上海徐汇中学七年级上学期数学期末试卷及答案-百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海徐汇中学七年级上学期数学期末试卷及答案-百度文库
一、选择题
1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )
A .3a+b
B .3a-b
C .a+3b
D .2a+2b
2.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )
A .
B .
C .
D .
3.下列方程中,以32x =-
为解的是( ) A .33x x =+ B .33x x =+
C .23x =
D .3-3x x = 4.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( )
A .()121826x x =-
B .()181226x x =-
C .()2181226x x ⨯=-
D .()2121826x x ⨯=-
5.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4 a b c ﹣2 3 …
A .4
B .3
C .0
D .﹣2
6.观察下列算式,用你所发现的规律得出22015的末位数字是( )
21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….
A .2
B .4
C .6
D .8
7.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )
A .1010
B .4
C .2
D .1
8.点()5,3M 在第( )象限.
A .第一象限
B .第二象限
C .第三象限
D .第四象限
9.如图,能判定直线a ∥b 的条件是( )
A .∠2+∠4=180°
B .∠3=∠4
C .∠1+∠4=90°
D .∠1=∠4 10.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( )
A .两点确定一条直线
B .两点之间,线段最短
C .直线可以向两边延长
D .两点之间线段的长度,叫做这两点之间的距离
11.下列方程的变形正确的有( )
A .360x -=,变形为36x =
B .533x x +=-,变形为42x =
C .2123
x -=,变形为232x -= D .21x =,变形为2x = 12.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( )
A .300-0.2x =60
B .300-0.8x =60
C .300×0.2-x =60
D .300×0.8-x =60
13.下列各组数中,互为相反数的是( )
A .2与12
B .2(1)-与1
C .2与-2
D .-1与21-
14.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )
A .不赔不赚
B .赚了9元
C .赚了18元
D .赔了18元
15.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=b a
;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程
3x •a= 2x ﹣ 16
(x ﹣6)无解,则a 的值是( ) A .1
B .﹣1
C .±1
D .a≠1
二、填空题
16.已知x =3是方程(1)21343
x m x -++=的解,则m 的值为_____. 17.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 18.已知关于x 的一元一次方程
320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020
y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 19.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.
20.已知23,9n m n a a -==,则m a =___________.
21.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.
22.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.
23.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.
24.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.
25.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.
26.计算7a 2b ﹣5ba 2=_____.
27.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)
28.方程x +5=12
(x +3)的解是________. 29.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.
30.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.
三、压轴题
31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC .
①求t 的值;
②此时OQ 是否平分∠AOC ?请说明理由;
(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;
(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).
32.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .
(1)如图1,若点F 与点G 重合,求∠MEN 的度数;
(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数;
(3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.
33.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线. (1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;
(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.
34.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?
35.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.
(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);
(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;
(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?
36.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a .
请你用以上知识解决问题:
如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点.
(1)请你在图②的数轴上表示出A ,B ,C 三点的位置.
(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒.
①当t =2时,求AB 和AC 的长度;
②试探究:在移动过程中,3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.
37.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和
40.
(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;
(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.
①求整个运动过程中,P点所运动的路程.
②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);
③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.
38.(阅读理解)
若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.
例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)
如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.
(1)数所表示的点是(M,N)的优点;
(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.
【详解】
∵线段AB长度为a,
∴AB=AC+CD+DB=a,
又∵CD长度为b,
∴AD+CB=a+b,
∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,
故选A.
【点睛】
本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.
2.B
解析:B
【解析】
【分析】
由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.
【详解】
解:A、5+3×6+1×6×6=59(颗),故本选项错误;
B、1+3×6+2×6×6=91(颗),故本选项正确;
C、2+3×6+1×6×6=56(颗),故本选项错误;
D、1+2×6+3×6×6=121(颗),故本选项错误;
故选:B.
【点睛】
本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.
3.A
解析:A
【解析】
【分析】
把
3
2
x=-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是.
【详解】解:
A中、把
3
2
x=-代入方程得左边等于右边,故A对;
B中、把
3
2
x=-代入方程得左边不等于右边,故B错;
C中、把
3
2
x=-代入方程得左边不等于右边,故C错;
D中、把
3
2
x=-代入方程得左边不等于右边,故D错.
故答案为:A.
【点睛】
本题考查方程的解的知识,解题关键在于把x值分别代入方程进行验证即可.
4.D
解析:D
【解析】
【分析】
设分配x名工人生产螺栓,则(26-x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.
【详解】
解:设分配x名工人生产螺栓,则(26-x)名生产螺母,
∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个,
∴可得2×12x=18(26-x).
故选:D.
【点睛】
本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.
5.D
解析:D
【解析】
【分析】
根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.
【详解】
解:∵任意三个相邻格子中所填整数之和都相等,
∴4+a+b=a+b+c,
解得c=4,
a+b+c=b+c+(-2),
解得a=-2,
所以,数据从左到右依次为4、-2、b、4、-2、b,
第9个数与第三个数相同,即b=3,
所以,每3个数“4、-2、3”为一个循环组依次循环,
∵2018÷3=672…2,
∴第2018个格子中的整数与第2个格子中的数相同,为-2.
故选D.
【点睛】
此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.
6.D
解析:D
【解析】
【分析】
【详解】
解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….
2015÷4=503…3,
∴22015的末位数字和23的末位数字相同,是8.
故选D.
【点睛】
本题考查数字类的规律探索.
7.B
解析:B
【解析】
【分析】
根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.
【详解】
解:由题意可得,
当x=1时,
第一次输出的结果是4,
第二次输出的结果是2,
第三次输出的结果是1,
第四次输出的结果是4,
第五次输出的结果是2,
第六次输出的结果是1,
第七次输出的结果是4,
第八次输出的结果是2,
第九次输出的结果是1,
第十次输出的结果是4,
……,
∵2020÷3=673…1,
则第2020次输出的结果是4,
故选:B .
【点睛】
本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.
8.A
解析:A
【解析】
【分析】
根据平面直角坐标系中点的坐标特征判断即可.
【详解】
∵5>0,3>0,
∴点()5,3M 在第一象限.
故选A.
【点睛】
本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.
9.D
解析:D
【解析】
【分析】
根据平行线的判定方法逐一进行分析即可得.
【详解】
A. ∠2+∠4=180°,互为邻补角,不能判定a//b ,故不符合题意;
B. ∠3=∠4,互为对顶角,不能判定a//b ,故不符合题意;
C. ∠1+∠4=90°,不能判定a//b ,故不符合题意;
D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b ,故符合题意,
故选D.
【点睛】
本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.
10.A
解析:A
【解析】
【分析】
根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.
【详解】
解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.
故答案为:A.
【点睛】
本题考查的知识点是直线公理的实际运用,易于理解掌握.
11.A
解析:A
【解析】
【分析】
根据等式的基本性质对各项进行判断后即可解答.
【详解】
选项A ,由360x -=变形可得36x =,选项A 正确;
选项B ,由 533x x +=-变形可得42x =-,选项B 错误;
选项C ,由2123
x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =
12,选项D 错误. 故选A.
【点睛】
本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 12.D
解析:D
【解析】
【分析】
要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程
【详解】
解:设进价为x 元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价, 可列方程:300×0.8-x=60
故选:D
【点睛】
本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:
(1)利润、售价、进价三者之间的关系;
(2)打八折的含义.
13.C
解析:C
【解析】
【分析】
根据相反数的定义进行判断即可.
【详解】
A. 2的相反数是-2,所以2与12
不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意;
C. 2与-2互为相反数,符合题意;
D. 211=--,所以-1与21-不是相反数,不符合题意;
故选:C .
【点睛】
本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.
14.D
解析:D
【解析】
试题分析:设盈利的这件成本为x 元,则135-x=25%x ,解得:x=108元;亏本的这件成本为y 元,则y -135=25%y ,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.
考点:一元一次方程的应用.
15.A
解析:A
【解析】
要把原方程变形化简,去分母得:2ax=3x ﹣(x ﹣6), 去括号得:2ax=2x+6,移项,合
并得,x=
31
a -,因为无解,所以a ﹣1=0,即a=1. 故选A . 点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.
二、填空题
16.﹣.
【解析】
【分析】
把x =3代入方程得到关于m 的方程,求得m 的值即可.
【详解】
解:把x=3代入方程得1+1+=,
解得:m=﹣.
故答案为:﹣.
【点睛】
本题考查一元一次方程的解,解题的
解析:﹣8
3
.
【解析】
【分析】
把x=3代入方程得到关于m的方程,求得m的值即可.【详解】
解:把x=3代入方程得1+1+mx(31)
4
=
2
3
,
解得:m=﹣8
3
.
故答案为:﹣8
3
.
【点睛】
本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.
17.两点确定一条直线.
【解析】
将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.
故答案为两点确定一条直线.
解析:两点确定一条直线.
【解析】
将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.
故答案为两点确定一条直线.
18.y=﹣.
【解析】
【分析】
根据题意得出x=﹣(3y﹣2)的值,进而得出答案.
【详解】
解:∵关于x的一元一次方程①的解为x=2020,
∴关于y的一元一次方程②中﹣(3y﹣2)=2020,
解
解析:y =﹣
20183
. 【解析】
【分析】 根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.
【详解】
解:∵关于x 的一元一次方程
320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程
3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183
. 故答案为:y =﹣
20183. 【点睛】
此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.
19.三
【解析】
【分析】
由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.
【详解】
解:设原价为x ,
两次提价后方案一:;
方案二:;
方案三:.
综上可知三种方案提价最多的是方
解析:三
【解析】
【分析】
由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.
【详解】
解:设原价为x ,
两次提价后方案一:(110%)(130%) 1.43x x ++=;
方案二:(130%)(110%) 1.43x x ++=;
方案三:(120%)(120%) 1.44x x ++=.
综上可知三种方案提价最多的是方案三.
故填:三.
【点睛】
本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.
20.27
【解析】
【分析】
首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】
解:∵an=9,
∴a2n=92=81,
∴am=a2n÷a2n−m=81÷3=2
解析:27
【解析】
【分析】
首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.
【详解】
解:∵a n=9,
∴a2n=92=81,
∴a m=a2n÷a2n−m=81÷3=27.
故答案为:27.
【点睛】
此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.
21.30﹣
【解析】
试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,
故答案为:30
解析:30﹣
【解析】
试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,
故答案为:30﹣.
考点:列代数式
22.110
【解析】
【分析】
由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.
【详解】
解:∵OE是∠COB的平分线,∠BOE=40°,
∴∠BOC=80°,
∴∠A
解析:110
【解析】
【分析】
由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.
【详解】
解:∵OE是∠COB的平分线,∠BOE=40°,
∴∠BOC=80°,
∴∠AOB=∠BOC+∠AOC=80°+30°=110°,
故答案为:110°.
【点睛】
此题主要考查角度的求解,解题的关键是熟知角平分线的性质.
23.81
【解析】
【分析】
根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.
【详解】
根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,
解析:81
【解析】
【分析】
根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.
【详解】
根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,
故答案为:81.
【点睛】
本题考查了方位角及其计算,掌握方位角的概念是解题的关键.
24.1或-7
【解析】
【分析】
设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】
设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,
解
解析:1或-7
【解析】
【分析】
设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.
【详解】
设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,
解得x=1或-7.
【点睛】
本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.
25.40°
【解析】
解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-
90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°
【解析】
解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:
∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.
26.2a2b
【解析】
【分析】
根据合并同类项法则化简即可.
【详解】
故答案为:
【点睛】
本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.
解析:2a2b
【解析】
【分析】
根据合并同类项法则化简即可.
【详解】
()
2222
﹣﹣.
7a b5ba=75a b=2a b
2a b
故答案为:2
【点睛】
本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.27.①④
【解析】
【分析】
根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.
【详解】
①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;
②令a=1,b=-1,此
解析:①④
【解析】
【分析】
根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.
【详解】
①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;
②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;
③两直线平行,内错角相等,故③是假命题,不符合题意;
④对顶角相等,真命题,符合题意,
故答案为:①④.
【点睛】
本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.
28.x=-7
【解析】
去分母得,2(x+5)=x+3,
去括号得,2x+10=x+3
移项合并同类项得,x=-7.
解析:x=-7
【解析】
去分母得,2(x+5)=x+3,
去括号得,2x+10=x+3
移项合并同类项得,x=-7.
29.6cm
【解析】
【分析】
根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm ,AQ=AB=8cm,从而得到答案.
【详解】
解:∵AB=16cm,AM:BM=1
解析:6cm
【解析】
【分析】
根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=1
2
AM=2cm,
AQ=1
2
AB=8cm,从而得到答案.
【详解】
解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,
∵P,Q分别为AM,AB的中点,
∴AP=1
2
AM=2cm,AQ=
1
2
AB=8cm,
∴PQ=AQ-AP=6cm;
故答案为:6cm.
【点睛】
本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.
30.﹣3cm
【解析】
【分析】
首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
【详解】
解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.
故答案为:﹣3
解析:﹣3cm
【解析】
【分析】
首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
【详解】
解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.
故答案为:﹣3cm.
【点睛】
此题主要考查有理数的应用,解题的关键是熟知有理数的意义.
三、压轴题
31.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;
(3)t=70
3
秒.
【解析】
【分析】
(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;
(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.
【详解】
(1)①∵∠AOC=30°,
∴∠BOC=180°﹣30°=150°,
∵OP平分∠BOC,
∴∠COP=1
2
∠BOC=75°,
∴∠COQ=90°﹣75°=15°,
∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;
②是,理由如下:
∵∠COQ=15°,∠AOQ=15°,
∴OQ平分∠AOC;
(2)∵OC平分∠POQ,
∴∠COQ=1
2
∠POQ=45°.
设∠AOQ=3t,∠AOC=30°+6t,
由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,
当30+6t﹣3t=225,也符合条件,
解得:t=65,
∴5秒或65秒时,OC平分∠POQ;
(3)设经过t秒后OC平分∠POB,
∵OC平分∠POB,
∴∠BOC=1
2
∠BOP,
∵∠AOQ+∠BOP=90°,
∴∠BOP=90°﹣3t,
又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,
∴180﹣30﹣6t=1
2
(90﹣3t),
解得t=70 3
.
【点睛】
本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 32.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.
【解析】
【分析】
(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.
(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.
(3)分两种情形分别讨论求解.
【详解】
(1)∵EN平分∠AEF,EM平分∠BEF
∴∠NEF=1
2
∠AEF,∠MEF=
1
2
∠BEF
∴∠MEN=∠NEF+∠MEF=1
2
∠AEF+
1
2
∠BEF=
1
2
(∠AEF+∠BEF)=
1
2
∠AEB
∵∠AEB=180°
∴∠MEN=1
2
×180°=90°
(2)∵EN平分∠AEF,EM平分∠BEG
∴∠NEF=1
2
∠AEF,∠MEG=
1
2
∠BEG
∴∠NEF+∠MEG=1
2
∠AEF+
1
2
∠BEG=
1
2
(∠AEF+∠BEG)=
1
2
(∠AEB﹣∠FEG)
∵∠AEB=180°,∠FEG=30°
∴∠NEF+∠MEG=1
2
(180°﹣30°)=75°
∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,
若点G在点F的左侧侧,∠FEG=180°﹣2α.
【点睛】
考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.
33.(1)80°;(2)140°
【解析】
【分析】
(1)根据角平分线的定义得∠BOM=1
2
∠AOB,∠BON=
1
2
∠BOD,再根据角的和差得
∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定
义∠MOC=1
2
∠AOC,∠BON=
1
2
∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,
∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】
解:(1)∵OM平分∠AOB,ON平分∠BOD,
∴∠BOM=1
2
∠AOB,∠BON=
1
2
∠BOD,
∴∠MON=∠BOM+∠BON=1
2
∠AOB+
1
2
∠BOD=
1
2
(∠AOB+∠BOD).
∵∠AOD=∠AOB+∠BOD=α=160°,
∴∠MON=1
2
×160°=80°;
(2)∵OM平分∠AOC,ON平分∠BOD,
∴∠MOC=1
2
∠AOC,∠BON=
1
2
∠BOD,
∵∠MON=∠MOC+∠BON-∠BOC,
∴∠MON=1
2
∠AOC+
1
2
∠BOD -∠BOC=
1
2
(∠AOC+∠BOD )-∠BOC.
∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,
∴∠MON=1
2
(∠AOB+∠BOC+∠BOD )-∠BOC=
1
2
(∠AOD+∠BOC )-∠BOC,
∵∠AOD=α,∠MON=60°,∠BOC=20°,
∴60°=1
2
(α+20°)-20°,
∴α=140°.
【点睛】
本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 34.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.
【解析】
【分析】
(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;
(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;
②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.
【详解】
解:(1)∵数轴上点A表示的数为6,
∴OA=6,
则OB=AB﹣OA=4,
点B在原点左边,
∴数轴上点B所表示的数为﹣4;
点P运动t秒的长度为5t,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,
∴P所表示的数为:6﹣5t,
故答案为﹣4,6﹣5t;
(2)①点P运动t秒时追上点Q,
根据题意得5t=10+3t,
解得t=5,
答:当点P运动5秒时,点P与点Q相遇;
②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,
当P不超过Q,则10+3a﹣5a=8,解得a=1;
当P超过Q,则10+3a+8=5a,解得a=9;
答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.
【点睛】
在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.
35.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】
【分析】
(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;
(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.
(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;
【详解】
解:(1))∵点A表示的数为10,B在A点左边,AB=30,
∴数轴上点B表示的数为10-30=-20;
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为
t(t>0)秒,。