土力学-第三章-土中应力计算详解
第三章 土体中的应力计算(1-3节)
3.均质、等向问题 理想弹性体是均质且各向同性的。天然
地基是各向异性的。但当土层性质变化 不大时,这样假定对竖直应力分布引起 的误差通常在容许范围之内。
5
二、地基中的几种应力状态
1.三维应力状态(空间应力状态)
局部荷载作用下,地基中的应力状态属 三维应力状态。每一点的应力可写成矩 阵形式
24
25
在空间将z相同的点连 接成曲面即形成应力泡。
当地基表面作用有几个集中力时,根据弹 性体应力叠加原理求出附加应力的总和
26
(二)水平集中力作用-西罗提解
z
3Ph
2
xz 2 R5
(3- 9)
27
28
二、矩形面积上各种分布荷载作用下的附 加应力计算
(一)矩形面积竖直均布荷载 1.角点下的应力
x
K
s x
p
τ
xz
K
s xz
p
(3- 25) (3- 26)
剪Kx应s和力K分xzs布分系别数为(水表平3向-5应)力,m分布x ,系n 数z和。
BB
55
P
56
57
(三)条形面积竖直三角形分布荷载 条形面积上竖直三角形分布荷载在地基
内引起的应力也可利用应力叠加原理, 通过积分求得。
zM ' (KsI KsII KsIII KsIV ) p
(3 -13a)
37
第二种情况:计算矩形面积外任一点M’ 下深度为z的附加应力(图3-17b)。设法使 M’点为几个小矩形的公共角点,然后将 其应力进行代数迭加。
zM ' (KsI KsII KsIII KsIV ) p
29
土力学:第三章土中应力计算
附加应力的分布规律
平面分布规律
附加应力在平面上的分布呈扩散状,随着深度的 增加而减小。
深度分布规律
在一定深度范围内,附加应力随深度的增加而增 大,达到一定深度后基本保持稳定。
方向分布规律
附加应力在不同方向上的分布不同,与外部荷载 的方向和土体的性质有关。
附加应力的影响因素
01
外部荷载
外部荷载的大小、分布和作用方 式直接影响附加应力的分布和大 小。
在水平方向上,自重应力 表现为均匀分布。
侧向应力
在土体边缘,自重应力表 现为侧向应力,对土体的 稳定性产生影响。
自重应力的影响因素
土的密度
土的密度越大,自重应力越大。
重力加速度
重力加速度越大,自重应力越大。
土体的几何形状和尺寸
土体的几何形状和尺寸对自重应力的分布和大小有显著影响。
04 土中附加应力计算
02
03
土体的性质
边界条件
土体的容重、压缩性、内摩擦角、 粘聚力等性质对附加应力的影响 较大。
土体的边界条件,如固定边界、 自由边界等,对附加应力的分布 和大小也有影响。
05 土中有效应力计算
CHAPTER
有效应力的概念与计算方法
有效应力的概念
有效应力是指土壤颗粒之间的法向应 力,是土壤保持其结构稳定和防止剪 切破坏的主要因素。
土中应力计算的重要性
01
02
03
工程安全
准确的土中应力计算是确 保工程安全的前提,能够 预测可能出现的危险和制 定应对措施。
设计优化
通过土中应力计算,可以 优化设计方案,提高工程 结构的稳定性和经济性。
科学研究
土中应力计算有助于深入 研究土力学性质和规律, 推动土力学学科的发展。
第3章 土体中的应力计算
1. M(x、y、z)点的应力: ( 、 、 )点的应力:
3P z3 3P σz = ⋅ 5 = ⋅ cos3 θ 2π R 2π R2 3P z2 x 3Px τzx = ⋅ = ⋅ cos2 θ 2π R5 2π R3 3P z2 y 3Py τzy = ⋅ = ⋅ cos2 θ 2π R5 2π R3
mn 1 n2 ] * ⋅[ − 2π m2 + n2 (1+ n2 ) m2 + n2 +1
同理,可以求得最大荷载角点下任意深度z处 的竖直附加应力σz 为: σz = α tc' p0 = (α c- α tc) p0 (3-7)
3P z5 P 3 σz = = 5 z2 2π R 2π
5
其中 = x2 + y2 + z2 R
(3-3)
P =α P 2 2 z2 ( r z) +1 z 1
(3-4)
其中α = α (r/z)称为集中荷载作用下的应力分布系数 具体的α 值见教材p79表3.5.1
b
图3-11 矩形面积上作用 三角形分布时角 点下的附加应力
根据布希涅斯克解,dP在角点1下深度z处M点 引起的竖向附加应力dσz为:
3p0 xz3 dσ z = 2π b x2 + y2 + z 2
(
)
5
dxdy
2
将上式沿矩形面积积分后,可得出竖直三角形 荷载作用在矩形面上时,在零角点下任意深度 z处所引起的竖直附加应力σz为: σz = α tc p0 (3-6) 式中 α tc =
y z
x
图3-4
2. 与材料力学比较 与材料力学比较(用摩尔圆解决问题时)
土力学完整 第3章 土中应力分布及计算ppt课件
CZ r , z 9 .5 8 76 KPa ; b ,点: Z 8 m , 该点位于粘土层中,
CZ r , z rw h w 9 .5 8 10 10 76 100 176 KPa ;
c 点:
Z
12 m , CZ
176 19 .3 4 253 .2 KPa 精选ppt课件2021
地基土通常为成层土。当地基为成层土体时,设各土层
的厚度为hi,重度为ri,则在深度z处土的自重应力计算公式
为:
n
cz i hi i1
n
z hi i1
n—从地面到深度z处的土层数; hi—第i层土的厚度,m。
成层土的自重应力沿深度呈折线分布,转折点位于r值
发生变化的土层界面上。
三.有地下水时土中自重应力计算
◇若IL ≤0,则土处于坚硬(固态)状态,土中自由水受到
土颗粒间结合水膜的阻碍不能传递静水压力,故认为土体不 受水的浮力作用,采用土的饱和重度计算土的自重应力;
◇若0<IL<1,土处于塑性状态,土颗粒是否受到水的浮
力作用就较难肯定,在工程实践中一般均按土体受到 水浮力作用来考虑。
精选ppt课件2021
建筑物荷重基础地基上在地基与基础的接触面上 产生的压力
基底压力分布及其影响因素: ①基础相对刚度、基础大小、形状和埋深; ②地基土的性质; ③作用在基础上的荷载大小、分布和性质。
基础刚度的影响
1.弹性地基上的完全柔性基础(EI=0)
土坝(堤)、路基、油罐等薄板基础、机场跑道。可认 为土坝底部的接触压力 分布与土坝的外形轮廓相同, 其 大小等于各点以上的土柱重量。
1 原地下水位
0-1,-2,线为变动后
,
1
变动后地下水位 自重应力的分布
土力学课件 第3章 土中应力分布及计算.
计算如图所示水下地基土中的自重应力分布
水面 a 8m
粗砂 r=19KN/m3 rsat=19.5KN/m3
黏土r=19.3KN/m3 4m rsat=19.4KN/m3 W=20%,WL=55%,WP=24%
b 76KPa 176KPa c 253.2KPa
解:水下的粗砂层受到 水的浮力作用, 其有效重度: r , rsat rw 19.5 10 9.5 KN / m 3 粘土层因为W WP , 所以I L 0, 故认为土层 不受到水的浮力作用, 土层面上还受到 上面的静水压力作用。 a点:Z 0, CZ 0 KPa; b点:Z 8m, 该点位于粗砂层中,
应力符号规定
法向应力以压为正,剪应力方向的符号规定则与材料力 学相反。材料力学中规定剪应力以顺时针方向为正,土力学 中则规定剪应力以逆时针方向为正。
压为正,拉为负,剪应力以逆时针为正
土中的自重应力计算
土中应力按其起因可分为自重应力和附加应力两种。
自重应力是土受到重力作用产生的应力,自重应力一般是自 土体形成之日起就产生于土中。
二.成层土自重应力计算 地基土通常为成层土。当地基为成层土体时,设各土层 的厚度为hi,重度为ri,则在深度z处土的自重应力计算公 式为:
cz i hi
i 1
n
z hi
i 1
n
n—从地面到深度z处的土层数; hi—第i层土的厚度,m。 成层土的自重应力沿深度呈折线分布,转折点位于r值 发生变化的土层界面上。
◇若0<IL<1,土处于塑性状态,土颗粒是否受到水的 浮力作用就较难肯定,在工程实践中一般均按土体受 到水浮力作用来考虑。
四.存在隔水层时土的自重应力计算
当地基中存在隔水层时,隔水层面以下土的自重应力应 考虑其上的静水压力作用。
土力学与地基基础(土中的应力计算)
矩形基础:A=b× 矩形基础:A=b×L
d1 + d2 Gk =A
Gk = γ G Ad
γG=20kN/m3
2、偏心荷载下的基底压力 单向偏心荷载下的矩形基础如图。 单向偏心荷载下的矩形基础如图。 设计时, 设计时,通常基底长边方向取与偏心 方向一致, 方向一致,最大压力值与最小压力值 按材料力学短柱偏心受压公式计算: 按材料力学短柱偏心受压公式计算:
p0 = pk − σ c
四、地基附加应力
地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。 地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。
(一)竖向集中应力作用下的地基附加应力
1、布辛奈斯克解 、
3p z3 3 1 p σz = = 2π ( r 2 + z 2 )5 / 2 2π ( r / z )2 + 1 5 / 2 z 2
第三章 地基土中的应力计算
一、概述 地基土中的应力: 地基土中的应力: 1、自重应力 2、附加应力
建筑物修建以前, 建筑物修建以前,地基中由于土 体本身的有效重量所产生的应力。 体本身的有效重量所产生的应力。 建筑物修建以后,建筑物重量等 建筑物修建以后, 外荷载在地基中引起的应力, 外荷载在地基中引起的应力,所 谓的“附加” 谓的“附加”是指在原来自重应 力基础上增加的压力。 力基础上增加的压力。
γ
γ′
均质地 基
γ1(γ
1
< γ2 )
γ2 γ′ 2
成层地基
(二)水平向自重应力
σ cx = σ cy = K 0σ cz
式中: 土的侧压力系数或静止土压力系数, 式中:K0——土的侧压力系数或静止土压力系数,经验值可查课本 土的侧压力系数或静止土压力系数 表3.1
土力学第三章
向下渗流
z z u H w h
存在向下渗流,有效自重应力增大γw⊿h
A点的有效自重应力:
3.4 基底压力计算
上部结构
建筑物设计
基础 地基
上部结构的自重及各 种荷载都是通过基础 传到地基中的。
基础结构的外荷载 基底反力 基底压力 基底附加压力 地基附加应力 地基沉降变形 基底压力:基础底面传递 给地基表面的压力,也称 基底接触压力。 暂不考虑上部结构的影响, 使问题得以简化; 用荷载代替上部结构。
Aw 1 A
PSi
PaVi
有效应力σ′
'u
3.2 有效应力原理
2. 有效应力原理
'u
σ:作用在饱和土中任意面上的总应力 σ′:作用在同一平面土骨架上的有效应力 u:作用于同一平面上孔隙水压力 土的变形和强度变化只取 决于有效应力的变化
3.2 有效应力原理
①变形的原因 颗粒间克服摩擦相对滑移、滚动—与 σ’ 有关; 接触点处应力过大而破碎—与 σ’ 有关。
②强度的成因 凝聚力和摩擦—与σ’ 有关 ③孔隙水压力的作用 对土颗粒间摩擦、土粒的破碎没有贡献, 并且水不能承受剪应力,因而孔隙水压力 对土的强度没有直接的影响; 它在各个方向相等,只能使土颗粒本身 受到等向压力,由于颗粒本身压缩模量很 大,故土粒本身压缩变形极小。因而孔隙 水压力对变形也没有直接的影响,土体不 会因为受到水压力的作用而变得密实。
pmax
min
y
P 6e 1 A b
3.5.2 基础底面接触压力
2、偏心荷载作用——单向偏心荷载 P b e x y
p max
pmax
min
土力学——3 土中应力
土力学王丽琴西安理工大学土建学院岩土工程研究所第三章土中应力第一节概述第二节土体的自重应力计算第三节有效应力原理第四节基底压力的计算第五节地基中的附加应力计算卓越班作业:P 124,1~4,6,7;水工班作业:P 67-68,1,2,4,5本课程中所有计算均可取g=10m/s 2土中应力第三章强度问题变形问题地基中的应力状态应力应变关系土力学中应力符号的规定应力状态自重应力附加应力基底压力计算有效应力原理建筑物修建以后,建筑物重量等外荷载在地基中引起的应力。
所谓的“附加”是指在原来自重应力基础上增加的应力。
建筑物修建以前,地基中由土体本身的有效重量所产生的应力。
本章问题:如何计算地基中的应力?第三章土中应力第一节概述第二节土体的自重应力计算第三节有效应力原理第四节基底压力的计算第五节地基中的附加应力计算一、土力学中应力符号的规定xσzσxzτz xτxσzσxzτz xτ材料力学+-+-土力学正应力剪应力拉为正压为负顺时针为正逆时针为负压为正拉为负逆时针为正顺时针为负③均匀、各向同性体(土层性质变化不大时)②线弹性体(应力较小时)①连续介质(宏观平均)ν、E 与(x, y, z)无关与方向无关碎散体非线性弹塑性成层土各向异性Δσεe p e e线弹性体加载卸载二、土的应力-应变关系的假定理论方法——弹性力学解→求解“弹性”土体中的应力——解析方法→优点:简单,易于绘成图表等三、地基中常见的应力状态yzxo1.空间应力状态——三维问题x e y e xy γyz γγxzγγyxγe ij e =x σy σxy τyz ττxzττyxτσij σ=xσy σxyτyzτz xτzσ王丽琴主讲2. 轴对称三维问题▪应变条件▪应力条件▪独立变量:x y z;e =e e x y z;σ=σσxy yz zx ,,0τττ=xy z x y z,;,σ=σσe =e e x e y e xy γyzγγxz γzy γyx γz e ij e =x σy σxy τyzττxzτzy τyx τzσij σ=000000000y xy yz zx ,,0γγγ=000xσy σxyτyzτz xτzσyσxσzσ一般三维应力状态:三轴应力状态:123σ≥σ≥σ123σ≥σ=σ忽略中主应力的影响理论研究和工程实践中广泛应用zxo3. 平面应变条件——二维问题xσy σxyττz xτzσxσzσxzτz xτ;0y =e 0;0zx yz yx ≠γ=γ=γ●沿长度方向有足够长度,L/B≥10;●垂直于y 轴切出的任意断面的几何形状均相同,其地基内的应力状态也相同;●平面应变条件下,土体在x,z 平面内可以变形,但在y 方向没有变形。
土力学第三章土中应力计算详解
特点:一般自重应力不产生地基变形(新填土除 外);而附加应力是产生地基变形的主要原因。
整理ppt
3
概述
有效应力:由土骨架传递或承担的应力
孔隙应力:由土中孔隙水承担的应力 静孔隙应力与超孔隙应力
自重应力:由土体自身重量所产生的应力
附加应力:由外荷载(建筑荷载、车辆荷载、 土中水的渗流力、地震作用等)的作用,在土
整理ppt
均匀 E
1
E2<E
1 50
3.4 有效应力原理
wF2 1ER z2321R 1
整理ppt
34
一. 竖直集中力作用下的附加应力计算-布辛奈斯克课题
z
3F
2
z3 R5
R 2r2z2x2y2z2
z3 2 FR z3 523 [1(r/1z)2]5/2
F z2
3
1
2[1(r/z)2]5/2
集中力作用下的 地基竖向应力系数
整理ppt
z
F z2
查表3.1
a.矩形面积内
z (c Ac Bc Cc D )p
BA
C
h
b.矩形面积外
a
z (c be gc a hf gc c he gc d i ) fp gi
D ig df
整理ppt
b
c e42
c.矩形面积边缘线上
z (cIcI)Ip
d.矩形面积边缘线外侧
z (c I cI IcI II cI )p V
dPpdxdy dz 32dPR z35 23p R z35dxdy
z0 b0 ldzz(p,m ,n)
m=l/b, n=z/b
c F(bl ,bz)F(m,n)
dP
土力学完整课件土中应力计算
积分,得
z t p
Y
t f (m l / b, n z / b)
三角分布矩形荷载角点下的竖向附加应 力系数.可查表. 注意l—荷载不变化边 的长度; b—荷载变化边的长度.
水平均布荷载
q
z
x z
2
2 pz 3
2
2
(二)条形荷载下的附加应力计算 1.均布条形荷载下的附加应力 p O x b/2 b/2 z x M z 2. 三角形荷载的附加应力 pt O x b z x M z
z u p
z x u f u m , n b b
l
pmax pmin
基础底面的抵 抗矩;矩形截 面W=(bl2)/6
讨论:
N 6e pmax 1 bl l min
当e<l/6时,pmax,pmin>0,基底压力呈梯形分布 当e=l/6时,pmax>0,pmin=0,基底压力呈三角形分布 当e>l/6时,pmax>0,pmin<0,基底出现拉应力,基底压力重分布
F=400kN/m 0.1m M=20kN •m/m
3.基底中点下附加压 力计算
1.5m 2m 112.6kPa
0 =18.5kN/m3
292.0kPa
179.4kPa
112.6kPa
分析步骤Ⅳ:
F=400kN/m 0.1m M=20kN •m/m
1.5m
1m 1m 2m 2m 2m
0 =18.5kN/m3
3. r 0 ,随 z 从 0 开始增大, z 先随之增大,后随之减小;
土力学-知识单元三(土中应力计算)
土体的自重应力
仁者乐山 智者乐水
1、均质土的自重应力 • 土体中任意深度处的竖向自重应力
天然地面
利用土柱竖向受力的 平衡
cz
注意: 无剪应力
cz
cx
cz z
σcz= z
z
cy
1
1
z
仁者乐山 智者乐水
•水平向自重应力
天然地面
cz
z
cx
cz z
cx cy K0 cz
基底压力的影响因素
基底压力计算
仁者乐山 智者乐水
弹性地基,完全柔性基础
基础抗弯刚度EI=0 → M=0
基础变形能完全适应地基表面的变形 基础上下压力分布必须完全相同,若 不同将会产生弯矩
条形基础,竖直均布荷载
弹性地基,绝对刚性基础
抗弯刚度EI=∞ → M≠0
基础只能保持平面下沉不能弯曲 分布: 中间小, 两端无穷大
《土力学》之知识单元三
土体中的应力计算
徐 亚 利
皖西学院建工学院
强度问题 变形问题
应力状态及应力应变关系
建筑物修建以前,地 基中由土体本身重量 所产生的应力
建筑物重量等外荷载 在地基中引起的应力 增量
自重应力 附加应力 基底压力计算 有效应力原理
土体中的应力计算
知识单元三:土体中的应力计算
知识点一、自重应力、 基底压力、 基底附加应力 知识点二、地基附加应力
静止侧压 力系数
cy
仁者乐山 智者乐水
例题1:均质土层没有水位的情况
天然地面
18.5kN / m3
B
h=5m 求B点的自重应力
仁者乐山 智者乐水
第三章.土中应力.ppt
§3 土体中的应力计算 §3.2 基底压力计算
二.基底压力分布
弹塑性地基,有限刚度基础
— 荷载较小 — 荷载较大
砂性土地基
— 接近弹性解 — 马鞍型 — 抛物线型 — 倒钟型
3P z3 3
1
P
z 2 R5 2 [1 (r / z)2 ]5/ 2 z2
ቤተ መጻሕፍቲ ባይዱ
3
2
1 [1 (r / z)2 ]5/2
3
2
1
[1 tg2 ]5/2
z
P z2
集中力作用下的 应力分布系数
r / z tg
§3 土体中的应力计算 §3.3 地基中附加应力的计算
§3 土体中的应力计算 §3.2 基底压力计算
建筑物设计
上部结构 基础 地基
上部结构的自重及各种荷 载都是通过基础传到地基 中的。
基础结构的外荷载 基底反力 基底压力 附加应力
地基沉降变形
基底压力计算
影响因素 计算方法 分布规律
基底压力:基础底面传递 给地基表面的压力,也称 基底接触压力。
暂不考虑上部结构的影 响,使问题得以简化; 用荷载代替上部结构。
六. 竖直线布荷载作用下的附加应力计算-弗拉曼解
--B氏解的应用
z
2pz3 (x2 z2 )2
x
2px2z (x2 z2 )2
M
xy
x
y yz
z
z
3Ph 2
土力学与地基基础-第三章.土中应力分布及计算解析
从上式可知,自重应力随深度z线性增
加,呈三角形分布图形。
2019/8/25
土中自重应力的计算
8
3.2 土中自重应力的计算
2. 成层土的压力计算
地基土通常为成层土。当地基为成层土体时,设各土层
的厚度为hi,重度为 ,则在i 深度z处土的自重应力计算公式 为:
n
cz ihi i 1
剪应力
xy
yx
3Q xyz
2
R5
1 2 3
xy(2R z)
R3
(
R
z)2
yz
zy
3Q 2
yz 2 R5
ZX
XZ
3Q 2
xz 2 R5
3.4 集中力作用下土中应力计算
X、Y、Z轴方向的位移
分别为:
刚性基础在中心载荷作用下,地基反力呈马鞍形,随着外 力的增大,其形状相应改变。如下图
2019/8/25
基础底面压力的分布和计算
15
3.3 基础底面压力的分布和计算
2019/8/25
基础底面压力的分布和计算
16
3.3 基础底面压力的分布和计算
2. 地基反力的简化计算方法
根据弹性理论的圣维南原理及土中实测结果,当作用在 基础上的总载荷为定值时,地基反力分布的形状对土中 应力分布的影响,只在一定深度范围内,当基底的深度 超过基础宽度的1.5-2.0倍时,它的影响已不显著。因此, 在实用上采用材料力学方法,即将地基反力分布认为是 线性分布的简化计算方法。
因此,基底附加压力p0是上部结构和基础传到基底的地基反力 与基底处原先存在于土中的自重应力之差(新增加的应力)(如图)
土力学第三章
σy = ν(σx +σz )
§3 土体中的应力计算
§3.3 地基中附加应力的计算
七. 条形面积竖直均布荷载作用下的附加应力计算
任意点下的附加应力— 任意点下的附加应力—F氏解的应用
p
σz = Ksp z σx = Ks p x τxz = Kszp x
y
B
x
z
x
z
M
x z Ks ,Ks ,Ksz = F(B, x, z) = F( , ) = F(m n) , z x x B B
§3 土体中的应力计算
§3.3 地基中附加应力的计算
五. 矩形面积水平均布荷载作用下的附加应力计算
角点下的垂直附加应力 ——C氏解的应用 氏解的应用
B
σz = mKhph
L z Kh = F(B, L, z) = F( , ) = F(m n) , B B
ph
L
σz
z
σz
矩形面积作用水平均布荷载时角点下的应力分布系数
i =1
n
i i
σ c = γ 1h1 + γ 2 h2 + ...... + γ n hn = ∑ γ h
i =1
n
i i
式中,
1、各层土容重地下水位以上取天然容重; 、各层土容重地下水位以上取天然容重; 2、地下水位以下砂土取浮容重 、 3、粘性土液性指数IL大于 时取浮容重; 、粘性土液性指数 大于1时取浮容重 时取浮容重; 4、粘性土液性指数IL小于等于 时取天然容重, 、粘性土液性指数 小于等于0时取天然容重 时取天然容重, 5、IL在0~1之间时依最不利原则取天然或浮容重。 、 之间时依最不利原则取天然或浮容重。 ~ 之间时依最不利原则取天然或浮容重
土力学第三章(土体中应力)
第三章:土体中的应力名词解释1、自重应力:由土体本身重量在地基中产生的应力。
2、附加应力:由外荷载(建筑荷载)作用在地基土体中引起的应力。
3、基底压力:建筑物上部结构荷载和基础自重通过基础传递给地基,作用于基础底面传至地基的单位面积压力。
4、基底附加压力:作用于地基表面,由于建造建筑物而新增加的压力,即导致地基中产生附加应力的那部分基底压力,又称基底净压力。
5、有效应力:在总应力中由土体骨架承担的应力,其大小等于土体面积上的平均竖向粒间应力。
6、孔隙水应力:在总应力中由土体中孔隙水承担的应力。
简答1、什么是自重应力,其分布规律是什么?答:由土体本身自重在地基土体中引起的应力称为自重应力。
分布规律随深度增加而呈线性增大,按三角形分布。
2、什么是附加应力,其分布规律是什么?答:由外荷载(建筑荷载)作用在地基土体中引起的应力称为附加应力。
分布规律为:1、距离地面越深,附加应力分布范围越广,出现应力扩散现象;2、在集中力作用线上附加应力最大,向两侧逐渐减小;3、同一竖向线上的附加应力随深度发生变化;4、只有在集中力作用线上,附加应力随深度增加而减小。
3、什么是基底压力,什么是基底附加压力,计算其工程意义是什么?答:建筑物上部结构荷载和基础自重通过基础传递给地基,作用于基础底面传至地基的单位面积压力称为基底压力。
工程中可以计算地基中附加应力进而计算地基的沉降量,其反作用力基底反力大小是基础设计的前提条件。
作用于地基表面,由于建造建筑物而新增加的压力,即导致地基中产生附加应力的那部分基底压力,又称基底净压力。
工程中可以计算地基中附加应力进而计算地基的沉降量,同时也是补偿性基础设计的前提。
4、如何计算偏心荷载作用时基底压力?分布规律如何?答:计算偏心荷载作用时基底压力可以采用材料力学的偏心受压公式:对矩形基础 )61(max minB e A G P p ±+= 对条形基础 )61(max minBe B G P p ±+= 当e<l/6时,p max ,p min >0,基底压力呈梯形分布 当e=l/6时,p max >0,p min =0,基底压力呈三角形分布当e>l/6时,p max >0,p min <0,基底出现拉应力,基底压力重分布第1题解:根据题意:A 点的自重应力kPa H A 5131711=⨯==γσB 点的自重应力kPa H H B 5.11235.20512'211=⨯+=+=γγσ C 点的自重应力kPa H H H C 5.14925.185.1123'32'211=⨯+=++=γγγσD 点上面的自重应力kPa H H H H D 5.20930.205.994'433'2'211=⨯+=+++=γγγγσ上D 点下面的自重应力(考虑承压水作用)kPa H H H H H w D 5.28981030.205.994'433'2'211=⨯+⨯+=++++=γγγγγσ下若基岩变成破碎的透水层D 点上面的自重应力=D 点下面的自重应力kPa D D 5.209==下上σσ第2题 解:根据题意:①.角点下的附加应力系数 αzc 0zcp σ=2405.4==0.01875 又∵αzc=f (B L ,BZ c )=f (B L ,B 8) ②.基础中心点的附加应力系数),(2/2/2/00B z B L f z =α=f (B L ,B 8)=αzc =0.01875③基础中心点下4米处的kpa p zc z 1824001875.04400=⨯⨯==ασ第3题 解:根据题意: 对于甲基础 111===B L m 212===B Z n 查表084.01=k kpa p p k 4.50150084.0424minmax 11=⨯⨯=+⨯=σ 对于乙基础采用角点法0069.01752.01999.01999.02315.04321=+--=+--=k k k k kkpa p k 38.12000069.02=⨯=⨯=σkpa 78.5138.14.5021=+=+=σσσ第4题解:根据题意:条形基础受偏心荷载作用,偏心距m e 5.01=基底压力分布为 k p a k p a B e B P p 3.114/7.285)75.061(71400)61(m a xm i n =⨯±=±=均匀荷载强度kpa 3.114,三角形荷载强度kpa 4.171,列表计算如下:。
土力学 第三章、土的应力计算(2)
z2
arctan z
lb 令 m =l/b,n = z/b
l 2 b2 z2
c
1 2
m2
mn m2 2n2 1 n2 12 n2 m2 n2
12
arctan
n
m
m2 n2 1
z c p0
任意点的应力应力计算—角点法
利用角点下的应力计算公式和应力叠加 原理,推求地基中任意点的附加应力的方法 称为角点法。
1 2
3
R2 Rz z2 R3(R z)
x2 (2R z)
R3
(R
z)2
布辛奈斯克解 y
3P
2
y2z
R5
1 2
3
R2 Rz z2 R3(R z)
y2(2R z)
R3
(R
z)2
z
3P
2
z3 R5
3P
2R 2
cos3
xy
yx
3P
2
xyz
R5
1 2
3
xy(2R z)
3 土中应力计算
3.2.3 基底附加压力
一般情况下,建筑物建造前天然土层在自重 作用下的变形早已结束。因此,只有基底附加 压力才能引起地基的附加应力和变形。
p0= p - cd = p- 0d
0 ihi / hi
基础砌置天然地面 : 全部基底压 力=基底附加压力。 埋置一定深度,扣除基底标高处 原有的土中自重应力
1.在集中力P作用线上的z分布 2.在r>0的竖直线上的z分布 3.在z =常数的水平面上i
Z
M Z
等代荷载法计算 z
z
1
F1 z2
2
F2 z2
土力学与地基基础——第3章 地基土中的应力计算
三、水平向自重应力 土的水平向自重应力cx和cy可按下式计算:
cxcyK0cz
天然地面
土的侧压力系数/ 静止土压力系数
cz cx
广义虎克定律推导出
理论关系为
K0
1
。
值K可0 以在实验室测定。
cy
编辑ppt
z
四、例题分析
【例】一地基由多层土组成,地质剖面如下图所示,试计
算并绘制自重应力σcz沿深度的分布图
土中应力
自重应力
附加应力
编辑ppt
建筑物修建以前,地 基中由土体本身重量 所产生的应力
建筑物重量等外荷载 在地基中引起的应力 增量
土中应力计算的目的:
第一节 概述
土中应力过大时,会使土体因强度不够发生破坏, 甚至使土体发生滑动失去稳定。
土中应力的增加会引起土体变形,使建筑物发生沉 降,倾斜以及水平位移。
布。根据平衡条件求得重分布后的基底最大压应力。
pmax
pmin pmax
pmin=0
e<l/6
e=l/6
pmax
e>l/6
pmin<0 基底压力重分编布辑pppt max
2(F G) pmax 3( l e)b pmin=0
基底压力重分布
l
l/2-e e>l/6
偏心荷载作用线
应与基底压力的
b
编辑ppt
法国数学家布辛内斯克(J. Boussinesq)1885年推出了该
问题的理论解,包括六个应力分量和三个方向位移的表达
式
教材P48页
其中,竖向应力z:
z3 2 PR z3 52 3 [1(r1 /z)2]5/2zP 2z P 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本假定
地基土是各向同性、均质、半无限空间弹性体 地基土在深度和水平方向都是无限的
地 表 临 空
地基:均质各向同性线性变形半空间体
应用弹性力学关于弹性半空间的理论解答
1.均质土竖向自重应力
若将地基视为均质半无限空间弹性体,土体在自重作用下只能产 生竖向变形,而无侧向位移及剪切变形存在,因此在深度z处平面上, 土体因自身重力产生的竖向应力等于单位面积上土柱体的重力。
3.水平向自重应力
天然地面
地基土在重力作用下,除承受 作用于水平面上的竖向自重应力外, 在竖直面上还作用有水平向自重应 力。由于土柱体在重力作用下无侧 向变形和剪切变形,因此可以证明 侧向自重应力与竖向自重应力成正 比,剪应力均为零。
cz z
cx cy K0 cz
cz
z
cx
cy
侧压力系数或静止 土压力系数
4 地下水位升降对自重应力的影响
自重应力分布曲线的变化规律
土的自重应力分布曲线是一条折线,拐点在土 层交界处和地下水位处。
同一层土的自重应力按直线变化。
自重应力随深度的增加而增大。
【例题3-1 】计算自重应力,并绘分布图。
4. 例题分析 【例】一地基由多层土组成,地质剖面如下图所示,试计算并绘制 自重应力σcz沿深度的分布图。
57.0kPa
80.1kPa
103.1kPa 150.1kPa 194.1kPa
cz 1h1 2 h2 n hn i hi
i 1
n
均质地基
1 (
1
2)
2 2
成层地基
3.2 基底压力与基底附加应力
上部结构
建筑物设计
天然地面 h1
1 2 3
水位面
1 h 1
h2
1 h1 + 2h2
h3
1 h1 + 2h2 + 3h3
3. 地下水位以下,若埋 藏有不透水层,由于不透 水层中不存在水的浮力, 故层面及层面以下的自重 应力应按上覆土层的水土 总重计算。紧靠上覆层与 不透水层界面上下的自重 应力有突变,使层面处具 有两个自重应力值。
基础 地基
上部结构的自重及各 种荷载都是通过基础 传到地基中的。
基底反力 基底压力 影响因素 计算方法 分布规律
附加应力
地基沉降变形
基底压力:基础底面传递 给地基表面的压力,也称 基底接触压力。 暂不考虑上部结构的影响, 使问题得以简化; 用荷载代替上部结构。
一. 影响因素
•大小 •方向 •分布
e<l/6 pmin pmax e=l/6 pmin=0
pmax
e>l/6
pmin<0
基底压力重分布
pmax
pmin=0
基底压力重分布
偏心荷载作用在 基底压力分布图 形的形心上
1 l F G pmax 3 e b 2 2
pmax
2F G l 3 e b 2
土力学
第三章 土中应力计算 主讲教师:张成兴
第三章 土中应力计算
3.1 土的自重应力 3.2 基底压力 3.3 地基附加应力 3.4 有效应力原理
概述
地基变形的原因是由于土体具有可压缩性的内 在因素和地基受到附加压力的作用的外在因素。
为了计算地基沉降以及对地基进行强度与稳定
性分析,必须知道土中应力分布。土中应力包括土的
基底压力的 分布形式十 分复杂 根据圣维南原理,基底压力的具体分布形式对地 基应力计算的影响仅局限于一定深度范围;超出此范 围以后,地基中附加应力的分布将与基底压力的分布 关系不大,而只取决于荷载合力的大小、方向和位置。
基础尺寸较小 荷载不是很大
简化计算方法:
假定基底压力按直线分布
基础形状与荷载条件的组合
荷载条件 基底压力
基础条件
•刚度 •形状 •大小 •埋深
地基条件
•土类 •密度 •土层结构 等
基底压力分布
弹性地基,完全柔性基础
弹性地基,绝对刚性基础
基底压力分布
弹塑性地基,有限刚度基础
— 荷载较小 — 荷载较大 砂性土地基 粘性土地基
— — — —
接近弹性解 马鞍型 抛物线型 倒面积双向偏心荷载
x
ey ex
L
y
倾斜偏心荷载
P
v
P Ph
分解为竖直向和水平向荷载, 水平荷载引起的基底水平应 力视为均匀分布。
基底附加压力——基底净压力
基底附加压力:由建筑物建 造后的基底压力中扣除基底 标高处原有的自重应力后, 新增加于基底的压力。
自重应力和附加应力(新增应力) 。
特点:一般自重应力不产生地基变形(新填土除 外);而附加应力是产生地基变形的主要原因。
概述
有效应力:由土骨架传递或承担的应力
孔隙应力:由土中孔隙水承担的应力 静孔隙应力与超孔隙应力 自重应力:由土体自身重量所产生的应力
附加应力:由外荷载 ( 建筑荷载、车辆荷载、 土中水的渗流力、地震作用等 ) 的作用,在土 中产生的应力增量。
F+G e e b l pmax pmin
pmax pmin
F G M A W
基础底面的抵 抗矩;矩形截 面W=bl2/6
pmax pmin
F G 6e 1 bl l
讨论
pmax pmin F G 6e 1 bl l
当e<l/6时,pmax,pmin>0,基底压力呈梯形分布 当e=l/6时,pmax>0,pmin=0,基底压力呈三角形分布 当e>l/6时,pmax>0,pmin<0,基底出现拉应力,基底压力重分布 pmax
天然地面
cz z
cz
σcz= z
cz
cx
z
cy
1 1
z
2.成层土的竖向自重应力计算
cz 1h1 2 h2 n hn i hi
i 1 n
说明:
1. 地下水位以上土层采 用天然重度,地下水位以 下土层采用有效重度; 2. 非均质土中自重应力 沿深度呈折线分布;
荷载条件
竖直中心 P 矩 形 基 础 形 状 B L
竖直偏心 P
x y o B L
倾斜偏心 P B L
条 形
P’ B
P’ B
P’ B
中心荷载作用下的基底压力
取室内外平 均埋深计算 G= GAd
若是条形基础, F,G取单位长度 基底面积计算
F G p A
偏心荷载作用下的基底压力
作用于基础底面 形心上的力矩 M=(F+G)∙e