox
l x
2
为转轴, 如图所示。在距离转轴为x 处取棒元dx,
其质量为
m dm dx
l
7
根据式(5-4), 应有
J
l / 2 l / 2
x
2
m l
dx
1 3
m l
x3
l /2 l / 2
1 ml2 8.3 102 kg m2 12
棒的转动动能为
Ek
1 2
J 2
1 0.083 632 J 2
(2) 闸瓦对飞轮施加的 摩擦力矩所作的功。
d
闸瓦
N
解:为了求得飞轮从制 飞轮
f
动到停止所转过的角度
和摩擦力矩所作的功A, 必须先求得摩擦力、摩擦力矩
和飞轮的角加速度。
27
闸瓦对飞轮施加的摩擦力的大小等于摩擦系数与
正压力的乘积
f N 0.50 500 N 2.5 102 N
方向如图所示。摩擦力相对z 轴的力矩就是摩擦
1.7 102J
8
例2 计算质量为m,长为l 的细棒绕一端的转动惯量。
解: J r2dm
z
dm dx m dx
l
Oo
dm
r2 x2
x dx
x
J l x2 m dx 1 m x3 l
0l
3l 0
J 1 ml2 3
对质量均匀分布的门对门轴的转动惯量也相同。
9
例5-3 如图半圆形匀质细杆,半径为 R,
cosi
因为dsi = ri d, 并且cosi = sini , 所以
dAi Firi sini d Mzid 19
dAi Firi sini d Mzid
相关主题