染色质免疫共沉淀
双荧光素酶染色质免疫共沉淀PPT
双荧光素酶染色质免疫共
05 沉淀实验注意事项与优化 建议
实验注意事项
确保样本质量
在实验前应确保样本质量,避免使用 过期或污染的试剂和材料。
防止交叉污染
THANKS FOR WATCHING
感谢您的观看
DNA序列。
在双荧光素酶染色质免疫共沉淀实验中,染色质免疫共沉淀技术用于分 离与目的蛋白相互作用的DNA序列,以便进一步分析目的蛋白的转录调 控作用。
双荧光素酶染色质免疫共沉淀实验的原理
双荧光素酶染色质免疫共沉淀实验是一种用于研究目 的蛋白对基因转录调控影响的实验方法。
输标02入题
该实验通过将荧光素酶标记的目标蛋白与细胞核提取 物中的DNA结合,然后利用染色质免疫共沉淀技术将 目标蛋白与DNA复合物分离出来。
免疫共沉淀
利用特定的抗体与染色质中的目标蛋白质或DNA片段进行特异性结合,实现目 标分子的富集。
荧光检测与分析
荧光检测
利用荧光检测仪器检测荧光信号,获 取目标分子在染色质中的定位和表达 情况。
结果分析
对荧光信号进行分析,解读实验结果, 并进一步探讨基因表达调控机制。
04 双荧光素酶染色质免疫共 沉淀实验结果分析
01
03
通过比较不同条件或处理下目标蛋白与DNA结合的情 况,可以研究目的蛋白对基因转录的调控作用。
04
在分离出的复合物中,荧光素酶标记的目标蛋白能够 催化荧光素酶底物发出荧光,从而对目标蛋白进行检 测和定量分析。
03 双荧光素酶染色质免疫共 沉淀实验步骤
细胞培养与处理
细胞培养
选择适当的细胞系,在适宜的培 养条件下进行培养,确保细胞生 长旺盛。
染色质免疫共沉淀
染色质免疫共沉淀染色质免疫共沉淀(chromatin Immunoprecipitation,ChIP)是一种将DNA和相应的转录因子组装到染色质上的一项技术,可用于彻底研究基因表达调节机制。
1. 什么是染色质免疫共沉淀?染色质免疫共沉淀(ChIP)是一种将DNA和相应的转录因子组装到染色质上的实验方法,用于研究染色质的结构和功能,进而理解基因的表达如何受调控。
它是一种特别有效的去解析染色质和基因表达调节之间的联系的方法,被用于通过生物信息学等方法,研究基因表达调节的蛋白质组织关系。
2. 染色质免疫共沉淀的原理染色质免疫共沉淀的技术根据抗体结合模式可以分为单克隆抗体和聚合物抗体两种,单克隆抗体结合定向抗原,可以较好地用于基因组定点分析,它通过固定DNA模板和抗原抗体相互作用将它们结合到一起,再行沉淀,从而获取DNA模板及其相互作用位点。
聚合物抗体可以扩大辨识特异性,能够克服单克隆抗体的特异性限制,可应用于普适性抗原,可以用于核组学分析,利用共沉淀的方法结合PCR的扩增效应,将小量的DNA模板复制成更多的DNA碱基,以能够清晰地获得与染色质有关的重要信息。
3. 染色质免疫共沉淀的步骤染色质免疫共沉淀的步骤主要有:细胞培养分离、肽激活细胞和抗体免疫沉淀、PCR扩增、核酸电泳分析、数据分析。
首先,要进行细胞培养,用适当的分离方法分离出细胞,接着,激活肽将细胞激活,以提高活细胞中的蛋白质和DNA的表达、组装以及相互作用;然后,添加抗体,抗体结合模板和相应的转录因子,这样可以将抗体和DNA-转录因子复合物结合在一起,继而进行沉淀;接着,将沉淀物进行PCR 扩增,从而将少量的模板复制成多份;接着,使用DNA电泳分析来检测分析结果;最后,利用生物信息学对实验测得的数据进行分析,探索调节染色质和基因表达的蛋白质组织关系及其机制。
以上就是染色质免疫共沉淀的实验步骤。
4. 染色质免疫共沉淀的应用染色质免疫共沉淀在生物学研究方面具有重要的应用价值,在基因组学、核组学、基因表达分析、生物信息学、代谢组学、表观遗传学等方面有着广泛的应用,可用于研究染色质结构,探索基因组变异,鉴定并且定位生物体内转录因子等,是一项重要的新技术。
染色体免疫共沉淀介绍
免疫学方法
在保持组蛋白和DNA联合的同时,通过运用对 在保持组蛋白和DNA联合的同时,通过运用对 应于一个特定组蛋白标记的生物抗体,染色质被 切成很小的片断,并沉淀下来。IP是利用抗原蛋 切成很小的片断,并沉淀下来。IP是利用抗原蛋 白质和抗体的特异性结合以及细菌蛋白质的 A”特异性地结合到免疫球蛋白的FC FC片 “protein A”特异性地结合到免疫球蛋白的FC片 段的现象活用开发出来的方法。目前多用精制的 protein A预先结合固化在argarose的beads上,使之 A预先结合固化在argarose的beads上,使之 与含有抗原的溶液及抗体反应后,beads上的 与含有抗原的溶液及抗体反应后,beads上的 protein A就能吸附抗原达到精制的目的。在免疫 A就能吸附抗原达到精制的目的。在免疫 沉淀之前,通过甲醛作用使DNA和蛋白质发生 沉淀之前,通过甲醛作用使DNA和蛋白质发生 共价连接,通过离心就可以得到DNA共价连接,通过离心就可以得到DNA-蛋白复合 体。染Fra bibliotek体免疫共沉淀的应用
CHIP可以检测体内反式因子与DNA的动态作用 CHIP可以检测体内反式因子与DNA的动态作用 CHIP与其他方法的结合,扩大了其应用范围: CHIP与其他方法的结合,扩大了其应用范围: CHIP与基因芯片相结合建立的 CHIP-on-chip方法 CHIP与基因芯片相结合建立的 CHIP-on-chip方法 已广泛用于特定反式因子靶基因的高通量筛选; CHIP与体内足迹法相结合,用于寻找反式因子的 CHIP与体内足迹法相结合,用于寻找反式因子的 体内结合位点; RNA-CHIP用于研究RNA在基因表达调控中的作 RNA-CHIP用于研究RNA在基因表达调控中的作 用
染色体免疫共沉淀
染色质免疫共沉淀测序技术
染色质免疫共沉淀测序技术
1染色质免疫共沉淀
染色质免疫共沉淀(ChIP-seq)是一种使用测序技术来研究染色质蛋白结合DNA及与基因表达的调控的新兴基因组学技术。
它是染色质免疫沉淀(ChIP)技术与高通量测序技术的结合。
通过染色质免疫共沉淀测序技术,可以确定细胞中的基因组上的结合位点,研究特定的蛋白质和DNA,及基因转录的调控机制,以及参与蛋白质-DNA结合的相关机制。
染色质免疫共沉淀测序是将蛋白质-DNA复合物通过染色质免疫沉淀(ChIP)技术进行收集,然后根据分子标记的位点将其测序,并且将其无功的部分暴露出来进行测序分析。
依靠ChIP-seq,可以以一种高效的方式查看某种特定蛋白质在基因组上结合的位置,并且可以分析复杂结构DNA区域位点间结合关系,也可以确定转录因子调控基因表达的路径。
染色质免疫共沉淀技术在进行基因组组学研究、基因组区域结构分析、功能元件检测、基因调控研究及转录组分析中发挥着重要作用。
传统的ChIP技术是所有细胞中的结合位点的相对分析,它们的数据可以用于描述和验证转录调控的路径,但是不能给出定性的结论,而ChIP-Seq则能够获得定性的位置并进行深入的分析。
染色质免疫共沉淀测序技术在研究复杂基因调控网络中发挥了重要作用,它可以更有效地捕捉基因表达状态,帮助研究者对研究对象
的基因表达调控进行深入的研究,使科研数据更为准确可靠,揭示出机体细胞调控的生物学机制。
免疫共沉淀和免疫沉淀
免疫共沉淀和免疫沉淀
“免疫沉淀”一般是指采用固定在固相支持物上的结合蛋白,进行小规模的蛋白质亲和纯化的实验。
将蛋白通过微珠(纯化介质)进行富集。
免疫沉淀根据检测的目的可以分为免疫沉淀、免疫共沉淀(Co-IP)、染色质免疫沉淀(ChIP)和RNA免疫沉淀(RIP)。
免疫共沉淀分析(Co-IP)是免疫沉淀的延伸,基本的技术都是采用目标抗原特异性的固相化抗体;但IP的目标是纯化单一抗原,而Co-IP旨在分离抗原及与抗原结合的蛋白质或配体,主要用于蛋白-蛋白相互作用检测。
如果样品溶液中存在与靶蛋白相互作用的目的蛋白,也会被一同捕获及纯化得到,通过SDS-PAGE、Western 和质谱等方法鉴定与靶蛋白结合的蛋白。
染色质免疫沉淀(ChIP)用于鉴定基因组中与靶蛋白(如转录
因子和组蛋白)结合的区域。
将蛋白质与DNA暂时交联固定并剪切DNA,目标蛋白与核酸序列一起被沉淀后通过高通量测序、Southern和PCR等方法进行DNA鉴定。
确定与靶蛋白结合的DNA 片段。
RNA免疫沉淀(RIP)原理与ChIP相似,与靶蛋白结合的RNA被沉淀后,用高通量测序、RT-PCR或Northern等方法对沉淀进行RNA 鉴定。
随着技术的发展,目前磁性微粒已经取代琼脂糖成为免疫沉
淀的首选方法,由于磁性微粒明显小于琼脂糖,因此可以与更多的抗体结合,纯化是可以使用磁力架进行,避免了离心分离可能导致的抗原-抗体结合的破坏,避免了检测目的的损失。
上述各种免疫沉淀的异同总结如下:。
染色质免疫共沉淀技术
染色质免疫共沉淀技术
染色质免疫共沉淀技术(ChIP)是一种常用的分子生物学技术,也是
研究细胞基因组结构和功能的重要方法。
该技术可以用来鉴定某个转录因
子或其他核蛋白与某个特定DNA序列的结合关系,从而确定这个DNA序列
在基因表达调控中的重要性。
该技术包括以下步骤:(1)交联;(2)裂解;(3)免疫沉淀;(4)洗涤;(5)离解交联;(6)DNA提取。
在这个过程中,首先将细胞进行交联,使得染色质固定在原位。
之后,将染色质进行裂解并进行免疫沉淀,这里是将特定的抗体与目标蛋白质结合,从而使得目标蛋白质与某些DNA序列结合,并保持在染色质中。
然后
对免疫沉淀后的复合物进行洗涤,去除杂质物质,以提高免疫沉淀的特异
性和纯度。
之后,对免疫沉淀后的复合物进行离解交联,使免疫沉淀的蛋
白质与DNA分别被分解为单独的分子。
最后,从免疫沉淀复合物中提取DNA,用于进一步的分析,例如PCR扩增、Southern blotting、测序等。
该技术的优点是可以在整个基因组范围内寻找目标DNA序列的结合蛋白,相对快速、成本低、灵敏度高,并且可以直接从原位染色质富集DNA
序列。
缺点是免疫沉淀的特异性和纯度可能受到影响,需要对实验进行严
谨控制。
染色质免疫共沉淀原理
染色质免疫共沉淀(ChIP)是一种常用的分子生物学技术,用于研究某个特定蛋白质与染色质上的特定区域之间的相互作用。
该技术在生物医学研究中得到广泛应用,可以帮助我们了解基因表达调控、信号转导、疾病发生机制等方面的问题。
一、ChIP的原理ChIP技术的基本原理是利用抗体特异性地结合目标蛋白质,然后通过共沉淀的方式将与该蛋白质结合的DNA序列一起提取出来。
这些DNA序列可以通过PCR扩增、测序等方法进行进一步的分析。
ChIP的具体操作流程如下:1. 交联:将细胞或组织中的染色质与蛋白质进行交联,使蛋白质与DNA序列紧密结合。
2. 超声破碎:将交联后的细胞或组织进行机械破碎,使染色质断裂并释放出蛋白质与DNA 序列。
3. 免疫共沉淀:将待测蛋白质与抗体结合,然后将混合物与蛋白质与DNA序列结合的破碎染色质混合并共沉淀。
4. 去交联:将共沉淀的混合物进行去交联处理,使DNA序列与蛋白质分离。
5. DNA提取:将去交联后的DNA序列进行提取和纯化,以便进行进一步的分析。
二、应用举例ChIP技术可以用于研究许多生物学问题。
以下是一些具体的应用举例:1. 研究基因表达调控ChIP技术可以用于研究转录因子与DNA序列之间的相互作用,从而了解基因的表达调控机制。
例如,研究转录因子与启动子区域之间的相互作用,可以了解转录因子如何调控基因的转录。
2. 研究表观遗传修饰ChIP技术可以用于研究表观遗传修饰与DNA序列之间的相互作用,从而了解表观遗传修饰对基因表达的影响。
例如,研究组蛋白修饰与某个基因的启动子区域之间的相互作用,可以了解组蛋白修饰如何影响该基因的转录。
3. 研究疾病发生机制ChIP技术可以用于研究某些疾病发生机制。
例如,研究某些转录因子与某些疾病相关基因的启动子区域之间的相互作用,可以了解这些转录因子如何调控疾病相关基因的表达。
三、总结ChIP技术是一种重要的分子生物学技术,可以用于研究许多生物学问题。
该技术的基本原理是利用抗体特异性地结合目标蛋白质,然后通过共沉淀的方式将与该蛋白质结合的DN A序列一起提取出来。
chip-seq染色质免疫共沉淀原理
1. 概述chip-seq技术1.1 chip-seq是一种用于研究染色质蛋白与DNA相互作用的技术 1.2 蛋白与DNA的相互作用对于基因表达和细胞功能非常重要1.3 chip-seq技术的原理是利用染色质免疫共沉淀(ChIP)和高通量测序(sequencing)相结合2. ChIP-seq技术的步骤2.1 细胞或组织的交联2.2 细胞或组织的裂解和核的提取2.3 免疫共沉淀2.4 DNA纯化2.5 测序和数据分析3. 染色质免疫共沉淀原理3.1 免疫共沉淀是指利用特异性抗体将靶蛋白与DNA结合并进行共沉淀3.2 抗体的具体选择非常重要,需要保证抗体能够特异性结合到目标蛋白3.3 免疫共沉淀的原理是利用抗体与靶蛋白的特异性结合来将靶蛋白与DNA结合物沉淀下来3.4 靶蛋白和DNA结合物的提取可以通过酸碱或酶的方法进行4. ChIP-seq技术的应用4.1 在研究基因表达调控中的应用4.2 在研究细胞分化和组织发育中的应用4.3 在研究疾病发生和发展中的应用4.4 在药物研发中的应用5. ChIP-seq技术的优势和局限性5.1 优势包括高灵敏度、高特异性和全基因组覆盖5.2 局限性包括实验操作复杂、数据分析费时费力6. 结语6.1 chip-seq技术作为一种重要的分子生物学技术,在基因组学和表观遗传学研究中发挥着重要作用6.2 虽然其原理复杂,但结合高通量测序技术,能够为科研工作者提供丰富的信息资源6.3 随着技术的不断发展和完善,chip-seq技术在生命科学领域的应用前景将更加广阔。
7. ChIP-seq 技术在生物学研究中的应用ChIP-seq 技术在生物学研究中展现出了广泛的应用价值,特别是在基因表达调控的研究中发挥了重要作用。
通过 ChIP-seq 技术,研究人员可以对特定转录因子与 DNA 的结合位点进行高通量测序,从而获得全基因组范围内的转录因子结合位点的信息。
这种技术的应用可以帮助研究人员更深入地理解基因表达调控的机制,发现新的转录因子结合位点以及破解染色质的三维结构和动态变化。
染色质免疫共沉淀分组
染色质免疫共沉淀分组(Chromatin Immunoprecipitation,ChIP)是一种用于研究染色质结构和功能的技术,通常用于研究特定蛋白与DNA的结合以及与转录因子相关的基因调控元件。
在进行ChIP实验时,通常会根据实验目的和需要研究的具体基因或蛋白进行分组。
以下是一个可能的ChIP分组方案,共计800字:1. 组一:研究转录因子与DNA的结合实验目的:通过ChIP分析特定转录因子与DNA的结合位点,研究转录因子在细胞内的作用机制和基因调控网络。
实验分组:(1)抗体组:使用特异性抗体针对转录因子进行免疫沉淀。
(2)对照组:使用等量未被抗体结合的DNA进行免疫沉淀作为对照。
(3)质谱分析组:对免疫沉淀后的DNA进行质谱分析,鉴定出结合转录因子的特异性DNA 序列。
2. 组二:研究组蛋白修饰与染色质结构的关系实验目的:通过ChIP分析特定组蛋白修饰与染色质结构的关系,研究基因表达的调控机制。
实验分组:(1)抗体组:使用特异性抗体针对组蛋白修饰(如H3K36me2)进行免疫沉淀。
(2)对照组:使用等量未被抗体结合的DNA进行免疫沉淀作为对照。
(3)测序分析组:对染色质免疫沉淀后解旋的DNA片段进行测序,分析染色质结构的变化。
3. 组三:研究RNA聚合酶与基因转录的关系实验目的:通过ChIP分析RNA聚合酶与基因启动子的结合,研究基因转录的起始位点。
实验分组:(1)抗体组:使用特异性抗体针对RNA聚合酶进行免疫沉淀。
(2)基因组DNA组:分析免疫沉淀后提取的DNA是否含有预期的基因启动子区域。
(3)基因表达组:在相同条件下培养细胞,分析基因表达的变化,以验证RNA聚合酶与基因转录的关系。
以上是三种可能的ChIP分组方案,可以根据实验目的和具体需求进行调整和组合。
通过ChIP 技术,我们可以深入了解基因表达调控的机制,为疾病研究和药物开发提供重要基础数据。
CHIP(染色质免疫共沉淀)
一、超声剪切染色质1.用37℃预温的1%PFA固定10-20min,使DNA与蛋白质交联2.终止交联,加入终浓度为0.125M的甘氨酸3.用预冷的PBS洗2次4.用PBS将细胞刮下(5mlPBS+1mMPMSF+1mg/ml抑肽酶)5.4500rpm5min(此阶段细胞沉淀可储存于-80℃)6.弃上清,按200ul/106个细胞加入SDS lysis buffer(现加PMSF&coktail),冰上10min(4℃rotation 30min)7.27G针头注射器吹打3遍,若有气泡离心8.超声:不可有气泡,超两次后放到冰上9.离心:4℃,12000rpm,20min,上清转移到15ml离心管二、Ab沉淀目的染色质1.用dilution buffer稀释至1ml2.取50ul Input(也可取少量做lgG阴性对照,RNaseⅡ阴性对照)备注:取450ul做lgGcontrol,剩余500ul3.剩下的加一抗(5ul/ml),4℃rotate过夜4.向样品中加入50ul ProteinA+Gbeads,4℃rotate2h,之后可在冰上沉淀一会5.离心,1000rpm1min,留上清6.洗珠子,1ml/5min/次,在4℃rotate,再在冰上静置5min,1000rpm1min。
洗涤顺序为:低盐溶液→高盐溶液→LicL(之前在4℃)→TE→TE(室温)三、去除蛋白质1.Elution buffer(1%SDS、0.1MNaHCO3;0.5gSDS,0.42gNaHCO3 in 50ml ddH20)+250uL RT15min rotate →离心1000rpm1min→上清(收集)→+250ulRT 10min →金属65℃5min→上清(收集)2.上清+20ul5M NaClInput+450ul elution buffer+20ul 5M NaCl65℃6-7h或过夜3.10ul0.5MEDTA,20ul1MTris-HCl +2ul 10mg/ml 蛋白酶K(50℃1h)?四、提纯DNA1.加等体积(500ul)Tris-饱和酚,剧烈混匀,14500rpm10min,取上清,加入500ulCHCl3混匀后14500rpm10min,取上清后再加入tRNA60ug (200ug/ml,3ul),加异丙醇500ul,离心14500rpm20min 弃上清2.加70%酒精洗一遍,14500rpm5min,(要去掉上清,先倒掉,倒掉之后离心一下再扔掉液体)将管子倒扣空气晾干。
染色质免疫共沉淀技术原理
染色质免疫共沉淀技术原理一、前言染色质免疫共沉淀技术(ChIP)是生物学研究中常用的一种方法,它通过利用抗体特异性识别染色质上的特定蛋白质,进而从复杂的细胞核提取物中富集这些蛋白质,并对其进行鉴定和分析。
本文将详细介绍染色质免疫共沉淀技术的原理。
二、实验步骤1. 交联首先,需要对活细胞进行交联处理,以稳定染色质和蛋白质之间的相互作用。
常用的交联剂有甲醛和二氧化硅等。
2. 染色质片段化接下来,需要将交联后的细胞进行裂解,并将DNA片段化。
这可以通过超声波或者限制性内切酶等方法实现。
3. 免疫共沉淀然后,在裂解液中加入与目标蛋白特异性结合的抗体,并进行免疫共沉淀。
在共沉淀过程中,目标蛋白和与其结合的DNA片段会被富集到抗体上。
4. 分离DNA片段接下来,需要将DNA片段从抗体上分离出来。
这可以通过加入盐或者进行热处理等方法实现。
5. 鉴定和分析最后,对富集的DNA片段进行鉴定和分析。
这可以通过PCR扩增、测序或者芯片技术等方法实现,以确定目标蛋白在染色质中的作用位置和作用方式。
三、原理解析1. 抗体选择ChIP技术的核心是抗体的选择。
抗体需要特异性识别目标蛋白,并保持其活性。
通常情况下,使用多个不同来源的抗体可以提高富集效率和准确性。
2. 交联原理交联是通过甲醛或二氧化硅等化学物质与细胞核内的DNA、蛋白质发生共价结合而实现的。
交联后的染色质会更加稳定,避免了在裂解过程中DNA和蛋白质之间失去相互作用。
3. 片段化原理染色质片段化是为了将长链DNA切成适当大小的小片段,以便于后续步骤中与抗体结合并富集目标蛋白。
超声波法利用高频声波震荡使DNA分子破碎,而限制性内切酶法则利用特定的酶切割位点切割DNA分子。
4. 免疫共沉淀原理免疫共沉淀是利用抗体与目标蛋白之间的特异性结合,将目标蛋白及其相关DNA片段从裂解液中富集到抗体上。
这一步骤需要注意选择合适的抗体和免疫共沉淀条件,以提高富集效率和准确性。
5. DNA片段分离原理将DNA片段从抗体上分离出来是为了进一步进行后续鉴定和分析。
染色质免疫共沉淀原理
染色质免疫共沉淀原理染色质免疫共沉淀(Chromatin Immunoprecipitation, ChIP)是一种用于研究染色质中蛋白质-DNA相互作用的重要技术。
通过ChIP技术,研究人员可以确定特定蛋白质与染色质中特定DNA序列的相互作用,从而揭示基因调控、表观遗传学和疾病发生发展等重要生物学问题的答案。
本文将从ChIP的原理、步骤和应用等方面进行详细介绍。
ChIP技术的原理主要基于抗体对特定蛋白质的高度选择性结合。
首先,细胞或组织被交联,使得蛋白质与DNA之间的相互作用得以保持。
然后,细胞或组织被裂解,染色质被剪切成小片段。
接着,使用特异性抗体结合目标蛋白质,形成抗体-蛋白质-染色质复合物。
随后,利用蛋白质A/G磁珠将复合物沉淀下来。
最后,通过逆交联和DNA纯化,得到与目标蛋白质结合的DNA片段。
这些片段可以进一步用于PCR、测序等分子生物学实验。
ChIP技术的步骤主要包括,交联、裂解、免疫共沉淀、逆交联和DNA纯化。
在实际操作中,研究人员需要选择合适的抗体、优化交联条件、确定最佳的裂解酶和免疫沉淀条件等。
此外,为了提高ChIP的特异性和灵敏度,还需要进行合适的对照实验和验证实验。
ChIP技术在生物学研究中有着广泛的应用。
首先,ChIP可以用于研究转录因子与染色质中特定启动子或增强子的结合情况,从而揭示基因的转录调控机制。
其次,ChIP还可以用于研究组蛋白修饰酶与染色质中特定组蛋白修饰的关系,从而揭示表观遗传学调控机制。
此外,ChIP还可以用于研究疾病相关基因的表达调控机制,为疾病的诊断和治疗提供重要信息。
总之,ChIP技术是一种重要的分子生物学技术,可以用于研究染色质中蛋白质-DNA相互作用。
通过ChIP技术,研究人员可以揭示基因调控、表观遗传学和疾病发生发展等重要生物学问题的答案。
随着技术的不断发展和完善,ChIP技术将在生物学研究中发挥越来越重要的作用。
染色质免疫共沉淀原理
染色质免疫共沉淀原理
染色质免疫共沉淀(ChIP)是一种用于研究蛋白质与DNA相互作用的技术。
该技术利用抗体特异性地结合目标蛋白质,然后通过共沉淀的方式将与该蛋白质结合的DNA分离出来,从而研究蛋白质与DNA的相互作用。
在染色质免疫共沉淀技术中,首先需要对目标蛋白质进行抗体的制备。
然后将细胞或组织样品进行交联,使得蛋白质与DNA之间的相互作用得以保留。
接着,将交联后的样品进行裂解,使得细胞核内的DNA暴露出来。
然后,将抗体与样品混合,使得抗体能够特异性地结合目标蛋白质。
随后,将混合物进行共沉淀,使得与目标蛋白质结合的DNA能够被分离出来。
最后,通过PCR、测序等方法对分离出的DNA进行分析,从而研究蛋白质与DNA的相互作用。
染色质免疫共沉淀技术在生物学研究中有着广泛的应用。
例如,该技术可以用于研究转录因子与DNA的相互作用,从而揭示基因调控的机制。
此外,该技术还可以用于研究组蛋白修饰与DNA的相互作用,从而揭示染色质结构与功能的关系。
此外,该技术还可以用于研究病原微生物与宿主细胞的相互作用,从而揭示病原微生物的致病机制。
染色质免疫共沉淀技术是一种重要的生物学研究技术,可以用于研究蛋白质与DNA的相互作用,从而揭示生物学过程的机制。
CHIP染色质免疫共沉淀实验方法简介
概述
原理
方法 比较 举例
染色质免疫沉淀实验(CHIP)
研究体内DNA-蛋白质相互作用的重要 工具。 它不仅可以灵敏地检测目标蛋 白与特异DNA 片段的结合情况,还可以 用来研究组蛋白与基因表达的关系。
概述
原理
方法 比较 举例
CHIP原理
在活细胞状态下固定蛋白质-DNA复合物 将其随机切断为一定长度范围内的染色质 小片段 通过免疫学方法沉淀此复合体,特异性地 富集目的蛋白结合的DNA片段 对目的片断的纯化与检测
概述
原理
方法 比较 举例
应用举例
Mantovani F, Tocco F, Girardini J, et al. The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat Struct Mol Biol. 2007 Oct;14(10):912-920.
概述
原理
方法 比较 举例
比较:
蛋白质-DNA相互作用常用方法
凝胶电泳迁移率改变分析 (EMSA)
体 外
体 内
DNaseⅠ足迹法(foot printing)
染色质免疫沉淀实验(CHIP)
概述
原理
方法 比较 举例
EMSA
CHIP
由于许多转录调控蛋 能真实完整地反映结 白有相似或相同的DNA 合在DNA序列上的调控 结合位点,EMSA获取 蛋白,是目前确定与 的结果不一定能真实 特定蛋白结合的基因 地反映体内转录调控 组区域或确定与特定 蛋白和DNA结合的状况。基因组区域结合的蛋 白质的最好方法。
染色质免疫共沉淀实验方法
染色质免疫共沉淀实验方法
染色质免疫共沉淀(Chromatin Immunoprecipitation,ChIP)是一种用于研究染色质调控因子与DNA结合的实验技术,主要用于研究转录因子与DNA结合位点的相互作用。
以下是染色质免疫共沉淀实验的主要步骤:
1. **样品准备**:对细胞进行特殊处理,使之成为适合进行基因转录的“活动”状态,然后进行细胞裂解,使染色体变得更为疏松,同时加入抗体。
2. **免疫沉淀**:将处理过的细胞裂解物与特异性抗体混合,利用免疫沉淀将与该抗体结合的DNA片段富集。
3. **DNA回收**:利用纯化的ChIP-enrich样品中是否含有待检定的靶基因的DNA片段。
4. **基因组DNA的回收和鉴定**:通过PCR或测序等方法对ChIP产物进行检测,鉴定是否存在靶基因的DNA片段。
如果存在,即可说明该转录因子能够结合到该基因的DNA上。
5. **基因组DNA的再次检测**:可以通过QPCR或高通量测序等方法,进一步验证ChIP实验结果的准确性。
需要注意的是,在实验过程中,抗体的选择非常重要,通常使用针对蛋白质的特异性抗体,如针对转录因子的抗体。
同时,实验需要严谨的操作流程和质量控制,以确保实验结果的准确性。
此外,染色质免疫共沉淀技术也可通过使用特异性核酸探针或引物进行高通量测序的方法进行大规模基因组研究。
以上内容仅供参考,建议咨询专业人士以获得更准确的信息。
染色质免疫共沉淀结果解析
染色质免疫共沉淀结果解析
染色质免疫共沉淀(ChIP)是一种常用的分子生物学技术,用于检测特定蛋白质与基因组DNA的相互作用。
通过该技术,可以确定某种特定的蛋白质是否与某一特定的DNA序列结合,并能够分析这种结合的模式和位置。
ChIP的实验步骤大致分为以下几步:交联、裂解、抗体免疫沉淀、洗涤和提取。
其中,交联是将细胞中的蛋白质与DNA“固定”在一起,裂解则是将细胞核内的染色质分解成小碎片以便于后续的操作。
抗体免疫沉淀是利用特定的抗体将要检测的蛋白质与DNA结合物质
免疫沉淀出来,洗涤则是将非特异性的蛋白质和DNA从结合物质中洗去,提取则是将免疫沉淀得到的物质提取出来以便于后续的分析。
对于ChIP实验的结果解析,需要进行数据处理和分析。
最常用
的方法是将ChIP所得的DNA片段进行PCR扩增,然后进行基因测序
和比对分析。
通过对比对结果的分析,可以确定特定的蛋白质与DNA 序列的结合情况,并确定它们的相互作用模式和位置。
另外,还可以利用一些计算机软件如MACS和HOMER等进行数据处理和分析,以及
进行统计学分析和可视化展示。
综上所述,染色质免疫共沉淀技术是一种重要的分子生物学技术,能够帮助我们了解蛋白质与DNA相互作用的模式和位置,从而为后续的基因功能研究和临床诊断提供重要的参考依据。
- 1 -。
CHIP染色质免疫共沉淀实验 Protocol
CHIP染色质免疫共沉淀实验是一种在全基因组水平上研究蛋白质与DNA相互作用的技术方法。
其实验原理是基于抗原抗体反应的特异性,从而实现对DNA结合蛋白及其DNA靶标的富集。
实验所需试剂和耗材包括:细胞培养及提取试剂、生物素标记试剂盒、抗体、蛋白质A琼脂糖珠、Triton X-100、ECL显影液等。
实验仪器包括:二氧化碳培养箱、倒置显微镜、离心机、染色质免疫沉淀仪等。
实验准备工作的要点包括:首先,要确认所用试剂和耗材的型号和保质期;其次,要确保细胞株和抗体的选择合适;最后,准备好实验所需的仪器设备并调试至最佳状态。
实验方法主要包括以下步骤:1.将细胞进行培养并提取染色质。
2.在染色质中加入对应于一个特定组蛋白标记的生物抗体,并用Triton X-100将抗原抗体混合物进行稀释。
3.在混合物中加入蛋白质A琼脂糖珠,以便吸附多余的抗体和未结合的蛋白质。
4.用洗涤液洗涤沉淀物,去除未结合的蛋白质和抗体,最后用变性液洗脱DNA。
5.用电泳法和显影法检测提取出的DNA片段。
注意事项包括:要保持细胞生长状态良好,并确保抗原抗体反应的时间和温度准确适宜;在加入蛋白质A琼脂糖珠后,要充分混匀以避免影响实验结果;最后,要注意控制好电泳参数和显影条件以保证结果的准确性和可靠性。
常见问题及解决方法包括:如果抗原抗体反应不充分,可以尝试增加抗体浓度或延长反应时间;如果未结合的蛋白质不能被有效清除,可以尝试增加洗涤次数或更换洗涤液;如果电泳条带不清晰或出现异常,可以尝试调整电泳参数或更换电泳液。
总之,CHIP染色质免疫共沉淀实验是一种研究蛋白质与DNA相互作用的有效方法,需要注意保持细胞生长状态良好、准确控制抗原抗体反应条件、充分洗涤未结合的蛋白质等关键点。
同时,针对实验中可能遇到的问题,要积极采取相应的解决方法,以保证实验结果的准确性和可靠性。
染色质免疫共沉淀 内参基因
染色质免疫共沉淀内参基因染色质免疫共沉淀(ChIP)是用来研究蛋白质与染色质相互作用的一种实验技术,通过利用特异性抗体来富集与目标蛋白质结合的染色质片段。
然而,在进行ChIP实验时,需要使用内参基因来进行标准化和校正实验结果,以确保实验的准确性和可靠性。
内参基因是指在特定条件下表达稳定、不受外界因素干扰的基因。
在ChIP实验中,内参基因被用来标准化目标基因的富集水平,以消除实验中可能出现的误差。
下面将从内参基因选择、内参基因验证及常用内参基因几个方面来详细探讨。
一、内参基因选择选择适当的内参基因是进行ChIP实验的关键步骤之一。
一个理想的内参基因应具备以下特点:1. 稳定的表达水平:内参基因的表达水平应在不同样品、不同处理条件下保持稳定,不受干扰因素的影响。
这可以通过实时定量PCR (qPCR)或基因芯片技术来评估基因的表达稳定性。
2. 细胞类型特异性:内参基因的表达水平应在所研究的细胞类型中具有一定特异性,并且不受目标蛋白质结合与浓度的影响。
这可以通过在不同细胞类型中进行实时定量PCR检测来评估。
3. 控制组条件下表达水平不变:在ChIP实验中,常常需要对比不同样品或处理条件下的富集水平。
因此,内参基因的表达水平应在不同组别条件下保持相对稳定,以确保实验结果的可比较性。
根据以上的特点,常用的内参基因包括GAPDH、ACTB、GUSB等,这些基因的表达水平通常在不同细胞类型和处理条件下比较稳定,且与ChIP实验中的目标基因的结合无关。
二、内参基因验证为确保选择的内参基因在实验条件下满足稳定性和特异性等要求,进行内参基因验证是必要的。
验证内参基因的常用方法有:1. 实时定量PCR:通过实时定量PCR测定一系列候选内参基因的表达水平,根据表达的稳定性和特异性选择最合适的内参基因。
在实验中,可以根据ChIP-qPCR的结果及对应内参基因的表达情况,评估其在ChIP实验中的可靠性。
2. 基因芯片技术:利用基因芯片技术可以同时检测大量基因的表达水平,对于内参基因的选择具有更高的精确性和鉴定能力。
免疫沉淀、免疫共沉淀、染色质免疫共沉淀
免疫沉淀是指用抗体把抗原(包括单体、复合物)沉淀下来,是一种抗原纯化、浓集的方法;免疫共沉淀指用抗体把抗原复合物沉淀下来,常用来研究蛋白质的相互作用免疫沉淀(Immunoprecipitation, IP)免疫沉淀是利用抗体特异性反应纯化富集目的蛋白的一种方法。
抗体与细胞裂解液或表达上清中相应的蛋白结合后,再与蛋白A/G(ProteinA/G)或二抗偶联的agaose或Sepharose珠子孵育,通过离心得到珠子-蛋白A/G或二抗-抗体-目的蛋白复合物,沉淀经过洗涤后,重悬于电泳上样缓冲液,煮沸5-10min,在高温及还原剂的作用下,抗原与抗体解离,离心收集上清,上清中包括抗体、目的蛋白和少量的杂蛋白。
基本实验步骤(1)收获细胞,加入适量细胞IP裂解缓冲液(含蛋白酶抑制剂),冰上或者4℃裂解30min, 12,000g离心30 min后取上清;(2)取少量裂解液以备Western blot分析,剩余裂解液将1μg相应的抗体和10-50 μl protein A/G-beads加入到细胞裂解液,4°C缓慢摇晃孵育过夜;(3)免疫沉淀反应后,在4°C 以3,000 g速度离心 5 min,将protein A/G-beads离心至管底;将上清小心吸去,protein A/G-beads用1ml裂解缓冲液洗3-4次;最后加入15μl的2×SDS 加样缓冲液,沸水煮10分钟;(4)SDS-PAGE, Western blotting或进行质谱分析。
一、样品处理:免疫沉淀实验成功与否,第一步处理样品非常关键。
免疫沉淀实验本质上是处于天然构象状态的抗原和抗体之间的反应,而样品处理的质量决定了抗原抗体反应中的抗原的质量,浓度以及抗原是否处于天然构象状态。
所以制备高质量的样品以用于后续的抗体-agarose beads孵育对免疫沉淀实验是否成功非常关键。
在这个环节中,除了要控制所有操作尽量在冰上或者4°完成外,最为关键的是裂解液的成份。
论述染色质免疫共沉淀技术的作用
论述染色质免疫共沉淀技术的作用染色质免疫共沉淀技术是一种研究蛋白质与DNA相互作用的实验技术。
该技术通过将细胞内的染色质破碎成小片段,然后利用特异性抗体对目标蛋白质进行免疫沉淀,从而获得与目标蛋白质相互作用的DNA片段。
染色质免疫共沉淀技术在研究基因表达调控、组蛋白修饰、染色质结构等领域具有重要作用。
本文将从以下几个方面论述染色质免疫共沉淀技术的作用。
一、研究基因表达调控基因表达调控是生物体内细胞分化和发育的基础。
染色质免疫共沉淀技术可以用来研究转录因子、共激活因子和组蛋白修饰等在基因表达调控中的作用。
通过该技术,研究者可以确定这些蛋白质在基因组中的结合位点,从而揭示它们如何调控基因表达。
例如,利用染色质免疫共沉淀技术研究组蛋白乙酰化修饰在基因表达调控中的作用,发现组蛋白乙酰化水平与基因表达活性呈正相关。
此外,该技术还可以用于研究染色质重塑复合物、转录抑制因子等在基因表达调控中的作用。
二、揭示组蛋白修饰的生物学功能组蛋白修饰是染色质调控基因表达的重要方式。
染色质免疫共沉淀技术可以用来研究组蛋白修饰的类型、分布和功能。
通过该技术,研究者可以确定特定组蛋白修饰在基因组中的分布模式,以及它们如何影响基因表达。
例如,利用染色质免疫共沉淀技术研究组蛋白甲基化修饰在基因表达调控中的作用,发现组蛋白甲基化水平与基因表达活性呈负相关。
此外,该技术还可以用于研究组蛋白磷酸化、泛素化等其他修饰类型的生物学功能。
三、探索染色质结构变化染色质结构变化在基因表达调控和细胞分化过程中具有重要作用。
染色质免疫共沉淀技术可以用来研究染色质结构变化与基因表达调控的关系。
通过该技术,研究者可以确定染色质结构变化在基因组中的分布模式,以及它们如何影响基因表达。
例如,利用染色质免疫共沉淀技术研究染色质凝聚状态与基因表达的关系,发现染色质凝聚程度与基因表达活性呈负相关。
此外,该技术还可以用于研究染色质重塑复合物、核小体组装等在染色质结构变化中的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
一、简介
电泳迁移率变动分析
生物信息学方法
DNA与
ChIP 蛋白质 相互作 用研究
酵母单杂交系统
DNase Ⅰ足纹法
一、简介
ChIP 是目前唯一研 究体内DNA与 蛋白质相互作 用的方法。不 仅可以检测体 内反式因子与 DNA的动态作 用,还可以用 来研究组蛋白 的各种共价修 饰与基因表达 关系。
取上清
200μlChIP洗脱 溶液洗脱
Beads 取上清
200μl,ChIP洗脱溶液(3 次)
600μl洗脱液
6、去除甲醛交联
①加5mlNaCl使用NaCl终浓度为 0.2mol/l
②阴性对照+350μlChIP洗脱溶液 +16μl 5mol/l NaCl。
③65℃,过夜,去交联。
7、DNA纯化
①酚/氯仿抽提
实验样本
②硅胶柱(60纯0μl化)
50μl阴性 对照
10μlRNase
√
√
50μl蛋白酶K
√
√
等量酚/氯仿/
异戊醇 (25:24:1)
√
√
1/10体积 3mol/l乙酸钠
2倍体积冰冻 无水乙醇
上清液 √
√
上清液 √
√
12000rmp 离心5min
-80℃冰 箱 1h.1200 0rmp离 心20min, 弃上清
二、原理
在活细胞状态下固定 蛋白质—DNA复合物, 并将其随机切断为一 定长度范围内的染色 质小片段,然后通过 免疫学方法沉淀此复 合物,特异性地富集 目的蛋白结合的DNA 片段,通过对目的片 段的纯化与检测,从 而获得蛋白质与DNA 相互作用的信息。
三、技术流程
具 体 操 作 流 程
DNA分析
Байду номын сангаас
四、应用
组蛋白修饰研究 转录调控分析 药物开发研究 有丝分裂研究 DNA损伤与凋亡分析
五、优缺点
优点:充分反映生理条件下DNA与蛋白质相互作用 的真实情况,可以找出生理条件下某个DNA结合 蛋白与DNA序列的结合位点,从而反映体内基因 表达调控的真实情况。
缺点:需要一个特异性蛋白质抗体,有时难以获得; 为了获得高等丰度的结合片段,必须实验演示胞 内条件下靶标蛋白质的表达情况;调控蛋白质的 基因获取可能需要限制在组织来源。
2.把DNA粉碎为长度200-1000bp,置于冰上。 不同样本都进行超声条件优化实验。
3.14000rpm离心10min(4℃),转移上清于 1.5ml离心管。
3.免疫沉淀蛋白和DNA复合物
ChIP稀释液稀 释10倍
加入20μl蛋白 A/G琼脂糖珠
? 超声染色质液体 ? 2ml超声稀释液
4℃摇床摇动一小时
取50μl上清 液作为对照
1000rmp离心2min(4℃) 转移上清液至新离心管
1-4μl免疫沉淀 抗体
4、收获免疫复合物(抗体-蛋白质-DNA)
样品 摇动1-2h,4℃
40μlProtein A/G Agarose
Beads
1×PBS洗3次离心 1000rpm,1min.弃上清,
用4μl 1×PBS悬浮
1、甲醛交联细胞
弃上清
具
10 ml1×PBS
4000rpm
体 1ml1.25mol/L 步 甘氨酸
室温10-20min
预冷1×PBS 洗涤两次
弃上清
4000rpm
离心5min
1ml预冷 1×PBS 悬浮
骤
4-5ml预冷1 × PBS
转移
离心5min
新离心管
2、染色质超声断裂
1.加SDS裂解溶液重悬浮沉淀,冰上10min. 每1min颠倒摇动一次离心管。
加入70% 乙醇,悬 浮沉淀, 12000rpm
离心 10min, 去上清, DNA干燥
后, 40μlTE
溶解
8、染色质免疫共沉淀DNA的分析和蛋白质在DNA 上结合位点的鉴定
(1)如果目的蛋白靶序列已知,或怀疑某一序列 是目的蛋白靶序列,则可选用定量或者半定 量PCR方法。
(2)如果目的蛋白的靶序列未知或者研究目的蛋 白基因组分布情况,找出转录因子结合位点, 则可采用ChIP克隆测序,ChIP-chip,和ChIPseq方法。
谢谢观看! 2020
1000rpm,离心5min,4℃
弃上清
a 低盐洗脱溶液1ml洗一次 b 高盐洗脱溶液1ml洗一次 c氯化锂洗脱溶液1ml洗一次 d TE溶液(pH8.0)1ml洗两次
每次洗时,在摇床 上摇10min,4℃, 4000rpm离心5min
5、洗脱免疫复合物
Beads 摇床上摇动10min 12000rpm离心1min