基于Solidworks的减速器的设计说明
基于SOLIDWORKS减速器的模拟仿真设计

目录1 绪论 (1)2 SOLIDWORKS概述 (2)3.基于SOLIDWORKS减速器零件的绘制 (2)3.1.减速器底座的三维实体建模的过程 (2)3.1.1箱体底座 (2)3.1.2油针孔与放油孔 (4)3.1.3箱体凸缘 (7)3.1.4底板 (10)3.1.5盖槽和油槽 (13)3.2减速器盖三维实体建模的过程 (15)3.3减速器的其他零件 (18)4.零件装配 (19)5.动画模拟生成 (20)5.1爆炸视图的生成 (20)5.2动画模拟仿真 (21)6 结论 (22)致谢 (23)参考文献 (24)1 绪论计算机仿真技术是以多种学科和理论为基础,以计算机及其相应的软件为工具,通过虚拟试验的方法来分析和解决问题的一门综合性技术。
计算机仿真(模拟)早期称为蒙特卡罗方法,是一门利用随机数实验求解随机问题的方法。
现在,计算机仿真技术已经在机械制造、航空航天、交通运输、船舶工程、经济管理、工程建设、军事模拟以及医疗卫生等领域得到了广泛的应用。
对一个工程技术系统进行模拟仿真,包括了建立模型、实验求解和结果分析三个主要步骤。
【16】(1).建立系统数学模型模拟仿真是一基于模型的活动,是用模型模拟来代替真实系统进行实验和研究。
因此,首先就要对待仿真的问题进行定量描述,这就是建立系统的数学模型。
模型是对真实世界的模仿,真实世界是五彩缤纷的,因此模型也是千姿百态的;(2).仿真计算仿真计算是对所建立的仿真模型进行数值实验和求解的过程,不同的模型有不同的求解方法。
例如:对于连续系统,通常用常微分方程、传递函数,甚至偏微分方程对其进行描述。
(3).仿真结果的分析要想通过模拟仿真得出正确、有效地结论,必须对仿真结果进行科学的分析。
早期的仿真软件都是以大量数据的形式输出仿真的结果,因此有必要对仿真结果数据进行整理,进行各种统计分析,以得到科学的结论。
现代仿真软件广泛采用了可视化技术,通过图形、图表,甚至动画生动逼真地显示出被仿真对象的各种状态,使模拟仿真的输出信息更加丰富、更加详尽、更加有利于对仿真结果的科学分析。
开题报告基于Solidwork的同轴式三级圆柱齿轮减速器

毕业设计(论文)开题报告
[6]万静.实用机械制图与设计手册[M].北京:中国电力出版社,2010:253-290.
[7]隋秀梅,张庆玲,郭佳萍.机械设计基础[M].北京:北京理工大学出版社,2010:108-198.
[8]于惠力.机械零部件设计禁忌[M].北京:机械工业出版社,2011:111-147.
[9]石岚,李纯彬.机械基础[M].上海:复旦大学出版社,2010:207-244.
[10]张德珍.基于特征造型的三位圆柱齿轮减速器参数设计系统[D].青岛:山东科技大学,
2006:3-7.
二、毕业设计方窠或毕业论文研究方案
主要内容:
1、完成减速器的总体设计并对圆柱齿轮减速器各个零件参数进行设计计算;
2、用So1idWorks等三维软件对减速器各零件进行三维建模并装配;
3、查阅此减速器方面的书籍及论文;
4、整理收集的书籍及论文;
5、完成论文的编写和外文翻译;
6、用AUtOCAD绘制零件图和装配总图。
研究方法:
进行文献查询,学习并掌握AUtOCAD和So1idWork软件的使用,完成此同轴式减速器的设计,并进行相关的计算。
研究思路:
查阅资料一一学习并掌握两种软件的使用方法一一根据实际工作需要进行设计计算一一两种软件的使用一一减速器中各零件的三维建模、装配以及零件图和装配图的绘制。
三、毕业设计(论文)预期成果及创新
整个毕业设计过程中,我们得到一篇毕业论文以及同轴式三级减速器的零件图和装配图并且得到了三维建模的零件以及装配总图。
我们能对减速器的结构已经机械传动系统有更加深入的了解,通过计算以及建模仿真能够发现更好的减速器零件的设计方法
注:此表中的一、二、三项,由学生在教师的指导下填写。
毕业设计基于Solidworks的减速器的虚拟设计

毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日指导教师评阅书评阅教师评阅书教研室(或答辩小组)及教学系意见摘要在现代制造业中,研究开发以产品设计为目标,全过程综合应用 CAD及相关一体化集成技术已成为必然趋势,这种趋势有利于提高产品的设计水平,并且缩短科研和新产品开发周期,大幅度提高劳动生产率。
基于Solidworks的减速器的虚拟设计_毕业设计论文

基于Solidworks的减速器的虚拟设计第一章引言 (1)1.1减速器的概述 (1)1.2计算机辅助设计(CAD)技术发展及应用 (2)1.3课题的内容及解决方案 (3)1.4各个章节的安排 (4)第二章减速器设计 (5)2.1传动方案的选定 (5)2.2电动机的选择 (5)2.3计算总传动比及分配各级的传动比 (6)2.4运动参数及动力参数的计算 (7)2.5传动零件的设计计算 (8)2.6轴的设计计算及轴承的选择与校核 (13)2.7键联接的选择及计算 (21)2.8减速器箱体、箱盖及附件的设计计算 (22)2.9润滑及其密封 (24)2.10设计小结 (24)第三章基于 SolidWorks的三维建模 (25)3.1 SolidWorks软件介绍 (25)3. 1.1对齿轮、轴及小齿轮轴的三维建模 (25)3. 1.2对箱体、箱盖的三维建模 (30)3. 1.3对轴承的三维建模 (37)3.1.4对端盖、油标尺、观察盖及通气器的三维建模 (39)第四章减速器的装配和仿真 (42)4.1减速器的装配 (42)4.1.1轴承的装配 (42)4.1.2小齿轮轴的装配 (42)4.1.3齿轴轴的装配 (43)4.1.4齿轮轴和箱体的装配 (44)4.1.5箱盖、端盖、观察盖等的装配 (44)4.1.6M6、M8螺钉的装配 (45)4.1.7销、螺栓、起盖螺钉的装配 (46)4.2减速器干涉检查 (47)4.3Cosmosmotion插件介绍 (48)4.3.1Cosmosmotion运动仿真 (49)参考文献 (51)第一章引言1.1减速器的概述减速器原理减速器是指原动机与工作机之间独立封闭式传动装置。
此外,减速器也是一种动力传达机构,利用齿轮的速度转换器,将马达的问转数减速到所要的回转数,并得到较大转矩的机构。
降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速器额定扭矩。
基于solidworks减速器的设计及运动仿真

基于solidworks减速器的设计及运动仿真
减速器是一种动力传动机器,一般来说,它的原理是用在低转速大扭矩的传动设备当中,把电动器、内燃器或其它高速运转的动力通过减速器的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,减速器还广泛应用于机械行业的机械装置,其中包含多种通用零件,如:齿轮、轴、轴承、螺纹紧固件、润滑装置、密封元件等。
减速机是国民经济诸多领域的机械传动装置,行业涉及的产品类别包括了各类齿轮减速机、行星齿轮减速机及蜗杆减速机,也包括了各种专用传动装置,如增速装置、调速装置、以及包括柔性传动装置在内的各类复合传动装置等。
这里应用solidworks软件的三维建模,根据零件间的实际约束关系进行
装配,完成虚拟动画运动仿真,并生成工程图。
基于solidworks减速器的设计及运动仿真
基于solidworks减速器的设计及运动仿真
基于solidworks减速器的设计及运动仿真
基于solidworks减速器的设计及运动仿真
基于solidworks减速器的设计及运动仿真
基于solidworks减速器的设计及运动仿真
基于solidworks减速器的设计及运动仿真。
基于solidworks的齿轮减速器的设计

摘要按照我们一般意义上的理解,虚拟实验是相对于真实实验而存在的,两者的主要差别在于:实验过程中所触及的对象与事物是否真实。
本文基于SolidWorks 三维软件完成的单级减速器的虚拟设计,并依据一般的CAD开发技术,具体针对减速器设计的特点,开发了一套减速器传动部件CAD系统,并详细介绍了减速器的各零件模块的建模过程。
其具体的设计内容包含如下:①详细介绍并总结了应用SolidWorks三维软件完成的单级减速器的虚拟设计的背景及研究的意义和目的分析其在国内外的发展状况及趋势;②详细介绍并总结了基于SolidWorks的通用减速器部件设计研究的理论基础;③简单概述了CAD/CAM辅助设计的广泛应用及发展趋势及减速器零件的实体建模方法减速器零件的实体建模实例; ④详细介绍并总结了减速器装配原理减速器的功能模块的划分⑤详细介绍了SolidWorks实体装配的方法及过程,并列举减速器总装实例简述其装配过程。
关键词:减速器,模块化,SolidWorks,CADAbstractWith open markets and globalization, the user in the pursuit of high-quality low-cost and short delivery time at the same time, will shorten the product replacement cycle, which requires designers to change the traditional design pattern, to maximize the use of virtual design technology. Designers through the virtual assembly to check the size of the parts and assembly, and immediately amend the error; through virtual prototyping for virtual testing, and obviate the need to do more physical test. In this way, saving both time and cost savings.Virtual design (Virtual Design) is to VR technology and CAD technology applies a combination of new technologies in various fields. In recent years, the commercial CAD software and the emergence of tools, such as: PTC products SolidWorks, Pro / Engineer, SDRC's products I-DEAS Master Series, UGS's Unigraphics and other products, and promote the development of virtual design. Based on SolidWorks software to complete three-dimensional single-stage reducer of the virtual design. SolidWorks software platform in order to detail a set of single-stage reducer of the body movement of virtual experiment system design and the core idea of modular,In accordance with the general development of CAD technology, designed specifically for the characteristics of speed reducer, speed reducer transmission developed a CAD system components, and the establishment of the Blockset reducer. The design of their specific content are as follows: ①in detail and summarizes the principles of modular design and its core ideology, and, in this based on the modular design of the overall flow reducer, the reducer to the specific module division system;②details introduced and summed up the tradition of hand-reducer mathematical optimization methods designed to achieve some of the computer processing of fuzzy parameters; ③ a detailed analysis of the general slowdownCAD system browser in order to achieve the functions and the establishment of the CAD model of the function of the system; ④ reducer General summed up the type of design knowledge, and detailed in its treatment of different computers, on the basis of the experience of the establishment of a knowledge database; SolidWorks ⑤ detailed modeling of the two entities, and in accordance with these two different modeling methods to establish the reducer, respectively, standard parts library and non-standard parts library;Keywords: reducer, modular, SolidWorks, Solid Model Library第一章概述1.1本课题的选题背景及意义1.1.1课题背景实验是教学环节中的重要手段之一,传统的实验研究必须进入实验室才能进行实验操作与数据采集。
基于SolidWorks的蜗杆减速器机械设计

基于SolidWorks的蜗杆减速器机械设计摘要:简单介绍了SolidWorks2006的有关操作和机构运动仿真的插件COSMOSMtion,应用SolidWorks及COSMOSMtion,对蜗轮蜗杆减速器进行造型设计及运动模拟仿真,并对仿真结果进行分析。
关键词:减速器蜗轮蜗杆 SolidWorks 仿真1.Solidworks2006有关操作:1.1零件实体的建模构件是由若干零件组成的,因此,在运动机构动态仿真前,要先做有关零件的实体建模。
Solidworks2006用户界面非常人性化,便于操作。
在Solidworks 的标准菜单中,包含了各种用于创建零件特征和基准特征的命令。
其中基础实体特征主要有拉伸凸台l基体、旋转凸台/基体等。
在基础实体特征上可添加圆角、倒角、筋、抽壳、拔模及异型孔、线性阵列、圆周阵列、镜像等放置特征,这些特征的创建对于实体造型的完整性非常重要。
在处理复杂的几何形状时还需要其它高级特征选项,包括扫描、放样凸台/基体及参考几何体中基准轴、基准面这些定位特征等。
通过以上特征造型技术在Solidworks能设计出需要的实体特征。
1.2零件的装配利用Solidworks的装配体模块,可将零件模型装配成机械系统。
与传统的CAD创建三维装配体模型流程相比,在Solidworks装配体环境中可在位创建零件,也可以在装配体环境中修改零件而不需要单独打开该零件。
当保存装配体时,零件文件也被保存到指定的目录。
当在位创建零件,或在多个装配体中使用或重用零件时,可使用Solidworks创建的有自适应特征的零件,自适应零件能够根据其它零件自动调整到相应的大小和位置。
这样可节约时间,提高精度,从而大大提高了设计的灵活性,减少了工作量。
1.3机构运动仿真目前,基于Solidworks, Pro/E, UG等CAD软件的立体零件建模,三维零件模拟装配等功能已经成熟,在计算机屏幕上便可实现以零件模型代替实物,进行方案选择及修改、运动分析及校核,为产品的设计开发带来很大的方便。
基于SolidWorks的前置后驱汽车的单级后主减速器的设计及运动仿真

高等教育 课程教育研究·65·1,()ni i i D D diamD D γε=⊂≤+U 因为1()(),ni i D D =Φ⊂ΦU 且()()(()),1,2,,i i diam D diamD D i n ψψγεΦ≤≤+=L 所以 (())(()).D D γψγεΦ≤+ 令,0→ε 由ψ的连续性得(())(()).D D γψγΦ≤再根据ψ的性质有(())(())D D γγΦ≤。
由此可知, Φ是凝聚的.第三步,证明{}:0,1.,()x x P s t x A x λλ∈∃∈∈,()有界。
由假设2和5得y y y Φ<Φ=λMBI s y B s y x B +∆+∆≤∫∫ωωφταφταβ0)()()()()(.)1)(()()(0M BI s s y B +∆+≤∫ωβφτα由此可得, 对每一个P y ∈,y Φ是有界的。
根据引理3, 我们得Φ在P 中至少有一个不动点。
容易验证, Φ的不动点即为式子(3)的ω周期解。
定理证毕。
若用∇-导数代替系统(2)中的普通意义下的导数, 可用同样的方法考虑如下系统:+=Τ∈≠−+−=−+∇)),(()()(,,))),((,()()()(j j j j t y I t y t y t t t t t y t g t y t a t y τ (5) 的周期解的存在性。
类似于定理1, 可以证明以下结论。
定理2 假设(1)-(5)成立,则式子(3)至少有一个ω周期正解。
参考文献:[1]Wan A, Jiang D, Xu X.A new existence theory for positive periodic solutions to functional differential equations[J]. Comput Math Appl,2004, 47(1):1257-1262.[2]Li Y.Existence and global attractivity of a positive periodic solution of a class of delay differential equations[J]. Sci China Ser A-Math phys Astron, 1998,41(3):273-284.[3]Liu X, Chen L.Globalbehaviors of a generalized periodic impulsive logistic system with nonlinear density dependence[J]. Commun Nonlinear Sci Number Simul, 2005,10(2),:329-340.[4]Liu X, Lin X,X Jiang.Existence and multiplicity of positive periodic solutions to functional differential equations with impulse effects dependence[J].Nonlinear Anal,2005, 62(1):683-701.[5]Hong S H. The method of upper and lower solutions for nth order nonlinear impulsive differential inclusions[J]. DCDIS Series A: Math Anal,2007,14(1): 739-753..[6]ER Kuafmann, YN Raffoul. Periodic solutions for a neutral nonlinear dynamical equation on time scale dependence[J].J Math Anal Appl, 2006,319(3): 315-325.[7]Zhang H T, Li Y K.Existence of positive periodic solutions for functional differential equation with impulse effect on time scale dependence[J].Commun Nonlinear Sci Number Simul., 2009,14(1):19-26.[8]Hong S H.Boundary-value problem for first and second order functional differential inclusions[J].Diff Equs,2003, 33(3):1-10.基于SolidWorks 的前置后驱汽车的单级后主减速器的设计及运动仿真陈永康(广东省电子商务技师学院 广东 广州 510663)【摘要】文章主要介绍基于SolidWorks 前置后驱汽车的单级后主减速器的设计过程及运动仿真制作过程,内容包括:前置后驱汽车的单级后主减速器的工作原理、设计课题中应解决的主要问题及应达到的技术要求、参数计算过程、零件的建模步骤、装配步骤及运动仿真制作等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章基于SolidWorks 的三维建模3.1 SolidWorks 软件介绍SolidWorks 软件是由SolidWorks 公司开发的,SolidWorks 公司是一家专门从事开发三维机械设计软件的高科技公司,从1993 年,PTC 公司与CV 公司成立SolidWorks 公司,并于1995 年推出该软件,引起设计相关领域的一片惊叹。
现在SolidWorks 最新版为2009 SP0 多国语言版,本次毕业设计用的是SolidWorks2008 SP0 版本。
SolidWorks 软件集三维建模、装配、工程图于一身,功能强大、易学易用和技术创新,使得SolidWorks 成为领先的、主流的三维CAD 解决方案。
SolidWorks 能够提供不同的设计方案、减少设计过程中的错误以及提高产品质量。
具有零件建模、曲面建模、钣金设计、有限元分析、注塑分析、消费产品设计工具、模具设计工具、焊件设计工具和装配设计等功能。
该软件将各个专业领域的世界级顶尖产品连接到一起,具备全面的实体建模功能,可快速生成完整的工程图纸,还可以进行模具制造及计算机辅助工程分析、虚拟装配、动态仿真等一些其他CAD 软件无法完成的工作。
该软件本身集成了较多的插件,方便设计者利用,降低了设计劳动,本次毕业设计用到如下的插件:GearTrax 主要用于精确齿轮的自动设计和齿轮副的设计,通过指定齿轮类型、齿轮的模数和齿数、压力角以及其它相关参数,GearTrax 可以自动生成具有精确齿形的齿轮。
toolbox 提供了如iso、din 等多标准的标准件库。
利用标准件库,设计人员不需要对标准件进行建模,在装配中直接采用拖动操作就可以在模型的相应位置装配指定类型、指定规格的标准件。
3.1.1 对齿轮、轴及小齿轮轴的三维建模Ⅰ、齿轮三维模型的形成SolidWorks 的插件GearTrax 用以生成各种齿轮模型,如图3.1。
根据机械设计数据,选择直齿,输入齿轮的模数m = 2,大小齿轮齿数88和22,点击齿面厚,键入大小齿轮的齿轮宽度b 50mm ,。
分别点1 = b 44mm 2 =击激活大小齿轮后,点击完成,插件自动将成型的齿轮导入SolidWorks 中,从而完成齿轮建模,如图3.2 和图3.3。
图3.1 GearTrax2008 操作图3.3 大齿轮的大体建模图3.3 大齿轮的大体建模得到了大齿轮的大体建模,然后修改大齿轮:①通过【拉伸切除】命令构造轮毂直径为50mm,键槽高、宽分别为5mm、10mm。
如图3.5。
②修改大齿轮,按工程图画减重槽和减重孔,利用【拉伸切除】命令,先画减重槽,深度为10mm,如图3.6,利用基准面通过【镜像】命令,画出另一侧。
③通过【拉伸切除】命令打一个减重孔,孔径为36mm,如图3.7,【插入】-【参考几何体】-【基准轴】命令,选择圆心为基准轴,如图3.8,通过【圆周阵列】命令,选择基准轴和阵列的数目,完成多个减重孔成型如图3.9。
④通过【倒角】命令倒角,最后成型,如图3.10。
图3.4 齿轮的工程图图3.5 加工轮毂和键糟图3.6 加工减重槽图3.7 加工减重孔图3.8 插入基准轴图3.9 减重孔圆周整列图3.10 大齿轮的三维建模Ⅱ、小齿轮轴的三维建模在Ⅰ中GearTrax 导入小齿轮的基础上,按照二维工程图进行建模,如图3.11。
①依次用【拉伸】命令构造小齿轮轴,完成小齿轮轴的大体建模,如图3.12。
②然后利用【插入】-【参考几何体】-【基准面】命令,在小齿轮轴的外伸端建立基准平面1,如图3.13,再在该基准平面上利用【拉伸切除】命令,按照高速轴和V 带轮联接键的尺寸:高速轴和V 带轮联接键为:键8X28 GB1096-79b ×h = 8×7,L = 28,绘制草图,选择切除厚度,完成键槽的成型,如图3.14。
③利用【倒角】和【倒圆角】命令修改小齿轮轴,完成建模如图3.15。
图3.11 小齿轮轴工程图3.12 齿轮拉伸图3.13 建立基准面1图3.14 拉伸键图3.15 小齿轮轴的三维建模Ⅲ、轴的三维建模①用【拉伸】命令,选择任意基准平面,按照设计尺寸依次拉伸成型,如图3.16。
②通过【插入】-【参考几何体】-【基准面】命令,在齿轮安装段和外伸端建立两个基础平面,如图3.17,依次用【拉伸切除】命令切出大齿轮与轴的键槽和低速轴(如图3.18)和联轴器的联接键键槽(如图3.19)。
③用【倒角】和【倒圆角】命令修改轴,完成建模,如图3.20。
图3.16 轴的工程图图3.17 轴的拉伸图 3.18 建立两个基准面图3.19 齿轮键拉伸图3.20 联轴器的键拉伸图3.21 轴的三维建模3.1.2 对箱体、箱盖的三维建模Ⅰ、箱体三维建模①根据箱体的二维图,如图3.22,图3.23,图3.24,用【拉伸】命令,选择任意基准面,构造箱体大体立方体,如图3.25 用【圆角】命令将立方体四个棱边倒R=20mm 的圆角。
②利用【抽壳】命令,选择壁厚度8mm,选择挖出材料面,完成抽壳,如图3.26。
③在抽壳选择面使用【拉伸】命令,拉伸出顶面凸缘,厚度为12mm,如图3.27,选择底面拉伸出箱体底板厚度为20mm,如图3.28,并【拉伸切除】底面通槽如图3.29。
在凸缘下面【拉伸】轴承座凸台(如图3.30)和凸台(如图3.31),在轴承座凸台上用【拉伸切除】命令切出轴承槽,如图3.32。
④用【插入】-【参考几何体】-【基准面】命令分别在两个轴承座建立基准平面1 和基准平面2,如图3.33,用【筋】命令,绘制轴承座凸台的加强筋,如图3.34。
⑤用【镜像】命令选择镜像对称平面,镜像凸台、轴承座凸台、加强筋和轴承槽,如图3.35。
⑥选择中间基准平面,用【筋】命令构造两个吊耳,如图3.36。
⑦用【扫描切除】命令,绘制油沟,绘制扫描路线和扫描截面,如图3.37,用【异形孔向导】在轴承槽端面上打M8 的螺纹孔,如图3.38,【插入】-【参考几何体】-【基准轴】命令,分别建立基准轴1 和2,圆周阵列螺纹孔,等间距,孔数为6,如图3.39。
⑧用【拉伸切除】命令在顶面凸台上打d=13mm 起盖螺钉孔和销孔,在凸台上打d=17mm 螺栓孔,在底板上打d=18mm 地脚螺钉孔。
⑨用【插入】-【参考几何体】-【基准面】命令在箱体后端面建立一个45°平面作为基准,如图3.40,用【拉伸】命令构造凸台,如图3.41,在凸台上打油标尺M12 的螺纹孔。
在后端面上拉伸的d=30mm 的凸台,在凸台上打M20 的油塞孔。
用【倒圆角】对箱体各处进行R=10mm 倒圆角,完成建模,如图3.42。
图3.22 箱体主视图图3.23 箱体俯视图图3.24 箱体左视图图3.25 拉伸长方体 3.26 长方体的抽壳图3.27 拉伸凸缘图3.28 拉伸底板图3.29 拉伸切除通糟图3.30 拉伸轴承座图3.31 拉伸凸台图3.32 拉伸切除轴承安装槽图3.33 建立两个基准图 3.34 轴承座加强筋图3.41 拉伸油标尺凸台图3.42 箱体三维建模Ⅱ、箱盖的三维建模根据减速器箱盖二维工程图进行建模,如图3.43,图3.44,图3.45。
①【拉伸】构造箱盖的大体轮廓,如图3.46,【抽壳】命令,选壁厚为8mm ,选择底面为去除材料面,如图3.47,在去除材料面【拉伸】凸缘,厚度为12mm,如图3.48,在凸缘上【拉伸】出轴承座(图3.49)和凸台(图3.50),【拉伸切除】打52mm 和80mm 的轴承安装槽,如图3.51。
②【镜像】,选择凸台、轴承座和轴承安装槽为对象,选择箱体对称面为基准面,构造另一侧,如图3.52。
③【筋】命令,构造吊耳,选择箱盖的对称面做草图,如图3.53。
④用【插入】-【参考几何体】-【基准轴】命令,选择圆柱面,建立基准轴1,用【异形孔向导】选择在轴承侧面打M8 的螺纹孔,【圆周阵列】选择基准轴1 为旋转轴,螺纹孔为阵列对象,数目选择为6,如图3.54。
⑤【拉伸切除】在吊耳上打10mm 的孔,在凸缘上打四个13mm 的起盖螺钉孔,在凸台上打六个17mm 螺栓通孔,再【旋转切除】出两个8mm 销孔。
⑥选择箱盖上表面为基准面,先【拉伸】出90X60 的,厚度为4mm 的凸台,如图3.55,再【拉伸切除】出观察孔,如图3.56,再在观察盖凸台上【异形孔向导】打四个M6 螺纹孔。
⑦【倒圆角】、【倒角】命令,对箱盖进行R5mm 和1mm 的倒角,完成建模,如图3.57。
图3.43 箱盖的主视图图3.44 箱盖的俯视图图3.45 箱盖的左视图图3.46 构造大体轮廓图3.47 抽壳图3.48 拉伸凸缘图 3.49 拉伸轴承座图3.50 拉伸凸台图3.51 拉伸轴承槽图3.52 镜像凸台凸缘图3.53 建立吊耳图3.54 整列M8 螺纹孔图3.55 拉伸观察盖凸台图3.56 拉伸切除观察图3.57 箱盖的三维建模3.1.3 对轴承的三维建模Ⅰ.保持架:①【拉伸】选择任意基准面,在草图上画一个径为38mm 和外径40mm 的圆环,对称拉伸,拉伸厚度为5mm,如图3.58。
②【旋转】,对称拉伸面作为基准面,画通过中心的虚线为旋转轴,画直径12mm 的半圆为旋转截面,如图3.59,用【插入】-【参考几何体】-【基准轴】命令,选择圆柱面,建立基准轴1,【圆周阵列】命令,选择基准轴1 为旋转轴,阵列对象为旋转、拉伸出的实体,如图 3.60,【旋转切除】,仍然选择对称拉伸面为基准面,在刚才旋转出的圆体切出一个空心为8mm 的球体,如图3.61,然后再次整列空心球体。
【拉伸切除】切掉圆环外多余的材料,即完成建模,如图3.62。
图3.58 拉伸圆环图3.59 旋转球体图3.60 整列球体图3.61 旋转切除图3.62 保持架的三维建模Ⅱ.滚动体:【旋转】,选择任意基准面,画出虚线旋转轴,半径为4mm 的半圆截面,如图,3.63,完成建模,如图3.64。
Ⅲ.圈、外圈:【旋转】,选择任意基准面,画出虚线旋转轴,画出圈外圈的截面草图如图3.65 和图3.66,即完成建模如图3.67 和图3.68。
图3.63 旋转拉伸滚动体图3.64 滚动体的三维建模图3.65 外圈的草图图3.67 外圈的三维建模图3.66 圈的草图图3.68 圈的三维建模3.1.4 油标尺、观察盖、油塞和通孔器的三维建模1.端盖:①【旋转】命令,任意选择基准面,建立选线基准轴,画出端盖的截面草图,旋转得到实体,如图3.69。
②用【插入】-【参考几何体】-【基准轴】命令,选择圆柱面,建立基准轴1,【拉伸切除】在端盖上打9mm 的孔,【圆周阵列】命令,基准轴1 为旋转轴,9mm 的孔为阵列对象,数目为6,完成建模,如图3.70。