坐标系之间的换算
大地2000坐标和80坐标的转换方法

大地2000坐标和80坐标的转换方法
大地2000坐标和80坐标之间的转换可以采用七参数法进行转换。
具体步骤如下:
1. 确定转换的基准面和基准点;
2. 通过对基准点进行精确测量,确定基准点大地坐标系与80坐标系之间的差值,包括三个平移参数(dx、dy、dz)和三个旋转参数(wx、wy、wz)以及一个尺度因子k;
3. 根据以下公式进行转换:
X80 = k * (X2000 - dx) + wy * Z2000 - wz * Y2000
Y80 = k * (Y2000 - dy) + wz * X2000 - wx * Z2000
Z80 = k * (Z2000 - dz) + wx * Y2000 - wy * X2000 其中,X2000、Y2000、Z2000为大地2000坐标系下的坐标,X80、Y80、Z80为80坐标系下的坐标。
需要注意的是,在进行大地2000坐标和80坐标的转换时,应该使用高精度的数学计算工具,并且在实际应用中还需要考虑误差来源和误差控制等问题。
GPS坐标和国家大地坐标之间的转换

GPS坐标和国家大地坐标之间的转换一、前言WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的星历参数就是基于此坐标系统的。
WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。
WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS所采用的坐标系统-WGS-72坐标系统而成为GPS的所使用的坐标系统。
WGS-84坐标系的坐标原点位于地球的质心,轴指向BIH1984.0定义的协议地球极方向,轴指向BIH1984.0的启始子午面和赤道的交点。
采用椭球参数为:a=6 378 137m,f= 1/298.257 223 563。
北京54 坐标系、西安80 坐标系—属于参心坐标系, 北京54 坐标系采用克拉索夫斯基椭球参数,长轴a= 6 3 78 2 4 5 米, 扁率f=l : 2 98.3 ;西安80 大地系坐标系椭球参数采用国际大=地测量和地球物理联合19 7 5 后推荐的地球椭球参数, 长轴a= 6 3 7 8 140 米, 扁率f1 : 298.257,大地原点在我西安市径阳县永乐镇。
西安80 坐标系的建立是在54 年北京坐标系的基础上完成的。
在实际的工作中,对于GPS的测量数据。
我们需要将其转换成所需要的54或80坐标系,才能够使用。
或是将其转换成相应的地方坐标系。
在转换的过程中需要进行一系列的变换。
本文将对其过程做详细的说明。
二、转换过程(1)数据测量:在实际操作中,首先进行的是数据的观测。
根据实际工作需要,采用相应的观测方法进行观测,得到合格的测量成果。
本文主要是针对GPS控制网的转换来说明的。
(2)平差:在GPS控制网的测量工程中,在进行完基线测量(地面坐标和高程)后,需要对测量结果进行平差,得到相应的平差结果。
下面对相应的条件平差①做具体说明:AV-W=0 [1]L#=L+V [2]基础方程和它的解:设有r个平差线性条件方程:[3]式中a i,b i…r i(i=1,2,…n)为条件方程系数,a0,b0…r0为条件方程常数项。
常用坐标系之间的关系与转换

7.5 常用坐标系之间的关系与转换一、大地坐标系和空间大地直角坐标系及其关系大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。
同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用.空间大地直角坐标系是-种以地球质心为原点购亘墮®坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。
对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。
现今,利用卫星大地测量的手段*可以迅速地测定点的空间大地直角坐拯,广泛应用于导航定位等空间技术。
同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。
、大地坐标系和空间大地直角坐标系的转换如图7- 23所示’尸点的位置用空间 大地直角坐标〔X, Y, Z)表示,其相应 的大地坐标为(E, L)a 将该图与图?一5上式表明了 2种基本坐标系之间的关系。
加以比较可见,图7-5中的子午椭圆平面 相当于图7-23中的OJVP 平面.其中 PPz=Z.相当于图7-5中的j7;OP 3相当 丫于图7-5中的仏两平面的经度乙可视为相同,等于"叽 于是可以直接写岀X=jrcQsi f Y=jrsinL, Z=y将式(7-21).式(7-20)分别代入上式, 井考虑式(7-26)得X=Ncos^cosZr ”Y =NcQsBsinL > (7—78)Z=N (1—护〉sin^ ;BB 7-231.由大地坐标求空间大地直角坐标当已知椭球面上任一点P 的大地坐标(B, L)时,可以按式(7-78)直接求该点的 空间大地直角坐标(X, Y, Z)。
测量中的常用坐标系及坐标转换概述

三、坐标转换
5、高斯投影的邻带换算
应用高斯投影正反算公式间接进行换带计算:实质是把椭球 面上的大地坐标作为过渡坐标,首先把某投影带(比如I带)内 有关点的平面坐标(x,y) I ,利用高斯投影反算公式换算成椭球 面上的大地坐标(B ,ι),进而得到L=L10+ ι,然后再由大地坐 标(B ,ι),利用投影正算公式换算成相邻带第Ⅱ带的平面坐标 (x,y) Ⅱ,在这一步计算中,要根据第Ⅱ带的中央子午线L20来 计算经差ι,此时ι=L- L20
大地高H:某点沿投影方向到基准面(参考椭球面)的距离。
在大地坐标系中,某点的位置用(B , L,H)来表示。
二、测量中的各种坐标系
2、空间直角坐标系
定义:以椭球体中心为原点,起始子午面与赤道面交线为X轴,在赤 道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴。
在空间直角坐标系中,某点的位置用(X,Y,Z)来表示。
二、测量中的各种坐标系
3、平面直角坐标系
在小区域进行测量工作若采用大地坐标来表示地面点位置是不方便的, 通常采用平面直角坐标系。 测量工作以x轴为纵轴,以y轴为横轴 投影坐标:为了建立各种比例尺地形图的控制及工程测量控制,一般应 将椭球面上各点的大地坐标按照一定的规律投影到平面上,并以相应的 平面直角坐标表示。
三、坐标转换
3、大地坐标同空间直角坐标的变换
X N cos B cos L Y N cos B sin L Z N (1 e 2 ) sin B
三、坐标转换
4、大地坐标与高斯平面坐标的变换
将大地坐标转换为高斯平面坐标,按照高斯投影正算公式 进行。
高斯投影正算公式:
x X 0 0.5 N sin B cos B l 2 y N cos B l 1 / 6 N cos3 B l 3 (1 t 2 2 )
坐标系之间的换算

XT
Z
P
Z
O X
X
Y Y
YT
R( ) R( Z )R(Y )R( X )
cosY cos Z cosY sin Z
sinY
cos X sin Z sin X sinY cos Z cos X cos Z sin X sinY sin Z
sin X cosY
sin X sin Z cos X sinY cos Z
Zi
T
Z0 Zi
Yi X i
0 Z Zi
(此即用于两空间直角坐标系相互变换的布尔莎七参数公式)
若上式中X=Y=0,Z≠0,则上式为五参数转换模型。若再有Z=0,则上式为 四参数转换模型。若尺度比参数亦为零,则得三参数转换模型
X i X0 X i
Yi Y0 Yi
A1C
da d
A1
X 0 Y0 Z0
A1dKB
A1QB
A1C
da d
上式中
X ( N H )cos B cos L
B Y ( N H )cos B sin L
Z [N (1 e2 ) H ]sin B
N a 1 e2 sin2 B
当根据多个公共点按最小二乘法求解转换参数时,对每个点有观测方程
X 0 Y0
XTi X i 1 0 0 X i
0
Zi
Yi
Z
0
YTi ZTi
Yi Zi
0 0
1 0
0 1
Yi Zi
Zi Yi
0 Xi
X i d K
0
X
设
Y Z
X0 Y0
XTi X i
VX BYˆ LX
经纬度转化为xy坐标系公式

经纬度转化为xy坐标系公式经纬度是地球上任何一个点的位置坐标,而我们常用的地图则是平面的xy坐标系。
因此,经纬度与xy坐标系之间的转换就显得尤为重要。
以经纬度转化为xy坐标系公式为标题,本文将介绍经纬度与xy坐标系之间的转换原理与公式。
一、经纬度的基本概念经度是指地球上某个点与本初子午线之间的夹角,通常用东经和西经来表示。
西经表示为负数,东经表示为正数,范围为-180~180度。
纬度是指地球上某个点与赤道之间的夹角,通常用南纬和北纬来表示。
南纬表示为负数,北纬表示为正数,范围为-90~90度。
二、经纬度与xy坐标系的转换原理地球是一个球体,而平面的xy坐标系是二维的,因此需要将地球表面的经纬度转换为平面上的xy坐标系。
在转换时,需要先确定一个基准点,即将地球表面映射到平面上的点,通常选取的是正投影或者高斯投影。
然后,根据经纬度与基准点之间的距离和方向,可以计算出该点在xy坐标系中的坐标。
三、经纬度与xy坐标系的转换公式1. WGS84椭球体下的经纬度转XY坐标系需要将经纬度转换为弧度制,然后根据以下公式计算:X = R * cos(lat) * cos(lon)Y = R * cos(lat) * sin(lon)Z = R * sin(lat)其中,R为地球半径,lat为纬度,lon为经度。
将X和Y坐标平移,使得基准点在原点上,则有:x = X - X0y = Y - Y0其中,X0和Y0为基准点在xy坐标系中的坐标。
2. 高斯投影下的经纬度转XY坐标系高斯投影是一种常用的投影方式,它将地球表面划分成若干个带状区域,每个区域内的地图都可以使用一个平面直角坐标系来表示。
具体转换公式如下:X = N + k0 * E^2 * sin(2 * lat) / 2 + (k5 - k4 + k3 * cos(2 * lat) - k2 * cos(4 * lat) + k1 * cos(6 * lat)) * sin(lon - L0)Y = M + k0 * E^2 * sin(lat) * cos(lat) * (1 + E^2 * cos(lat)^2) / 2 + (k6 - k3 * cos(2 * lat) + k2 * cos(4 * lat) - k1 * cos(6 * lat)) * sin(2 * (lon - L0)) / 2其中,N和M为常数,E为椭球的偏心率,k0~k6为系数,L0为中央经线。
常用坐标系之间的关系与转换

7.5 常用坐标系之间的关系与转换一、大地坐标系和空间大地直角坐标系及其关系 大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。
同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用.空间大地直角坐标系是-种以地球质心为原点购亘墮®坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。
对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。
现今,利用卫星大地测量的手段*可以迅速地测定点的空间大地直角坐拯,广泛应用于导航定位等空间技术。
同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。
、大地坐标系和空间大地直角坐标系的转换如图7- 23所示’尸点的位置用空间 大地直角坐标〔X, Y, Z)表示,其相应 的大地坐标为(E, L)a 将该图与图?一5加以比较可见,图7-5中的子午椭圆平面 相当于图7-23中的OJVP 平面.其中 PPz=Z.相当于图7-5中的j7;OP 3相当 丫于图7-5中的仏两平面的经度乙可视为相同,等于"叽 于是可以直接写岀X=jrcQsi f Y=jrsinL, Z=y将式(7-21).式(7-20)分别代入上式, 井考虑式(7-26)得X=Ncos^cosZr ”Y =NcQsBsinL > (7—78)Z=N (1—护〉sin^ ;上式表明了 2种基本坐标系之间的关系。
BB 7-231.由大地坐标求空间大地直角坐标当已知椭球面上任一点P 的大地坐标(B, L)时,可以按式(7-78)直接求该点的 空间大地直角坐标(X, Y, Z)。
新旧坐标的换算方法

新旧坐标的换算方法
坐标平面座标投影换算:从旧坐标系中抽取地理信息到新坐标系中去。
换算新旧坐标是一个广泛使用的技巧,它可以帮助人们更快地完成任务,没有增加大量的计算工作。
换算新旧坐标有以下几种方法:
1. 加减法:这是换算新旧坐标的最简单的方法,只要根据新坐标的值减去旧坐标的值,就能够算出新面积点的坐标。
2. 相对坐标:相对坐标也称为极坐标,是换算新旧坐标的最常用的方法之一。
它把旧坐标点当作新坐标的原点,再根据新坐标的角度和距离,得出点的坐标。
3. 三角函数:三角函数也是换算新旧坐标的方法之一,在此方法中,主要利用数学函数来求解新坐标的坐标。
4. 迭代方法:在迭代方法中,我们可以把新坐标点根据旧坐标点转换
为新坐标点,迭代求解新坐标的坐标。
5. 高精度转换:这种方法适用于换算新旧坐标时要求更高的精度的情况。
它可以通过拟合曲线,调整拟合参数,获得更高精度的新坐标点。
以上就是换算新旧坐标的常用方法。
通过不同的方法,换算新旧坐标
可以帮你更快完成任务,不用耗费太多时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• §1 三维坐标系间的变换 • §2 二维坐标系间的变换 • §3 一维坐标系间的变换
§1 三维坐标系间的变换
地球坐标系统 表示方式
笛卡儿坐标
曲线坐标
平面直角坐标
坐标系 中心
地心
参心
站心
参 考 面
总地球椭球 参考椭球
地心大地 坐标系 参心大地 坐标系
大地体
天文 坐标系
投影平面
T
B B1 B2 Bn
X 0 Y0 Z 0 Y dK X Y Z
则误差方程 法方程
ˆL VX BY X ˆ BT PL 0 BT PBY X
Z
0 X
Y X i 0 X Yi Z i 0 Z i Yi
有
dB dX 1 1 da d L A d Y A C d dH dZ X X da A1 Y A1 Y A1C d Z Z T X 0 0 X A1 Y0 A1 Y dK A1 Z i Z Y Z 0 i Zi 0 Xi Yi X X X da X i Y A 1 Y A 1 Y A 1C d 0 Z Z Z
顾及
0 QX i Z X Yi Z i 0 Z i Yi
Zi 0 Xi
Yi X X i Y 0 Z
顾及全部七参数和椭球变化的广义大地微分公式为(见式10-78)
si nB cos L si nB si nL MH MH dB si nL cos L dL ( N H ) cos B dH ( N H ) cos B cos B cos L cos B si nL cos B MH X 0 0 Y 0 Z 0 si nB
如图所示,Pi在不同坐标系中的坐标
XT=⊿X0+(1+dK)R( )X (10-28) ZT Z
P
式中 XT——Pi在坐标系OT —XTYTZT中的坐标向量
X——Pi在坐标系O —XYZ中的坐标向量
⊿X0——原点平移向量,⊿X0=(⊿X ⊿Y ⊿Z)T dK——尺度变化系数 R( )——旋转矩阵
R( ) R( Z ) R( Y ) R( X ) cos Y cos Z cos Y sin Z sin Y cos X sin Z sin X sin Y cos Z cos X cos Z sin X sin Y sin Z sin X cos Y
dX dY dZ
顾及到
0 QX i Z Y
dB da A dL C d dH
Zi 0 Xi Yi X X i Y 0 Z
si nL cos L 0 X tan B cos L tan B si nL 1 Y 2 2 Ne si nB cos B si nL Ne si nB cos B cos L 0 Z Ne 2 si nB cos B M 0 dK N (1 e 2 si n2 B ) N M ( 2 e 2 si n2 B ) 2 e si nB cos B si nB cos B ( M H )(1 ) ( M H )a da 0 0 d N M 2 2 2 2 2 ( 1 e si n B ) ( 1 e si n B ) si n B a 1
N a
1 e 2 sin2 B
X B X L X H ( N H ) cos B sinL ( M H ) sinB cos L cos B cos L A Y B Y L Y H ( N H ) cos B sinL ( M H ) sinB sinL cos B sinL Z B Y L Z H 0 ( M H ) cos B sinB sinB cos L ( M H ) sinB sinL ( M H ) cos B ( M H ) 1 A se cB sinL ( N H ) se cB cos L ( N H ) 0 cos B cos L cos B sinL sinB
练习及作业:
1.阅读 §10.4 2.理解 ①理解不同空间直角坐标系 ②理解不同大地坐标系 ③各变换参数的意义
V T PV 3n 7
2 0
单位权方差
( 式中权阵 PL (ΣT Σ)1 )
X
二、不同大地坐标系间的换算
不同大地坐标系间的换算除了具有原点平移、欧勒角、尺度比七个转换参数,还 有两个系统采用不同椭球产生的两个地球椭球转换参数。不同大地坐标系统的换算 公式又称大地坐标微分公式。介绍大地坐标换算的布尔莎公式如下。 X,Y,Z是B,L,H,a, 的函数,全微分有
当根据多个公共点按最小二乘法求解转换参数时,对每个点有观测方程 X 0 Y 0 XT X i 1 0 0 X i 0 Zi Yi Z 0
i YTi Yi 0 1 0 Z Z T i i 0 0 1 Yi Zi Zi Yi 0 Xi X i d K 0 X Y Z
[ M (1 )] sin2 B cos B cos L X a X ( N a ) cos B cos L 2 C Y a Y ( N a ) cos B sinL [ M (1 )] sin B cos B sinL Z a Z ( N a )(1 e 2 ) sinB [ M (1 )] sinB(1 cos2 B e 2 sin2 B
Yi Xi 0
T
设
LX i X Ti X i YTi Yi ZTi Z i
1 0 0 Bi 0 1 0 0 0 1 Xi Yi Zi 0 Zi Yi Zi 0 Xi
LX LX1
LX 2 LX n
地心空间 直角坐标系 参心空间 直角坐标系 割平面空间 直角坐标系 法线测量 坐标系 垂线测量 坐标系
高斯平面 直角坐标系
导弹发射 坐标系
一、不同空间直角坐标系的换算
参心←→参心空间直角坐标系间(如:克氏椭球←→IAG75椭球) 参心←→地心空间直角坐标系间(如:克氏或IAG75椭球←→WGS-84椭球) 三个变换公式(布尔莎、范士、莫洛金斯基)对于坐标换算而言等价,推导布 尔莎公式如下:
误差和欧勒角本身数值属同一数量级时,可以近似地这样处置。此种情况在国内外
一些坐标换算中屡见不鲜,如北美坐标系相对于地心坐标系的三参数是X0=-22m,Y0 =157m,Z0=176;欧洲坐标系相对于地心坐标系的三参数是X0=-84m,Y0=-103m,
Z0=-127m等。我国地心坐标系转换参数(DX-1)也属三个转换参数。
Z
O OT XT X
Y X
Y
YT
sin X sin Z cos X sin Y cos Z sin X cos Z cos X sin Y sin Z cos X cos Y
当已知转换参数⊿X0、dK、R( )时,可按上式将Pi点的X坐标系坐标换算为 XT坐 标系的坐标。 按最小二乘原则求解转换参数⊿X0、dK、R( )如下。 因旋转角 很小,有sin 和cos1,若忽略 二阶微小量,则旋转阵
1 R( ) Z Y
Z
1 X
Y 1 0 0 0 X 0 1 0 Z 1 0 0 1 Y
Z
0 X
Y X E Q 0
代入(10-28)式,忽略二阶微小量dKQXi得 XTi=⊿X0+R()dKXi+R()Xi =⊿X0+(E+Q)dKXi+(E+Q)Xi =⊿X0+dKXi+Xi+QXi
则(10-28)式为
Xi X 0 X i 0 Yi Y0 Yi d K Z i Z Y i T Z 0 Z i i Zi 0 Xi Yi X X i X i Y Yi 0 Z Z i
X 0 da A1 Y0 A1dKB A1QB A1C d Z 0
上式中
X ( N H ) cos B cos L B Y ( N H ) cos B sinL Z [ N (1 e 2 ) H ] sinB
(此即用于两空间直角坐标系相互变换的布尔莎七参数公式) 若上式中X=Y=0,Z≠0,则上式为五参数转换模型。若再有Z=0,则上式为 四参数转换模型。若尺度比参数亦为零,则得三参数转换模型 Xi X 0 X i Y Y i 0 Yi Z i T Z 0 Z i 三参数转换公式是在假设两坐标系间各坐标轴相互平行,即轴系间不存在欧勒 角的条件下导出的,这在实际情况中往往是不可能的。在欧勒角不大,求得欧勒角