数字信号处理2011试题-电信-A-参考答案

合集下载

《数字信号处理》期末考试A卷答案

《数字信号处理》期末考试A卷答案
用窗函数法设计fir数字滤波器时在阶数相同的情况下加矩形窗时所设计出的滤波器其过渡带比加三角窗时阻带衰减比加三角窗时
《数字信号处理》期末考试 A卷答案
《数字信号处理》期末考试A卷答案 考试形式:闭卷考试考试时间:120分钟 班号学号姓名得分
一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.δ(n)的z变换是 A 。 A. 1 B.δ(w) C. 2πδ(w) D. 2π 2.下列系统(其中y(n)是输出序列,x(n)是输入序列)中______属于线性系统。( C ) A.y(n)=x2(n) B.y(n)=4x(n)+6 C.y(n)=x(n-n0) D.y(n)=e x(n) 3.在应用截止频率为Ωc的归一化模拟滤波器的表格时,当实际Ωc≠1时,代替表中的复变量s的应为( B ) A.Ωc/s B.s/Ωc C.-Ωc/s D.s/ c Ω 4.用窗函数法设计FIR数字滤波器时,在阶数相同的情况下,加矩形窗时所设计出的滤波器,其过渡带比加三角窗时,阻带衰 减比加三角窗时。( A ) A. 窄,小 B. 宽,小 C. 宽,大 D. 窄,大 5.用双线性变法进行IIR数字滤波器的设计,从s平面向z平面转换的关系为s= ( C ) 。 A. 1 1 1
一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.已知某序列z变换的收敛域为有限z平面,则该序列为( )。 A.有限长序列 B.右边序列 C.左边序列 D.双边序列 2.下列系统(其中y(n)是输出序列,x(n)是输入序列)中______属于线性系统。( ) A.y(n)=x2(n) B.y(n)=4x(n)+6 C.y(n)=n2x(n-n0) D.y(n)=e x(n) 3.下列关于因果稳定系统说法错误的是( ) A.极点可以在单位圆外 B.系统函数的z变换收敛区间包括单位圆 C.因果稳定系统的单位抽样响应为因果序列 D.系统函数的z变换收敛区间包括z=∞ 4.按时间抽取的基-2FFT算法的运算量按频率抽取的基-2FFT算法。( ) A.大于 B.小于 C.等于 D.大小不确定 5.序列x(n)=R7(n),其16点DFT记为X(k),k=0,1,…,15则X(0)为( )。 A.2 B.3

数字信号处理期末A卷试卷答案及评分标准-09电子

数字信号处理期末A卷试卷答案及评分标准-09电子
2 2
4. (8 分) 以 20kHz 的采样率对最高频率为 10kHz 的带限信号������������ (������), 然后计算������(������)的 N=1000 个采样点的 DFT,即 ������(������) = � ������(������)������ −������ ������ ������������ ,������ = 1000
2������ ������������� ������
������������ (������) =
1 − ������
1 − ������
�������������0 −
�������������0 −
2������ ������������� ������ 2������ ������� ������
������=−∞

8
。 四、计算题(共计 60 分) 级联型 和 1. (10 分)求下列序列������(������)的离散傅里叶变换(DFT)������(������ )。 解: ������(������) = ������ ������������0 ������ ������������ (������)
������−1 ������=0
0

4. 无限长单位冲激响应(IIR)滤波器的基本结构有直接 I 型、直接 II 型、
5. DFT 与 DFS 有密切关系,因为有限长序列可以看成周期序列的 主值序列 ,而周期序列 可以看成有限长序列的 周期延拓 。 6. 无限长单位冲激响应(IIR)滤波器的结构上有反馈,因此是 递归 型的。 5 。 ������(������) = �
3������ 3������ + ������������������������ � � ������ −������ 2 ������ = �������1 − ������ −������������������ � 2

(完整word版)数字信号处理期末试卷(含答案)全..(word文档良心出品)

(完整word版)数字信号处理期末试卷(含答案)全..(word文档良心出品)

数字信号处理期末试卷(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。

1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。

A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。

A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。

A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。

A.N B.N 2 C.N 3 D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。

A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称 关于=w π奇对称D 关于0=w 、π2奇对称 关于=w π偶对称 8.适合带阻滤波器设计的是: ( ) A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数 C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。

A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器; 二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。

2011-2012《数字信号处理》A卷答案

2011-2012《数字信号处理》A卷答案

西南交通大学2011-2012学年第( 1 )学期考试试卷课程代码 1371006 课程名称 《数字信号处理》 考试时间 120分钟题号 一 二 三 四 五 六 七 八 九 十 总成绩 得分阅卷教师签字:一、选择题:(20分)本题共10个小题,每题回答正确得2分,否则得零分。

每小题所给答案中只有一个是正确的。

1.如题图所示的滤波器幅频特性曲线,可以确定该滤波器类型为( C )A.低通滤波器B.高通滤波器C.带通滤波器D.带阻滤波器2. 对5点有限长序列[1 3 0 5 2]进行向右1点圆周移位后得到序列( B ) A.[1 3 0 5 2] B.[2 1 3 0 5] C.[3 0 5 2 1] D.[3 0 5 2 0]3.已知某序列Z 变换的收敛域为5>|z|>3,则该序列为( D ) A.有限长序列 B.右边序列 C.左边序列 D.双边序列4.离散序列x(n)为实、偶序列,则其频域序列X(k)为:( A )。

A .实、偶序列 B. 虚、偶序列班 级 学 号 姓 名密封装订线 密封装订线 密封装订线C .实、奇序列 D. 虚、奇序列5. 用窗函数法设计FIR 低通滤波器,当窗函数类型确定后,取窗的长度越长,滤波器的过渡带越 ( A ) A. 窄 B. 宽 C. 不变 D. 无法确定6. 当用循环卷积计算两个有限长序列的线性卷积时,若两个序列的长度分别是N 和M ,则循环卷积等于线性卷积的条件是:循环卷积长度( A )。

A.L≥N+M -1 B.L<N+M-1 C.L=N D.L=M7. 序列3π()cos 5x n n ⎛⎫= ⎪⎝⎭的周期为( C )A. 3B. 5C. 10D. ∞8. 在基2 DIT —FFT 运算时,需要对输入序列进行倒序,若进行计算的序列点数N=16,倒序前信号点序号为8,则倒序后该信号点的序号为( C )。

A. 8 B. 16 C. 1 D. 49. 已知序列()()x n n δ=,其N 点的DFT 记为X(k),则X(0)=( B )A .N-1B .1C . 0D . N10. 关于双线性变换法设计IIR 滤波器正确的说法是( D ) A .双线性变换是一种线性变换 B .不能用于设计高通和带阻滤波器C .双线性变换法将线性相位的模拟滤波器映射为一个线性相位的数字滤波器D .需要一个频率非线性预畸变二、(10分)判断题(对以下各题的说法,认为对的在括号内填“〇”,认为错的在括号内填 “╳”;每小题2分,共10分)1.(〇)用基2时间抽取FFT计算1024点DFT的计算量不到直接计算量的二百分之一。

2011数信带答案

2011数信带答案

河南理工大学 2011-2012学年第 1 学期《数字信号处理》试卷(A卷)1<|z|<∞。

2、系统函数的极点对应系统幅频响应的峰值点,,零点对应系统幅频响应的谷值点。

3、如果一连续信号最高频率为f h则对其采样的采样频率为f s≥2f h。

4、如果要求设计一个便于控制系统传输零点的FIR系统,则应该选择级联型运算结构。

5、FFT时间抽取法所需的运算工作量不论是复乘还是复加都是与N2成正比的。

1、总结双线性变换法设计IIR数字滤波器的优缺点。

1)解决了冲激不变法的混叠失真问题。

2)由于双线性变换中,即模拟角频率与数字角频率存在非线性关系。

所以双线性变换避免了混叠失真,却又带来了非线性的频率失真。

频率升高时,非线性失真严重。

3)它要求AF的幅频响应是分段常数型。

对于分段常数型AF滤波器,经双线性变换后,仍得到幅频特性为分段常数的DF。

但在各个分段边缘的临界频率点产生畸变,这种频率的畸变,可通过频率预畸变加以校正。

2、叙述用模拟滤波器设计IIR数字滤波器的流程。

3、总结并比较IIR数字滤波器级联型结构的优缺点。

答:级联结构特点:(a)每个二阶节系数单独控制一对零点或一对极点,有利于控制频率响应。

(b)同一个系统函数H(Z),分子分母中二阶因子配合成基本二阶节的方式,以及各二阶节的排列次序不同,就得到不同的二阶节。

实际工作时,由于二进制数的字长有一定限度,因此不同的排列,运算误差就会各不相同。

如何才能得到最好的排列,以便运算误差最小,这是最优化问题。

(c)级联的各基本节间要有电平的放大或缩小,以使级间输出变量不要太大或太小。

级间输出变量大大,易使数字滤波器在运算过程中产生溢出。

级间输出变量大小,则输出端的信号噪声比会太小。

解便于计算,先做一个转换:212122122311()555166(2)(3)23()()R e[,2](2)1()()R e[,3](3)1()11(2)(3)11()1213zzX z z A Az z z z z z z z zX z X zA s zz zX z X zA s zz zX zz z zX zz z---==---====++-++-+-+==-==-=+=-=--+=--+因为收敛域为2<|z|<3,第一部分极点是z=2,因此收敛域为|z|>2。

数字信号处理期末考试试题以及参考答案

数字信号处理期末考试试题以及参考答案

数字信号处理期末考试试题以及参考答案1. 说明数字信号处理的基本概念和应用领域。

数字信号处理(Digital Signal Processing,简称DSP)是利用计算机和数字技术对信号进行处理的一种方法。

与传统的模拟信号处理相比,数字信号处理具有精度高、灵活度大以及易于集成等优势。

它广泛应用于通信、音频处理、图像处理、雷达信号处理等领域。

2. 解释采样定理的原理,并举例说明其应用。

采样定理是数字信号处理的基础理论,它规定了采样频率必须满足一定条件,以保证从连续信号中恢复出完整的原始信息。

根据采样定理,采样频率必须大于信号最高频率的两倍,即Nyquist采样频率。

例如,对于音频信号处理,人耳可以接受的最高频率为20kHz,因此需要以至少40kHz的采样频率进行采样,才能保证恢复出高质量的音频信号。

3. 描述离散时间信号和离散序列的特点,并给出示例。

离散时间信号是在离散时间点上获取的信号,相邻时间点之间存在离散性。

离散时间信号可以用离散序列来表示,离散序列是按照离散时间点取样的数字信号。

例如,某地区每天的气温是一个离散时间信号,每天不同的时间点测量一次气温,将其离散化后可以得到一个离散序列,表示该地区每天的气温变化。

4. 详述时域和频域分析在数字信号处理中的作用。

时域分析是对信号在时间上进行分析,通过观察信号的波形和幅度变化,可以了解信号的时序特性、周期性以及脉冲等特征。

频域分析是将信号变换到频率域进行分析,通过观察信号的频谱和频率特征,可以了解信号的频率分布、频率成分以及谐波情况等。

在数字信号处理中,时域分析和频域分析是互补的工具。

通过时域分析可以了解信号的时间特性,而频域分析则更适合对信号的频率特性进行研究,两者结合可以全面分析信号的性质和特点。

5. 介绍常见的数字滤波器类型,并分别阐述其特点和应用场景。

常见的数字滤波器类型有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

- 低通滤波器:可以通过滤除高频噪声、保留低频信号来平滑信号。

数字信号处理期末试卷(含答案)全..

数字信号处理期末试卷(含答案)全..

数字信号处理期末试卷(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。

1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。

A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。

A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。

A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。

A.N B.N 2 C.N 3 D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。

A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称 关于=w π奇对称D 关于0=w 、π2奇对称 关于=w π偶对称 8.适合带阻滤波器设计的是: ( ) A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数 C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。

A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器; 二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。

(完整)数字信号处理试卷及答案,推荐文档

(完整)数字信号处理试卷及答案,推荐文档

数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为A.有限长序列B.无限长序列C.反因果序列D.因果序列 9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 A.N≥M B.N≤M C.N≤2M D.N≥2M 10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0 B .∞ C. -∞ D.1 三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

数字信号处理试卷a标准答案及评分

数字信号处理试卷a标准答案及评分

标准答案及评分标准一、简答题1、答:IIR 滤波器: h (n )无限长,极点位于z 平面任意位置,滤波器阶次低,非线性相位,递归结构,不能用FFT 计算,可用模拟滤波器设计,用于设计规格化的选频滤波器。

FIR 滤波器:h (n )有限长,极点固定在原点,滤波器阶次高得多,可严格的线性相位,一般采用非递归结构,可用FFT 计算,设计借助于计算机,可设计各种幅频特性和相频特性的滤波器。

---5分 2、答: L 点循环卷积是线性卷积以L 为周期的周期延拓序列的主值序列。

当L>=M+N-1时,L 点循环卷积能代表线性卷积。

---5分 3、答:a) 确定数字滤波器的技术指标:b) 利用双线性变换法将数字滤波器的技术指标转变成模拟滤波器的技术指标:)2tan(2ωT =Ωc) 按模拟滤波器的技术指标设计模拟低通滤波器d) 利用双线性变换法将模拟低通滤波器转换成数字低通滤波器---5分4、答:① 对连续信号进行等间隔采样得到采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性延拓形成的。

②要想抽样后能够不失真地还原出原信号,则抽样频率必须大于两倍信号谱的最高频率,h s h s f f 22>Ω>Ω,即---5分二、计算证明题1.解: (1)满足叠加原理 因此该系统是线性系统。

-----4分 (2)因此该系统不是移不变系统。

-----4分(3) 因为系统的输出只取决于当前输入,与未来输入无关。

所以是因果系统 -----3分 (4)若)(n x 有界,即∞<≤M n x )(,则[]M n g n x T )()(≤当∞<)(n g 时,输出有界,系统为稳定系统;当∞=)(n g 时,输出无界,系统为不稳定系统。

-----4分()()()()()1212T ax n bx n g n ax n bx n +=+⎡⎤⎡⎤⎣⎦⎣⎦ 解:()()()()12ag n x n bg n x n =+()()12aT x n bT x n =+⎡⎤⎡⎤⎣⎦⎣⎦()()()T x n m g n x n m -=-⎡⎤⎣⎦()()()y n m g n m x n m -=--()T x n m ≠-⎡⎤⎣⎦()()()T x n g n x n =⎡⎤⎣⎦22s h s hf f Ω>Ω> 即2.解 ))(()(12232523211---=+--=---z z z zzz Z X122211223-+--=---=z z z z zZ X ))(()(502.)(-+--=z zz z Z X(1) Roc :250<<z .)()()(1221--+⎪⎭⎫ ⎝⎛=n u n u n x nn------5分(2) Roc :2>z)()()(n u n u n x nn221-⎪⎭⎫ ⎝⎛= ------5分(3)系统的并联结构为- -----5分3.解----5分-----10分4.解11122232=+-+=+-+=++=s T s B s A s s s s s s G βα)((1)111211111211-----------=---=ze zezeB zeA z H ssT T βα)(脉zz z z z z z s G z H z z T s s 261111212112222112--=++--++-==+-=)()()()(双(2) -- -10分a) 冲激响应不变法:优点:h (n )完全模仿模拟滤波器的单位抽样响应)(t g 时域逼近良好,保持线性关系:s T Ωω=线性相位模拟滤波器转变为线性相位数字滤波器 缺点:频率响应混迭只适用于限带的低通、带通滤波器 - b) 双线形变换法:优点:避免了频率响应的混迭现象缺点: 线性相位模拟滤波器产生非线性相位数字滤波器 -- -55.解 因为 其它42/)(πωωω≤⎩⎨⎧=-j j d e eH 所以M=4 ,增大时,非线性严重当,之间有近似的线性关系和较小时,当ωωΩω(1)ππωπππωω)()(sin )(242212-⎥⎦⎤⎢⎣⎡-==⎰--n n d een h nj jdππωπππωω)()(sin )(242212-⎥⎦⎤⎢⎣⎡-==⎰--n n d een h nj j,M n ,,, 10=41222312140/)(,/)()(,/)()(=====h h h h h ππ -- -10分(2)432142122412221----=-++++==∑zzzzzn h z H n nππππ)()(ππππ224213412221210=====)(,)(,)(,)(,)(b b b b b其横截型结构为-- 10分。

(完整word版)数字信号处理试卷及参考答案(2)

(完整word版)数字信号处理试卷及参考答案(2)

《数字信号处理》课程期末考试试卷(A )一、填空题(本题满分30分,共含4道小题,每空2分)1. 两个有限长序列x 1(n),0≤n ≤33和x 2(n),0≤n ≤36,做线性卷积后结果的长度是,若对这两个序列做64点圆周卷积,则圆周卷积结果中n=至为线性卷积结果。

2. DFT 是利用nkN W 的、和三个固有特性来实现FFT 快速运算的。

3. IIR 数字滤波器设计指标一般由、、和等四项组成。

4. FIR 数字滤波器有和两种设计方法,其结构有、和等多种结构。

一、判断题(本题满分16分,共含8道小题,每小题2分,正确打√,错误打×) 1. 相同的Z 变换表达式一定对应相同的时间序列。

()2. Chirp-Z 变换的频率采样点数M 可以不等于时域采样点数N 。

()3. 按频率抽取基2 FFT 首先将序列x(n)分成奇数序列和偶数序列。

()4. 冲激响应不变法不适于设计数字带阻滤波器。

()5. 双线性变换法的模拟角频率Ω与数字角频率ω成线性关系。

()6. 巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等波纹特性。

()7. 只有FIR 滤波器才能做到线性相位,对于IIR 滤波器做不到线性相位。

()8. 在只要求相同的幅频特性时,用IIR 滤波器实现其阶数一定低于FIR 阶数。

()二、 综合题(本题满分18分,每小问6分)若x (n)= {3,2,1,2,1,2 },0≤n≤5, 1) 求序列x(n)的6点DFT ,X (k)=?2) 若)()]([)(26k X W n g DFT k G k==,试确定6点序列g(n)=?3) 若y(n) =x(n)⑨x(n),求y(n)=?三、 IIR 滤波器设计(本题满分20分,每小问5分)设计一个数字低通滤波器,要求3dB 的截止频率f c =1/π Hz ,抽样频率f s =2 Hz 。

1. 导出归一化的二阶巴特沃思低通滤波器的系统函数H an (s)。

数字信号处理习题集(附答案)(精编文档).doc

数字信号处理习题集(附答案)(精编文档).doc

【最新整理,下载后即可编辑】第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。

此滤波器亦称为“抗混叠”滤波器。

在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。

判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

()答:错。

需要增加采样和量化两道工序。

3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。

()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础。

第二章离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T表示采样周期(假设T足够小,足以防止混叠效应),把从t x到的整个系统等效为一个模拟滤波器。

)(t y)((a ) 如果kHz T rad n h 101,8)(=π截止于,求整个系统的截止频率。

(b ) 对于kHz T 201=,重复(a )的计算。

解 (a )因为当0)(=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X T j X T e Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。

《数字信号处理》真题(11级)

《数字信号处理》真题(11级)

《数字信号处理》真题(11级)一、单项选择题1、关于系统y[k]=k2x[k]的说法,以下正确的是(分数:2分;难度:较易)A、线性、非因果B、因果、非时变C、时变、稳定D、线性、不稳定答错了参考答案:D你的解答:2、已知频带宽度有限信号x1(t)和x2(t)的最高频率分别为f1和f2,其中f1<f2,则对信号x1(t)-x2(t)进行无失真抽样的最低抽样频率为(分数:2分;难度:易)A、2f1B、2f2C、2f1+2f2D、2f1f2答错了参考答案:B你的解答:3、(分数:2分;难度:易)A、实、奇B、实、偶C、虚、偶D、虚、奇答错了参考答案:B你的解答:4、如果FIR滤波器的单位脉冲响应h[k]满足()条件时,滤波器具有II 型线性相位特性,其相位特性函数φ(Ω)为()。

(分数:2分;难度:易)A、h[k]= h[M-k],-αΩB、h[k]= h[M-k],-αΩ+βC、h[k]= -h[M-k],-αΩD、h[k]= -h[M-k],-αΩ+β答错了参考答案:A你的解答:5、关于用窗函数法设计FIR 数字滤波器的说法,以下正确的是()。

(分数:2分;难度:中等)A、调整窗口函数长度N 可以控制过渡带宽度B、调整窗口函数长度N 可以控制阻带衰减C、调整窗口函数长度N 可以控制带内波动;D、调整窗口函数长度N 可以控制阻带波动。

答错了参考答案:A你的解答:6、已知连续时间信号x(t)=cos(4000t),用T=1/6000对其采样,则()。

(分数:2分;难度:中等)A、信号的频谱没有混叠B、信号的频谱存在混叠C、这是一个欠采样过程D、x[k]=cos(2k)答错了参考答案:A你的解答:7、(分数:2分;难度:较易)A 、B 、C 、D 、答错了参考答案:B你的解答:8、已知某序列Z变换的收敛域为5>|z|>3,则该序列为()。

(分数:2分;难度:中等)A、右边序列;B、左边序列;C、有限长序列;D、双边序列。

数字信号处理试卷及详细答案(三套)要点

数字信号处理试卷及详细答案(三套)要点
用双线性变换法将一模拟滤波器映射为数字滤波器时模拟频率与数字频率之间的映射变换关系为7当线性相位fir数字滤波器满足偶对称条件时其单位冲激响应8请写出三种常用低通原型模拟滤波器巴特沃什滤波器一个信号序列如果能做序列的傅里叶变换dtft也就能对其做dft变换
数字信号处理试卷答案
完整版 一、填空题: (每空 1 分,共 18 分)
y (n) 3 y( n 1) 2 y(n 2) x(n) 2 x(n 1) 系统初始状态为 y( 1) 1, y( 2) 2 ,系统激励为 x(n) (3)n u(n) ,
(╳)
试求:( 1)系统函数 H ( z) ,系统频率响应 H (e j ) 。
( 2)系统的零输入响应 yzi (n) 、零状态响应 y zs (n) 和全响应 y( n) 。
3、 一个信号序列,如果能做序列的傅里叶变换(
DTFT ),也就能对其做 DFT 变换。(╳)
4、 用双线性变换法进行设计 IIR 数字滤波器时, 预畸并不能消除变换中产生的所有频率点的非
线性畸变。
(√)
5、 阻带最小衰耗取决于窗谱主瓣幅度峰值与第一旁瓣幅度峰值之比。 三、( 15 分)、已知某离散时间系统的差分方程为
2
2
y( k )
y zi ( k)
yzs ( k)
9 [
12(2 ) k
2
15 (3) k ] (k ) 2
四 、回答以下问题:
( 1) 画出按 时域抽取 N 4 点 基 2FFT 的信号流图。
( 2) 利用流图计算 4 点序列 x(n) (2,1,3,4) ( n 0,1,2,3)的 DFT 。
( 3) 试写出利用 FFT 计算 IFFT 的步骤。
1 2z 1

数字信号处理期末试卷(含答案)全

数字信号处理期末试卷(含答案)全

数字信号处理期末试卷(含答案)全数字信号处理期末试卷(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。

1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。

A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。

A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。

A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。

A.NB.N 2C.N 3D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。

A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ):A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称关于=w π奇对称D 关于0=w 、π2奇对称关于=w π偶对称 8.适合带阻滤波器设计的是:() A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数 C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。

A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器;二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。

合肥工业大学2011学年数字信号处理原版试卷与答案

合肥工业大学2011学年数字信号处理原版试卷与答案

一、 填空题(在空格上填上正确答案,每空1分,共15分)1. 用DFT 分析()cos(10)cos(15)cos(20)x t t t t πππ=++的频率特性时,设抽样频率为最高频率的4倍,则DFT 的点数至少为 。

2. 某系统的()jwjw H eeτ-=,则其单位脉冲响应()h n = ,若系统的输入0()jw nx n e=,则输出()y n = 。

3. 设线性时不变系统的单位脉冲响应)1(5.0)(5.0)(h -+=n n n δδ,当输入)()(x 2n R n =时,系统输出)(n y = ; )(n x 与)(h n 的循环卷积为 。

4. 序列)(n x 长为N ,其N 点DFT 为)k (X ,将)(n x 以N 为周期进行延拓,得)(~n x ,则周期序列的DFS )k (X ~与)k (X 的关系为 。

5.)(n x 的长度为32,时域抽取基2 FFT 算法分成 级蝶形运算,每级包括 个蝶形运算。

其输入数据是 序的,输出数据是 序的。

6.()x t 的频率特性为()X j Ω,其采样信号的频率特性为ˆ()Xj Ω,已知|()|0.22cX jΩ=,若采样频率4s cΩ=Ω,则ˆ|()|2c X j Ω= ,若采样频率s c Ω=Ω,则ˆ|()|2cX jΩ= 。

7.FIR 系统具有线性相位特性的时域条件是 、 。

8.用窗函数法设计FIR 滤波器时,滤波器的过渡带宽由 、 决定,滤波器的阻带衰减大小由 决定。

二、已知宽带模拟信号()x t 的最高截止频率为1000Hz ,用DFT 对其进行谱分析,要求谱分辨率为10Hz ,求最小记录时间、最低采样频率及时域最少采样点数。

设抽样频率为5000Hz, 对()x t 抽样得到()x n ,其1000点DFT 记为()X k ,10k =所对应的模拟频率为多少?(8分)三、已知)(n x 是N 点有限长序列,)]([)(n x DFT k X =。

数字信号处理试题及参考答案

数字信号处理试题及参考答案

数字信号处理期末复习题一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分)1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。

(Ⅰ)原信号为带限(Ⅱ)抽样频率大于两倍信号谱的最高频率(Ⅲ)抽样信号通过理想低通滤波器①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。

①Ωs ②.Ωc③.Ωc/2 ④.Ωs/23.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。

①.R3(n) ②.R2(n)③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1)4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。

①.有限长序列②.右边序列③.左边序列④.双边序列5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。

①当|a|<1时,系统呈低通特性②.当|a|>1时,系统呈低通特性③.当0<a<1时,系统呈低通特性④.当-1<a<0时,系统呈低通特性6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。

①.2 ②.3③.4 ④.57.下列关于FFT的说法中错误的是( ① )。

①.FFT是一种新的变换②.FFT是DFT的快速算法③.FFT基本上可以分成时间抽取法和频率抽取法两类④.基2 FFT要求序列的点数为2L(其中L为整数)8.下列结构中不属于FIR滤波器基本结构的是( ③ )。

①.横截型②.级联型③.并联型④.频率抽样型9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ④ )。

数字信号处理期末试题3套含答案(大学期末复习资料)

数字信号处理期末试题3套含答案(大学期末复习资料)

莆田学院期末考试试卷(A )卷2011— 2012 学年第 二 学期课程名称: 数字信号处理 适用年级/专业:09/电信、通信 试卷类别 开卷( ) 闭卷(√) 学历层次 本科 考试用时 120分钟《.考生注意:答案要全部抄到答题纸上,做在试卷上不给分.........................》.一、填空题(每小题2分,共20分)1.差分方程本身不能确定系统是否是因果系统,还需要用足够的①条件进行限制。

2.对于同一个周期信号,其DFS 和FT 分别取模的形状是一样的,不同的是FT 用单位①函数表示。

3.对滤波器的单位脉冲响应()h n 进行Z 变换,一般称()H z 为滤波器的①函数。

4.①滤波器系统函数()H z 的构成特点是其分子、分母多项式的系数相同,排列顺序相反。

5.由傅里叶变换理论知道,若信号频谱有限宽,则其持续时间必然①。

6.如果截取长度为N 的一段数据序列,可以在其后面补上2N 个零,再进行3N 点DFT ,从而减轻了①效应。

7.设序列的长度2M N =,采用时域抽取法基2FFT 算法经过①次分解,最后得到N 个1点DFT 。

8.FIR 网络结构特点是没有①支路,即没有环路。

9.巴特沃斯低通滤波器当阶数N 为偶数时,幅度平方函数的①不在实轴上。

10.MATLAB 窗函数设计FIR 数字滤波器默认的窗函数是①窗。

二、单项选择题(每小题2分,共30分)1.已知模拟信号频率为50Hz ,采样频率为200Hz ,采样得到的序列其数字域频率ω等于______。

A. 0.2πB.0.3πC.0.4πD.0.5π2.对于数字域频率ω而言,复指数序列j n e π是以______为周期的周期信号。

A. πB.2 C.2π D.N3.已知01006πω=,则sin(0n ω)是以______为周期的正弦序列。

A. 512B.1006C. 1024D. 20124.如果某系统对于输入信号的响应与信号加于系统的时间稍微有点关系,则该系统属于______系统。

数字信号处理习题及答案完整版

数字信号处理习题及答案完整版

数字信号处理习题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=4. 如果输入信号为,求下述系统的输出信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


80Leabharlann ) | 320 log 10 | H a ( j 400 tg ( ) | 40 4 1 2 又 H a ( j ) 2N 1( ) c

20 log10 | H a ( j ) | 10 log10 [1 (
2N ) ] ,因而: c
次完成。
解:依据题意:
x(n) X (k ); y (n) Y (k ) ,
取序列: Z (k ) X (k ) jY (k ) , 对 Z (k ) 作 N 点 IFFT 可得序列 z (n) ,又根据 DFT 性质:
IDFT [ X (k) jY (k) ] IDFT( [ X (k) ] jIDFT [Y (k) ] ( x n) jy (n) ,由原题可知: ( x n) ,( y n) 都是实序列,
第 7 页 (共 9 页)
5 (15 分) 设计一个数字巴特沃思低通滤波器,给定指标为: 1)衰减 1 3dB ,当 0 f 2.5 Hz 2)衰减 2 40dB ,当 f 50 Hz 3)抽样频率 f s 200 Hz 。试用双线性变换法进行设计,最后写出 H ( z ) 的表达式,并画出其结构。
解:1) h1 (n) 和 h2 (n) 之间具有循环移位关系, h1 (n) h2 [((n 4))8 ] ,所以
H1 (k ) W84 k H 2 (k ) ,故有: H1 (k ) W84 k H 2 (k ) W84 k H 2 (k ) H 2 (k )
所以, h1 ( n) 和 h2 ( n) 的 8 点 DFT 的幅度是相等的。
4 (15 分)用矩形窗设计线性相位低通滤波器,逼近滤波器的传输函数 H (e j ) 为:
e j , 0 c , H (e ) c 0,
j
1) 求出相应的理想低通的单位抽样响应 hd ( n) ; 2) 求出矩形窗设计法的 h(n) 的表达式,确定 与 N 之间的关系; 3) N 取奇数或偶数对滤波特性有什么影响?
j
9
下面说法中不正确的是(
B )
A.连续非周期信号的频谱为非周期连续函数; B.连续周期信号的频谱为周期离散函数; C.离散非周期信号的频谱为周期连续函数; D.离散周期信号的频谱为周期离散函数。
10 一个长度 N1 100 点的序列 x ( n) 与长度为 N 2 64 点的序列 h( n) 用 N=128 点的 DFT 计算
再根据 ( z n) ( x n) jy (n) 可得: ( x n) Re[( z n) ], ( y n) Im[( z n) ], 综上所述,构造序列:
Z (k) X (k) jY (k) ,
可用一次 N 点 IFFT 完成计算 ( x n) ,( y n) 值的过程。
第 6 页 (共 9 页)
j
得分
e jn0

姓名:
2、 为作频谱分析,对模拟信号以 10kHz 的速率进行抽样,并计算了 1024 个抽样的离散 傅立叶变换,频率分辨率为 9.77 Hz。
3、 X [ k ], 0 k 7 是 序 列 x[ n] { - 5, 7, - 2, 3, 6, -1, 3, 1} 的 8 点 DFT 。 则
A. 矩形窗 B. 汉宁窗 C. 海明窗
D. 布莱克曼窗
6 设 H a ( s ) 是模拟低通滤波器的系统函数, 若 H ( z) H a (
滤波器是哪一种通带滤波器?( A. 低通 B. 高通 B ) C. 带通
z 1 问系统函数为 H ( z ) 的 ), z 1
D. 带阻
7 下列滤波器中,幅度响应在通带内及阻带内都具有等纹波特性的是( D )。
哈尔滨工业大学(威海) 2011 / 2012 学年 秋 季学期
数字信号处理
题 号 分 数 班级: 一 二 三 四 五 六 七 八
试题卷( A )
%
考试形式(开、闭卷) :闭卷 答题时间: 100 (分钟) 本卷面成绩占课程成绩 70 学号: 卷 面 总 分 平 时 成 绩 课 程
总 成 绩
一、填空题(每题 2 分,共 20 分) 1、 序列 ( n n0 ) 的频谱 X (e ) 为
3 下图中运算流图符号是基 2 频域抽取 FFT 算法的蝶形运算流图的是( B ) 。
k WN
1
1
k WN
k WN
1
1
k WN
A
B.
C.
D
第 2 页 (共 9 页)
4 下列结构中不属于 FIR 滤波器基本结构的是 ( C )
A.直接型 B.级联型 C.并联型 D.频率抽样型 )。
5 在窗函数法 FIR 滤波器设计中,窗函数主瓣最宽的是 ( D
A 巴特沃思滤波器 B 切比雪夫滤波器 C 反切比雪夫滤波器 D 椭圆滤波器 )。
8 以下对最小相位系统 H min ( z ) 的描述中不正确的是( A
A.在 H (e ) 相同的系统中, H min ( z ) 不唯一;
j
B.在 H (e ) 相同的系统中, H min ( z ) 具有最小的相位滞后; C.因果稳定系统 H ( z ) 都可表示成全通系统 H ap ( z ) 和最小相位系统 H min ( z ) 的级联; D.最小相位系统 H min ( z ) 全部零点和极点都在单位圆内;
h1(n) h2(n)
0 1234567
1)证明 h1 (n) 和 h2 (n) 的 8 点 DFT 的幅度是否相等?
0 1234567
2)如果用 h1 (n) 或 h2 (n) 作抽样响应构造一个 FIR 低通滤波器,下列论述中哪一个是正 确的,为什么? a) h1 (n) 是一个比 h2 (n) 好的低通滤波器; b) h2 (n) 是一个比 h1 (n) 好的低通滤波器; c)作为低通滤波器,它们性能大体上相同。
x(n) -0.85 z-1 -1 y(n)
A.低通特性 C.带通特性
2 已知 DFT [ x(n)] X (k ) ,下面说法中正确的是( B )。
A.若 x( n) 实偶对称, X ( k ) 为虚奇对称; B.若 x( n) 实奇对称,则 X ( k ) 为虚奇对称; C.若 x( n) 虚偶对称, X ( k ) 为虚奇对称; D.若 x( n) 虚奇对称,则 X ( k ) 为虚奇对称。
,
0 k N 1
Y (k ) DFT y (n)
N 1 i 0
rN 1 n 0
y(n)W
N 1 i 0
nk rN
irk ik x(ir / r )WrN x(i )WN
,
0 k rN 1
Y (k ) X ((k )) N RrN (k )
6、 实序列 x(n) 的 10 点 DFT 为 X (k ), (0 k 9) ,已知 X (1) 1 j ,则 X (9) 1+j_。 7、 基 2 DIT-FFT 的基本运算单元是蝶形运算,完成 N=16 点 FFT 需要 4 级蝶形运算,第 2 级共有 8 个蝶形单元、 2 个不同的旋转因子。
遵 守 考 试 纪 律 注 意 行 为 规 范
e
k 0
7
j k / 4
X [k ]
8

4、 DFT 并不是一种新的傅立叶变换,其与 DFS 有密切关系,因为有限长序列可以看成周 期序列 截取主周期 ,而周期序列可以看成是有限长序列的 周期延拓 。
5、 长度为 N 的序列 x(n) 的 N 点离散傅立叶变换为 X (k ) ,若 x(n) 为偶对称,且 N 为偶 数,即 x( n) x( N 1 n) ,则 X ( N 2) 0 。
N 1 , N 为矩形窗函数的长度。加矩形窗函 2 sin[c (n )] RN (n) (n )
N 1 sin[c (n )] , 0 n N 1, 2 (n ) 0, 其它n
3)N 取奇数时,幅度特性函数 H g ( ) 关于 0, , 2 三点偶对称,可实现各类幅 频特性;N 取偶数时,幅度特性函数 H g ( ) 关于 奇对称,所以不能实现高通、 带阻和点阻滤波特性。
Y (k ) 是 将X (k )(周期为 N ) 延拓 r 次形成的,即Y (k )周期为 rN 。
第 5 页 (共 9 页)
3 (10 分)已知已知 X (k ) , Y (k ) 是两个 N 点实序列 x(n) , y (n) 的 DFT 值,今需要从 X (k ) , Y (k ) 求 x(n) , y (n) 的值,为了提高运算效率,试用一个 N 点 IFFT 运算一
间补进 r 1 个零值点,得到一个 rN 点的有限长序列:
x(n / r ) n ir , i 0,1, , N 1 y ( n) , 其他n 0
试求 rN 点 DFT [ y (n)] 与 X (k ) 的关系。 解:
nk X (k ) DFT x n x(n)WN n 0 N 1
解: T
1 5 10 3 fs ,
c 2 f cT 2 2.5
采用双线性变换法: 由指标要求得:
1 1 , st 2 f stT 2 50 200 40 200 2 2 tg ( ) T 2
20 log 10 | H a ( j 400 tg (
教研室主任签字:
第 1 页 (共 9 页)
8、 如果一台通用机算计的速度为平均每次复乘 5us,每次复加 0.5us,用它来计算 512 点的 DFT[x(n)],直接计算需要 1441536 us,用 FFT 需要 13824 us(不考虑某些旋转 因子的特殊性) 。 9、 在利用窗函数法设计 FIR 滤波器时,由于使用窗函数截短造成了滤波器通带和阻带内 的波动,我们称这种现象为 _吉布斯效应 。
相关文档
最新文档