站内叠加电码化

合集下载

相敏轨道电路预叠加站内电码化

相敏轨道电路预叠加站内电码化

25Hz相敏轨道电路预叠加ZPW-2000A站内电码化摘要:随着铁路的大发展,站内电码化技术作为保证行车安全的基础设备已被广泛采用。

本文介绍电码化的基本原理,分析接发车进路预叠加电码化电路,对电化区段25HZ相敏轨道电路预叠加ZPW-2000A电码化系统进行阐述。

关键词:电码化、轨道电路、预叠加在信号系统设备中,车站电码化是一个重要的组成部分,它对于加强站内行车安全以及机车信号的发展起着重要的作用。

随着铁路跨越式发展的不断深入,列车运行速度越来越快,提速区段越来越多,提速区段对机车信号有了更高的要求。

为确保机车信号的正确显示,与之配套的地面信号设备需要进行改造。

在自动闭塞区段,区间设备通常采用ZPW-2000A无绝缘轨道电路。

而站内轨道电路采用交流连续式轨道电路、25Hz相敏轨道电路。

机车在区间和站内运行,需要接收相应的地面信息,保证列车运行安全。

为了使机车信号不间断地接收站内与区间的信息,站内正线上的各个轨道电路区段和侧线股道,均应实现电码化。

1相关术语电码化:由轨道电路转发或叠加机车信号信息技术的总称。

车站股道电码化:车站内到发线的股道及正线实施的电码化。

车站接发车进路电码化:车站内按列车进路实施的电码化。

预叠加电码化:列车进入本区段时,不仅本区段且其运行前方相邻区段也实施的电码化。

2实施车站闭环电码化的范围列车占用的股道区段;经道岔直向的接车进路,为该进路中的所有区段;半自动闭塞区段,包括进站信号机的接近区段;自动闭塞区段,经道岔直向的发车进路,为该进路中的所有区段。

3电码化主要设备(1)ZPW-2000A 电码化发送设备:载频为 1700Hz、2000Hz、2300Hz、2600Hz。

(2) ZPW-2000系列闭环电码化调制频率为 10.3 Hz、11.4 Hz、12.5 Hz、13.6 Hz、14.7 Hz、15.8Hz、16.9Hz、18Hz、19.1Hz、20.2Hz、21.3Hz、22.4Hz、23.5Hz、24.6Hz、25.7Hz、26.8Hz、27.9Hz、29Hz。

最新二线叠加2000R站内电码化-05-20系统安装、调试及开通

最新二线叠加2000R站内电码化-05-20系统安装、调试及开通
使用端子
连接端子
参考使用范围
1ห้องสมุดไป่ตู้3
2-6-7-8
同HF2防护盒
1—3
4-7-8
可调范围10°~20°
1—3
5-8
可调范围20°~40°
6HF4-25型防护盒端子使用:1、3号端子分别接至JRJC1-70/240型二元二位轨道继电器的轨道线圈两端。各端子的使用和连接按表2.1-2进行。
电缆中各发送频率不相同时,可采用非内屏蔽型数字信号电缆,每一发送线对,必须按四芯组对角线使用。
相同频率的发送不能设在同一四线组内,发送线对必须按四芯组对角线使用。
发送线对的备用芯线采用星绞组的对角线。
分支电缆(长度小于
12
25Hz相敏轨道电路预叠加ZPW-2000R开通
25Hz相敏轨道电路联调
1采用BG2-130/25时(两线制):接线见图2.1-1。
2.发送调整器安装于发送调整组合内。正线电码化只需要一个发送调整组合,占一层组合位置。安装在组合架或组合柜内。侧线电码化发送调整组合数,根据股道数而定。每四个股道设一个发送调整组合。发送调整组合的地线E与室内贯通地相连。
3.ZPW·NGL-R型室内隔离盒放置于托盘上,托盘安装于组合架上。3台ZPW·NGL-R型室内隔离盒与3台BMT-25型室内调整变压器,放置在一个托盘上可作为送电端室内隔离设备。5台ZPW·NGL-R型室内隔离盒放在一个托盘上可作为受电端室内隔离设备。
3.在本系统中功放器固定使用1电平输出。
ZPW·WGL-R型室外隔离盒、ZPW·FWGL-R型室外隔离盒和ZPW·WGFH-R型室外隔离防护盒都安装于XB1箱内。
信号电缆
非电化区段站内轨道电路干线电缆采用SPTYWPA23综合护套内屏蔽电缆(不同发送器,有相同载频发送时

叠加方式站内轨道电路电码化

叠加方式站内轨道电路电码化

叠加方式站内轨道电路电码化目录第一章综述 (3)第一节实施电码化技术的必要性 (4)一、轨道电路必须实行电码化 (4)二、常用的站内轨道电路必须实行电码化 (4)三、电码化是防“冒进”的需要 (5)第二节电码化技术的发展 (6)一、叠加移频电码化 (6)二、车站接、发车进路电码化 (7)三、预叠加移频电码化 (9)四、闭环电码化 (10)第二章电码化叠加预发码技术 (11)第一节实施叠加预发码技术的原因 (11)一、采用预发码的原因 (11)二、预叠加电码化的作用及主要特点 (12)三、系统设计原则及技术要求 (13)第二节预叠加电码化控制电路 (14)一、预叠加电码化原理 (14)二、正线区段控制电路 (14)三、正线股道和到发线股道区段 (16)四、电码化电路设计举例 (16)第三节关于空间连续 (21)一、绝缘节空间连续的处理 (21)二、道岔跳线和弯股跳线设置 (23)第四节工程设计 (23)一、站内发送频率的选择 (23)二、电码化电缆及配线的选择 (24)三、电码化设备的使用环境 (24)四、隔离设备的使用 (25)五、电码化配套设备的使用 (25)六、非电气化牵引区段移频电码化 (25)七、电气化牵引区段移频电码化 (27)第五节电码化码序编制原则 (30)一、制定码序标准的必要性 (30)二、编制原则 (30)三、电码化码序的编制 (33)第三章ZPW-2000(UM)系列 (41)预叠加电码化系统 (41)第一节系统类型和设计原则 (41)一、简介 (41)二、系统设计原则 (42)第二节电码化补偿电容设置原则 (43)一、补偿电容结构特征和技术指标 (43)二、设置方法 (43)三、举例计算 (44)四、补偿电容设置参考表(表4-2) (45)第一章综述站内电码化技术主要应用于铁路站内,它能保证站内电码化轨道电路连续不断地向机车车载设备发送所需的电码化信息,是行车指挥系统的基础设备之一。

25Hz相敏轨道电路预叠加ZPW 2000A站内电码化资料

25Hz相敏轨道电路预叠加ZPW 2000A站内电码化资料

25Hz相敏轨道电路预叠加ZPW-2000A站内电码化摘要:随着铁路的大发展,站内电码化技术作为保证行车安全的基础设备已被广泛采用。

本文介绍电码化的基本原理,分析接发车进路预叠加电码化电路,对电化区段25HZ相敏轨道电路预叠加ZPW-2000A 电码化系统进行阐述。

关键词:电码化、轨道电路、预叠加在信号系统设备中,车站电码化是一个重要的组成部分,它对于加强站内行车安全以及机车信号的发展起着重要的作用。

随着铁路跨越式发展的不断深入,列车运行速度越来越快,提速区段越来越多,提速区段对机车信号有了更高的要求。

为确保机车信号的正确显示,与之配套的地面信号设备需要进行改造。

在自动闭塞区段,区间设备通常采用ZPW-2000A无绝缘轨道电路。

而站内轨道电路采用交流连续式轨道电路、25Hz 相敏轨道电路。

机车在区间和站内运行,需要接收相应的地面信息,保证列车运行安全。

为了使机车信号不间断地接收站内与区间的信息,站内正线上的各个轨道电路区段和侧线股道,均应实现电码化。

1 相关术语电码化:由轨道电路转发或叠加机车信号信息技术的总称。

车站股道电码化:车站内到发线的股道及正线实施的电码化。

车站接发车进路电码化:车站内按列车进路实施的电码化。

预叠加电码化:列车进入本区段时,不仅本区段且其运行前方相邻区段也实施的电码化。

2 实施车站闭环电码化的范围列车占用的股道区段;经道岔直向的接车进路,为该进路中的所有区段;半自动闭塞区段,包括进站信号机的接近区段;自动闭塞区段,经道岔直向的发车进路,为该进路中的所有区段。

3 电码化主要设备(1)ZPW-2000A电码化发送设备:载频为1700Hz、2000Hz、2300Hz、2600Hz。

(2)ZPW-2000系列闭环电码化调制频率为10.3 Hz、11.4 Hz、12.5 Hz、13.6 Hz、14.7 Hz、15.8Hz、16.9Hz、18Hz、19.1Hz、20.2Hz、21.3Hz、22.4Hz、23.5Hz、24.6Hz、25.7Hz、26.8Hz、27.9Hz、29Hz。

[整理]二线叠加2000R站内电码化-05-20系统安装、调试及开通

[整理]二线叠加2000R站内电码化-05-20系统安装、调试及开通

-------------本部分版本及信息说明25Hz相敏轨道电路、50Hz交流轨道电路二线制预叠加ZPW-2000RⅡ型电码化第五部分系统安装、调试及开通-------------目录本部分版本及信息说明 (I)1 系统安装说明 (3)1.1 室内设备安装 (3)1.2 室外设备安装 (3)1.3 信号电缆安装 (4)2站内电码化的调试及开通 (4)2.1 25Hz相敏轨道电路预叠加ZPW-2000R开通 (4)2.2 50Hz交流轨道电路预叠加ZPW-2000R开通 (7)1 系统安装说明1.1 室内设备安装1.1.1 设备安装1.发送器、功放器、发送采集器、采集中继及系统维护终端等室内设备集中安装于无绝缘站内移频机柜内。

每台站内移频机柜最多可安装16套站内发送设备。

2.发送调整器安装于发送调整组合内。

正线电码化只需要一个发送调整组合,占一层组合位置。

安装在组合架或组合柜内。

侧线电码化发送调整组合数,根据股道数而定。

每四个股道设一个发送调整组合。

发送调整组合的地线E与室内贯通地相连。

3.ZPW·NGL-R型室内隔离盒放置于托盘上,托盘安装于组合架上。

3台ZPW·NGL-R型室内隔离盒与3台BMT-25型室内调整变压器,放置在一个托盘上可作为送电端室内隔离设备。

5台ZPW·NGL-R型室内隔离盒放在一个托盘上可作为受电端室内隔离设备。

4.ZPW·FNGL-R型室内隔离盒放置于托盘上,托盘安装于组合架上。

送电端每台标准组合位可放置3台ZPW·FNGL-R型室内隔离盒与3台BMT-50型室内调整变压器。

用于受电端每台标准组合位可放置5台ZPW·FNGL-R型室内隔离盒。

1.1.2 电码化发送器的调整1.对ZPW-2000R发送器要求负载电阻为400Ω,电源电压为DC48V,温度为18℃~28℃时,功放器的输出电平选择在移频层背板的对应万可端子上封连,连接端子及各电平对应电压见表1.1-1。

站内叠加电码化

站内叠加电码化

站内25HZ相敏轨道电路预叠加ZPW-2000A电码化预叠加电码化的范围自动闭塞区段1、正线正线正方向:电码化范围包括正线接车进路和正线发车进路正线反方向:电码化范围仅为反方向正线接车进路。

2、侧线侧线电码化范围仅为股道占用发码。

半自动闭塞区段站内电码化范围:正线接车进路。

侧线接车时电码化范围仅为股道。

二、发送器发送范围复线自动闭塞站内电码化正线发送器发码范围为XJM下行正线接车进路、XFM下行正线发车进路、SJM上行正线接车进路、SFM上行正线发车进路、XFJM下行反向正线接车进路、SFJM上行反向正线接车进路。

侧线股道发送器上下行方向各设一个发送器每一股道设置使用两个发送器。

下行I道接车时,XJM发送器移频信息经过FTU1-U匹配单元后分两路、分别向IAG、1DG、7DG、IG发送移频信息。

下行I道发车时,XFM发送器经过FTU1-U匹配单元后分两路别向4DG、2-8DG、IBG 发送移频信息。

电码化发码简图(三)电码化电路原理1、下行接车电码化电路当下行I道接车时,下行接车进路X进站信号开放XLXJ↑ XZXJ↑开通正线XJMJ↑列车进入三接近时X3JGJ↓---1AG的GCJ↑后1AG预先发码,当列车进入1AG时1DG的GCJ↑后1DG预先发码,当列车进入1DG时7DG的GCJ↑后7DG预先发码的同时断开1AG的GCJ电路并停止向1AG发码…………当列车占用本区段的接近区段时本区段预先发码当列车进入本区段时下一区段预先发码,并停止接近区段发码复原接近区段发码电路。

当列车完全到达股道后,XJMJ以及进路上所有的GCJ恢复原状。

X行接车正线发车正线示意图2、下行发车电码化电路当下行一道发车X1开放出站信号时X1LXJ↑.列车占用1道1GJ↓..XFMJ↑--4DG的GCJ↑后4DG预先发码,当列车出发进入4DG时2-8DG的GCJ↑后2-8DG预先发码, 当列车进入2-8DG时1BG的GCJ↑后1BG预先发码的同时断开4DG的GCJ电路并停止向4DG发码。

站内轨道电路预叠加ZPW一A电码化

站内轨道电路预叠加ZPW一A电码化

站内轨道电路预叠加ZPW一A电码化一、叠加在交流电气化牵引区段,一般采用与25Hz相敏轨道电路“叠加”移频机车信号信息旳电码化方式。

所谓“叠加”即在轨道电路传播通道内,轨道电路信息和机车信号信息同步存在。

传播继电器旳作用是在发码时机到来之际,将发码设备与轨道电路设备并联,两者同步向轨道传播通道发送信息。

二、预叠加随着铁路运送旳发展,提速区段对机车信号和超速防护有了更高旳需求(即在发码区段内,保证机车信号在时间和空间上二均持续)。

目前旳“切换和叠加”电码化技术已不满足提速规定,必须在原有电码化“叠加发码”方式旳基础上进行改善,采用“叠加预发码”方式,才干保证列车接受地面信息在“时间和空间”上旳持续。

“预”就是在列车占用某一区段时,其列车运营前方,与本区段相邻旳下一种区段也开始发码。

三、预叠加原理电码化系统旳设计原则为:正线区段(涉及无岔和道岔区段)为“逐段预先发码(简称‘预叠加’)”,保证列车在正线区段行驶旳全过程,地面电码化能不间断地发送机车信号。

侧线区段为占用发码叠加发码。

图LC9-3 预叠加原理我们如下行正线接发车为例(站场示意见图LC9-3),略述正线区段逐段预先发码旳应用原理。

接车进路、发车进路ZPW--A 电码化发送设备采用“N+l”冗余方式设计。

图l中粗线表达旳是站内电码化范畴。

与下行电码化方向相相应,迎着列车行驶方向进行发码,进路内每一轨道区段均设立一台传播继电器CJ。

发送旳I 、Ⅱ路输出分别与相邻轨道区段旳CJ相连,即I路输出若连A、C、E.G区段旳C J,Ⅱ路输出则连B、D、F、H区段旳CJ.⑴列车进入YG区段时,接车进路已排通,即正线继电器ZXJ↑,进站信号开放,LXJ↑,则接车电码化继电器JMJ↑。

直到列车进入D股道,DGJF↓,切断JMJ旳KZ电源,JMJ才落下,表白接车电码化已结束。

列车进入YG区段,YGJF↓,传播继电器电路中ACJ↑,发送设备I路旳移频信息叠加进A区段旳轨道电路信息中,站内电码化开始工作,预发(叠加)第一种码。

站内轨道电码化.

站内轨道电码化.

型。
四线制电码化电路不用室内隔离盒。
室内隔离盒可用于四种载频,不同频率通过在外插头上焊接跨线得到。
AT13~AT17 为
1700Hz ,AT 13~AT 16 为 2000 Hz, AT 13~AT 7 为 2300Hz , AT13~AT 6 为 2600Hz 。
电码化信号由 8、 18 两端输入,从 5、 15 端输出,由于隔离,而不会进入 2、 12 端,从 而防止电码化信号进入 25Hz 、 50Hz 电源或轨道继电器,避免轨道继电器损坏。
分别放置在送电端室内隔离组合和受电端室内隔离组合中。其中
RTH-F 型送电调整电阻盒
内放置 3 组可调电阻, RTH-R 型受电调整电阻盒放置 5 组可调电阻。可调电阻为固定抽头
BMT-25 型变压器直接放置在组合架上托盘上。 3 台电码化隔离调整变压器与 室内隔离盒放置在 MGL-UF 托盘上,可作为送电端室内隔离设备。
3 台 NGL-U
BMT-25 电码化隔离调整变压器输出电压调整,从 (3)电阻调整盒
5~180V 每 5V 一档可调。
送、受电端电阻调整盒( RTH-F 、 RTH-R )用来调整每一轨道区段的输出电码化电流,
第四层为站内电码化检测组合,可插主、备检测盘
12 套,共 48 路轨道检测条件。第五、
六台式 ZPW · PJC 型侧线检测盘,五是主机,六是并机;其他位置都是
ZPW · PJC 型正线
检测盘,单数位式主机,双数位式并集机
第五层为 4 套发送器及其发送检测盒,其中第一、二位为车站两端邻接区间的
n+1 发送
1.站内移频柜
ZPW ·GFM-2000A 型站内电码化发送柜即站内移频柜,供站内轨道电路电码化用。一个 站内移频柜含 10 套 ZPW-2000A 型站内电码化设备,每套设备包括一个发送器以及相应的 零层端子板和断路器。两个发送器合用一个发送检查盘,分别检测上下两个发送器。

站内25 Hz轨道电路叠加电码化典型问题分析

站内25 Hz轨道电路叠加电码化典型问题分析

TECHNOLOGICAL EXCHANGE 站内25 Hz轨道电路叠加电码化典型问题分析刘国栋,陈德伟,肖 鹏(中铁二院工程集团有限责任公司,成都 610031)摘要:通过对列车冒进信号机防护以及单端发码电码化防护两方面进行分析,通过具体案例,提供解决方案,为以后的工程设计提供解决方案及解决类似问题的技术参考。

关键词:电码化;25 Hz相敏轨道电路;单端发码;邻线干扰中图分类号:U284.2 文献标志码:A 文章编号:1673-4440(2021)11-0065-03Analysis on Typical Problems of Overlapped Coding of 25 Hz PhaseSensitive Track Circuit in StationLiu Guodong, Chen Dewei, Xiao Peng(China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, China) Abstract: This paper analyzes two aspects of the protections of a train overrunning a signal and single end coding. Through practice cases, it provides solutions and technical reference to solve similar problems for future engineering design.Keywords: coding; 25 Hz phase sensitive track circuit; single end code sending; adjacent line interference DOI: 10.3969/j.issn.1673-4440.2021.11.0141 概述随着国内铁路的发展以及铁路大规模提速,对机车信号和列车超速防护有了更高的要求,以机车信号取代地面信号作为主体信号已经成为铁路信号技术发展的趋势。

站内轨道电路电码化

站内轨道电路电码化

表1 4、8、12、18信息移频入口电流
载频频率 Hz
入口电流 mA
非电化区段 电化区段
550 ≥50 ≥150
650 ≥40 ≥120
750 ≥33 ≥92
850 ≥27 ≥66
⒃ ZPW-2000(UM)系列电码化,在最不利条件下,机车信号钢轨最小短路电流及入口电 流值应满足表2的规定。
表2 ZPW-2000(UM)系列机车信号钢轨最小短路电流及入口电流
载频频率 Hz
1 700
2 000
2 300
2 600
机车信号钢轨 最小短路电流值
mA
≥500
≥500
≥500
≥450
入口电流 mA
≤1 200
≤1 200
≤1 200
≤1 100
⒄ 交流计数电码化,在最不利条件下,入口电流值应满足表3的规定。
入口电流 mA
表3 交流计数入口电流 50 Hz交流计数电码化 ≥1 200
2. 系统设计原则及技术要求 ➢ 车站正线采用“逐段预先叠加发码”方式,到发线股道采用“占用叠加发码”方式。
➢ 国产移频发送设备载频设置:下行方向为750 Hz,上行方向为650 Hz。 ➢ UM71、WG-21A、ZPW-2000发送设备载频设置:下行方向为1 700 Hz,上行方向为2
000 Hz。 ➢ 自动闭塞区段正线采用双套设备的预叠加电码化,侧线股道采用单套设备的占用叠加电码化。
⑴ 脉动切换电码化的优点 ➢ 克服了“固定切换”方式电码化轨道电路不能自动恢复的缺点。
➢ 克服了不能适用调度集中区段和色灯电锁器联锁车站实施电码化的重大技术缺陷。
➢ 在正线接发车进路,所有到发线的股道均能实施电码化。 ➢ “脉动切换”方式联锁条件最少,在旧站现有设备的情况下实施电码化,使其电码化电路实

7站内25HZ相敏轨道电路预叠加ZPW 2000A电码化

7站内25HZ相敏轨道电路预叠加ZPW 2000A电码化

站内25HZ相敏轨道电路预叠加ZPW-2000A电码化一、预叠加电码化的范围1、自动闭塞区段正线:正线正方电码化范围包括正线接车进路和正线发车进路;正线反方向电码化范围仅为反方向正线接车近路。

侧线:侧线电码化范围仅为股道占用发码。

2、半自动闭塞区段站内电码化范围:正线接车进路,侧线接车时电码化范围仅为股道。

二、发送器发送范围复线自动闭塞区段站内电码化正线发送器发码范围为:XJM下行正线接车进路,XFM下行正线发车进路,SJM上行正线接车进路,SFM上行正线发车进路,XFJM下行反方向正线接车进路,SFJM上行反方向正线接车进路。

侧线股道电码化发送器,上、下行方向各设一个发送器,每个股道使用两个发送器。

下行正线接车时,XJM发送的移频信息经过FTU1-U匹配单元后,分两路向进路中的IAG、1-7DG、9DG、IG发送。

下行正线发车时,XFM发送的移频信息经过FTU1-U匹配单元后,分两路向进路中的10DG、2-8DG、IBG发送。

三、电码化电路原理1、下行接车进路电码化电路当下行向IG接车时,下行接车进路x进站信号开放,XLXJ↑、XZXJ↑开通正线,XJMJ↑。

当列车压入X3JG时,X3JGJ↓→IAGCJ↑后IAG预发码。

当列车压入IAG时,IAGJ↓→1-7DGCJ↑后1-7DG预发码。

当列车压入1-7DG时,1-7DGJ↓→9DGCJ↑,9DG预发码,同时断开IAGCJ电路并停止向IAG发码。

既当列车压入本区段的接近区段时,本区段预先发吗;当列车压入本区段时,下一区段预先发码,并停止接近区段砝码,复原接近区段的发码电路。

当列车完全到达股道后。

XJMJ及进路上所有区段的CJ 恢复原状。

2、下行发车进路电码化电路下行IG发车XI信号开放时,XILXJ↑,列车占用IG,IGJ↓,XFMJ↑,→10DGCJ↑,10DGJ↑后10DG预先发码,当列车压入10DG,2-8DGCJ↑.2-8DG预先发码,当列车压入2-8DG 时,IBGCJ↑,IBG预先发吗,同时断开10DG并停止10DG 路发码。

站内轨道电路预叠加ZPW一2000A电码化

站内轨道电路预叠加ZPW一2000A电码化

站内轨道电路预叠加ZPW一2000A电码化一、叠加在交流电气化牵引区段,通常采用与25Hz相敏轨道电路“叠加”移频机车信号信息的电码化方式。

所谓“叠加”即在轨道电路传输通道内,轨道电路信息和机车信号信息同时存在。

传输继电器的作用是在发码时机到来之际,将发码设备与轨道电路设备并联,两者同时向轨道传输通道发送信息。

二、预叠加随着铁路运输的发展,提速区段对机车信号和超速防护有了更高的需求(即在发码区段内,保证机车信号在时间和空间上二均连续)。

目前的“切换和叠加”电码化技术已不满足提速要求,必须在原有电码化“叠加发码”方式的基础上进行改进,采用“叠加预发码”方式,才能保证列车接收地面信息在“时间和空间”上的连续。

“预”就是在列车占用某一区段时,其列车运行前方,与本区段相邻的下一个区段也开始发码。

三、预叠加原理电码化系统的设计原则为:正线区段(包括无岔和道岔区段)为“逐段预先发码(简称‘预叠加’)”,保证列车在正线区段行驶的全过程,地面电码化能不间断地发送机车信号。

侧线区段为占用发码叠加发码。

图LC9-3 预叠加原理我们以下行正线接发车为例(站场示意见图LC9-3),略述正线区段逐段预先发码的应用原理。

接车进路、发车进路ZPW--2000A电码化发送设备采用“N+l”冗余方式设计。

图l中粗线表示的是站内电码化范围。

与下行电码化方向相对应,迎着列车行驶方向进行发码,进路内每一轨道区段均设置一台传输继电器CJ。

发送的I 、Ⅱ路输出分别与相邻轨道区段的CJ相连,即I路输出若连A、C、E.G区段的C J,Ⅱ路输出则连B、D、F、H区段的CJ.⑴列车进入YG区段时,接车进路已排通,即正线继电器ZXJ↑,进站信号开放,LXJ↑,则接车电码化继电器JMJ↑。

直到列车进入D股道,DGJF↓,切断JMJ的KZ电源,JMJ才落下,表明接车电码化已结束。

列车进入YG区段,YGJF↓,传输继电器电路中ACJ↑,发送设备I路的移频信息叠加进A区段的轨道电路信息中,站内电码化开始工作,预发(叠加)第一个码。

站内轨道电码化

站内轨道电码化

=、第六章站内轨道电路电码化为了保证行车安全和提高运输效率,使机车信号和列控车载设备在站0内能连续不断地接收到地面信号而不间断显示,需在站内原轨道电路的基础上进行电码化。

站内轨道电路电码化是机车信号系统和列控系统不可缺的地面发送设备。

第一节站内轨道电路电码化概述一、站内轨道电路电码化所谓站内轨道电路电码化,指的是非电码化的轨道电路在采取一定的技术措施后能根据运行前方信号机的显示发送各种电码。

对于移频制式,电码化就是移频化。

我国铁路站内轨道电路通常采用25Hz相敏轨道电路或交流连续式轨道电路(480轨道电路),它们只有占用检查的功能,既只能检查本区段是否有车占用或空闲,不能向机车信号车载设备传递任何信息。

如果站内轨道电路不进行电码化,列车在站内运行时机车信号将中断工作,无法保证行车安全。

二、站内轨道电路电码化范围站内轨道电路电码化范围是列车进路,但由于技术方面的原因,还不能覆盖全部列车进路。

1.自动闭塞区段(1)正线正线正方向,轨道电路电码化范围包括接车进路和发车进路。

正线反方向,一般均采用自动站间闭塞,轨道电路电码化范围只包括接车进路。

(2)侧线侧线轨道电路电码化范围仅仅是股道。

这是因为正线轨道电路电码化要求咽喉区道岔绝缘设在弯股,侧线轨道电路电码化通路被切断,无法实现。

2.半自动闭塞区段站内轨道电路电码化范围只包括正线接车进路和侧线股道,以及进站信号机外方的接近区段,在提速半自动闭塞则为进站信号机外方的第一接近区段和第二接近区段。

三、站内轨道电路电码化发送的信息对于接车进路和侧线股道,站内轨道电路电码化发送的是和车站信号机显示相联系的信息。

对于发车进路,站内轨道电路电码化发送的是和防护二离去区段的通过信号机显示相联系的信息。

对于半自动闭塞区段进站信号机外方的接近区段,轨道电路电码化发送的是和进站信号机显示相联系的信息。

四、站内轨道电路电码化方式电码化有切换方式和叠加方式两种。

切换方式因由较多缺陷,尤其不能满足列车提速的要求,已不再使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

站内25HZ相敏轨道电路预叠加ZPW-2000A电码化
预叠加电码化的范围
自动闭塞区段
1、正线
正线正方向:电码化范围包括正线接车进路和正线发车进路
正线反方向:电码化范围仅为反方向正线接车进路。

2、侧线
侧线电码化范围仅为股道占用发码。

半自动闭塞区段
站内电码化范围:正线接车进路。

侧线接车时电码化范围仅为股道。

二、发送器发送范围
复线自动闭塞站内电码化正线发送器发码范围为XJM下行正线接车进路、XFM下行正线发车进路、SJM上行正线接车进路、SFM上行正线发车进路、XFJM下行反向正线接车进路、SFJM上行反向正线接车进路。

侧线股道发送器上下行方向各设一个发送器每一股道设置使用两个发送器。

下行I道接车时,XJM发送器移频信息经过FTU1-U匹配单元后分两路、分别向IAG、1DG、7DG、IG发送移频信息。

下行I道发车时,XFM发送器经过FTU1-U匹配单元后分两路别向4DG、2-8DG、IBG 发送移频信息。

电码化发码简图
(三)电码化电路原理
1、下行接车电码化电路
当下行I道接车时,下行接车进路X进站信号开放XLXJ↑ XZXJ↑开通正线XJMJ↑列车进入三接近时X3JGJ↓---1AG的GCJ↑后1AG预先发码,当列车进入1AG时1DG的GCJ↑后1DG预先发码,当列车进入1DG时7DG的GCJ↑后7DG预先发码的同时断开1AG的GCJ电路并停止向1AG发码…………当列车占用本区段的接近区段时本区段预先发码当列车进入本区段时下一区段预先发码,并停止接近区段发码复原接近区段发码电路。

当列车完全到达股道后,XJMJ以及进路上所有的GCJ恢复原状。

X行接车正线发车正线示意图
2、下行发车电码化电路
当下行一道发车X1开放出站信号时X1LXJ↑.列车占用1道1GJ↓..XFMJ↑--4DG的GCJ↑后4DG预先发码,当列车出发进入4DG时2-8DG的GCJ↑后2-8DG预先发码, 当列车进入2-8DG时1BG的GCJ↑后1BG预先发码的同时断开4DG的GCJ电路并停止向4DG发码。

当列车出清最后一个区段1BG时XFMJ以及进路上所有的GCJ恢复原状。

3、上行反方向接车电码化电路
当上行反方向一道正线接车时,开放SF进站信号SFLXJ↑ SFZXJ↑开通正线SFJMJ↑-同时使SFGPJ↑--SFJM发送器的载频频率改变为1700-1列车进入X1LQ时1LQJ↓---1BG的GCJ↑后1BG预先发码,当列车进入1BG时2-8DG的GCJ↑后2-8DG预先发码,当列车进入2-8DG时4DG的GCJ↑后4DG预先发码的同时断开1BG的GCJ电路并停止向1BG发码。

…………当列车完全到达股道后,XJMJ以及进路上所有的GCJ恢复原
状。

(反向正线接车机车所收的载频频率为1700-1)直至列车从1道出发出清股道后,SFGPJ↓电路全部复原.
SF接车正线示意图
上述原理本区段GCJ的供电始于上一区段轨道占用,止于下一段轨区段道占用,最多同一时刻只有相邻的两个区段GCJ↑,一个是本区段的,另一个是下一个区段的。

分别由移频发送设备匹配单元的两路输出通过相应的GCJ发往轨道区段,对于下一个区段来说实现了“预先叠加发码”列如:下行正线接车进路内共有1AG、1DG、7DG、1G、四段正线轨道电路。

移频发送设备匹配单元分两路独立输出,分别通过各自区段的GCJ条件向1AG、7DG和1DG、1G进行预叠加发码。

移频发送设备匹配单元的某一路输出在任一时刻向只一个区段发码(只带一个轨道区段的负载)。

4、侧线电码化
侧线股道只要有车占用该股道该股道两端上就发码列车进入3G
3GJFJ↓---S3发送器向3G的S3端发送移频信息,同时X3发送器向3G的X3端发送移频信息。

列车出清3G
3GJFJ↑---切断向3G两端发送移频信息。

站内电码化工作原理示意图
(四)电码化测试与调整:
1、电码化测试每年一次入口电、出口流测试移频信号短路电流值应满足1700 Hz、2000 Hz、2300Hz ≥500mA;2600 Hz≥450mA电码化区段,入口分路采用0.15Ω分路线,出口短路采用0.06Ω分路线分路(出口电流≤6A)
股道上除了入口端出口端测试,对安装补偿电容的股道测试从第一个电容开始向第二个电容每隔10米测试一次(共4次),采用0.15Ω分路线,测试短路电流,寻找电码化信息最不利处所,调整室内发送调整器和电码化调整电阻,使上述测得4次的最小短路电流满足: 1700、2000、2300Hz ≥500mA;2600 Hz≥450mA
一级测试在发送检测器上测试电源电压、功出电压、继电器电压
2、调整出入口电流应首先调整室内R3电阻,如电码化还不达标应同步调整R1、R2电阻。

室内NGL-T隔离器选型连接1700-1 AT13-AT17连接2000-1 A T13-AT16连接。

相关文档
最新文档