轴对称变换

合集下载

2.2 轴对称变换

2.2 轴对称变换
轴对称变换,或反射变换或反射
乙树叫甲树轴对称变换所得的__像___
轴对称变换和轴对称图形有 什么不同点和相同点?
轴对称变换和轴对称图形关系:
不同点:轴对称图形是一个图形。 轴对称变换是两个图形之间的关系。
相同点:都是沿一条直线折叠后能够互相重合。
观察下图中的每组图案,你能找出哪 几组图形是经轴对称变换得到的吗?
如图,已知图形X和直线l。将图形X以直
线l为对称轴,作轴对称变换后得到的图
形是(
C )。
A、
B、
m
C、
D、
数字游戏
1、下图是从镜中看到的一串 数字,这串数字应为多少?
猜单词游戏
轴对称变换后的像
5、
古罗马有一位将军,他每天都
探 要从营地A出发,到河边饮马,再
到河岸同侧的指挥所B处开会。他 经常想一个问题:应该沿怎样的路
下列图形是轴对称图形吗?若是轴对称图形画出 它的对称轴.(不考虑颜色)
(1)
(2)
知识回顾:什么是轴对称图形? 轴对称图形有什么性质?
如果把一个图形沿着一条直线折起 来,直线两侧的部分能够互相重合
,那么这个图形叫做轴对称图形 ,这条直线叫做对称轴。
对称轴垂直平分连结两个对称点之 间的线段。
欣赏
C'
B
B'
l
做一做1: 如图,已知ΔABC,以直线AB为对称轴,
作ΔABC经轴对称变换后的图形。
做一做2: 如图,已知线段AB和直线 l .以直线 l 为
对称轴,作线段AB经轴对称变换后的图形.
B B’ A
C C‘
A
A‘ A‘
B‘
l
B
例1:如图,已知△ABC和直线 l,作出与 △ABC关于直线 l 对称的图形.

轴对称变换(含答案)-

轴对称变换(含答案)-

§14.2 轴对称变换1.轴对称变换知识要点1.由一个平面图形得到它的轴对称图形叫做轴对称变换.•成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到.2.轴对称变换的性质:(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样(2)•经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点.(3)连接任意一对对应点的线段被对称轴垂直平分.3.作一个图形关于某条直线的轴对称图形的步骤:(1)作出一些关键点或特殊点的对称点.(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形.典型例题例:在锐角∠AOB内有一定点P,试在OA、OB上确定两点C、D,使△PCD的周长最短.分析:△PCD的周长等于PC+CD+PD,要使△PCD的周长最短,•根据两点之间线段最短,只需使得PC+CD+PD的大小等于某两点之间的距离,于是考虑作点P关于直线OA•和OB的对称点E、F,则△PCD的周长等于线段EF的长.作法:如图.①作点P关于直线OA Array的对称点E;②作点P关于直线OB的对称点F;③连接EF分别交OA、OB于点C、D.则C、D就是所要求作的点.证明:连接PC、PD,则PC=EC,PD=FD.在OA上任取异于点C的一点H,连接HE、HP、HD,则HE=HP.∵△PHD的周长=HP+HD+PD=HE+HD+DF>ED+DF=EF而△PCD的周长=PC+CD+PD=EC+CD+DF=EF∴△PCD的周长最短.练习题一、选择题1.下列说法正确的是( )A .任何一个图形都有对称轴;B .两个全等三角形一定关于某直线对称;C .若△ABC 与△A ′B ′C ′成轴对称,则△ABC ≌△A ′B ′C ′;D .点A ,点B 在直线1两旁,且AB 与直线1交于点O ,若AO=BO ,则点A 与点B•关于直线l 对称.2.已知两条互不平行的线段AB 和A ′B ′关于直线1对称,AB 和A ′B ′所在的直线交于点P ,下面四个结论:①AB=A ′B ′;②点P 在直线1上;③若A 、A ′是对应点,•则直线1垂直平分线段AA ′;④若B 、B ′是对应点,则PB=PB ′,其中正确的是( ) A .①③④ B .③④ C .①② D .①②③④ 二、填空题3.由一个平面图形可以得到它关于某条直线对称的图形,•这个图形与原图形的_________、___________完全一样. 4.数的运算中会有一些有趣的对称形式,仿照等式①的形式填空,并检验等式是否成立.①12×231=132×21;②12×462=___________; ③18×891=__________; ④24×231=___________.5.如图,点P 在∠AOB 的内部,点M 、N 分别是点P 关于直线OA 、OB•的对称点,线段MN 交OA 、OB 于点E 、F ,若△PEF 的周长是20cm ,则线段MN 的长是___________. 三、解答题6.如图,C 、D 、E 、F 是一个长方形台球桌的4个顶点,A 、B•是桌面上的两个球,怎样击打A 球,才能使A 球撞击桌面边缘CF 后反弹能够撞击B 球?请画出A•球经过的路线,并写出作法.7.如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点(保留作图痕迹)8.如图,仿照例子利用“两个圆、•两个三角形和两条平行线段”设计一个轴对称图案,并说明你所要表达的含义.例:一辆小车四、探究题9.如图,已知牧马营地在P处,每天牧马人要赶着马群先到河边饮水,再带到草地吃草,然后回到营地,请你替牧马人设计出最短的放牧路线.草地河流营地P答案:1.C 2.D 3.形状;大小4.264×21;198×81;132×42 5.20cm6.作点A关于直线CF对称的点G,连接BG交CF于点P,则点P即为A•球撞击桌面边缘CF的位置7.作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置8.略9.分别作P点关于河边和草地边对称的点C、D,连接CD分别交河边和草地于A、B两点,则沿PA→AB→BP的线路,所走路程最短.2.用坐标表示轴对称知识要点1.点P(x,y)关于x轴对称的点的坐标是(x,-y);点P(x,y)关于y轴对称的点的坐标是(-x,y);点P(x,y)关于原点对称的点的坐标是(-x,-y).2.点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);典型例题例:如图,请写出△ABC中各顶点的坐标.在同一坐标系中画出直线m:x=•-1,并作出△ABC关于直线m对称的△A′B′C′.若P(a,b)是△ABC中AC边上一点,•请表示其在△A′B′C′中对应点的坐标.分析:直线m:x=-1表示直线m上任意一点的横坐标都等于-1,因此过点(-1,0)•作y轴的平行线即直线m.画出直线m后,再作点A、C关于直线m的对称点A′、C′,•而点B在直线m上,则其关于直线m对称的点B′就是点B本身.解:(1)△ABC中各顶点的坐标分别是A(1,4)、B(-1,1)、C(2,-1)(2)如右图,过点(-1,0)作y轴的平行线m,即直线x=-1.(3)如右图,分别作点A、B、C关于直线m对称的点A′(-3,4)、B′(-1,1)、C′(-4,-1),并对顺次连接A′、B′、C′三点,则△A′B′C′即为所求.(4)观察发现三组对称点的纵坐标没有变化.而横坐标都可以表示为2×(-1)•减去对应点的横坐标.所以点P的对应点的坐标为(-2-a,b)。

轴对称变换

轴对称变换

轴对称变换轴对称变换是一种常见的几何变换方式,它在我们的日常生活中无处不在。

无论是建筑设计、艺术创作,还是图形处理、物体制造,轴对称变换都扮演着重要角色。

本文将从不同领域的角度,分别介绍轴对称变换的应用。

在建筑设计中,轴对称变换常常被用于对称建筑的设计。

对称建筑体现了一种和谐、平衡的美感,它通过轴对称变换实现对称效果。

例如,古代的宫殿、寺庙和城堡等建筑物往往具有左右对称的结构。

通过轴对称变换,设计师可以在图纸上只绘制一半的建筑结构,然后通过轴对称变换复制另一半,从而节省了时间和精力。

在艺术创作中,轴对称变换也被广泛运用。

许多古代艺术作品,如中国的对联、剪纸和泥塑等,都采用了轴对称的构图方式。

这种构图方式通过轴对称变换使作品呈现出一种平衡、和谐的美感。

此外,现代艺术家也喜欢运用轴对称变换来创作独特的艺术作品。

他们通过将图像沿着某条轴进行镜像对称,创造出奇特、离奇的艺术效果,给人以强烈的视觉冲击力。

在图形处理中,轴对称变换是一种非常重要的操作。

图像处理软件通常都提供了轴对称变换的功能,使用户可以轻松地对图像进行镜像对称。

这对于修复照片中的缺陷、改善图像的美观度非常有帮助。

此外,轴对称变换还被广泛应用于计算机辅助设计(CAD)领域。

在CAD软件中,轴对称变换可以帮助工程师快速复制和对称设计图形,提高设计效率。

在物体制造中,轴对称变换也起到了重要的作用。

许多物体的制造过程都需要进行轴对称变换。

例如,汽车零部件、家电产品等的制造往往需要对称的设计。

通过轴对称变换,制造商可以在设计阶段更好地控制产品的对称性,提高产品的质量和可靠性。

此外,轴对称变换还广泛应用于机械加工工艺中。

在机械加工过程中,通过轴对称变换可以使物体在加工过程中保持平衡,从而提高加工精度和效率。

轴对称变换在建筑设计、艺术创作、图形处理和物体制造等领域都具有重要的应用价值。

它不仅能够帮助设计师和工程师提高工作效率,还能够为我们带来更美丽、更和谐的世界。

轴对称变换在解题中作用

轴对称变换在解题中作用

轴对称变换在解题中的作用大家知道,如果将平面图形f1绕这平面内一直线l翻转180°后与图形f2重合,就说f1与f2两图形关于l成轴对称,简称f1与f2关于l对称。

直线l称为对称轴。

若图形f关于直线l与f成轴对称,就说f是一个轴对称图形。

将图形f1变换到与它关于直线l成轴对称的图形f2,这样的几何变换就叫关于直线l的轴对称变换。

可归纳成下列方法:方法一:若问题的整个图形或其一部分是一个轴对称图形,可以尝试找出对称轴,从对称轴上想办法。

具体说,涉及一点与一直线,尝试过点作直线的垂线;涉及一点及一圆,尝试将点与圆心用直线连接起来;涉及两条相交直线,尝试作它们交角的平分线;有两条平行直线,尝试作一条与它们垂直的直线或者作与它们等距的一条平行线;若涉及一圆及一直线,尝试过圆心作直线的垂线;若涉及不同心的两个圆,可尝试作它们的连心线。

[例1]以o为圆心的两个同心圆,与已知直线顺次交于a、b、c、d四点。

求证:∠aob=∠cod分析:证几何题时,最难的步骤是添加辅助线,如果较多的解题经验,是会想到由圆心作已知直线的垂线的,但若运用了几何变换的观点,只要注意到问题的图形是一个轴对称图形,就需要太多的机制和经验,也能迅速想到试作图形的对称轴。

证明:作om⊥ad,垂足为m(如图),则∠aom=∠dom,∠bom=∠com两式相减,可得∠aom=∠cod方法二:问题中的图形或其中一部分是一个轴对称图形,尝试添加一些对称的线,使图形结构更加完整,从而显示出解题途径。

[例2]已知正方形abcd的边ab的延长线上有一点e,ad的延长线上有一点f,满足ae=ac=af,若直线ef交bc于g,交cd于h。

求证:eg=gc=ch=hf分析:本题图形关于正方形的对角线ac对称,所以关键在于证明eg=gc。

但已知ae=ac,故可试连ec,通过证明∠ceg=∠ecg得出eg=gc。

证明:连ac,由对称性得gc=hc,ke=kf,kg=kh,相减得eg=fh。

《轴对称变换》一等奖说课稿

《轴对称变换》一等奖说课稿

《轴对称变换》一等奖说课稿1、《轴对称变换》一等奖说课稿各位领导、专家、评委、老师们:今天我展示的课题是《轴对称变换》,这是八年级数学上册第十四章《轴对称》第二节的内容。

这节课分两个课时,我展示的是第一课时。

在初中的教学实践当中,我崇尚并践行这样的教学理念:①数学来源于现实,存在于现实,且应用于现实,数学教师的任务之一就是帮助学生构造现实,把现实“数学化”,积极引导学生通过探索、实践、思考,获得知识,形成技能,发展思维,学会学习。

②数学教学要面向全体学生,努力实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

在这样理念的指导下,我对教材进行了详细的分析。

(首先)(一)教材的地位和作用“轴对称变换”是一种“翻折变换”,而“翻折变换”是“全等变换”的一种,所以这节课的内容可以看作是前面学习的“全等变换”的延续;再者,教材把这节内容安排在“轴对称”概念、性质及垂直平分线性质定理等知识之后,进一步体现了轴对称的应用价值和丰富内涵,同时也为下阶段进一步探索等腰三角形的性质,学习它的判定方法作铺垫。

通过这节课的学习,让学生体验了数学在生活中的广泛应用,培养学生在实际生活中“动眼-动手-动脑”的学习习惯。

根据教材的地位和作用,我确定了如下的教学目标。

(二)教学目标1.知识目标:通过具体的实例认识轴对称变换,了解它的定义和基本性质,能按要求作出简单平面图形经过一次或两次轴对称变换后的图形,能够利用轴对称变换进行简单的图案设计。

2.能力目标:用轴对称变换的方式去认识和构建几何图形,发展形象思维,并尝试用轴对称变换从事推理活动。

3.情感目标:结合教学内容,让学生体会数学来源于生活,数学美化生活,数学是我们生活中不可缺少的一部分,并培养学生空间想象能力,动手实践能力,以及善于合作、勇于创新的精神。

(三)教学重、难点教学重点:轴对称变换及轴对称作图;教学难点:利用轴对称变换构建几何图形;经过前面的分析,我对本节课的教学过程进行如下的设计。

轴对称变换

轴对称变换

A'
A P B l
总结归纳: 对称原理 在解决本问题时,是利用作对称把问 题转化为线段问题来求解的。这一方 法已形成了一种思想,它在解决许多 问题中都有重要作用。现在人们把凡 是用对称点来实现解题的思想方法叫 对称原理。
通过今天的学习,你有什么收 获与体会?
作业:
1、教科书第135~136页习题 14.2第1、4、7题;
§14.2 轴对称变换
实验中学 黄彦
学生作品展
让我们欣赏一 下这些美丽的 图案吧!
何依伊
初二(3)班
魏超
初二(4)班
何依伊
初二(3)班
杨楚怡
初二(3)班
李晨迪
初二(3)班
何依伊
初二(3)班
王璇
初二(3)班
对印画
把一张纸对折,用较厚的颜色直接 画在期中的半张纸上,然后用另半张纸 对压在上面,用手压实,揭起即可得到 一张左右或上下对称的对印作品。对印 画图案对称,造型奇妙,通过压印的色 彩不留笔触,产生了自然的肌理美感。
(2)新图形上的每一点都是原图形上某一点关于 直线L的对称点。
(3)连接任一对对应点的线段被对称轴垂直平分。
学个新知识
像上面那样,由一个平面图形得到它 的轴对称图形叫做轴对称变换。
①成轴对称的两个图形中的任何一个可以看 作由另一个பைடு நூலகம்形经过轴对称变换后得到;
②一个轴对称图形也可以看作以它的一 部分为基础,经轴对称变换扩展后得到。
2、利用轴对称变换设计一幅美 丽的图案,要求A4纸。
课件设计理念
1.本节课要求学生通过动手实践操作观察, 认识轴对称变换的特征,及如何得到 轴对称 变换的图形的过程。要让学生注意到轴对称变 换前后两个图形全等,及对应点连线被对称轴 垂直平分。 2.本节课要通过轴对称变换在图案设计中的 广泛应用,让学生在动手实践中体会轴对称在 现实生活中的应用,感受数学的美,发展学生 的实践能力,培养创新精神。

轴对称变换

轴对称变换

来她不能保证,但是找,那是必须的。不但奴才们全部放下手头的事情,连她也是亲力亲为,投入到寻找板指的事项中。真是壹通好找! 雅思琦连午膳都没有正经吃,也是因为心事重重,没有心思吃饭。寻思着爷也差不多用过午膳,这板指也找了壹个多时辰,眼看着时候不 早,她和李淑清还要为参加晚上的宫宴做准备,于是打算还是先去给爷去回个话吧。其实从壹开始找,她就大概估计是这么壹个结局。也 不是她有多护着她院子里的奴才,而是连她自己都没有印象的东西,根本不可能指着奴才们能找出什么惊喜来。但是,不管找得到还是找 不到,还得硬着头皮去给爷回话。无奈,只好差红莲去给书院递话,她有事禀告爷。不壹会儿,红莲就回来了,同时传了爷的回话,同意 了。“福晋有什么事情?”王爷用壹贯不苟言笑的表情望着雅思琦。爷从来都是这么规规矩矩地称呼自己,从来没有唤过自己的闺名,可 是,府里的其它诸人,爷从来都是直呼其名。自从他们大婚的那壹天开始,爷和自己从来都是这么相敬如宾,爷总说自己是他最敬重的诸 人,可是,自己并不需要爷的敬重,作为壹个诸人,需要的是爷的宠爱。可是,就是因为自己是嫡福晋,就需要端庄、需要大家风范,为 什么,如果是这样的话,自己宁可不要当这个嫡福晋!“回爷,奴才们找了许久,也没有找到爷的板指,只有红莲能出入妾身的房间,妾 身也是仔仔细细地盘问过了……”“噢,那爷可是记错了,落在其它的地方?秦顺儿!”“奴才在。”秦顺壹听屋里爷叫他,赶快进来, 即刻就跪在了屋子中间。“你今天早上怎么弄的?这么重要的物件都忘记了?”“奴才早上惦记着今天晚上的宫宴,心里壹走神儿,就忘 记了这档子事儿!”“你忘记了不要紧,爷这四处找了半天了,急得不行,福晋那里也是弄得人仰马翻,连见客都匆匆忙忙地,让年家人 看了笑话。”“爷教训得是,奴才该死,奴才该死!”“该死有什么用,赶快想,到底是落在哪儿了?想不出来,你就自己领板子 去!”“奴才这就想,这就想。”雅思琦眼看着秦顺儿有要吃板子的危险,就着急忙慌地要避出去。毕竟秦顺儿可是爷眼跟前儿的红人, 这奴才对她还是挺重要的,万壹吃了板子,再牵扯到她这里,犯不上,要吃板子,也是爷赏的,跟她不要有任何牵连,如果再呆下去,可 就真要壹只脚趟进这个混水里去了!于是,她假装想起来什么似的:“唉呀,瞧妾身这个记性,刚刚淑清妹妹还说要跟我商量晚上宫宴的 事情呢,怕是已经到了妾身的院子,要不……”“噢,你先去吧,这里也没什么事情了。”雅思琦壹听,正中下怀,忙起身告辞。听着福 晋的脚步声出了院子,秦顺儿抬起头来,还不待爷说话呢,就径自站了利用轴对称变换,你能设计一些 图案吗?

轴对称变换

轴对称变换


B A C Cˊ
作法:1、作AP⊥直线m于P,延长AP至Aˊ,使 APˊ=AP,则点Aˊ就是点A关于直线m的对称点, 同理点B和点C一样作. 2、连结A’B’,B’C’,CˊAˊ
∆AˊB’C’即为所求
第三关
已知对称轴m和四边形ABCD 经轴对称变换后所得的像
D D' A'
C
C'
B m
B'
闯关成功
注:对称轴上的点的对应点是它本身
六、点拨矫正
1、轴对称变换的性质: 轴对称变换不改变原图形 的形状和大小。 2、轴对称变换的作图方法: ⑴、找点 ⑵、作垂线 ⑶、倍长 ⑷、连结
见书P42
实际图形和镜中的像有何关系?
印章
实际图形和镜中的像可以看成上 图那样的成轴对称关系.
轴对称变换后的像
原来的图形

A
B B´
A
B
如图,在正方形网格上有一个 △DEF。 (1)作△DEF关于直线HG的轴对 称图形(不写作法); (2)作EF边上的高(不写作法); (3)若网格上的最小正方形边长为 1,求△DEF的面积.
镜面反射——左右对称
湖面反射——上下对称
八、归纳总结
知识方面:
1.理解什么是两个图形成轴对称;
┓ A A’
┓ C C’

B
B’
例1:如图,已知△ABC和直线 l ,作出与 △ABC关于直线 l 对称的图形.
l
A A
l

A’
C’ B B ┓

C B’
C
如图请做出已知图形以m直线为 对称轴轴对称变换后的图形。
m
m
m

轴对称变换课件PPT

轴对称变换课件PPT

THANK YOU
感谢聆听
直线的轴对称变换可以用来研 究几何图形的对称性和性质。
05
轴对称变换的应用举例
在几何图形中的应用
总结词:丰富多样
详细描述:轴对称变换在几何图形中有着广泛的应用,如矩形、正方形、菱形、 等腰三角形等都是轴对称图形。通过对这些图形进行对称变换,可以创造出更多 具有美学价值的图案和设计。
在函数图像中的应用
图案设计
在图案设计中,轴对称变换可 以创造出具有美感的图案,如 雪花、蜂巢等。
物理学应用
在物理学中,轴对称变换被应 用于分析物体的平衡和稳定性 问题,如天体运动、机械转动 等。
02
轴对称变换的定义与性质
轴对称变换的定义
轴对称变换是指图形关于某一直线(称为对称轴)对称的变换。
如果图形上任意一点P经过轴对称变换后,其对应点P'与P关于对 称轴对称,则称该变换为轴对称变换。
根据对称轴的方向,轴对称变换可分为正向和反向轴对称变换。正向轴 对称变换是指图形关于水平或垂直的直线进行对称的变换;反向轴对称 变换是指图形关于斜线进行对称的变换。
03
常见的轴对称变换
关于x轴的对称变换
总结词
图像在x轴两侧对称
详细描述
当一个图形关于x轴进行对称变换时,图像在x轴两侧呈现对称状态,即如果某 点坐标为(x, y),则其对称点坐标为(x, -y)。
如果一个点关于某一直线进行 轴对称变换,则该点关于该直 线进行翻转,与原点关于该直 线对称。
点的轴对称变换可以用来研究 几何图形的性质和关系。
轴对称变换与直线的关系
直线是几何图形中的重要元素, 轴对称变换也可以应用于直线。
如果一条直线关于某一直线进 行轴对称变换,则该直线会变 成一条与原直线平行且距离相 等的直线。

中考数学 考点13 轴对称变换的性质(解析版)

中考数学     考点13  轴对称变换的性质(解析版)

轴对称变换在几何变换中的地位非常重要,较多的和全等三角形,相似三角形,勾股定理相结合.轴对称的性质:①.成轴对称的两个图形全等,即对应角相等,对应边相等;②对称轴是任何一对对应点所连线段的垂直平分线;③对应点的连线互相平行或在同一条直线上;1.抓住对称轴,找准对应点,根据关于某条直线对称的两个图形全等,确定图形中的边,角的相等关系;2.理解基本图形中的重要关系:如图,将矩形ABCD纸片沿EF折叠,点D的对称点是D′,点C的对称点是C′,则有①ED=ED′,CD=C′D′;②∠C=∠C′,∠D=∠D′,∠DEF=∠D′EF;③等腰△GEF中,GE=GF.3.求角的度数的问题,一般利用轴对称的性质,结合平行线的性质,三角形的内角和定理,相似三角形等知识来求解;4.求线段的长度的问题,或构造直角三角形,利用勾股定理列方程,或借助全等三角形,或利用相似三角形求解.例1.如图,将△ABC沿DE,DF翻折,顶点B,C均落在点G处,且BD与CD重合于线段DG,若∠A=36°,∠AEG+∠AFG的度数为().A .100°B .102°C .108°D .117°【答案】C例2.如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开.再一次折叠纸片,使点A 落在EF 上,得到折痕BM ,同时,得到线段BN ,若3AB,则BM 的长为( ) N ABC D EF M A .332 B .2 C .3 D .23【答案】B例3.如图,在平行四边形ABCD 中,AB =6,BC =4,∠B =60°,点E 是边AB 上的一点,点F 是边CD 上一点,将平行四边形ABCD 沿EF 折叠,得到四边形EFGC ,点A 的对应点为点C ,点D 的对应点为点G ,则△CEF 的面积_____.73【精细解读】解:根据轴对称的性质可证△BCE ≌△GCF ,得到CE =CF 。

轴对称及中心对称变换平移及旋转变换

轴对称及中心对称变换平移及旋转变换

轴对称及中心对称变换、平移及旋转变换变换是极为重要的数学思维方法,利用几何变换解题在数学竞赛中经常用到,本文介绍几何变换中的基本变换:轴对称及中心对称变换、平移及旋转变换。

一、轴对称变换把一个图形F沿着一直线l折过来,如果它能够与另一个图形F'重合,我们就说图形F和F'关于这条直线l对称。

两个图形中的对应点叫做关于这条直线l的对称点,这条直线l叫做对称轴,如右图。

轴对称图形有以下两条性质:1.对应点的连线被对称轴垂直平分;2.对应点到对称轴上任一点的距离相等。

例1 凸四边形ABCD的对角线AC、BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求证:BC+AD>AB+CD。

分析:题中条件比较分散,故考虑“通过反射使条件相对集中”,注意到AC⊥BD,于是以BD(AC)为对称轴,将BC(AD)反射到BC'(AD'),把有关线段集中到△ABO内,利用三角形中两边之和大于第三边易证得结果。

证明:∵AC⊥BD,且OA>OC,OB>OD,于是以BD为对称轴,作C点关于直线BD为对称点C',以AC为对称轴作D点关于AC 的对称点D'。

连结BC',AD'相交于E点,则BC= BC',AD=AD',CD=C'D'。

∴ BE+AE>AB ①EC'+ED'>C'D' ②①+②,得BC'+AD'>AB+C'D'。

∴BC+AD>AB+CD。

注:(1)本题的结论对于凹四边形仍然成立;(2)还可将四边形推广成2n边形,也有类似结论。

其证明思路也完全相同,读者试自证。

二、中心对称变换如果平面上使任意一对对应点A,A'的连线段都通过一个点O,且被这一点所平分,则这个变换叫做中心对称变换(亦称点反射或点对称),点O叫对称中心,点A和A'叫做关于对称中心的对称点,如果一个图形F在中心对称变换下保持不变(还是自身),则这个图形F叫做中心对称图形。

全等三角形--第03讲 轴对称及轴对称变换

全等三角形--第03讲  轴对称及轴对称变换

第3讲轴对称及轴对称变换考点·方法·破译1.轴对称及其性质把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫对称轴.轴对称的两个图形有如下性质:①关于某直线对称的两个图形是全等形;②对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.2.线段垂直平分线线段垂直平分线也叫线段中垂线,它反映了与线段的两种关系:①位置关系——垂直;②数量关系——平分.性质定理:线段垂直平分线上的点与这条线段两个端点的距离相等.判定定理:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.3.当已知条件中出现了等腰三角形、角平分线、高(或垂线)、或求几条折线段的最小值等情况时,通常考虑作轴对称变换,以“补齐”图形,集中条件.经典·考题·赏析【例1】(兰州)如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()【解法指导】对折问题即是轴对称问题,折痕就是对称轴.故选D.【变式题组】01.将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是()02.(荆州)如图,将矩形纸片ABCD沿虚线EF折叠,使点A落在点G上,点D落在点H 上;然后再沿虚线GH折叠,使B落在点E上,点C落在点F上,叠完后,剪一个直径在BC上的半圆,再展开,则展开后的图形为()【例2】(襄樊)如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度得到△A’B’C’,则与点B’关于x轴对称的点的坐标是()A.(0,-1)B.(1,1)C.(2,-1)D.(1,-1)【解法指导】在△ABC中,点B的坐标为(-1,1),将△ABC向右平移两个单位长度得到△A’B’C’,由点的坐标平移规律可得B’(-1+2,1),即B’(1,1).由关于x轴对称的点的坐标的规律可得点B’关于x轴对称的点的坐标是(1,-1),故应选D.【变式题组】01.若点P(-2,3)与点Q(a,b)关于x轴对称,则a、b的值分别是()A.-2,3 B.2,3 C.-2,-3 D.2,-302.在直角坐标系中,已知点P(-3,2),点Q是点P关于x轴的对称点,将点Q向右平移4个单位得到点R,则点R的坐标是___________.03.(荆州)已知点P(a+1,2a-1)关于x轴的对称点在第一象限,则a的取值范围为___________.【例3】如图,将一个直角三角形纸片ABC(∠ACB=90°),沿线段CD折叠,使点B落在B1处,若∠ACB1=70°,则∠ACD=()A.30°B.20°C.15°D.10°【解法指导】由折叠知∠BCD=∠B1CD.设∠ACD=x,则∠BCD=∠B1CD=∠ACB1+∠ACD =70°+x.又∠ACD+∠BCD=∠ACB,即x+(70°+x)=90°,故x=10°.故选D.【变式题组】01.(东营)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在点D’、C’的位置.若∠EFB=65°,则∠AED’等于()A.70°B.65°C.50°D.25°02.如图,△ABC中,∠A=30°,以BE为边,将此三角形对折,其次,又以BA为边,再一次对折,C点落在BE上,此时∠CDB=82°,则原三角形中∠B=___________.03.(江苏)⑴观察与发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片(如图①);再次折叠该三角形纸片,使点A 和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.⑵实践与运用:将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE (如图③);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.【例4】如图,在△ABC中,AD为∠BAC的平分线,EF是AD的垂直平分线,E为垂足,EF交BC的延长线于点F,求证:∠B=∠CAF.【解法指导】∵EF是AD的中垂线,则可得△AEF≌△DEF,∴∠EAF=∠EDF.从而利用角平分线的定义与三角形的外角转化即可.证明:∵EF是AD的中垂线,∴AE=DE,∠AEF=∠DEF,EF=EF,∴△AEF≌△DEF,∴∠2+∠4=∠3,∴∠3=∠B+∠1,∴∠2+∠4=∠B+∠1,∵∠1=∠2,∴∠B=∠4【变式题组】01.如图,点D在△ABC的BC边上,且BC=BD+AD,则点D在__________的垂直平分线上.02.如图,△ABC中,∠ABC=90°,∠C=15°,DE⊥AC于E,且AE=EC,若AB=3cm,则DC=___________cm.03.如图,△ABC中,∠BAC=126°,DE、FG分别为AB、AC的垂直平分线,则∠EAG=___________.04.△ABC中,AB=AC,AB边的垂直平分线交AC于F,若AB=12cm,△BCF的周长为20cm,则△ABC的周长是___________cm.【例5】(眉山)如图,在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC 和△DEF关于某直线成轴对称,请在下面的备用图中画出所有这样的△DEF.【解法指导】在正方形格点图中,如果已知条件中没有给对称轴,在找对称轴时,通常找图案居中的水平直线、居中的竖直直线或者斜线作为对称轴.若以图案居中的水平直线为对称轴,所作的△DEF如图①②③所示;若以图案居中的竖直直线为对称轴,所作的△DEF 如图④所示;若以图案居中的斜线为对称轴,所作的△DEF如图⑤⑥所示.【变式题组】01.(泰州)如图,在2×2的正方形格点图中,有一个以格点为顶点的△ABC,请你找出格点图中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有___________个.02.(绍兴)如图甲,正方形被划分成16个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:⑴涂黑部分的面积是原正方形面积的一半;⑵涂黑部分成轴对称图形.如图乙是一种涂法,请在图1-3中分别设计另外三种涂法.(在所设计的图案中,若涂黑部分全等,则认为是同一种不同涂法,如图乙与图丙)【例6】如图,牧童在A处放牛,其家在B处,若牧童从A处出发牵牛到河岸CD处饮水后回家,试问在何处饮水,所求路程最短?【解法指导】⑴所求问题可转化为CD上取一点M,使其AM+BM为最小;⑵本题利用轴对称知识进行解答.解:先作点A关于直线CD的对称点A’,连接A’B交CD于点M,则点M为所求,下面证明此时的AM+BM最小.证明:在CD上任取与M不重合的点M’,∵AA’关于CD对称,∴CD为线段AA’的中垂线,∴AM=A’M,M’=A’M’,在△A’M’B中,有A’B<A’M’+BM’,∴A’M+BM<A’M’+BM’,∴AM+BM<AM’+BM’,即AM+BM最小.【变式题组】01.(山西)设直线l是一条河,P、Q两地相距8千米,P、Q两地到l地距离分别为2千米、5千米,欲在l上的某点M处修建一个水泵站向P、Q两地供水.现在如下四种铺设管道方案,图中的实线表示辅设的管道,则铺设的管道最短的是()02.若点A、B是锐角∠MON内两点,请在OM、ON上确定点C、点D,使四边形ABCD周长最小,写出你作图的主要步骤并标明你确定的点.演练巩固·反馈提高01.(黄冈)如图,△ABC与△A’B’C’关于直线l对称,且∠A=78°,∠C’=48°,则∠B的度数是().A.48°B.54°C.74°D.78°02.(泰州)如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形03.图1是四边形纸片ABCD,其中∠B=120°,∠D=50°,若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图2所示,则∠C=()A.80°B.85°C.95°D.110°04.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于y轴成轴对称的图形,若点A的坐标是(1,3),则点M和点N的坐标分别是()A.M(1,-3),N(-1,-3)B.M(-1,-3),N(-1,3)C.M(-1,-3),N(1,-3)D.M(-1,3),N(1,-3)05.点P关于x轴对称的对称点P’的坐标是(-3,5),则点P关于y轴对称的对称点的坐标是()A.(3,-5)B.(-5,3)C.(3,5)D.(5,3)06.已知M(1-a,2a+2)关于y轴对称的点在第二象限,则a的取值范围是()A.-1<a<1 B.-1≤a≤1 C.a>1 D.a>-107.(杭州)如图,镜子中号码的实际号码是___________.08.(贵阳)如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为___________cm2. 09.已知点A(2a+3b,-2)和B(8,3a+2b)关于x轴对称,则a+b=___________. 10.如图,在△ABC中,OE、OF分别是AB、AC中垂线,且∠ABO=20°,∠ABC=45°,求∠BAC和∠ACB的度数.11.如图,C、D、E、F是一个长方形台球桌的4个顶点,A、B是桌面上的两个球,怎样击打A球,才能使A球撞击桌面边缘CF后反弹能够撞击B球?请画出A球经过的路线,并写出作法.12.如图,P为∠ABC的平分线与AC的垂直平分线的交点,PM⊥BC于M,PN⊥BA的延长线于N.求证:AN=MC.13.(荆州)有如图“”的8张纸条,用每4张拼成一个正方形图案,拼成的正方形的每一行和每一列中,同色的小正方形仅为2个,且使每个正方形图案都是轴对称图形,在网格中画出你拼成的图.(画出的两个图案不能全等)培优升级·奥赛检测01.(浙江竞赛试题)如图,直线l1与直线l2相交,∠α=60°,点P在∠α内(不在l1l2上).小明用下面的方法作P的对称点:先以l1为对称轴作点P关于l1的对称点P1,再以l2为对称轴作P1关于l2的对称点P2,然后再以l1为对称轴作P2关于l1的对称点P3,以l2为对称轴作P3关于l2的对称点P4,……如此继续,得到一系列P1、P2、P3……P n与P重合,则n的最小值是()A.5 B.6 C.7 D.802.在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.⑴如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;⑵如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是点P1,点P1关于直线l的对称点是P2,求PP2的长.03.(荆州)某住宅小区拟栽种12棵风景树,若想栽成6行,每行4棵,且6行树所处位置连成线后能组成精美的对称图案,请你仿照举例在下面方框中再设计两种不同的栽树方案.04.(宜昌)已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF、AF相交于P、M.⑴求证:AB=CD;⑵若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.05.在△ABC中,∠BAC=90°,点A关于BC边的对称点为A’,点B关于AC边的对称点为B’,点C关于AB边的对称点为C’,若S△ABC=1,求S△A’B’C’.06.(湖州市竞赛试题)小王同学在小组数学活动中,给本小组出了这样一道“对称跳棋”题:如图,在作业本上画一条直线l,在直线l两边各放一粒围棋子A、B,使线段AB 长a厘米,并关于直线l对称,在图中P1处有一粒跳棋子,P1距A点b厘米、与直线l 的距离C厘米,按以下程序起跳:第1次,从P1点以A为对称中心跳至P2点;第2次,从P2点以l为对称轴跳至P3点;第3次,从P3点以B为对称中心跳至P4点;第4次,从P4以l为对称轴跳至P1点;⑴画出跳棋子这4次跳过的路径并标注出各点字母;(画图工具不限)⑵棋子按上述程序跳跃2011次后停下,假设a=8,b=6,c=3,计算这时它与A的距离是多少?07.(湖州)如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,-3),B(4,-1).⑴若P(p,0)是x轴上的一个动点,则当p=___________时,△PAB的周长最短;⑵若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=___________时,四边形ABCD的周长最短;⑶设M、N分别为x轴和y轴上的动点,请问:是否存在这样的点M(m,0)、N(0,n),使四边形ABMN的周长最短?若存在,请求出m=___________,n=___________(不必写解答过程);若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生欣赏轴对称图案思考教师提出的问题,由此引入新课,教师板书课题.
通过创设情境,提出相应问题,给学生思考的空间,也给学生学习本节课指出了方向.
[活动2]
问题1:在一张半透明纸的左边部分画一只左脚印,你怎么得到相应的右脚印呢?
观察图形提问:连接对称点的线段与对称轴有什么关系?
问题2:观察课本128页前四朵花的形成过程后提问:①图案形成过程中有几条对称轴,它们有什么关系?②如果想得到更多的花,你有什么方法?
问题3:如果对称轴的方向和位置发生变化,得到的新图形与原图形有哪些相同之处,又有哪些不同之处?
问题4:同学们在纸上画一个自己喜欢的几何图形,将这张纸折叠,描图,再打开,你能得到什么?如果改变对称轴的方向再重复,你又能得到什么?
问题5:以上图形的变换有什么共性?从以下几个方面进行讨论:
①新图形与原图形的形状、大小有什么关系?
2.利用轴对称变换进行作图和图案设计,发展学生用数学的能力.
情感态度
1.通过学生亲自操作,培养学生的动手能力.
2.通过欣赏和设计图案,让学生形成学数学、用数学的意识,并培养学生的创新能力.
重点
轴对称变换性质及利用轴对称变换作图.
难点
轴对称变换性质的利用.
教学流程安排
活动流程图
活动内容和目的
活动1 创设情境,引入新课
通过观察由一个图形得到它的轴对称图形的过程,理解轴对称图形的变换过程.结合平移变换,把原有知识联系起来,体现了前后知识的联贯.
观察对称轴方向和位置的变化对图形的影响,培养学生的观察和归纳能力.
通过再次操作,进一步感受对称轴变化对图形的影响,培养学生的动手能力.
展示学生作品,让学生获得成功的体验,激发学习的热情.
(2)△ABC的对称图形由几点确定?取△ABC上的哪几点作其关于直线l的对称点?
(3)怎样作一点关于直线l的对称点?
练习:第131页1、2两题
教师出示例1,师生双方共同分析.
学生思考问题,并结合轴对称变换的性质指出作图的依据.
师生共同作出图形后,通过折叠方法验证.然后归纳作图方法.并强调作图关键:找特殊点的对称点.
②新图形上的点能在原图形上找到相应的点吗?
③连接对应点的线段与对称
轴有什么关系?
练习:出示课本图14.2-2
问题:这个图案可以怎么变换得到?
学生动手画图,教师指导,及时调整.
学生观察所作图形,思考教师提出的问题.
在学生画图过程中,教师应重点关注:
(1)学生如何选取折痕;
(2)学生如何画右脚印
教师利用上述方法演示由第一朵花得到第二朵,然后重复这个过程得到四朵花.
作已知三角形关于直线的对称图形,进一步理解利用轴对称变换的性质,掌握轴对称变换的作图方法.
让学生感觉对称的静态美及利用轴对称变换设计图案过程中的动态美,培养学生欣赏美和创造美的能力.
回顾知识要点,畅谈收获.
教学过程设计
问题与情境
师生行为
设计意图
[活动1]
如果只知道轴对称图形的一半,你能得到另一半吗?怎么得到另一半?
(2)同学们,聪明的你们也可以利用轴对称变换设计出很多美丽的图案,你们一定能行.
学生先欣赏图案,然后给学生提出作业要求(可以结合我们学过的平移变换.)
让学生在欣赏中感受美,在创作设计中创造美,并培养学生的动手能力和创新意识.
[活动5]
通过这节课的学习,你有哪些收获?
布置作业:(1)P135第1题、P137第8题;(2)利用轴对称变换设计图案.
通过以上一系列活动过程,培养学生的观察和归纳能力,把学生对知识的理解由感性认识上升到理性认识.
利用具体的图例,将抽象的知识具体化.通过多种不同角度的变换,发展学生的发散思维.
[活动3]
思考:如果有一个图形和一条直线,你如何作出与这个图形关于这条直线对称的图形呢?
结合例1进行分析,并分层提问:
(1)△ABC关于直线l对称的图形是什么形状?
学生思考问题后得到:由不同方法可以得到相应图形.
教师关注重点:学生在思考过中是否找准了对称轴及它们的关系.
教师先演示对称轴是铅直线的情况,然后再演示改变对称轴进行变换这一情形,学生观察比较两次变换的结果并回答提问.
教师重点关注学生对对称轴的方向和位置的理解.
学生动手画图,教师指导、观察.然后展示学生作品,师生进行评价交流.
教师引导学生从知识、方法和应用等方面方面归纳小结.
让学生对轴对换变换的认识系统化,条理化.
活动2 实践活动,探求新知:理解轴对称变换的性质和定义
活动3 运用新知:利用轴对称变换的性质作图,归纳作图方法,然后练习巩固
活动4欣赏利用轴对称变换设计的图案,并对学生提出设计要求
活动5 课堂小结,布置作业
创设问题情境,提出问题,让学生带着疑问有目的的学习.
经历操作、观察、交流、讨论,得到各图例的共同点,从而归纳出轴对称变换的性质和定义.
教师关注重点:
学生是否改变了对称轴.
学生通过讨论,归纳所得图形之间的共同特点,教师引导、补充,得到完整的归纳.
教师重点关注:
(1)是否找出了各图形的共同点.
(2)学生语言叙述的准确性和规范性.教师给出轴对称变换的定义.
提示学生以不同的部分为原图形进行轴对称变换.
通过学生动手,得到相应的右脚印,让学生经历轴对称图形的形成过程,培养学生的动手能力和观察能力.
在作图的过程中,教师重点关注:
(1) 在△ABC上,是否取的三个顶点;
(2)是否掌握了作一点关于直线的对称点的方法;
(3) 作图的规范性.
分步设问,既降低了难度,也便于学生掌握作图方法.
通过作图,巩固了轴对称变换的性质,更体现了数学的学与用的结合,
通过练习,巩固所学ห้องสมุดไป่ตู้识,及时反馈.
[活动4]
(1)欣赏由轴对称变换得到的图案.
轴对称变换
教学任务分析
教 学 目 标
知识技能
1.通过实例认识轴对称变换,认识轴对称变换的性质和定义.
2.能利用轴对称变换的性质作出简单平面图形关于一条直线的轴对称图形.
3.能尝试利用轴对称变换设计图案.
数学思考
用轴对称变换的方式去认识几何图形,并能逐步完成从“具体-抽象-具体”的认知过程.
解决问题
1.经历轴对称变换的操作、观察、交流探索轴对称变换的性质和定义.
相关文档
最新文档