费托合成F-T_水煤气_甲醇合成

合集下载

煤化工下游产品汇总

煤化工下游产品汇总

煤化工下游产品汇总1、合成气通过补N2和变换合成生产氨、尿素等;2、合成气F-T合成,一步法制备汽油、煤油、柴油等;3、合成气催化制甲醇1) 甲醇羰基合成制备醋酸,醋酸再进一步制备醋酸乙烯酯、醋酐等;2)甲醇经氧化制备甲醛,甲醛进一步制备酚醛树脂等有机原料;3)甲醇与异丁烯合成,制备甲基叔丁酯醚(MTBE);4)甲醇与CO合成,制备甲酸甲酯,进一步生产甲酸;5)甲醇与CO、O2制备草酸甲酯,草酸甲酯进一步制备草酸,也可制备乙二醇;6)甲醇同系化制备乙醇,乙醇分子内脱水制备乙烯(间接法制烯烃);7)甲醇脱水制备二甲醚;4、合成气直接法制备二甲醚,二甲醚转化制C2-C4烯烃,或二甲醚转化制备汽油或柴油;5、合成气一步法直接合成C2-C4烯烃;6、合成气羰基偶联制备乙二醇,乙二醇再进一步制备聚酯、树脂、纤维、抗冻剂等;7、合成气经加[wiki]氢[/wiki]甲酰化制备成醛,醛进一步制备醇,然后进一步制成溶剂、增塑剂、表面活性剂等;8、合成气直接一步法合成低碳混合醇;9、甲醇甲烷化制备甲烷。

补充1)合成气通过变换反应脱羰或联醇再甲烷化制取氢气(CO+CO2 < 25 ppm),氢和氮气在熔铁催化剂(可选用负载钌催化剂)高温高压合成氨,氨再和二氧化碳反应形成碳酸氨和尿素(工业应用)2)合成气在沉淀铁、熔铁或负载钴催化剂作用下,发生费托合成反应,形成烃类,烃类再进一步精制和改质得到液化石油气、汽柴油、石脑油和低碳烯烃、高级微晶蜡等硫氮含量非常低的优质产品(工业应用)3)合成气(H2-CO2/CO+CO2比2.0-2.05)在铜锌铝催化剂作用下,形成甲醇(工业应用)4)从煤气化后的合成气提取纯一氧化碳,再气均相Rh催化剂作用下与甲醇发生羰基化合成形成醋酸(BP、Celanes、兖矿等工业应用)5)甲醇经铁钼催化剂或银催化剂作用下形成甲醛(工业应用)6)甲醇在甲醇钠催化剂作用下与一氧化碳进行羰基化反应形成甲酸(工业应用)7)甲醇与NO和O2作用形成亚硝酸甲酯,CO与亚硝酸甲酯反应可形成草酸二甲酯或碳酸二甲酯,草酸二甲酯则经催化加氢形成乙二醇(日本Ube和正在工业示范)8)甲醇在固体酸或液体酸作用下脱水形成二甲醚(工业应用)9)合成气在双功能催化剂作用下形成一步二甲醚,反应器包括固定床和浆态床10)合成气在催化剂作用形成低碳烯烃,但甲烷的抑制是一个问题11)合成气直接偶联制备乙二醇12)丙烯和合成气进行甲酰化反应制备丁辛醇(工业应用)13)合成气直接制备低碳混合醇14)合成气在镍催化剂作用下形成甲烷(工业应用)。

煤直接液化和煤间接液化综述

煤直接液化和煤间接液化综述

煤直接液化和煤间接液化综述摘要:煤的直接液化和间接液化技术经过长期发展,已形成了各自的工艺特征和典型工艺。

我国总的能源特征是“富煤、少油、有气”,以煤制油已成为我国能源战略的一个重要趋势。

经过长期不断努力,我国初步形成了“煤制油”产业化的雏形,在未来将迎来更多机遇和挑战。

关键字:煤直接液化煤间接液化发展历程现状前景1.煤直接液化煤直接液化又称煤加氢液化, 是将固体煤制成煤浆, 在高温高压下, 通过催化加氢裂化, 同时包括热解、溶剂萃取、非催化液化, 将煤降解和加氢从而转化为液体烃类, 进而通过稳定加氢及加氢提质等过程, 脱除煤中氮、氧、硫等杂原子并提高油品质量的技术。

煤直接液化过程包括煤浆制备、反应、分离和加氢提质等单元。

煤的杂质含量越低, 氢含量越高, 越适合于直接液化。

1.1发展历程煤直接液化技术始于二十世纪初, 1913年德国科学家Bergius首先研究了煤高压加氢, 并获得了世界上第一个煤液化专利, 在此基础上开发了著名的I G Farben工艺。

该工艺反应条件较为苛刻, 反应温度为470℃, 反应压力为70MPa。

1927年德国在Leuna建立了世界上第一个规模为0.1Mt/a的煤直接液化厂, 到第二次世界大战结束时,德国的18个煤直接液化工厂总油品生产能力已达约4.23Mt/a , 其汽油产量占当时德国汽油消耗量的50%。

第二次世界大战前后, 英国、美国、日本、法国、意大利、苏联等国也相继进行了煤直接液化技术的研究。

以后由于廉价石油的大量发现, 从煤生产燃料油变得无利可图, 煤直接液化工厂停工, 煤直接液化技术的研究处于停顿状态。

20世纪70年代,石油危机发生后, 各发达国家投人大量人力物力进行煤直接液化技术的研发, 相继开发出多种煤直接液化工艺, 但由于从20世纪80年代后期起原油价格在高位维持的时间不长,从煤生产燃料油获利的可能性较低, 这些工艺都没有实现工业化。

1.2煤直接液化技术的工艺特征典型的煤直接加氢液化工艺包括: ①氢气制备;②煤糊相(油煤浆)制备; ③加氢液化反应;④油品加工等“先并后串”四个步骤。

合成气衍生产品——费托合成介绍

合成气衍生产品——费托合成介绍

M n(1 )2nn 1
Mn 碳原子数为n的烃的质量分数; 为链增长几率
产物分布制约了产品的选择性,使得目的产品收率低,汽油产 品的收率不超过40%(wt%),而有些产品如石蜡收率高达80 % ----二次加工
直链的烷烯烃,尤其是α-烯烃含量较高,而异构烷烃与芳烃含量
较少-----汽油的辛烷值较低
合成气衍生产品——费托合成介绍化学 与化工
典型的F-T合成产品的组成与分布比较
反应器
产品,wt% 甲醇(C1)
液化石油汽(LPG) (C2-C4)
汽油(C5-C12) 柴油(C13—C19) 软蜡(C20-C30) 硬蜡(C30以上)
含氧化合物
固定床/ Arge
气流床/Synthol
5 12.5
22.5 15 23 18 4
提出FT合成在钴催化剂上最大程度上制备重质烃,然后再在加氢裂解与异构化催化剂上转 化为油品的概念
荷兰Shell公司
浆态床反应器技术、MTG工艺和ZSM-5催化剂开发成功 Sasol-Ⅱ建成投产,中压法,循环流化床反应器,熔融铁催化剂
美国Mobil公司
循环流化床反应器由美国M.W.凯洛格开发,SASOl 公司改进。
合成气衍生产品——费托合成介绍
3.4.2 F-T合成的基本原理
化学反应过程 ◦ 主反应化学计量式
CO 2 H 2 ( CH 2 ) H 2 O
H R ( 227 . C ) 165 KJ
CO H 2 O H 2 CO 2
H R ( 227 . C ) 39 . 8 KJ
10 33
39 5 4 2 7
合成气衍生产品——费托合成介绍
合成反应的热力学特征 F-T合成反应是一个强放热反应; 2721~2930kJ/m3(CO+H2)(如果考虑到原料 气中的惰性气体存在以及转化不完全等因素, 实际放热量约为1674kJ/m3(CO+H2)) ; 温度为 1500℃左右(绝热条件下,反应器温度), 可导致催化剂局部过热,降低反应选择性。

费托合成(F-T合成)是指合成气(H2+CO)在一定的反应温度...-[文档资料]

费托合成(F-T合成)是指合成气(H2+CO)在一定的反应温度...-[文档资料]

前言费托合成(F-T合成)是指合成气(H2+CO)在一定的反应温度和压力下经催化转化为烃类产物的反应[1],是煤、天然气、生物质等含碳资源间接转化为液体燃料的关键步骤。

目前具有工业应用价值的F-T合成催化剂主要有铁基和钴基催化剂,两类催化剂均需经还原预处理才能获得合适的反应活性[2],而还原后催化剂的物相结构将直接影响催化剂的反应性能和运转寿命[3-5],因此研究催化剂的还原预处理对F-T合成过程的优化具有重要意义。

对于低温(220~250℃)F-T合成工艺的Fe-Cu系催化剂,Bukur等[4,5]研究了在不同还原气氛(H2、CO和合成气)中催化剂物相结构的变化规律,发现在H2还原过程中主要生成α-Fe/Fe3O4的混合物相,随后在合成气反应状态下进一步转化为铁碳化物相;而在CO或合成气还原气氛中则主要形成铁碳化物或与Fe3O4的混合物相。

郝庆兰等[6,7]详细考察了各种还原条件对Fe-Cu系催化剂的浆态床F-T 合成反应性能的影响,认为在高的CO转化率的反应条件下,反应体系中H2O/H2比例较高时,部分铁碳化物会被氧化生成Fe3O4,形成铁碳化物与Fe3O4的动态平衡。

此外,铁碳化物相又是由多种复杂晶相构成的,如χ-Fe5C2、ε-Fe2C、έ-Fe2.2C、θ-Fe3C、Fe7C3等[8],目前对铁催化剂还原态物相结构与反应性能的关联尚无明确结论。

Fe-Mn催化剂最早用于固定床工艺的低碳烯烃或轻质液态烃的合成[9]。

近年来,中科院山西煤炭化学研究所提出了采用改性的Fe-Mn催化剂,实现高温(260~280℃)浆态床F-T合成轻质馏分油新工艺概念,杨勇等[10]通过喷雾干燥成型技术研制出适合浆态床F-T合成工艺使用的微球状Fe-Mn-K-SiO2催化剂,该类催化剂在体现高的反应活性的基础上表现出较高的中间馏分段(C8-C22)烃的选择性和较低的重质蜡的选择性。

在该催化剂中,Mn助剂和粘结剂SiO2的同时引入,对Fe-Mn系催化剂的还原和活性相结构均有较大影响,与Fe-Cu系催化剂的还原行为亦有较大差异[10,11]。

费托合成原理及应用

费托合成原理及应用

费托合成原理及应用费托合成原理是指在高压和高温条件下,通过将碳(C)和氢(H)进行反应合成氢气(H2)和甲烷(CH4)。

费托合成技术是一种用于生产合成气和液体燃料的重要工艺。

费托合成反应的化学方程式如下:2H2 + CO -> CH3OH3H2 + CO -> CH4 + H2O费托合成原理主要基于以下几个步骤。

第一步是水气反应。

水蒸气(H2O)和一氧化碳(CO)通过水气反应生成氢气(H2)和二氧化碳(CO2)。

CO + H2O -> CO2 + H2第二步是水煤气变换反应(WGS反应)。

一氧化碳和水蒸气通过水煤气变换反应生成二氧化碳和氢气。

CO + H2O -> CO2 + H2第三步是甲烷合成反应。

在合成气中,氢气和一氧化碳经过甲烷合成反应生成甲烷。

2H2 + CO -> CH3OH由于费托合成原理只需碳和水素两种元素即可,因此可以使用各种碳源,如煤、天然气、生物质等。

此外,该工艺还可以用于合成多种液体燃料,如甲醇、烯烃等。

费托合成技术具有以下几个重要应用。

1. 液体燃料生产:费托合成技术可用于生产多种液体燃料,如甲醇、柴油等。

这些燃料具有高燃烧效率和低污染排放的特点。

2. 氢气生产:费托合成反应可产生大量的氢气。

氢气是一种清洁能源,被广泛用于工业生产和能源转化。

3. 一次性化学品生产:费托合成技术可用于生产一次性化学品,如单体、溶剂等。

这些化学品在医疗、工业和日常生活中有广泛的应用。

4. 合成氨生产:费托合成技术可用于生产合成氨。

合成氨是一种重要的化学原料,广泛用于农业肥料和化学工业。

5. 温室气体减排:费托合成技术可将二氧化碳捕获并储存,从而减少温室气体排放。

这对于应对气候变化具有重要意义。

总之,费托合成原理及其应用对于提高能源利用效率、减少污染和推动可持续发展具有重要意义。

随着技术的进步,费托合成技术的应用前景将更加广阔。

费托合成

费托合成

费-托合成(煤间接液化介绍,包括催化技术、反应器以及国内正在进行项目介绍)间接液化概念间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。

间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。

在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。

煤间接液化技术的发展煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T 命名的,简称F-T合成或费托合成。

依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。

自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。

费托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。

在同一时期,日本、法国、中国也有6套装置建成。

二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。

南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。

考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。

SASOL I厂于1955年开工生产,主要生产燃料和化学品。

费托合成(FT合成)工艺说明

费托合成(FT合成)工艺说明

费-托合成(煤或天然气间接液化)介绍间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。

间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。

在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。

煤间接液化技术的发展煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T命名的,简称F-T合成或费-托合成。

依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。

自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费-托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。

费-托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。

在同一时期,日本、法国、中国也有6套装置建成。

二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。

南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。

考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。

SASOL I厂于1955年开工生产,主要生产燃料和化学品。

20世纪70年代的能源危机促使SASOL建设两座更大的煤基费-托装置,设计目标是生产燃料。

费托合成(F-T)综述

费托合成(F-T)综述

费托合成(F-T)综述综述F-T合成的基本原料为合成⽓,即CO和H2。

F-T合成⼯艺中合成⽓来源主要有煤、天然⽓和⽣物质。

以煤为原料,通过加⼊⽓化剂,在⾼温条件下将煤在⽓化炉中⽓化,然后制成合成⽓(H2+CO),接着通过催化剂作⽤将合成⽓转化成烃类燃料、醇类燃料和化学品的过程便是煤的间接液化技术。

煤间接液化⼯艺主要有:Fischer-Tropsch ⼯艺和莫⽐尔(Mobil)⼯艺。

典型的Fischer-Tropsch⼯艺指将由煤⽓化后得到的粗合成⽓经脱硫、脱氧净化后,根据使⽤的F-T合成反应器,调整合成⽓的H2/CO ⽐,在反应器中通过合成⽓与固体催化剂作⽤合成出混合烃类和含氧化合物,最后将得到的合成品经过产品的精制改制加⼯成汽油、柴油、航空煤油、⽯蜡等成品。

F-T合成早已实现⼯业化⽣产,早在⼆战期间,德国的初产品⽣产能⼒已到达每年66万吨[1] (Andrei Y Khodakov, Wei Chu, Pascal Fongarland. Chem. Rev. Advances in the Development of Novel Cobalt Fischer?Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. 2007, 107, 1692?1744 )。

⼆战之后,由于⽯油的迅述兴起,间接液化技术⼀度处于停滞状态。

期间,南⾮由于种族隔离制度⽽被“禁油”,不得不⼤⼒发展煤间接液化技术。

但是随着70年代⽯油危机的出现,间接液化技术再次受到强烈关注。

同时,由间接液化出来的合成液体燃料相⽐由原油得到的燃料产品具有更低的硫含量及芳烃化合物[1],更加环保。

80年代后,国际上,⼀些⼤的⽯油公司开始投资研发GTL相关技术和⼯艺[1]。

⽬前南⾮建有3座间接液化⼚。

马来西亚(Shell公司)和新西兰(Mobil 公司)各建有⼀座天然⽓基间接液化⼚。

费托合成(FT合成)工艺说明

费托合成(FT合成)工艺说明

费-托合成(煤或天然气间接液化)介绍间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。

间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。

在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。

煤间接液化技术的发展煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T命名的,简称F-T合成或费-托合成。

依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。

自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费-托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。

费-托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。

在同一时期,日本、法国、中国也有6套装置建成。

二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。

南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。

考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。

SASOL I厂于1955年开工生产,主要生产燃料和化学品。

20世纪70年代的能源危机促使SASOL建设两座更大的煤基费-托装置,设计目标是生产燃料。

费-托法

费-托法

费-托法费-托法;Fischer-Tropsch process一氧化碳在镍、铑、钴等催化剂存在下进行高温高压加氢生成烃类混合物的方法。

由费歇尔(F.Fischer)和托罗普歇(H.Tropsch)所创立。

可用以制备液体燃料和石蜡等。

例如用氢和一氧化碳的混合气体为原料,在0.1-2兆帕(1-20大气压)和钴催化剂(160-225℃)或铁催化剂(220-325℃)的作用下进行合成,可得合成石油。

主要成分是各种直链烃、大部分是烷烃。

可经分馏为汽油、煤油和石蜡等。

或经加工为化工产品等。

费托合成-正文煤间接液化技术之一。

以合成气为原料在催化剂(主要是铁系) 和适当反应条件下合成以石蜡烃为主的液体燃料的工艺过程。

1923年由德国化学家F.费歇尔和H.托罗普施开发,第二次世界大战期间投入大规模生产。

其反应过程可以用下式表示:n CO+2n H2─→【-CH2-】n+n H2O传统费托合成法是以钴为催化剂(见金属催化剂),所得产品组成复杂,选择性差,轻质液体烃少,重质石蜡烃较多。

其主要成分是直链烷烃、烯烃、少量芳烃及副产水和二氧化碳。

50年代,中国曾开展费托合成技术的改进工作,进行了氮化熔铁催化剂流化床反应器的研究开发,完成了半工业性放大试验并取得工业放大所需的设计参数。

南非萨索尔公司在1955年建成SASOL-I小型费托合成油工厂,1977年开发成功大型流化床Synthol反应器,并于1980年和1982年相继建成两座年产1.6Mt的费托合成油工厂(SASOL-Ⅱ、SASOL-Ⅲ)。

此两套装置皆采用氮化熔铁催化剂和流化床反应器。

反应温度320~340℃,压力2.0~2.2MPa。

产品组成为甲烷11%、C2~C4烃33%、C5~C8烃44%、C9以上烃6%、以及含氧化合物6%。

产品组成中轻质烃较多,适宜于生产汽油、煤油和柴油等发动机燃料,并可得到醇、酮类等化学品。

费托合成总的工艺流程主要包括煤气化、气体净化、变换和重整、合成和产品精制改质等部分。

费托合成原理工艺及设备

费托合成原理工艺及设备

2021/10/4
《煤炭气化工艺》
1.SASOL一厂工艺流程
纯合成气
Arge F-T
Synthol F-T
真空 蒸馏
冷凝
冷凝
CH4 重整
加氢 精制
蒸馏
分离 C1、C2
C3、C4
蒸脱
废水
2021/10/4
分离 异构化
C1、C2
C3、C4 聚合
城市煤气
液化气 醇 酮
汽油 柴油 中蜡 硬蜡
《煤炭气化工艺》
F-T合成反应为强放热反应,要解决排除大量反应热的问题.为了达到产品 的最佳选择性和催化剂使用寿命长的要求,反应需在等温条件下进行。
①尽快去掉反应热,以保持合适的反应温度,防止催化剂烧结、失去 活性和大量的甲烷生成。
②降低反应器中的温度梯度,防止催化剂上积炭,使催化剂活性下降 。工业上用导热油在列管式反应器壳程强制对流换热。及时移走反应热, 以保持适宜的反应温度。
不同点
不同点 设备的类型不同 生产规模不同
SASOL-1
SASOL-2、3
固定床和气流床两类反应器 年产液体燃料25万吨
气流床反应器,是一厂气流床 的放大型
二厂能力是一厂的8倍,三厂 基本与二厂相同。
所用的催化剂不同 固定床采用沉淀铁催化剂, 熔铁催化剂 气流床反应器用熔铁型催化 剂
产品类型不同
产品后加工过程不 同
为了提高活性和选择性,还加入了各种助剂和载体,载 体的加入,导致了催化剂中的金属组分高度分散,并提高 了催化剂的抗烧结性。
2021/10/4
《煤炭气化工艺》
三、F-T合成催化剂
铁系催 化剂
用在固定床反应器的中压合成时,反应温度为220~240 ℃

费托合成

费托合成


LOGO
浆态床反应器
浆态床反应器是床内为高温液体, 浆态床反应器是床内为高温液体,催化剂微粒悬浮其中 是床内为高温液体 合成原料气以鼓泡形式通过,呈气、 ,合成原料气以鼓泡形式通过,呈气、液、固三相的流 化床。 化床。 优点: 优点:
比列管固定床反应器简单,易于制造,价格便宜,且易于放大 比列管固定床反应器简单,易于制造,价格便宜,且易于放大。
合成原料:CO/H2 (合成气 合成气) 合成原料 合成气
合成气制备:煤 天然气、 合成气制备 煤、天然气、生物质等为原料经气化获得
产物以直链烷烃、烯烃为主,无硫、 产物以直链烷烃、烯烃为主,无硫、氮等杂质

LOGO
F-T合成的由来
该反应于1923年由F.Fisscher和 该反应于1923年由F.Fisscher和 年由F. H.Tropsch首次发现后经 首次发现后经Fischer等人 H.Tropsch首次发现后经Fischer等人 完善,并于1936 1936年在鲁尔化学公司实 完善,并于1936年在鲁尔化学公司实 现工业化,F 合成因此而得名。 ,F现工业化,F-T合成因此而得名。
约在同 一时期
日本、法国、 日本、法国、中国也有 6套装置建成 套装置建成

LOGO
F-T合成原理
烷烃的 生成 烯烃的 生成
主要 反应
醛类的 生成 醇类的 生成
副反应

LOGO
F-T合成原理
烷烃
烯烃
醇类 醛类

铁铜剂:220-250℃; ℃ 铁铜剂 熔铁催化剂要求280-340℃; 熔铁催化剂要求 ℃ 当温度超过上述温度范围------甲烷和碳沉积的生成, 甲烷和碳沉积的生成, 当温度超过上述温度范围 甲烷和碳沉积的生成 目的产物的产率降低、催化剂寿命缩短 ; 目的产物的产率降低、

费-托合成

费-托合成

费-托合成最早是由德国科学家Frans Fischer 和Hans Tropsch于1923首先发现的,就以他们名字的第一字母即F-T命名的,简称F-T合成或费-托合成(主要反应是nCO+2nH2= nCH2+nH2O)。

研究方向主要包括几个方面:催化剂(包括催化剂的制备、表征、组成以及活性选择性研究),费-托合成反应机理(包括反应动力学和反应机理,费-托合成反应比较复杂,虽然反应物很简单,但是产物很复杂,相关机理研究一直没有中断,关于机理,说法很多,但一直没有很明确的定论),费-托合成反应器研究(也是比较重要的一个分支,现在主要集中在反应器的结构与改进研究方面,重点集中在浆态床反应器),费-托合成工业化研究(包括工业催化剂、工艺以及工业反应器的开发和改进,这是最大的一块)。

再讲讲研究单位,在国外除了高校和科研院所外主要集中在能源公司和催化剂公司,比如已经工业化应用的南非Sasol,荷兰Shell两家,还有其他一些没有大规模工业应用,只是中试开发的公司,这些公司主要分为以下几种:大的石油公司如Exxon Mobil、Statoil、BP、ConocoPhillips、Chevron;专业做合成油的公司如Rentech、Syntroleum;还有一些专业做催化剂的公司如Johnson Matthey、Albemarle等。

在国内,研究大部分还是集中在高校和科研院所,比如山西煤化所(已经做到工业化示范装置,16万吨级别的,这是国内最先进的),大连化物所(除了基础研究外,也作了工业化应用,主要是和中石化合作,也和BP有合作,现在在浙江镇海有一套天然气液化10吨/天的中试装置),这两家是国内科研院所的领头羊,再就是高校系统(大部分做一些基础研究),做得比较有系统地的包括厦门大学、中国石油大学,北京大学(寇元做了水相Ru的费-托合成),浙江工业大学,四川大学、中南民族大学,还有其他一些学校做的规模比较小就不一一列举了。

费托合成(FT合成)工艺说明

费托合成(FT合成)工艺说明

费-托合成(煤或天然气间接液化)介绍间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。

间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。

在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。

煤间接液化技术的发展煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T命名的,简称F-T合成或费-托合成。

依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。

自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费-托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。

费-托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。

在同一时期,日本、法国、中国也有6套装置建成。

二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。

南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。

考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。

SASOL I厂于1955年开工生产,主要生产燃料和化学品。

20世纪70年代的能源危机促使SASOL建设两座更大的煤基费-托装置,设计目标是生产燃料。

费托合成技术介绍

费托合成技术介绍

费托合成技术介绍闫秀婷【摘要】The process route of F-T synthesis was introduced, including synthesis technology, cryogenic separation technology,methanation technology, tail gas decarbonation technology, low-temperature oil scrub technology, shift conversion technology and PSA hydrogen-generation technology. Advantages , disadvantages and operation conditions of these technologies were discussed.% 介绍了费托合成的工艺路线及其包括的合成技术、深冷分离技术、甲烷转化技术、尾气脱碳技术、低温油洗技术、变换技术和PSA制氢技术,简单对比了不同技术的优缺点和适用条件。

【期刊名称】《当代化工》【年(卷),期】2013(000)006【总页数】2页(P821-822)【关键词】煤制油;费托(F-T)合成;介绍;对比;选择【作者】闫秀婷【作者单位】中国寰球工程公司辽宁分公司,辽宁抚顺 113006【正文语种】中文【中图分类】TE624近年来,随着石油资源的日趋枯竭,寻找替代能源已成为一项国家战略性的课题。

我国煤炭资源丰富,发展煤制油化工产业,对于缓解石油供需矛盾,实现煤炭清洁利用具有重要意义[1],因此具有广阔的发展前景。

费托合成技术是煤气化工艺的核心部分,费托合成工艺的产物直接是下游油品加工的原料,因此本单元工艺技术的好坏直接关系到产品的经济效益,要特别重视F-T 合成技术的选择。

1 费托合成工艺路线1.1 费托合成总工艺路线费托合成工艺的原料为来自煤气化工艺的净化合成气与F-T 合成工艺的尾气经处理后的氢气。

费托合成工艺简介

费托合成工艺简介

费托合成工艺简介费托合成(Fischer–Tropsch process),又称F-T合成,是将煤由气态转变成液态烃的技术之一,以CO和H2的合成气为原料在合适的催化剂及条件的促进下,合成以汽柴油、石蜡烃等为主的液体燃料的工艺过程。

费托合成反应原理主反应:生成烷烃:nCO+(2n+1)H2= C n H2n+2+nH2O生成烯烃:nCO+(2n)H2 = CnH2n+nH2O副反应:生成甲烷:CO+3H2 = CH4+H2O生成甲醇:CO+2H2= CH3OH生成乙醇:2CO+4H2 = C2H5OH+ H2O积炭反应:2CO = C+CO2除了以上反应以外,还有生成更高碳数的醇以及醛、酮、酸、酯等含氧化合物的副反应。

按反应温度可分为低温费托合成工艺和高温费托合成工艺。

通常将反应温度低于280℃的称为低温费托合成工艺,产物主要是柴油以及高品质石蜡等,常采用固定床或浆态床反应器;高于300℃的称为高温费托合成工艺,产物主要是汽油、柴油、含氧有机化学品和烯烃,常采用流化床(循环流化床、固定流化床)反应器。

低温费托合成工艺产品相对来说比较单一,产品以柴油为主,占到75%左右。

其余为石脑油、液化气和部分高品质石蜡。

高温费托合成工艺产品种类更加多样化,不但有汽油、柴油、溶剂油,还有烯烃、烷烃、含氧化合物等,其中烯烃含量能达到40%左右,且以直链烯烃为主,这些产品的附加值比较高。

几种常见的费托合成反应器1固定床反应器(Arge反应器)固定床反应器首先由鲁尔化学(Ruhrchemir)和鲁奇(Lurge)两家公司合作开发而成,简称Arge反应器。

1955年第一个商业化Arge反应器在南非建成投产。

反应器直径3米,由2052根管子组成,管内径5厘米,长12米,体积40m3,管外为沸腾水,通过水的蒸发移走管内的反应热,产生蒸汽。

管内装填了挤出式铁催化剂。

通常多管固定床反应器的径向温差为大约2~4°C。

轴向温度差为15~20°C。

费托合成

费托合成

费托合成工艺上的问题及改进措施
尽快去掉反应 热,以保持合 适的反应温度
用导热油在列管 式反应器壳程强 制对流换热。及 时移走反应热
选用复合型催 化剂和改进的 F-T法即MFT 法进行合成反 应
反应热
催化剂
产品 选择性

LOGO
MFT工艺
MFT
固定床反应器
20世纪80年代初,中国科学院山西煤炭研究所提出来的 传统的F-T 沸石分 合成工艺 子筛
LOGO
流化床反应器
循环流化床
用于固相加工过程或催化剂迅速失活的 流体相加工过程。例如催化裂化过程。
固定流化床
无固体物料连续进料和出料装置,用于固体 颗粒性状在相当长时间(如半年或一年)内 不发生明显变化的反应过程。

LOGO
浆态床反应器
浆态床反应器是床内为高温液体,催化剂微粒悬浮其中 ,合成原料气以鼓泡形式通过,呈气、液、固三相的流 化床。
列管式固定床反应器

LOGO
固定反床应器
反应热 列管式固定床反应器 较大
列管式固定床反应器由多根反应管并联构成。管内或 管间置催化剂,载热体流经管间或管内进行加热或冷 却,管径通常在25~50mm之间,管数可多达上万根。
自1953 年以来,Sasol 公司一直用列管式固定床反应 器来合成燃料,1993 年Shell公司在马来西亚的SMDS 装置中也采用这类反应器,它通过在列管壁产生水蒸 气来带走反应中放出的大量热量。
MFT法 2 铁催化剂/分子筛 (250~270)/(310~320) 2.5/2.5 1.3/1.5 85.4
60~68
H2转化率/% 甲烷 产 品 产 率 / 质 量 分 数 ) % 乙烯 乙烷 丙烯 丙烷 5.0 0.2 2.4 2.0 2.8

煤的间接液化

煤的间接液化
⑵ F-T合成的原理
① F-T合成过程中发生的反应包括一系列平行和连串反应,其中有两个最基本的反应,它们是:
CO+2H2→(-CH2-)+H2O (1)
2CO+H2→(-CH2-)+CO2 (2)
在使用铁催化剂时,反应(1)产物水汽很容易再发生水煤气变换反应(3):
② 气流床Synthol合成
Sasol使用的气流床反应器如图6-3-10所示。催化剂随原料气一起进入反应器,又随反应产物排出反应器,催化剂在反应器内不停地运动,循环于反应器和催化剂沉降室之间。反应器直径为2.25m,总高度36m,反应器上下两段设油冷却装置,用以携出反应热。催化剂和反应气体在反应器中不停地运动,强化了传热和传质过程。一台Synthol反应器相当于4~5台Arge反应器,生产能力为7万t/年·台,改进后可达18万吨/年·台。
② 熔铁催化剂
把钢厂的轧屑磨细到<16目,加入少量的助催化剂,在电炉中共熔。熔融物经冷却粉碎到<200目后,用氢使95%的铁还原即成。助催化剂包括结构型助催化剂MgO和CaO以及助催化剂碱金属氧化物等。若还原铁再用氨在350℃下氮化使生成氮化铁,则其活性高和选择性好。例如氮化熔铁催化剂可使转化率高达85~95%。熔铁催化剂机械强度高,可以在较高空速下使用,因而生产率大为提高。
⑸ F-T合成的新发展目前F-T合成的主要问题是产物选择性差、投资高、成本高,难以和石油化工竞争,为此需积极进行新技术的开发,它们包括:a、开发高效高选择性的催化剂,例如研制控制合成链增长的催化剂,和适合于生产烯烃的催化剂;b、开发新型的F-T合成技术,如进行F-T合成一步法技术的开发;c、F-T合成生产化工原料烯烃。
2 甲醇转化制汽油-MTG(Methanol to Gasoline) 煤气化制合成气,由合成气合成甲醇是工业相当成熟的工艺。甲醇可以直接作为燃料但有缺点,美国Mobil公司开发了ZSM-5沸石催化剂,使甲醇转化成高辛烷值汽油。1985年,在新西兰建成了第一套年产57万吨汽油(辛烷值为93.7)的MTG工厂。

水煤气造甲醇流程

水煤气造甲醇流程

水煤气造甲醇流程水煤气造甲醇,这可真是个有趣的化工过程呢。

咱先来说说水煤气是啥吧。

水煤气简单来说就是一氧化碳和氢气的混合气体,不过它的制取也有点小讲究。

一般是把水蒸气通过炽热的焦炭,然后就会发生一系列的化学反应,就这么产生了一氧化碳和氢气的混合气体,这就是水煤气啦。

那这水煤气怎么就变成甲醇了呢?这中间可经历了不少步骤。

一是要进行净化。

水煤气刚出来的时候可没那么干净,里面可能会有一些杂质,像硫化物之类的东西。

这些杂质要是不除掉,那后面的反应可就没法好好进行了。

所以得用一些专门的方法把这些杂质给去除掉,让水煤气变得干干净净的,就像给它洗了个澡一样。

接下来就是反应合成甲醇啦。

一氧化碳和氢气在一定的条件下就会发生反应生成甲醇。

这个一定的条件可重要了呢,要有合适的温度、压力还有催化剂。

就像两个人要合作做一件事,得在合适的环境里,还有个好的“中间人”也就是催化剂,这样他们才能顺利地把甲醇这个“作品”给做出来。

这个反应的过程就像是一场精心编排的舞蹈,每个分子都按照规则在动。

在合成甲醇的反应里,温度要控制得恰到好处。

温度太高了,那些分子就会变得特别活跃,活跃过头了可能就会产生一些其他的东西,而不是我们想要的甲醇。

温度太低呢,分子们又变得懒洋洋的,反应就会特别慢。

压力也是一样的道理,合适的压力能让分子们挨得更近,更容易发生反应。

而催化剂呢,就像是一个魔法棒,能让这个反应变得更容易进行。

甲醇合成出来之后呀,还不能就这么算了。

还得进行分离和提纯。

刚合成出来的甲醇和反应后的气体混在一起呢,就像一群小伙伴混在一起,我们得把甲醇这个“主角”给单独挑出来。

这时候就要用到一些分离的技术啦,把甲醇分离出来之后,再进行提纯,让甲醇的纯度达到我们想要的标准。

这样我们就得到了最终的甲醇产品,可以用在好多地方呢,比如说可以做燃料,还可以用在化工生产里做原料。

整个水煤气造甲醇的流程就像是一个奇妙的旅程,从最初的水煤气开始,经过净化、合成、分离提纯,最后变成了有用的甲醇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

德国化学家弗朗兹·费歇尔和汉斯·托罗普施所开发的。

费托(Fischer-Tropsch)工艺包括一系列的生成多种烃类的化学反应,其中生产烷烃的用途较广,
其反应方程式如下所示,其中烷烃用通式C n H2n+2表示:
•(2n+ 1) H2+n CO → C n H(2n+2)+n H2O
其中的N通常是10-20,甲烷(N=1)是无用的产物。

生成的烷烃大多数倾向于成直链,适合作为柴油燃料。

除了烷烃以外,还会有少量的烯烃、醇类和其它含氧烃作为副产物生成。

催化剂
各种催化剂可用于费-托工艺,最常见的是过渡金属钴,铁和钌。

也可以使用镍,但倾向于有利于甲烷形成(“甲烷化”)。

高温费托和低温费托
高温费托(或HTFT)在330-350℃的温度下操作并使用铁基催化剂。

萨索尔公司(SASOL)在煤制油厂(CTL)中广泛使用了这一工艺。

低温费托(LTFT)在较低的温度下运行,并使用铁或钴基催化
剂。

这个过程最为人所知的是在马来西亚民都鲁(Bintulu)壳牌公司运营和建造的第一座综合GTL装置
[1]
中使用。

ft合成与甲醇合成采用的原料是一样的,都是煤合成气一氧化碳和氢气,但用的催化剂不同。

费托合成(Fischer-Tropsch synthesis)是煤间接液化技术之一,可简称为FT 反应,它以合成气(CO和H2)为原料在铁系催化剂,在适当反应条件下合成以汽油柴油烃为主的液体燃料的工艺过程。

1923年德国化学家Franz Fischer 和Hans Tropsch开发,第二次世界大战期间投入大规模生产。

甲醇合成时是以锌铜系氧化物为催化剂,将一氧化碳和氢气在低温高压下直接合成甲醇。

相关文档
最新文档