三角形的主要线段教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一、二课时7.1.1三角形的边
【教学目标】
1、知识与技能、理解三角形的表示法,分类法以及三边存在的关系,发展空间观念。
2、过程与方法:
⑴经历探索三角形中三边关系的过程,认识三角形这个最简单,最基本的几何图形,提高推理能力。
⑵培养学生数学分类讨论的思想。
3、情感态度与价值观:
⑴培养学生的推理能力,运用几何语言有条理的表达能力,体会三角形知识的应用价值。
⑵通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。
【重点】掌握三角形三边关系
【难点】三角形三边关系的应用
【课型】新授课
【学习方法】自学与小组合作学习相结合的方法
【学习过程】
一、目标导入
课件展示图片,学生欣赏并从中抽象出三角形。三角形是一种最常见的几何图形,[投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。
问题:你能举出日常生活中三角形的实际例子吗?
二、自主学习(1):
1.自学内容:教材第63页第4―10行文字.
2.自学要求:学生理解边、角、顶点的意义而不是背其定义;让学生感受数学语言的逻辑性,
严密性。
三、交流展示(1):
1:三角形定义:____________________________________________________ 2:怎样用几何符号表示你所画的三角形?什么是三角形的顶点、边、角? 3、现实生活中,你看到一些形状不同的三角形,你能画出吗? 不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。 注意:三条线段必须①不在一条直线上,②首尾顺次相接。
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC 用符号表示为△ABC 。三角形ABC 的顶点C 所对的边AB 可用c 表示,顶点B 所对的边AC 可用b 表示,顶点A 所对的边BC 可用a 表示. 四、自主学习(2):
1.自学内容:课本63页第11行到64页‘探究‘上;
2.自学要求:学生会对三角形分类;学生明白对于同一事物可采用几种不同的分类标准. 五、交流展示(2)
1. 三角形可采用几种不同的分类标准?如何分类? 2.如何给你所画的这些形状各异的?
我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。
按角分类:
三角形 直角三角形
斜三角形 锐角三角形
钝角三角形
那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。 三边都相等的三角形叫做等边三角形;
a
b
c
(1)
C
B
A
⎧⎨
⎩⎧⎨
⎩
有两条边相等的三角形叫做等腰三角形; 三边都不相等的三角形叫做不等边三角形。
显然,等边三角形是特殊的等腰三角形。 按边分类:
三角形 不等边三角形
等腰三角形 底和腰不等的等腰三角形
等边三角形
六、自主学习(3):
1.自学内容:课本64页探究到例题上;
2.自学要求:学生理解三角形三边之间的关系,能进行简单说理. 七、交流展示(3)
探究:[投影7]任意画一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?
有两条路线:(1)从B→C ,(2)从B→A→C ;不一样, AB+AC >BC ①;因为两点之间线段最短。
同样地有 AC+BC >AB ② AB+BC >AC ③ 由式子①②③我们可以知道什么?
1、三角形三边之间的关系定理:三角形的任意两边之和大于第三边. ,理论依据是__________________________.
2、记住:三角形三边之间的关系定理的推论:三角形的两边之差大于第三边;
3、下列长度的三条线段能否围成三角形?为什么? ⑴ 2,4,7 ⑵ 6,12,6 ⑶ 7,8,13
4、现有两根木棒,它们的长分别为40cm 和50cm ,若要钉成一个三角形木架(•不计接头),则在下列四根木棒中应选取( )
A .10cm 长的木棒
B .40cm 长的木棒
C .90cm 长的木棒
D .100cm
长的木
底边
底角
底角
⎧⎨
⎩⎧⎨
⎩
棒
5.已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围是____.•若x 是奇数,则x的值是______;这样的三角形有______个;•若x•是偶数,•则x•的值是______;这样的三角形又有________个.
八、自主学习(4):
1.自学内容:课本64页例题;
2.自学要求:让学生体会数学的严密性。
1能否利用代数中方程思想解决几何问题。
2能否用分类讨论方法解决问题。
3求出三边后还需用三角形三边之间关系检验。
例用一条长为18㎝的细绳围成一个等腰三角形。(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边长为4㎝的等腰三角形吗?为什么?
分析:(1)等腰三角形三边的长是多少?若设底边长为x㎝,则腰长是多少?(2)“边长为4㎝”是什么意思?
解:(1)设底边长为x㎝,则腰长2 x㎝。
x+2x+2x=18
解得x=3.6
所以,三边长分别为3.6㎝,7.2㎝,7.2㎝.
(2)如果长为4㎝的边为底边,设腰长为x㎝,则
4+2x=18
解得x=7
如果长为4㎝的边为腰,设底边长为x㎝,则
2×4+x=18
解得x=10
因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4㎝的等腰三角形。
由以上讨论可知,可以围成底边长是4㎝的等腰三角形。
九、交流展示(4)
1、已知一个等腰三角形两边长是4cm和9cm,求它的周长?