如何解几何证明题

合集下载

初二几何证明题的解题思路

初二几何证明题的解题思路

初二几何证明题的解题思路一、题目11. 题目- 已知:在平行四边形ABCD中,E、F分别是AB、CD的中点,连接DE、BF。

求证:四边形DEBF是平行四边形。

2. 解析- 思路:要证明四边形DEBF是平行四边形,根据平行四边形的判定定理,可以从对边平行且相等入手。

- 证明:因为四边形ABCD是平行四边形,所以AB = CD,AB∥ CD。

- 又因为E、F分别是AB、CD的中点,所以BE=(1)/(2)AB,DF=(1)/(2)CD。

- 所以BE = DF。

- 且BE∥ DF(因为AB∥ CD)。

- 根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,所以四边形DEBF是平行四边形。

二、题目21. 题目- 已知:在 ABC中,AD是BC边上的中线,E是AD的中点,连接BE并延长交AC于F。

求证:AF=(1)/(2)FC。

2. 解析- 思路:过点D作DG∥ BF交AC于G,利用中位线定理和平行线分线段成比例定理来证明。

- 证明:过点D作DG∥ BF交AC于G。

- 因为AD是BC边上的中线,所以D是BC中点。

- 又因为DG∥ BF,根据中位线定理,可得G是FC中点,即FG = GC。

- 因为E是AD的中点,DG∥ BF,根据平行线分线段成比例定理,可得AF = FG。

- 所以AF=(1)/(2)FC。

三、题目31. 题目- 已知:在矩形ABCD中,AC、BD相交于点O,AE平分∠ BAD交BC于E,∠ CAE = 15^∘。

求∠ BOE的度数。

2. 解析- 思路:先求出∠ BAE的度数,进而得出 ABE的形状,再求出∠ ACB的度数,最后根据三角形的内角和求出∠ BOE的度数。

- 证明:- 因为四边形ABCD是矩形,AE平分∠ BAD,所以∠ BAE = 45^∘。

- 又因为∠ CAE=15^∘,所以∠ BAC=∠ BAE +∠ CAE = 45^∘+15^∘=60^∘。

- 在矩形ABCD中,AC = BD,OA=OC=(1)/(2)AC,OB =OD=(1)/(2)BD,所以OA = OB。

浅谈初中数学几何证明题解题方法--

浅谈初中数学几何证明题解题方法--

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。

做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程关键词:几何证明 条件 结论 。

执因索果 执果索因 辅助线初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步.这种思维方式学生刚接触,会遇到一些困难。

许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。

为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。

学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。

一、几何证明题的一般结构初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。

已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。

求证指题目要求的经过推理最终得出的结论.已知条件是题目既定成立的、毋庸置疑而且必然正确的。

求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。

例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB,AB = DC ,AC = DB ,AC 与DB 交于点M图形给出的有:BC=CB ,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤(一)、审题审题就是读题,这一步是解决几何证明题的关键,非常重要。

许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。

和读其它类型的题有所不同,读几何证明题要求图文对照,做到心中有几何基础知识,一边读题一边对照几何图形,要求每读一句题对照图形一次,读懂而且要读完整。

几何证明尺规作图的解题规范与解题技巧

几何证明尺规作图的解题规范与解题技巧

几何证明尺规作图的解题规范与解题技巧几何证明是高中数学中的重要内容,而尺规作图是几何证明中不可或缺的方法之一。

尺规作图是通过使用尺规等工具,将已知条件用线段长度的比来表示,从而得到所需的未知量与如何构造的方法。

下面我们将详细介绍几何证明尺规作图的解题规范与解题技巧。

一、解题规范1. 了解题目要求在做题之前,先要看清题目要求,明确自己要证明的结论与所给条件。

了解题目要求可以帮助我们更好地把握证明的方向和方法。

2. 审题慎思细心审题可以发现题目中隐藏的一些线索,例如特殊的几何图形、相似三角形、等分线段等,这些都是解决尺规作图问题的有力工具。

审题还可以发现题目中的难点和易错点,帮助我们专注于解决问题的关键。

3. 掌握几何知识尺规作图是几何证明的一种方法,因此掌握几何知识是必不可少的。

在解题过程中,我们需要运用一些基本的几何定理和定向线段的概念,在能充分运用几何知识才能更好地解决问题。

4. 认真细致在做尺规作图的题目时,需要认真细致地推敲每一步,因为一个细节的错误会导致整个证明的失败。

要尽可能地避免粗心大意和漫不经心,特别是在标记线段、角度时,要用尽一切手段保证准确无误。

5. 多角度考虑尺规作图的证明方法有时并不唯一,有些题目可能有多种可能性,因此需要多角度思考。

可以考虑不同的角度进行证明,或者换一种方式来描述线段长度的比,寻找解题的突破口。

二、解题技巧1. 正确标记相似三角形相似三角形是尺规作图中常用的几何单元,正确标记相似三角形对于解决问题非常关键。

在标记相似三角形时,可以根据题目给定的线段长度比例来确定线段的长度关系,从而帮助我们找到相应的相似三角形。

2. 确定相应角和高线在寻找尺规作图的策略时,需要特别关注相应角和高线。

相应角是指两个三角形中相对应的角度相等,高线则是指垂直于底边的线段。

通过找到相应角和高线,可以帮助我们更好地利用相似三角形求解问题。

3. 使用中垂线和平分线中垂线和平分线可以将一个线段等分成两个相等的线段,在解决尺规作图问题时非常有用。

初一数学证明题解题技巧总结

初一数学证明题解题技巧总结

初一数学证明题解题技巧总结数学立体几何证明解题技巧1平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2空间角的计算方法与技巧:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角:①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算.(3)二面角:①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式.3空间距离的计算方法与技巧:(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。

在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。

求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

4熟记一些常用的小结论诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。

弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。

空间几何证明题的解题方法

空间几何证明题的解题方法

空间几何证明题的解题方法解题方法是解决几何证明题的关键。

在空间几何的学习中,遇到证明题是常有的事情。

本文将介绍几种常见的解题方法,帮助读者更好地应对空间几何证明题。

一、归纳法归纳法是证明题中常用的方法之一。

通过观察、分析已知条件和结论之间的关系,归纳出一般规律,再用具体例子验证这一规律的正确性。

在解决证明题时,首先要对已知条件进行分析,将其归纳为几种特殊情况,并观察它们与结论之间的联系。

然后通过具体实例验证这一规律是否成立。

最后在证明中运用归纳法,将已知条件的特殊情况逐一证明,得出结论的正确性。

二、反证法反证法是一种常见的解决几何证明题的方法。

它通过假设结论不成立,利用逻辑推理和已知条件推出与已知条件相矛盾的结论,从而推翻假设,得出结论的正确性。

在运用反证法解题时,首先要根据已知条件和结论的关系提出猜测,然后假设结论不成立,推出与已知条件相矛盾的结论。

最后通过分析这一矛盾来证明猜测的正确性。

三、构造法构造法是一种通过构造特殊图形或方法来解决几何证明题的方法。

在解决证明题时,可以根据已知条件和结论的要求,通过构造特殊的图形或方法,使得所构造的图形或方法与问题的条件相符。

通过观察其性质和关系得出结论的正确性。

构造法能够将问题转化为图形或方法的可视化表现,有助于理解和解决问题。

四、相似性相似性是空间几何证明题中常用的解题方法之一。

在解决证明题时,可以通过发现几何图形的相似性质和性质之间的关系,推导出结论的正确性。

相似性可以用比例关系来表示,通过构造合适的比例关系,运用比例的性质来证明结论。

五、平行性平行性是空间几何证明题中常用的方法之一。

在解决证明题时,可以通过分析几何图形中的平行性质,用平行线的性质和平行线之间的关系来推导出结论的正确性。

在解决证明题时,可以利用平行线的性质来推导出其他线段的相等关系、角的相等关系和比例关系等。

六、共线性共线性是解决空间几何证明题的常用方法之一。

在解决证明题时,可以通过观察几何图形中的点、线、面的位置关系,分析它们是否共线,从而推导出结论的正确性。

高中立体几何最佳解题方法及考题详细解答

高中立体几何最佳解题方法及考题详细解答

高中立体几何最佳解题方法总结一、线线平行的证明方法1、利用平行四边形;2、利用三角形或梯形的中位线;3、如果一条直线和一个平面平行,经过这条直线的平面与这个相交,那么这条直线和交线平行。

(线面平行的性质定理)4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

(面面平行的性质定理)5、如果两条直线垂直于同一个平面,那么这两条直线平行。

(线面垂直的性质定理)6、平行于同一条直线的两个直线平行。

7、夹在两个平行平面之间的平行线段相等。

二、线面平行的证明方法1、定义法:直线和平面没有公共点。

2、如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。

(线面平行的判定定理)3、两个平面平行,其中一个平面内的任意一条直线必平行于另一个平面。

4、反证法。

三、面面平行的证明方法1、定义法:两个平面没有公共点。

2、如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。

(面面平行的判定定理)3、平行于同一个平面的两个平面平行。

4、经过平面外一点,有且只有一个平面与已知平面平行。

5、垂直于同一条直线的两个平面平行。

四、线线垂直的证明方法1、勾股定理;2、等腰三角形;3、菱形对角线;4、圆所对的圆周角是直角;5、点在线上的射影;6、如果一条直线和这个平面垂直,那么这条直线和这个平面内的任意直线都垂直。

7、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。

(三垂线定理)8、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。

9、如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。

五、线面垂直的证明方法:1、定义法:直线与平面内的任意直线都垂直;2、点在面内的射影;3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线就和这个平面垂直。

(线面垂直的判定定理)4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面。

几何证明题解题技巧总结

几何证明题解题技巧总结

几何证明题解题技巧总结在学习几何学的过程中,我们经常会遇到一些证明题,这些题目要求我们根据已知条件给出严谨的证明过程,以达到解题的目的。

因为几何证明题是一种特殊的数学题型,所以我们需要掌握一定的解题技巧。

本文将为大家总结几何证明题解题技巧,帮助大家更好地应对这类题目。

1. 画好图形在解几何证明题之前,首先要画好所给图形。

一个清晰的图形能够让我们更好地理解问题,并且能够帮助我们找到一些有用的线段、角度或者形状关系。

因此,我们需要使用规范的画图工具,如尺子和圆规,画出图形的各个元素,确保图形的形状和比例正确。

2. 利用已知条件在解题过程中,我们需要充分利用已知条件。

已知条件提供了问题的一些限制和前提,通过分析已知条件,我们可以找到一些可能解题的线索。

在应用已知条件时,可以使用等式、比例关系、相似三角形等数学工具进行推理,从而运用数学知识解决问题。

3. 推理演绎几何证明题的解题过程需要运用推理演绎,即从已知条件中推导出结论。

在推理的过程中,我们可以使用数学定理、性质和公式,以及已有的几何知识。

通过逻辑推理,我们可以逐步得出结论,最终完成证明过程。

4. 注意特殊情况在解几何证明题时,我们要特别注意问题中可能存在的特殊情况。

有时,针对特殊情况的分析和推理能够为我们提供更直接的证明思路。

因此,在解题过程中,我们需要根据问题的具体条件,考虑特殊情况,并给出相应的证明过程。

5. 使用反证法反证法是一种重要的解题方法,特别适用于几何证明题。

当用其他方法无法得出结论时,我们可以尝试使用反证法。

反证法的基本思路是,假设所要证明的结论不成立,然后通过推理推导出与已知条件矛盾的结论,从而证明原命题的正确性。

6. 多做几何证明题对于几何证明题来说,熟能生巧。

通过多做一些几何证明题,我们可以积累经验,熟悉各种解题思路和技巧。

同时,多做题目还能够帮助我们提高证明的逻辑性和严谨性,为解决更复杂的几何问题打下坚实的基础。

综上所述,几何证明题解题技巧的掌握是解决这类题目的关键。

数学几何证明题解题思路

数学几何证明题解题思路

数学几何证明题解题思路
数学几何证明题是需要通过一定的思考和推理才能解决的问题。

在解题过程中,我们需要掌握一些基本的几何知识和常用的证明方法。

下面是一些常见的数学几何证明题的解题思路:
1. 利用三角形的性质进行证明。

三角形是几何学中最基本的图形之一,因此我们在解决一些几何证明题时,经常会利用三角形的性质进行推理。

例如,我们可以通过证明三角形的两个角相等或两个边相等来证明两个三角形全等。

2. 利用相似三角形的性质进行证明。

相似三角形是指具有相同形状但大小不同的三角形。

在解决几何证明题时,我们可以利用相似三角形的性质进行推理,例如证明两个三角形的边比例相等或者角度相等等。

3. 利用反证法进行证明。

反证法是通过假设所要证明的结论不成立,然后推导出矛盾的结论,从而证明所要证明的结论一定成立的一种证明方法。

在解决几何证明题时,我们可以利用反证法推导出矛盾的结论,从而证明所要证明的结论一定成立。

4. 利用勾股定理进行证明。

勾股定理是数学中最著名的定理之一,也是数学几何证明中常用的证明方法之一。

在解决几何证明题时,我们可以利用勾股定理推导出所需证明的结论。

5. 利用角平分线定理、垂直定理等进行证明。

角平分线定理、垂直定理等都是数学几何中常用的定理,利用这些定理可以推导出许多结论。

在解决几何证明题时,我们可以利用这些定理进行推导,从而证明所需证明的结论。

总之,在解决数学几何证明题时,我们需要在掌握基本几何知识的基础上,灵活运用各种证明方法进行推导,才能成功解决问题。

初中数学巧添辅助线解证几何题

初中数学巧添辅助线解证几何题

初中数学巧添辅助线解证几何题集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-巧添辅助线 解证几何题[引出问题] 在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。

值得注意的是辅助线的添加目的与已知条件和所求结论有关。

一、倍角问题研究∠α=2∠β或∠β=12∠α问题通称为倍角问题。

倍角问题分两种情形:1、∠α与∠β在两个三角形中,常作∠α的平分线,得∠1=12∠α,然后证明∠1=∠β;或把∠β翻折,得∠2=2∠β,然后证明∠2=∠α(如图一)2、∠α与∠β在同一个三角形中,这样的三角形常称为倍角三角形。

倍角三角形问题常用构造等腰三角形的方法添加辅助线(如图二)[例题解析]例1:如图1,在△ABC 中,AB=AC,BD⊥AC 于D。

求证:∠DBC=12∠BAC.分析:∠DBC、∠BAC 所在的两个三角形有公共角∠C,可利用三角形内角和来沟通∠DBC、∠BAC 和∠C 的关系。

证法一:∵在△ABC 中,AB=AC,∴∠ABC=∠C=12(180°-∠BAC)=90°-12∠BAC。

∵BD⊥AC 于D ∴∠BDC=90°CAB D ECABD21β α 图一αβ图二∴∠DBC=90°-∠C=90°-(90°-12∠BAC)= 12∠BAC即∠DBC= 12∠BAC分析二:∠DBC、∠BAC分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ∠BAC”中含有角的倍、半关系,因此,可以做∠A的平分线,利用等腰三角形三线合一的性质,把∠A放在直角三角形中求解;也可以把∠DBC沿BD翻折构造2∠DBC求解。

关于圆的几何证明计算题的解题方法

关于圆的几何证明计算题的解题方法

关于圆的几何证明计算题的解题方法经过圆心的弦是直径;圆上任意两点间的部分叫做圆弧,简称弧;圆上任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆;大于半圆弧的弧叫优弧,小于半圆弧的弧叫做劣弧;由弦及其所对的弧组成的图形叫做弓形。

(1)当两圆外离时,d>R_+r;(2)当两圆相外切时,d=R_+r;(3)当两圆相交时,R_-r<d<R_+r(R≥r);(4)当两圆内切时,d=R_-r(R>r);(4)当两圆内含时,d<R_-r。

其中,d为圆心距,R、r分别是两圆的半径。

如何判定四点共圆,我们主要有以下几种方法:(1)到一定点的距离相等的n个点在同一个圆上;(2)同斜边的直角三角形的各顶点共圆;(3)同底同侧相等角的三角形的各顶点共圆;(4)如果一个四边形的一组对角互补,那么它的四个顶点共圆;(5)如果四边形的一个外角等于它的内对角,那么它的四个顶点共圆;(6)四边形ABCD的对角线相交于点P,若PA_*PC=PB_*PD,则它的四个顶点共圆;(7)四边形ABCD的一组对边AB、DC的延长线相交于点P,若PA_*PB=PC_*PD,则它的四个顶点共圆。

1、作直径上的圆周角当告诉了一条直径,一般通过作直径上的圆周角,利用直径所对的圆周角是直角这一条件来证明问题.2、作弦心距当告诉圆心和弦,一般通过过圆心作弦的垂线,利用弦心距平分弦这一条件证明问题.3、过切点作半径当含有切线这一条件时,一般通过把圆心和切点连起来,利用切线与半径垂直这一性质来证明问题.4、作直径当已知条件含有直角,往往通过过圆上一点作直径,利用直径所对的圆周角为直角这一性质来证明问题.5、作公切线当已知条件中含两圆相切这一条件,往往通过过这个切点作两圆的公切线,通过公切线找到两圆之间的关系.6、作公共弦当含有两圆相交这一条件时,一般通过作两圆的公共弦,由两圆的弦之间的关系,找出两圆的角之间的关系.7、作两圆的连心线若已知中告诉两圆相交或相切,一般通过作两圆的连心线,利用两相交圆的连心线垂直平分公共弦或;两相切圆的连心线必过切点来证明问题.8、作圆的切线若题中告诉了我们半径,往往通过过半径的外端作圆的切线,利用半径与切线垂直或利用弦切角定理来证明问题.9、一圆过另一圆的圆心时则作半径题中告诉两个圆相交,其中一个圆过另一个圆的圆心,往往除了通过作两圆的公共弦外,还可以通过作圆的半径,利用同圆的半径相等来证明问题.10、作辅助圆当题中涉及到圆的切线问题(无论是计算还是证明)时,通常需要作辅助线。

浅谈几何证明题的解题方法与技巧

浅谈几何证明题的解题方法与技巧

浅谈几何证明题的解题方法与技巧作者:容茂和完成时间:2011年12月【内容摘要】:针对学生解决几何证明题比较困难的情况,给学生分析研究几何证明题的解题方法与技巧,提高学生学习几何的兴趣,增强解决问题的信心。

【关键词】:方法与技巧 ;注重基础 ; 善于归类;突破难关在初中阶段,学生学习数学都会遇到两大难题:一是代数中的列方程解应用题;二是几何中的证明题。

下面,笔者结合多年的教学经验和方法谈谈几何证明题的解题方法与技巧。

一、注重基础,善于归类。

知识要靠平时的积累,只有当量变发生到一定程度才能产生质变.因此,在平时的学习中,特别是从七年级开始学习几何这门课时,就要做到每学习一个几何概念、定理、推论等都要分清它们的用途,并进行归类,为以后的学习打下基础。

例如:在人教版七年级上册第四章《图形认识初步》中,在学习“线段的中点”、“角的平分线”、“等角的补角相等”、“等角的余角相等”等概念和性质时,就要分清:“线段的中点”可以用于证明两条线段相等;“角的平分线”、“等角的补角相等”及“等角的余角相等”等概念和性质都可以用来证明两个角相等。

随着学习的不断深入,需要学习掌握的定理、性质就会更多.因此,学生必须做到边学习边归类,三年下来,整个初中阶段就会形成一个环环紧扣、条理清晰的几何知识系统。

二、明确几何证明题的类型。

在知识的归类中,我们可以逐渐发现上述所学习的定理、性质、推论等的用途基本上都不外乎用来证明:两条线段相等、两个角相等、两条线段(或直线)平行、两个三角形全等(或相似),或者一个图形是某些特殊的图形(如平行四边形、菱形、矩形、正方形、等腰三角形、等边三角形、等腰梯形等)。

比较常见的是前面的四种证明题类型。

因此,学生在碰到相应类型的证明题时,头脑中就要有相应的定理、性质、推论的出现,而对于用哪一个或几个定理去解决问题,取决于证明题的需要。

三、确定证明的切入点。

几何证明题的证明方法主要有三个方面。

第一,从“已知”入手,通过推理论证,得出“求证";第二,从“求证”入手,通过分析,不断寻求“证据"的支撑,一直追溯回到“已知";第三,从“已知”及“求证”两方面入手,通过分析找到中间“桥梁",使之成为清晰的思维过程。

几何证明尺规作图的解题规范与解题技巧

几何证明尺规作图的解题规范与解题技巧

几何证明尺规作图的解题规范与解题技巧几何证明尺规作图是数学中的一项重要技能,它能够帮助我们解决很多与几何形状相关的问题。

尺规作图是通过尺子和指南针这两个最基本的画图工具,来构造各种几何形状和图形。

在这篇文章中,我们将会介绍尺规作图的解题规范和解题技巧,希望能够帮助读者更好地掌握这一技能。

一、解题规范1. 理解题目:在进行几何证明尺规作图之前,首先要仔细阅读题目,理解题目要求,确定所要证明的结论和所给的条件。

2. 画出所给图形:根据所给条件,用尺规作图工具画出所给的图形,这样可以更清晰地理解题目。

3. 表述步骤清晰:在进行尺规作图的过程中,要将每一步的操作都清晰地表述出来,包括用尺规作图工具进行的操作和所得到的结论。

4. 规范书写标记:在尺规作图的过程中,要注意规范书写标记,确保每一步操作都清晰可见,方便他人理解和检查。

5. 严密的逻辑推理:尺规作图的过程就是一个严密的逻辑推理过程,每一步的操作都要有严密的理由和推导,确保所证明的结论是准确的。

二、解题技巧1. 熟练掌握基本作图工具:尺规作图的基本工具是尺子和指南针,要熟练掌握它们的使用方法,包括如何用尺子画直线,如何用指南针画圆等。

2. 理解作图原理:尺规作图是基于尺规作图原理进行的,要深入理解这些原理,包括尺规作图的基本构造和操作规律等。

3. 灵活运用公式定理:在进行尺规作图的过程中,要灵活运用几何定理和公式,包括勾股定理、相似三角形定理等,根据不同的题目情况进行推导和运用。

4. 注意图形的特点:在进行尺规作图的过程中,要注意图形的特点,包括各边的长度关系、角的大小和位置关系等,这样可以更好地进行推导和构造。

5. 多练习多总结:尺规作图是一项需要不断练习的技能,要多做一些相关的练习题,不断总结经验,提高解题的能力。

几何证明题辅助线的技巧和方法

几何证明题辅助线的技巧和方法

几何证明题辅助线的技巧和方法
在解决几何证明题时,辅助线是一种常用且有效的工具。

它可以帮助我们发现
隐藏的几何关系,简化证明过程,并提供新的角度来解决问题。

以下是几种常见的辅助线技巧和方法,可用于解决几何证明题。

1. 平行线辅助线法:当题目涉及到平行线时,我们可以通过引入一条平行线作
为辅助线,从而构建出平行线之间的相似三角形或平行四边形。

这样,我们可以得出相应的角度和边的关系,进而证明几何问题。

2. 三角形中线辅助线法:三角形的中线是连接一个顶点与对应中点的线段。


过引入三角形中线作为辅助线,我们可以将原问题转化为直角三角形的性质或平行线的性质。

这种方法常常用于证明三角形的等边、等腰等性质。

3. 垂直线辅助线法:当题目涉及到垂直线时,我们可以通过引入一条垂直线作
为辅助线,从而构建出垂直角、直角三角形或平行四边形。

通过利用垂直线的性质,我们可以得到角度、边长等关系,进而解决问题。

4. 内切圆辅助线法:对于一个给定的三角形,可以通过引入其内切圆作为辅助线,来简化证明过程。

内切圆与三角形的的边相切于三个点,这些点可以提供有用的几何关系,如正方形的性质、垂直线的性质等。

5. 类似三角形辅助线法:当计算角度或证明形状相似时,引入类似三角形作为
辅助线可以大大简化证明过程。

通过找到两个或多个类似的三角形,我们可以得到两个三角形的边长比例,并据此解决问题。

总之,辅助线是几何证明中的有效工具,它们可以帮助我们发现关键的几何关系,简化证明过程,并提供新的角度来解决问题。

通过灵活运用各种辅助线技巧和方法,我们可以更加轻松地解决各种几何证明题。

几何证明题目及解题方法

几何证明题目及解题方法

几何证明题目及解题方法在学习几何学的过程中,我们经常需要面对各种证明题目。

几何证明题目的解题方法多种多样,本文将为大家介绍几种常见的几何证明题目及其解题方法。

一、证明两条直线平行首先,我们来讨论如何证明两条直线平行。

对于给定的两条直线AB和CD,我们可以通过以下步骤来进行证明:1. 过点A画一条与CD平行的直线AE。

2. 在AE上找一点F,使得角EFD等于角CDA。

3. 连接BF。

4. 若BF与CD重合,则可得出结论:AB与CD平行。

通过以上步骤,我们可以证明两条直线的平行关系。

二、证明三角形全等下面,我们来介绍如何证明两个三角形全等。

假设我们需要证明三角形ABC和三角形DEF全等,我们可以使用以下方法:1. 检查三组对应的边是否相等。

即检查AB是否等于DE,BC是否等于EF,以及AC是否等于DF。

2. 检查两组对应的角是否相等。

即检查∠ABC是否等于∠DEF,∠BCA是否等于∠EFD。

若以上两个条件都满足,则可以得出结论:三角形ABC和DEF全等。

三、证明两个三角形相似接下来,我们来讨论如何证明两个三角形相似。

假设我们需要证明三角形ABC和三角形DEF相似,我们可以使用以下方法:1. 检查两组对应的角是否相等。

即检查∠ABC是否等于∠DEF,∠BCA是否等于∠EDF。

2. 找到共同的角。

若在ABC中存在一个角∠B,使得∠BDE等于∠ABC,那么我们可以得出结论∠B等于∠B。

3. 检查两组对应的边的比例关系。

即检查AB与DE的比值是否等于BC与EF的比值,以及AC与DF的比值是否相等。

若以上三个条件都满足,则可以得出结论:三角形ABC和DEF相似。

综上所述,我们介绍了几何证明题目的一些解题方法及步骤。

希望通过这些方法,大家能够更好地应对几何证明题目,提高自己的解题能力。

同时,大家也可以根据具体题目的要求,灵活运用这些方法,并结合具体的几何性质来解题。

通过不断练习和掌握这些方法,相信大家在几何学的学习中会有更好的表现。

几何证明题的技巧

几何证明题的技巧

⼏何证明题的技巧⼏何证明题的技巧1)证明线段相等,⾓相等的题,通常找到线段所在图形,证明全等2)隐藏条件:⽐如特殊图形的性质⾃⼰要清楚,有些时候⼏何题做不出来就是因为没有利⽤好隐藏条件3)辅助线起到关键作⽤4)⼏何证明步骤:依据—结论—定理切记勿忽略细微条件5)遇到⾯积问题,辅助线通常做⾼,遇到圆,多为做半径,切线6)个别题型做辅助线:1 通过连结,延长,作垂直,作平⾏线等添加辅助线的⽅法,构造全等三⾓形。

2遇到有中点条件时,常常延长中线(即倍长中线),或以中点为旋转中⼼,使分散的条件汇集起来。

3遇到求边之间的和,差,倍数关系时,通常采⽤截长补短的⽅法,求⾓度之间的关系时,也⼀样。

要掌握初中数学⼏何证明题技巧,熟练运⽤和记忆如下原理是关键。

下⾯归类⼀下,多做练习,熟能⽣巧,遇到⼏何证明题能想到采⽤哪⼀类型原理来解决问题。

⼀、证明两线段相等1.两全等三⾓形中对应边相等。

2.同⼀三⾓形中等⾓对等边。

3.等腰三⾓形顶⾓的平分线或底边的⾼平分底边。

4.平⾏四边形的对边或对⾓线被交点分成的两段相等。

5.直⾓三⾓形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意⼀点到线段两段距离相等。

7.⾓平分线上任⼀点到⾓的两边距离相等。

8.过三⾓形⼀边的中点且平⾏于第三边的直线分第⼆边所成的线段相等。

*9.同圆(或等圆)中等弧所对的弦或与圆⼼等距的两弦或等圆⼼⾓、圆周⾓所对的弦相等。

*10.圆外⼀点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的⽐例式中的两后项(或两前项)相等。

*12.两圆的内(外)公切线的长相等。

13.等于同⼀线段的两条线段相等。

⼆、证明两个⾓相等1.两全等三⾓形的对应⾓相等。

2.同⼀三⾓形中等边对等⾓。

3.等腰三⾓形中,底边上的中线(或⾼)平分顶⾓。

4.两条平⾏线的同位⾓、内错⾓或平⾏四边形的对⾓相等。

5.同⾓(或等⾓)的余⾓(或补⾓)相等。

数学几何证明题解题思路

数学几何证明题解题思路

数学几何证明题解题思路
数学几何证明题是高中数学常见的一种题型,要求学生运用几何相关知识和推理能力进行证明。

以下是数学几何证明题的解题思路: 1. 理清题意
首先要认真阅读题目,理解题意。

要明确所要证明的命题,明确各种给出的条件和条件之间的关系。

同时,应该画出图形,对图形进行分析,找到其中的规律和特点。

2. 利用已知条件
根据所给的条件,尝试利用已知的结论,进行推理。

对于已知几何定理和公式要熟练掌握,适当地运用这些定理和公式,可以简化证明过程。

3. 运用几何知识
根据题目所给的条件,将其转化为几何图形,在图形中寻找规律和特点。

常见的几何证明题包括角度证明、三角形证明、圆形证明、相似证明等,需要熟练掌握相关的几何知识。

4. 推理过程
在证明过程中,要注意推理的严密性和逻辑性。

应该根据已知条件,按照逻辑链条进行推理,避免出现跳跃式的推理。

同时,要注意证明过程的简洁性和明晰性,尽量避免公式和符号的过多使用。

5. 检查答案
在证明结束后,要认真检查答案,确保证明过程的正确性和准确性。

检查时要仔细核对证明中的每一个步骤,以保证证明的完整性和
一致性。

几何证明题解题技巧

几何证明题解题技巧

几何证明题解题技巧几何证明题需要运用几何性质和定理来推导和证明,以下是一些解题技巧可以帮助更好地解决几何证明题:1.理解题意和图形:仔细阅读题目,理解题目要求和给出的条件。

绘制图形,并标出已知信息,以便更好地理解问题。

2.利用已知条件:根据题目给出的已知条件,利用几何定理和性质进行分析。

观察可以得到什么信息,可以使用什么定理或性质来解决问题。

3.运用推理和推导:运用逻辑推理和几何性质来推导出需要证明的结论。

使用相关几何定理和性质来推断出中间结果,并逐步向目标推进。

4.利用反证法:反证法是一种常用的证明技巧,在证明中假设结论不成立,然后通过推理和推导推出矛盾,从而证明结论的正确性。

5.利用相似性和比例:利用相似三角形的性质和比例关系来解决几何问题。

观察图形中是否存在相似的部分,并利用比例关系求解问题。

6.利用等边和等角:等边三角形和等角三角形具有特殊的性质,可以利用这些性质来解题。

观察图形中是否存在等边或等角的情况,并利用相应的性质进行推理。

7.联想和类比:将问题与已知的几何定理和解决方法进行类比。

寻找类似的几何形状或已知问题,并应用相应的解决方法。

8.重点观察特殊点和特殊线段:特殊的点和线段往往具有重要的性质和关系,观察并利用这些特殊点和线段来解决问题。

9.综合运用多个定理和性质:将多个几何定理和性质综合运用,逐步推进解题思路,获得所需的证明结论。

10.反复练习和复习:几何证明需要大量的练习和熟悉,通过反复练习和复习,加深对几何定理和性质的理解和应用,提高解题能力。

以上的解题技巧可以帮助更好地解决几何证明题。

几何证明题的解题思路与方法备课教案

几何证明题的解题思路与方法备课教案

几何证明题的解题思路与方法备课教案自然数中的一类常见问题便是几何证明题,涉及到数学中的几何知识和解题思路,同样也需要老师们为学生提供相应的教学方法。

解决几何证明题的方法通常并不仅仅是在脑海中构建几何图形的图像,还包括多种几何推理和选择适合的几何定理来解决问题。

下面是本教案的详细步骤,希望能够对老师们的教学有所帮助。

一、了解几何证明题的类型首先,我们需要说明有哪些类型的几何证明题,以便我们为学生们找到更好的教学方法。

一些常见类型的几何证明题包括:1. 证明两个角或线段是相等的;2. 证明两个角或线段是垂直的;3. 证明两个角或线段的和等于180度;4. 证明两个三角形或四边形是相似的或等于的。

在备课过程中,老师们应该牢记这些类型,并为学生们提供合适的解题方法。

二、提供准确的解题思路几何证明题的解题思路通常应从已知条件开始,一步步推导出所需证明的结论。

为更好地帮助学生获得准确的解题思路,老师们应该:1. 鼓励学生将所需证明的结论写在纸上。

2. 建议学生在纸上列出已知条件。

3. 推广使用图表,让学生们通过画图来理解和掌握几何图形。

4. 提醒学生需依据已知条件进行逻辑推断,并简要说明每一步的目的。

三、掌握重要的几何定理解题过程中,学生需要掌握和正确使用基本的几何定理,其中包括:1. 三角形角度和定理:三角形内角和等于180度。

2. 直角三角形定理:直角三角形斜边平方等于两腰平方之和。

3. 垂线定理:从顶点到斜边的垂线把底边分成了两部分,使得斜边上的两个三角形相似。

这些定理不仅能够让学生更好地理解几何图形,还能够快速地解决几何证明题。

四、选择实际的例子进行练习为确保学生能够理解和掌握解题方法,老师们应该为学生提供实例训练。

例如,可以选取简单的三角形或矩形并向学生提供几何证明练习,以帮助学生更好地理解和掌握解题方法。

五、总结和练习为确保学生能够稳步进展并从训练中收获,最后需要进行总结和练习。

我们可以通过以下步骤实现:1. 复习和总结几何证明题的类型和解题思路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何引导学生解好几何证明题
几何学科,是一门数形结合的学科,具有较强的抽象性和逻辑性,需要有丰富的想象能力和概括思维能力。

学习几何对培养学生逻辑思维及逻辑推理能力有着特殊的作用。

对于众多的几何证明题,引导学生寻找正确的证题方法和探求规律,对培养学生的证题推理能力,往往能够收到较好的效果,这对学生在证明中克服无从下手,胡思乱想,提高解题的正确性和速度,达到熟练技巧是有积极作用的。

学生在学习过程中,往往会觉得内容枯燥,学习方法不宜掌握,结合图形感知模糊,论证推理无从下手,所以特别需要我们有效地组织课堂教学,使教学过程能充分实现学生的情感和意志的活动过程;强调学生的学习主动性和课堂教学的参与性,使学生在参与中感知几何图形,体验性质、定理的产生过程,以便更自愿、更深刻地掌握知识。

在几何证明题教学中,我是从以下几方面进行的:
一、培养学生学会划分几何命题中的“题设”和“结论”。

1、每一个命题都是由题设和结论两部分组成的,要求学生从命题的结构特征进行划分,掌握重要的相关联词句。

例:“如果……,那么……。

”“若……,则……”等等。

用“如果”或“若”开始的部分就是题设。

用“那么”或“则”开始的部分就是结论。

有的命题的题设和结论是比较明显的。

例:如果一个三角形有两个角相等(题设),那么这两个角所对的边相等(结论)。

但有的命题,它的题设和结论不十分明显,对于这样的命题,可要求学生将它改写成“如果……,那么……”的形式。

例如:“对顶角相等”可改写成:“如果两个角是对顶角(题设),那么这两个角相等(结论)”。

以上对命题的“题设”和“结论”划分只是一种形式上的记忆,不能从本质上解决学生划分命题的“题设”、“结论”的实质问题,例如:“等腰三角形两腰上的高相等”学生会认为这个命题较难划分题设和结论,认为只有题设部分,没有结论部分,或者因为找不到“如果……,那么……”的词句,或者不会写成“如果……,那么……”等的形式而无法划分命题的题设和结论。

2、正确划分命题的“题设”和“结论”,必须使学生理解每个数学命题都是一个完整无缺的句子,是对数学的一定内容和一定本质属性的判断。

而每一个命题都是由题设和结论两部分组成的,是判断一件事情的语句。

在一个命题中被判断的“对象”是命题的“题设”,也就是“已知”。

判断出来的“结果”就是命题的“结论”,也就是“求证”。

总之,正确划分命题的“题设”和“结论”,就是要分清什么是命题中被判断的“对象”,什么是命题中被判断出来的“结果”。

在教学中,要在不断的训练中加深学生对数学命题的理解。

二、培养学生会将文字叙述的命题改写成数学式子,并画出图形。

1、按命题题意画出相应的几何图形,并标注字母。

2、根据命题的题意结合相应的几何图形,把命题中每一个确切的数学概念用它的定义,数学符合或数学式子表示出来。

命题中的题设部分即被判断的“对象”写在“已知”一项中,结论部分即判断出来的“结果”写在“求证”一项中。

例:求证:对角线相等的平行四边形是矩形
已知:□ABCD中,对角线AC、BD相交于点O,AC=BD
求证:四边形ABCD是矩形。

三、培养学生学会推理证明:
1、几何证明的意义和要求
对于几何命题的证明,就是需要作出一判断,这个判断不是仅靠观察和猜想,或反通过实验和测量感性的判断,而必须是经过一系列的严密的逻辑推理和论证作出的理性判断。

推理论证的过程要符合客观实际,论证要有充分的根据,不能凭主观想象。

证明中的每一点推理论证的根据就是命题中给出的题设和已证事项,定义、公理和定理。

换言之,几何命题的证明,就是要把给出的结论,用充分的根据,严密的逻辑推理加以证明。

2、加强分析训练、培养逻辑推理能力
由于命题的类型各异,要培养学生分析与综合的逻辑推理能力,特别要重视问题的分析,执果索因、进而证明,这是培养逻辑思维能力的好途径,也是教学的重点和关键。

在证明的过程中要培养学生:在证明开始时,首先对命题分析、推理,并在草稿纸上把分析的过程写出来。

数学很注重思考方法,对于证明题,有三种思考方式:
(1)正向思维。

即由条件至目标的定向思考方法。

在探究解题途径时,我们从已知条件出发进行推理。

顺次逐步推向目标,直到达到目标的思考过程。

对于一般简单的题目,我们正向思考,轻而易举可以做出。

如:试证:平行四边形的对角线互相平分。

已知:□ABCD,O是对角线AC和BD的交点。

求证:OA=OC 、OB=OD
分析:
证明:∵四边形ABCD 是平行四边形
∴ AB∥CD AB=DC
∴ ∠1=∠4 ∠2=∠3
在△ABO 和△CDO 中
∴ △ABO≌△CDO(ASA )
∴ OA=OC OB=OD
(2)逆向思维。

顾名思义,就是从相反的方向思考问题。

运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。

这种方法是推荐学生一定要掌握的。

在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。

如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。

同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。

例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。

这是非常好用的方法,同学们一定要试一试。

例如: 如图,已知:D 、E 是△ABC 的边AB 、AC
上的点,且∠ADE=∠C 。

求证:A D ·AB=AE ·AC 。

分析:1、学生读已知、看图;2、问题:要使
A D ·AB=AE ·AC 成立,只须
AB AC AE AD =成立;要使AB AC
AE AD
=成立,须知△ADE 相似△ACB ;
要使△ADE
相似△ACB ,判断三角形相似的方法有哪些?学生回忆识别三角形相似的三种方法,结合已知条件,选择“如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似”进行证明;根据已知找出∠A 为公共角,∠ADE=∠C ,判断三角形相似。

3、学生写解题过程,从角相等开始,逆着分析过程书写,思路就清楚了。

(3)正逆结合。

对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。

给我们梯形,我们就要想 A
四、建立探索性学习方法,激发学生求知欲。

如果说“活动”是主体性的生成机制和源泉,那么“再创造”应该是数学学习的灵魂,探索性的学习方式是实现“再创造”的途径。

放开手让学生根据看书的体验用自己的思维方式去学习,有的时候也会有意想不到的效果。

例如:求证:对角线互相平分的四边形是平行四边形
引导学生进行讨论分析可以发现,之前所学的四种判定方法都可以证得这个结论成立。

通过证两组对边平行,两组对边相等,对角相等,一组对边平行且相等都可以证得结论成立。

通过这样自主的讨论和探索,再经过自己的证明,学生在学习的过程中发现几何证明题原来是如此地有趣,并非想象地那样枯燥、单调,找到了乐趣,获得了成功,大大地激发了求知欲。

除了在平时注重学生的参与讨论,参与操作,参与探索外,还要让学生参与归纳,参与证明,学会数学语言在叙述上的简练、结构严谨。

在学习的过程中教师也应注意教学的方法,应多鼓励,让学生敢于思考、敢于动手、敢于有自己独到的见解,使被动的课堂教学变成主动、积极、充满信心的自主的课堂教学,让课堂教学处于动态的、发展的思维状态。

让学生在参与中产生求知欲望,在行为习惯、意志、情感及自我意识上都得到良好的培养。

五、培养学生证题时养成规范的书写习惯
用填充形式训练学生证题的书写格式和逻辑推理过程。

让学生也实践也学习证题的书写格式,使书写规范,推理有根据。

经过一段时间的训练后,一转入学生独立书写,这样,证题的推理过程及书写都比较规范了。

例如:
如图,∠1=∠2,∠3=∠4,求证:AC=AD
证明:∵∠3=∠4
∴ ( )
∵∠1=∠2 AB=AB
∴( )
∴AC=AD
综上可得:对于初中几何证题,教师要反复强调这样一个模式:要什么———有什么———缺什么———补什么。

按照上述模式,反复训练,学生就能够逐步熟悉几何证题的格式,掌握初中几何证题的正确解答方法。

以上是本人对证明题教学的拙见,望同行批评指正。

相关文档
最新文档