数学教学中的对称美
数学的对称美感悟
数学的对称美感悟数学的对称美,是一种深邃而独特的审美体验,它超越了表面的形式美,深入到数学结构的内核,揭示了自然界的内在规律和秩序。
在数学的世界里,对称美不仅体现在几何图形的对称性上,更体现在代数、数论、分析等多个分支中。
通过对称美,我们可以更深入地理解数学的本质,感受数学的魅力。
在几何学中,对称美是最为直观和显著的。
从简单的平面图形如正方形、圆形,到复杂的三维立体如球体、圆柱体,都展现了对称性的美感。
这些图形具有一种天然的平衡感,使人感到和谐与稳定。
当我们观察这些图形时,会被它们的美所吸引,进而想要探索它们的性质和规律。
这种探索过程不仅让我们更深入地了解几何学的知识,也让我们感受到数学对称美的魅力。
除了几何学,代数中的对称美也同样令人叹为观止。
在代数方程中,我们常常可以看到对称性的存在。
例如,二次方程的求根公式就体现了对称美。
通过公式,我们可以发现两个根之间的对称性关系,这种对称性不仅使得方程的求解更加简便,也让我们对代数方程有了更深入的理解。
此外,在矩阵运算、群论等代数分支中,对称性的概念也得到了广泛的应用和体现。
数论中的对称美则更加隐晦而深刻。
在数论中,我们经常遇到一些具有对称性的数列和公式。
例如,斐波那契数列就是一个典型的例子。
这个数列中的每一项都是前两项的和,而当我们从后往前看时,这个规律依然成立。
这种前后对称的特性使得斐波那契数列具有一种独特的美感。
此外,在数论中的许多定理和公式中,我们也可以看到对称性的存在,这些对称性不仅使得定理的证明更加简洁,也让我们对数论有了更深入的认识。
在分析学中,对称美同样得到了充分的体现。
微积分中的许多定理和公式都具有对称性。
例如,泰勒级数展开式就是一种对称性的体现。
通过将函数展开为无限级数,我们可以发现级数的每一项都与其对称项具有相同的形式和性质。
这种对称性不仅使得级数的计算更加简便,也让我们对函数的性质有了更深入的了解。
此外,在复变函数、傅里叶分析等领域中,对称性的概念也得到了广泛的应用和体现。
对称性在数学教学中的应用
对称性在数学教学中的应用在数学教学中利用数学问题的对称性不仅有助于找到简洁优美的解法,也有利于学生思维水平的提高。
更重要的是可以在学习数学的同时欣赏数学美,正如古代哲学家普洛克拉斯曾说:“哪里有数学,哪里就有美。
”而对称美是数学美的基本内容和重要体现,因此在数学教学中,教师要有意识地揭示数学中的对称美,培养学生的美感,利用对称性提高学生解决问题的能力。
本文以例题为主,主要论述对称性在函数,几何等方面的应用,让学生充分认识对称性的作用,认识对称美。
运用对称性可以锻炼学生的思维,拓展学生的视野,丰富学生的想象,提高学习效果。
一、对称的概念“对称”一词,译自希腊语,其含义是“和谐”“美观”,原义指“在一些物品的布置时出现的般配与和谐”。
我国老一辈数学家段学复教授也说过:“对称,照字面来讲,就是两个东西相对而又相称(或者说相仿、相等)。
因此,把这两个东西互换一下,好像没动一样。
”在现实世界中,形式上和内容上的对称性,广泛地存在于客观事物之中,既有轴对称、中心对称、镜面对称等等的空间对称,又有周期、节奏和旋律的时间对称。
对称美,作为数学美的主要表现形式之一,其数学的实质就是自然物的和谐性在量和量的关系上最直观的表现,是组元的一个构形在其自同构变换群作用下具有的不变性。
从狭义上说,对称是指通常意义下的几何对称和代数对称;从广义上讲,对称还包含对偶、匀称等方面的内容,及各种数学概念、公式、定理间的对称思想。
二、函数中的对称性问题1.函数自身的对称性。
(1)利用奇偶函数的对称性解题。
众所周知,奇函数的图像关于原点对称,偶函数的图像关于y轴对称,只要掌握这些知识的内涵,就能得到处理这些问题的思路把看似复杂的问题简单化。
例1设(fx)是R上的奇函数,且(fx+3)=-(fx),当0≤时(fx)=x,求(f2008)。
解:因为y=(fx)是定义在R上的奇函数,所以点(0,0)是其对称中心,又(fx+3)=-(fx)=(f-x)=(f0-x),所以直线是y=(fx)的对称轴,故y=(fx)是周期为6的周期函数,所以(f2008)=(f6×335-2)=f(-2)=-(f3-1)=(f-1)=-(f1)=-1。
小学数学对称美教学研究
89教学研究小学数学对称美教学研究李家武(云南省昆明市西山区福海杨家中心学校 云南 昆明 650228)小学数学的教学就是不断地让学生感受到数学的乐趣,以及能够不断地对数学产生关联性的思考的一种过程,轴对称图形教学就是轴对称图形在小学数学教学过程中的展开,教师要不断地让学生感受到轴对称图形是在生活中存在的一种常规现象,而教师就是在不断地让学生感受到对称美的过程中,达到相应的教学目标。
小学数学教学过程,就是教师不断地把小学数学的教学宗旨展示在数学教学的过程中,这样才能够切实的保证小学数学教学真正的具有教学的实效性。
一、小学数学对称美教学的基本原则(一)引导学生进行独立体思考的原则对称美本身就是数学教学的重要内容,而在轴对称图形教学的过程中,教师必须不断地培养学生进行立体式的思考和周围角度的审视,这样才能够切实保障学生对于轴对称图形的学习,能够不断地展示出强烈的兴趣,并不断地培养学生进行数学轴对称图形的感知以及轴对称图形的学习。
小学数学教学过程中,教师要注重提问型的教学方法的运用,在提问的过程中让学生感受到轴对称图形的具体样态,而恰恰在提问的过程中能够真切的让学生感受到轴对称图形,才能激发学生对学习轴对称图形的乐趣。
在小学数学教学过程中,选择的教学方法应该是比较传统,也是能够真正的激发学生学习兴趣的教学方法。
(二)教师和学生沟通交流的原则轴对称图形教学本身就是一种以教师和学生相互沟通交流为基础的教学,而在轴对称图形的教学过程中,教师必须能够真正的对学生进行提问,对学生所存在的问题有一种内心感知,这样才能够把学生的问题真正的解决。
对于学生来讲,能够让学生在提问的过程中感受到学习的乐趣才是教师教学的最大的目的,而对于轴对称图形教学来讲更是如此。
二、小学数学对称美教学方法的具体展开(一)教师要运用自主探究式的教学方法在轴对称图形教学的过程中,教师要注重运用自主探究式的教学方法。
自主探究式的教学方法,最大程度上就是让学生发挥自我能动性,能够真正的以一种探究者的身份进行学习。
数学论文数学中的对称美及应用资料
谈数学中的对称美与在解题中的应用吴恋,数学计算机科学学院摘要本文首先讨论了数和式中的对称美.其次运用对称思想来解决数学问题.在数学问题的解题过程中,巧妙地构造对称美,从整体上把握问题的实质,优化解题过程.先是就对称在微积分中的应用,列举了一些重要的结论及其在解题中的具体应用.再研究了几何图形中的对称美.然后讨论了数学中其它方面的对称美.特别是对称在记忆数学公式和数学方法中的应用.最后探讨了对称思想在数学教学中的应用,通过在数学教学中落实对称的数学美的思想方法,从而促进学生形成学习数学知识的良好的、积极的情感行为,更好地理解数学知识,提高学生解决数学问题的能力.关键词:对称;数学美;轮换对称性;积分区间;对称性原理;数学思想1引言1.1对称美对称性的感受逐惭成为一项美学准则,广泛应用于建筑、造型艺术、绘画以及工艺美术的装饰之中.你可以从许多中、外著名的建筑、艺术珍品中看到.天坛的建筑、天安门的建筑、颐和园长廊的建筑以及各种花瓶、古人饮酒的爵和各种花边等等是旋转对称、左右对称和平移对称的典型例子.这些对称美给人以匀称、均衡、连贯、流畅的感受,因而体现着一种娴静、稳重、庄严.在现实世界中,既有形态各异的自然对称,又有巧夺天工的人工对称,它们构成了一幅人与自然和谐的优美画卷.因此,对称是宇宙和自然界的基本属性,也是事物适应周围环境而生存发展和繁衍生息的自然规律,充分展现出事物协调环境、自我完善的、和谐的自然美.1.2数学中的对称美美,不仅存在于艺术、文学中,存在于大自然以及社会生活中,而且也存在于自然科学中,存在于数学之中.早在两千多年前,古代哲学家、数学家普洛克拉斯曾说过:“哪里有数,哪里就有美.”这就是说,数学中也充满了美的因素.作为一门科学,数学在其内容结构上和方法上都具有自身的某种美,即数学美.数学美的内容非常丰富,包括普适美、对称美、简洁美、比例美、和谐美、奇趣美等特性.其中对称性是数学美的重要特性之一,正如德国著名的数学家和物理学家魏尔所说的:“美和对称性紧密相连”.数学对称美是数学美的重要组成部分,它普遍存在于初等数学与高等数学的各个分支,在数学研究中有着重要的作用,一直是数学们长期追求的目标,有时甚至把它作为一种尺度,是数学创造与发现的美学方法之一.在数学中,不少的概念与运算,都是由人们对于“对称”问题的探讨派生出来的.数学中众多的轴对称,中心对称图形和等量关系都被赋予了平衡、协调的对称美.对于数学概念,也是一分为二地成对出现的:整-分,奇-偶,和-差,曲-直,方-圆,分解-组合,平行-交叉,正比例-反比例……,都显得那么的稳定、和谐、协调、平衡,如此地奇妙动人.2数和式的对称美2.1数的对称美在数学中,如果一个整数,它的各位数字是左右对称的,我们就称这个数是对称数.例如:1234321、123321等.对称数可以分为奇位对称数和偶位对称数.奇位对称数是指位数是奇数的对称数,奇位对称数位数最中间的那个数字称为对称轴数.偶位对称数是指位数是偶数的对称数,偶位对称数没有对称轴数.产生对称数的方法有很多种:(1) 形如11、111、1111、……的数的平方数是对称数.如:1×9+2=11 12×9+3=111 ...............123456789×9+10=1111111111(2)某些自然数与它的逆序数相加,得出的和再与和的逆序数相加,连续进行下去,也可得到对称数. 如:475475+574=1049 1049+9401=10450 10450+05401=15851 15851也是对称数.美的主要形式就是秩序,匀称和确定性,上面的几个式子就巧妙的体现了数和式中的对称美.可以看出,数学与美学是紧密相连,相辅相成的. 2.2式的对称美如果在代数式中,把任意的两个字母对换,代数式仍然保持不变,像这样的代数式就称为是对称代数式或对称式.如:223223,2,33x y z x xy y x x y xy y +++++++,互换式子中的,x y ,得到的式子仍然成立.在对称式中,字母是对称的,地位是平等的. 在二项式定理:00111222222110()n n n n k n k kn n n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b -------+=+++++++中,如果把当1,2,n n =的二项式展开式的系数列成如下:11 1 12 1 13 3 1 14 6 4 1 15 10 10 5 1 16 15 20 15 6 10n C 1n C 2n C 3n Cn n C这就是著名的“杨辉三角”,它是宋朝数学家杨辉的杰作.杨辉三角是我国数学发展史上的一个成就,它反映的就是数学美的对称性.在代数学中,也存在着漂亮的对称式,如:初等对称多项式:112212131112n n n nn n x x x x x x x x x x x x x x σσσ-=+++⎧⎪=+++++⎪⎨⎪⎪=⎩, 它在解题中也有广泛的应用.其中在运用初等对称多项式解题时联系最紧密的就是根与系数的关系定理:对于n 次多项式11110()n n n n f x a x a x a x a --=++++的n 个根12,,,n x x x有如下关系:1122121311012(1)n n nn n n nn n n n a x x x a a xx x x x x x x a a x x x a ---⎧+++=-⎪⎪⎪+++++=⎪⎨⎪⎪⎪=-⎪⎩由此定理可以非常简便的求出关于多项式根的对称多项式的值.例1.设1a ,2a ,3a 是方程0876523=-+-x x x 的三个根,计算:))()((233121233222222121a a a a a a a a a a a a ++++++(*)的值.解:令3211a a a ++=σ. 3132212a a a a a a ++=σ, 3213a a a =σ, 则 561=σ,572=σ,583=σ. 再将(*)式化为初等对称多项式的多项式,得:))()((233121233222222121a a a a a a a a a a a a ++++++ =323312221σσσσσ--=-6251679. 由上面的例子可以看出,对称性在数学中是广泛存在的,数学与对称是紧密相连的.3对称美在数学中的应用3.1对称在数学解题中的应用解题是一门艺术,对称性是艺术的一个非常重要的要素,如果在解题的过程中注意到对称性,那么就可以减少一些繁琐的计算,化难为易,提高解题的效率,达到事半功倍的效果.微分与积分也是一对具有对称美的事物,而对称性的方法也是微积分计算中常用的方法.3.1.1对称在微分学中的一些结论与应用定理:(1)若(,)(,)u x y u y x =,则(,)(,)y x u x y u y x =;(2) 若(,)(,)u x y u y x =-,则(,)(,)y x u x y u y x =-.因此若求出x u ,则可直接写出y u ,xx u 与yy u 的关系,也是如此. 例2.设()xy u e x y =-,求出x u ,y u ,xx u ,yy u . 解:2()(1)xy xy xy x u e y x y e e xy y =-+=-+,223(1)(2)xy xy xy xx u e y xy y e y e xy y y =-++=-+.对称的有:2(1)xy y u e x xy =--,32(2)xy yy u e x x y x =--. 3.1.2对称在积分学中的一些结论和应用3.1.2.1在重积分计算中,经常利用多元函数的轮换对称性来解题.轮换对称性的定义:若积分区域或被积函数的表达式中,将其变量x,y,z 按下列次序:x →y;y →z;z →x 后,其表达式均不变,则称积分区域或被积函数关于变量x,y,z 具有轮换对称性. 定理1:(二重积分的坐标轮换对称性)如果区域D 的边界曲线方程是关于x,y 地位对称,(,)f x y 在D 上连续,则(,)(,)DDf x y dxdy f y x dxdy =⎰⎰⎰⎰定理2:(三重积分的坐标轮换对称性)如果有界闭区域Ω的边界曲面的方程关于x,y,z 地位对称,()f u 在Ω上连续,则()()()f x dxdydz f y dxdydz f z dxdydz ΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰.由此,可以推广到:定理3:(n 重积分的坐标轮换对称性)如果n 维有界闭区域V 的边界曲面的方程关于12,,,n x x x 地位对称,()f u 在V 上连续,则112()n f x dx dxdx ⎰⎰⎰⎰=212()n f x dx dxdx ⎰⎰⎰⎰=12()nn f x dx dxdx =⎰⎰⎰⎰例3.计算三重积分2()()f x dxdydz x y z dxdydz ΩΩ=++⎰⎰⎰⎰⎰⎰,其中Ω是0,0,0x a y a z a ≤≤≤≤≤≤所围成正方形(a 为一大于0的实数).解:2222()(222)I x y z dxdydz x y z xy xz yz dxdydzΩΩ=++=+++++⎰⎰⎰⎰⎰⎰中被积函数及积分区域都有轮换对称性.所以222xd x d y d z y d x d y d zz d x d y d zΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰,xydxdydz xzdxdydz yzdxdydz ΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰,故2(36)I x xy dxdydz Ω=+⎰⎰⎰260005(36)2a a adz dy x xy dx a =+=⎰⎰⎰.3.1.2.2 利用积分区间的对称性和被积函数的奇偶性,可简化定积分的计算. 定理:设()f x 是[]b a ,上的连续函数,则通过变换x a b t =+-,可得:()baf x dx ⎰=()baf a b x dx +-⎰[]22()()a b af x f a b x dx +=++-⎰这就是积分区间的对称原理.特别地,当()()f x f a b x =+-时,有()ba f x dx ⎰22()ab af x dx +=⎰.例4.求积分2π⎰.解:由于()f x =0,2π⎡⎤⎢⎥⎣⎦上有界,且只有可去间断点2x π=,故定积分存在.由积分区间对称原理可得:原积分201121()2dx x ππ⎡⎤⎢⎥=+⎥⎥+-⎣⎦⎰220011224dx dx πππ===⎰⎰. 若被积函数是非奇非偶时,通过适当的换元或拆项等方法也可转化为对称区间的积分问题.把积分区间的对称性原理推广到二元函数积分中,可以得到结论: 结论1:设D 关于y 轴对称,则(,)Df x y dxdy ⎰⎰12(,)(,)0(,)D f x y dxdy f x y x f x y x ⎧⎪=⎨⎪⎩⎰⎰若关于变量为偶函数若关于变量为奇函数’ 其中1D 是D 的右半部分:1{(,)|(,),0}D x y x y D x =∈≥且.结论2:设D 关于x 轴对称,则(,)Df x y dxdy ⎰⎰12(,)(,)0(,)D f x y dxdy f x y y f x y y ⎧⎪=⎨⎪⎩⎰⎰若关于变量为偶函数若关于变量为奇函数’ 其中1D 是D 的上半部分:1{(,)|(,),0}D x y x y D y =∈≥且.结论3:设D 关于x 轴和y 轴均对称,且(,)f x y 关于变量x 和变量y 均为偶函数,则1(,)4(,)DD f x y dxdy f x y dxdy =⎰⎰⎰⎰其中1D 是D 在第一象限的部分:1{(,)|(,),0,0}D x y x y D x y =∈≥≥且. 结论4:设D 关于原点对称,则(,)Df x y dxdy ⎰⎰122(,)2(,),(,)(,)0(,)(,)D D f x y dxdy f x y dxdy f x y f x y f x y f x y ⎧=--=⎪=⎨⎪--=-⎩⎰⎰⎰⎰如果如果 其中1{(,)|(,),0}D x y x y D x =∈≥且,2{(,)|(,),0}D x y x y D y =∈≥且. 结论5:设D 关于直线y=x 对称,则(,)(,)DDf x y dxdy f y x dxdy =⎰⎰⎰⎰特别地,当12(,)()()f x y f x f y =时,1212()()()()DDf x f y dxdy f y f x dxdy =⎰⎰⎰⎰.例5.计算二重积分2(751)DI x x y d σ=+++⎰⎰,其中22:1D x y +≤.解:D 关于x 轴和y 轴均对称,而75x y 和分别关于变量x 和y 为奇函数,故(75)0Dx y d σ+=⎰⎰,所以:22(1)D D DI x d x d d σσσ=+=+⎰⎰⎰⎰⎰⎰212005(cos )4d r rdr πθθππ=+=⎰⎰.同样地,将它应用到三重积分中.例6.计算三重积分()x z dxdydz Ω+⎰⎰⎰,其中Ω是由曲面z =与z =.解:Ω关于坐标面x=0对称,且关于变量x 为奇函数,故0xdxdydz Ω=⎰⎰⎰.所以()x z dxdydz zdxdydz ΩΩ+=⎰⎰⎰⎰⎰⎰21240cos *sin 8d d r r dr πππθϕϕϕ==⎰⎰⎰.例10.计算三重积分222222ln(1)1V z x y z dxdydz x y z ++++++⎰⎰⎰, 其中{}222(,,)|1V x y z x y z =++≤.解:积分区域V 是以原点O(0,0,0)为中心的单位球域,所以V 关于xoy 平面对称,被积函数222222ln(1)(,,)1z x y z f x y z x y z +++=+++是关于z 的奇函数, 故由对称性知222222ln(1)01Vz x y z dxdydz x y z +++=+++⎰⎰⎰. 由上可见,在解决微积分问题时,巧妙应用对称性的观点去解题,可以使运算过程更加的快捷、流畅,计算结果更加的精确. 3.2 对称在数学中的其他应用对称是形式美的显著特征,就数学而言,不仅让枯燥抽象的数学公式变得容易记忆,而且也是数学命题证明必不可少的一种方法. 3.2.1利用对称性记忆公式在数学分析中,斯托克斯公式有一种形式表示法:sin sin sin c s Pdx Qdy Rdz ds x yz PQR αβγδδδδδδ⎛⎫⎪ ⎪++= ⎪⎪⎝⎭⎰⎰⎰ 其中P,Q,和R 为连续可微函数,S 为逐片光滑的有界双侧曲面,C 为包围S 的逐段光滑的简单闭曲线,(sin ,sin ,sin )αβγ为曲面S 在点(,,)x y z 处的单位法向量,方向为逆时针,这个公式的右边是用第一型曲面积分表示的,被积函数是一个三阶行列式.若取xy 平面上的平面区域D 作曲面S,并取上侧,则斯托克斯公式右侧的三阶行列式为001x y x yz P Q PQR δδδδδδδδδδ⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭于是斯式公式就变成了格林公式,由此可见,格林公式是斯式公式的特例. 类似地,奥式公式可表示为(sin ,sin ,sin )(,,)(,,)(,,)SVP Q R ds P Q R dv x y zδδδαβγδδδ=⎰⎰⎰⎰⎰ 其中S 是包围V 的逐片光滑曲面,P,Q,R 在S+V 上是连续可微的,(sin ,sin ,sin )αβγ为曲面S 上点(,,)x y z 处的单位法向量.不难看出,斯式公式和奥式公式都是由三个矢量(P,Q,R),(sin ,sin ,sin )αβγ,及(,,)x y zδδδδδδ所决定的. 上述一些形式上的对称性,是数学分析中追求对称形式美的有利证据.一些望而生怯的公式由于有了对称美,变得非常容易记忆了. 3.2.2数列解题中的的对称思想在数列解题中,存在着大量的对称思想,无论是等差数列还是等比数列,都含有丰富的对称之美.我们知道:只要m n p q +=+,其中,,,m n p q N ∈,就有 (ⅰ)m n p q a a a a +=+(等差数列)(ⅱ)m n p qa a a a =(等比数列)利用这个数量关系来处理有关数列问题,常常能化繁为简. 例11.(1)已知{}n a 为等差数列,且23101148a a a a +++=,求67?a a +=(2)已知{}n a 为等比数列,2435460,225n a a a a a a a >++=,求35?a a +=解:(1)∵21131067()()482()a a a a a a +++==+,∴6724a a +=(2)∵2224333465,a a a a a a a a ===,∴223355225a a a a ++= ∵20a >,∴355a a +=例12.在等差数列中,69121520a a a a +++=,求20S .解:∵691215651202()2()a a a a a a a a +++=+=+∴201202()20S a a =+=由此可以看出,如果在等差数列中,由条件不能具体的求出1a 和d ,但可以求出1a 和d 的组合式,而所求的量往往可以用这个组合式来表示,那么就用“整体代值”的方法将值求出,同样的方法也可以用在等比数列中.3.3 对称美与数学教学人们常说:“成功的教学给人以一种美的享受”.而长期以来,在数学教学中,人们总是重视基础知识和基本技能的传授与训练,而忽视了美育的渗透,不善于发现数学本身所特有的美,不注意用数学美来感染诱发学生的求知欲望,激发他们的学习兴趣,不重视引导学生发现数学美,鉴赏数学美,以致使一些学生感到数学抽象枯燥,失去学好的信心.心理学研究表明:没有丝毫兴趣的强制性学习,将会扼杀学生探求真理的欲望.因此,只有学生热爱数学,才能产生积极而又持久的求学劲头.我国数学家徐利治认为:“数学教学的目的之一是使学生获得对数学的审美能力,即能增进学生对数学美的主观感受能力.”数学的教学过程不仅仅是学生个体的认识过程和发展过程,而且也是在教师指导下的一种特殊审美过程.因此在教学过程中,应当把数学美的内容通过教学过程的设计向学生揭示出来,从而使学生认识到数学的内容是美的,并且充分运用数学美的诱发力引起学生浓厚的学习兴趣、强烈的求知欲望,使抽象、高深的数学知识得以形象化、趣味化,使学生从心理上愿意接近它、接受它,直到最终热爱它.对称美是数学中最普遍的一种美.图形的对称、式子的对称和解题方法的对称等,都能给人以匀称的美感,用对称的观点去处理数学问题,往往可以从问题的一部分联想起与此对称的另一部分,从而采取补全的方法,使之构成一种整体的对称美,使问题化繁为简,化难为易.在数学教学过程中,充分发掘教材中的对称式的美,运算中的对称美、函数中的对称美、几何图形中的对称美,激发学生对数学美的体验,使学生从数学的显性美提高到对数学隐性美的认识,从感性认识上升到理性认识,使学生对所学的知识更易于接受,便于理解,培养学生爱好数学、认识数学美的兴趣.在数学问题的求解过程中,充分运用对称的数学美的思想方法,可以使学生感受到对称美,增强求知欲,使数学问题的解决更加简捷明快,从而提高了学生的直觉思维能力和形象思维能力,开拓解题新思路,进而提高了学生解决问题的能力和对数学思想方法的领悟,使学生由此而产生学习数学的兴趣.在数学解题过程中,若能积极挖掘问题中隐含的对称性,巧妙地利用对称性,可使复杂的问题变得条理清楚,脉络分明,能化难为易、化繁为简.例如对于数列中的若干项的和或积的问题,如果能对其结构进行对称性的分析,将数学的对称美与题目的条件或结论相结合,就能构建一组互相关联的对偶式,从而确定解题的总体思路或入手方向.其实质是让美的启示、美的追求在解题过程中成为宏观指导力量,使问题的解决过程更加简洁明快.数学中蕴涵着丰富的美,除了对称美以外,还有很多.把数学美的和谐对称、简单统一等特征融贯在教学的整个过程中,可以发展学生思维的灵活性、发散性、深刻性、独创性等诸方面的能力就得到培养和提高.使学生在美的享受中,获得知识,理解知识,掌握知识.结术语数学并不等于美学,但是数学中却真实地蕴藏着丰富的美学内涵,而对数学内在美的追寻探索,又会使人们更迅速、更确切的洞悉数学的真谛.对称美是数学美的重要特征之一,对称美是一个广阔的主题,数学则是它根本.我们应该更深刻地掌握我们的所学专业知识,积极地去理解数学,学好数学,这样才能更好的走向工作岗位,取得成功.参考文献:[1]钱双平.对称性在高等数学解题中的应用---数学美学方法的应用,云南电大学报,2004,6(2):62-63.[2]马锐.数学中的对称美,昆明冶金高等专科学校学报,2004,20(2):35.[3]周齐明.在数学教学中应加强数学美的教育,六安师专学报,1999,15(4).[4]杨琴,杨联华.探求高等数学中的对称美,景德镇高专学报,2005,20(4).[5]陈自高.数学中的对称美与应用,中国科技信息,2006,(5).[6]胡本荣.从对称性看数学中的美学,达县师范高等专科学校学报,2004,14(2).[7]钱双平.对称性在高等数学解题中的应用,2004,6(2).[8]窦丹.“对称思想”对学生数学能力的培养和作用:[硕士学位论文],东北师范大学,2005.[9]赵博.数学美与中学数学教学:[硕士学位论文],武汉:华中师范大学,2004.。
数学教学中的对称美
数学教学中的对称美宿迁市宿城一中王林内容摘要:各科教学都就有机地对学生进行美育,在数学中蕴含着丰富的美学资源。
在教学时,教师可以运用信息技术更好地去揭示数学中的内涵美。
创设美的情境,让学生在情境中感受图形和算式的对称美,并激发学生创造对称美的作品。
运用信息技术演绎几何图形的奇特景观和奇妙的解题方法,让学生体验数学的奇异美。
还可以收集一些美的信息,让学生在阅读和欣赏时体会数学的和谐美。
关键词:对称美和谐美在全面推选素质教育的今天,审美教育受到了人们的广泛重视。
正如苏霍姆林斯基所说:“教育,如果没有美,没有艺术,那是不可思议的。
”如今语文、音乐、美术等学科开展了大量的美育活动,但是在数学方面的美育活动却很少。
数学作为教育中的一门重要学科,能够缺少美的教育吗?早在古希腊著名的思想家、数学家——柏拉图,就已经对“数学美”作了深刻的论述。
其实数学中蕴含着丰富的美学资源,从美的对象来看:有式的美、形的美、符号的美、黄金分割及比例美等;从美的表现形式来看:有对称的美、和谐美、奇异美、统一的美、简洁的美等。
在数学教学中,运用信息技术揭示这些美,能引起学生对数学美的赞叹,激发创造美的热情,培养学生的数学美感,提升学生的数学才能,现就如何揭示数学对称美、奇异美、和谐美方面谈几点做法,以求赐教。
一、创设美的情境,让学生感受数学的对称美。
“对称”既是数学概念,又是一个重要美学概念。
在数学中大量的图形和算式都形象直观体现了对称美。
1、展示美的画面,创作美的对称图形。
在教学时用多媒体展示各种美丽的对称图形,能创设一个美的情境,让学生在美的情境受到美的熏陶、理解美的价值、创造美的作品。
如轴对称图形在学生认识了轴对称图形的特征后,师:“同学们,现在正是春暖花开,外出活动的好时节,让我们一起到轴对称图形王国去走一走吧![动画呈现:在美丽的轴对称图形王国,有漂亮的蝴蝶,可爱的小蜜蜂,逗人的青蛙等各种小动物;有0、3、8、B、E、D、Y、H、K等数字与字母:有雄伟壮丽的天安门、美丽迷人的艾菲尔铁塔,庄严肃穆的天坛、历史悠久的故宫等中外名胜古迹;还有红双喜字、树叶……]随着一幅幅美丽画面的不断变换,学生的眼睛亮了起来,赞叹之声此伏彼起,“真是太美了!”学生已经真真切切地感受到了对称图形的美,师:“正因为有了这么多对称与不对称,才让我们的世界如此五彩缤纷、美丽动人。
数学中的对称美
数学中的对称美数学的对称美分为两种:一种是数〔式〕的对称性美,要紧表达在数〔式〕的结构上,例如,加法的交换律a+b=b+a,乘法的交换律ab=ba,a与b的位置具有对称关系,然而能够变化的,变化的结果与原来的位置反而形成一种整齐的美感、均衡感,简洁明快,一目了然,从而显示了它的神奇感、奇妙感。
另一种是图形的对称性,整体美、简洁美,图形的对称是指组成图形的部分与部分之间、整体与整体之间的一种统一和谐关系。
例如轴对称图形和中心对称图形等,这些图形匀称美观,因此在日常生活中用途特别广泛,许多建筑师和美术工作者常常采纳一些对称图形,设计出漂亮的装饰图案。
倒影对称的建筑物,对称的图案,是随处可见的。
绘画中利用对称,文学作品中也有对称手法。
在数学中那么表现在几何图形中有点对称、线对称、面对称。
在几何图形中对称的图形给人以美的享受,而不对称的现象中同样存在着美,这确实是黄金分割的美或者更深层次的对称美。
如:一条线段关于它的中点对称,这条线段假设左端点的坐标为0,右端点的坐标为1,那么中点在0.5处。
又如:大概黄金分割点〔在0.618处〕不是对称点,但假设将左端记为A,右端记为B,黄金分割点记为C,那么AC2=AB·BC而且C关于中点的对称点D也是AB的黄金分割点,因为,再进一层看,D又是AC的黄金分割点;C是DB的黄金分割点。
类似地一直讨论下去,这可视为一种连环对称。
现在,设计师和艺术家们差不多利用这一规律创造出了许多令人心碎的建筑和无价的艺术珍宝。
在中学数学中,有关数与形的对称现象极为常见,这种对称有的是形象的,有的是抽象的观念和方法上的对称。
等边三角形是关于它的每条高线的轴对称图形,平行四边形是关于它的两条对角线交点的中心对称图形。
圆锥、圆柱、圆台是关于它的轴截面的对称图形。
代数中常利用来构造一元二次方程,几何中常利用对称思想添加辅助线,数学的对称美已成为人们研究解决问题的重要思想方法,它的作用越来越显得重要。
数学美的特征及体现
数学美的几个特征以及应用一、数学美的特征1. 简洁美。
简洁美是数学美最突出的表现,简洁的数学理论能给人以美的最直接的享受。
简洁的东西容易被人类把握,有助于提高思维的效率。
我国著名的数学家陈省身说过:“数学世界中,简单性和优雅性是压倒一切的。
”无论是广泛适用的数学概念、公式和法则,还是逻辑系统的数量,又或是空间的本质属性,无一不以它所特有的精炼语言、严密的逻辑、抽象的符号向我们展示出数学简洁的魅力。
2. 对称美。
对称美是指数学内容与结构系统的协调完备所表现出来的均衡对称,它不仅是指几何图形的对称关系,也指各种数学概念、公式和定理间的对称思想。
美国的数学教育家舍菲尔德在问题的分析和理解中就建议:“借助对称性或其他不失一般性的考虑使问题得到简化。
”数学中与对称有关的内容数不胜数,函数、立体几何、解析几何中的很多内容都能给人以对称的美感。
3. 奇异性。
奇异美是指数学中原有的习惯法则和统一格局被新的事物所突破,从而引起惊愕与诧异,同时又赢得人们的赞赏与叹服。
如,数学中出人意料的结果、公式、新思想、新理论、新方法等。
没有了这个方面,数学的美也许会显得单调,数学上许许多多出人意料的奇异巧合让人们对数学的美更加着迷。
数学结论的奇异往往令人惊叹,独特的方法也使学生感受到创造的喜悦和成功的乐趣。
二、如何在教学中体现数学美首先教师必须善于挖掘教材中的数学美,让学生感受数学的美,以数学魅力拨动学生的心弦,开启心灵,陶冶情操,激发兴趣,促进其能力的发展。
例如,教学“黄金分割”时,列举世界上很多著名的建筑,都符合黄金分割;最美身体上下比例,也是符合黄金分割的。
其次让学生明白数学美的意义,在学习中体会数学之美。
如,在学习了三角形、平行四边形、梯形、长方形、正方形的面积公式后,引导学生深入发掘它们的内在联系。
发现当梯形上底缩短为0时(上底小于下底),这时梯形就转化为三角形,因此三角形可视作上底为0的梯形;当梯形的上底与下底相等时,梯形就转化为平行四边形,因此平行四边形可看作上下底相等的梯形。
对称优美,寻找答案——幼儿园大班数学活动教案
对称优美,寻找答案——幼儿园大班数学活动教案近日,本幼儿园大班开展了一项别开生面的数学活动——对称优美,寻找答案。
这次活动旨在让孩子们通过观察、模仿、比较、探索等方式,感受对称美,理解对称性质,培养观察、想象、创造、解决问题的能力,以及激发他们的兴趣、自信和积极性。
活动一:对称饰品在活动前,老师们已为孩子们准备好了各种彩色宣纸、图案剪纸、珠链、花边、绸带、毛线等材料。
在班里摆放好各种对称饰品模板,如蝴蝶、花朵、星星、月亮、车辆飞机等。
孩子们可以自由地选择材料和模板,将它们剪、挂、缀、织、编、绣成各种五彩缤纷、对称优美的饰品。
在操作过程中,老师们鼓励孩子们多观察、多比较、多反思,如何使饰品对称、均衡、美观。
不同颜色和形状的装饰剪纸、珠链等,需要经过孩子们灵活运用、摆弄和调整,才能变成更符合个人理念,具有吸引力的艺术品。
活动二:对称图形此活动是通过图卡的方式,引导孩子们认识对称图形,学习对称性质,提高空间认知和品味审美。
在活动开始前,老师们已在班里的墙上、地上贴着各种对称图形,如矩形、正方形、三角形、圆形、星形等。
每个孩子会拿到一张对称图卡,上面都带有有意思的图案。
孩子们需要通过多种方式,将图案对称起来,才算完成本次任务。
孩子们可以把持卡,挖空、折叠、留白、转化,使图形上下左右同样,达到对称的效果,同时促进孩子们的观察力、动手能力、空间想象力和团队合作能力。
活动三:对称游戏此游戏通过多人互动,既让孩子们娱乐,也培养了团队协作和竞争意识。
游戏内容是将一个花坛根据对称原则,分成左右两半,左右两组分别是蝴蝶、蜜蜂、草坪、花朵、锅碗瓢盆等素材,每个素材都有自己的价值,每组在游戏结束时会得到相应的奖励。
游戏规则是孩子们通过座位抽签,分成左右两组,每组有一个指导员,负责组织组员观察、分析、制定对称方案,然后在规定时间内,完成对称花坛,达到评分的标准。
通过游戏,增强孩子们的角色自信、策略思考和口头表达能力,充实了他们的娱乐生活和团队精神。
数学中的对称美完整版
数学中的对称美HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】数学中的对称美对称性是数学美的最重要的特征。
几何中的轴对称、中心对称,代数中的许多运用都能给人以美感。
发掘学生对数学的审美能力,这对引发学生的数学兴趣和学习上都有很大的帮助。
许多数学教师在教学中关注怎样利用数学中的对称美,提高学生学习数学的兴趣,提高解题的能力。
我认为,数学教师在教学中,更要注意引导学生利用对称美提出问题,进行数学创新。
这样做,有利于学生跳出题海,掌握学习的主动权。
一:代数中的对称美:常出现在规律运算、数列运算、函数运算中例如1:“回文数”是一种数字,也是一种对称数。
如:98789,这个数字正读是98789,倒读也是98789,正读倒读一样,所以这个数字就是回文数。
解:我们最常见的一组算式:1×1=111×11=12111×111=12321?1111×1111=1234321从上述计算中得出对称规律可得:例如2、计算:1 + 2 + 3 +┅ + 100引导学生利用数学对称美来解。
解:设x = 1 + 2 + 3 + ┅ + 100①倒过来x = 100 + 99 + ┅ + 1②① + ② 得?2x = 101 × 100∴ x = 5050即:1 + 2 + 3 + ┅ + 100 = 5050例如3、已知正比例函数与反比例函数的一个交点是(2,3),则另一个交点是(,).分析:因为正比例函数与反比例函数都是关于原点中心对称图形,从而它们的交点也是关于原点中心对称。
所以另一个交点是(-2,-3).例如4、如图,请写出△ABC中各顶点的坐标.在同一坐标系中画出直线m:x=•-1,并作出△ABC关于直线m对称的△A′B′C′.若P(a,b)是△ABC中AC边上一点,•请表示其在△A′B′C′中对应点的坐标.分析:直线m:x=-1表示直线m上任意一点的横坐标都等于-1,因此过点(-1,0)•作y轴的平行线即直线m.画出直线m后,再作点A、C关于直线m的对称点A′、C′,•而点B在直线m上,则其关于直线m对称的点B′就是点B本身.解:(1)△ABC中各顶点的坐标分别是A(1,4)、B(-1,1)、C(2,-1)(2)如右图,过点(-1,0)作y轴的平行线m,即直线x=-1.(3)如右图,分别作点A、B、C关于直线m对称的点A′(-3,4)、B′(-1,1)、C′(-4,-1),并对顺次连接A′、B′、C′三点,则△A′B′C′即为所求.(4)观察发现三组对称点的纵坐标没有变化.而横坐标都可以表示为2×(-1)•减去对应点的横坐标.所以点P的对应点的坐标为(-2-a,b)。
对称的美教学反思通用7篇
对称的美教学反思通用7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如工作总结、工作计划、作文大全、心得体会、申请书、演讲稿、教案大全、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as work summaries, work plans, essays, experiences, application forms, speeches, lesson plans, and other sample articles. If you want to learn about different data formats and writing methods, please pay attention!对称的美教学反思通用7篇教学反思的书写可以让自己的教学境界得到提升,当我们的教学任务完成之后一定要认真写好适合自己的教学反思,本店铺今天就为您带来了对称的美教学反思通用7篇,相信一定会对你有所帮助。
例谈数学中的对称美
例谈数学中的对称美数学是一门充满着美的学科,而对称美则是数学中一种非常重要的美感体现。
对称美在数学中无处不在,无论是几何图形、方程式还是数列等等,都存在着各种各样的对称性。
本文将以几个具体的例子来探讨数学中的对称美。
我们先来看看几何图形中的对称美。
大家都知道,正方形是一种具有对称性的几何图形。
它的四条边长度相等,四个角也都是直角。
这种对称性使得正方形非常美观,同时也具有一种稳定感。
除了正方形,圆也是具有对称美的几何图形。
无论从哪个角度来看,圆都是完全一样的,这种完美的对称性使得圆具有无穷无尽的美感。
除了几何图形,方程式也是数学中的另一个具有对称美的例子。
例如,关于x轴对称的函数可以写为f(x) = f(-x),这种对称性使得函数在图像上具有一种左右对称的美感。
而关于y轴对称的函数可以写为f(x) = -f(-x),这种对称性使得函数在图像上具有一种上下对称的美感。
另外,关于原点对称的函数可以写为f(x) = -f(-x),这种对称性使得函数在图像上具有一种中心对称的美感。
方程式中的对称美不仅仅限于这些简单的情况,还存在着许多更为复杂的对称性。
数列中也存在着对称美的例子。
例如,斐波那契数列就是一种具有对称美的数列。
斐波那契数列的定义是:第一个和第二个数均为1,从第三个数开始,每个数都等于前两个数之和。
这种对称性使得斐波那契数列具有一种自相似的美感,每个数都是前两个数的和,形成了一个无限延伸的对称结构。
除了这些例子,数学中还存在着许多其他的对称美。
例如,对称矩阵在线性代数中是一种非常重要的概念。
对称矩阵的定义是:一个矩阵与其转置矩阵相等。
这种对称性使得对称矩阵具有许多重要的性质和应用。
总结起来,数学中的对称美无处不在,无论是在几何图形、方程式还是数列等等中,都存在着各种各样的对称性。
这种对称美使得数学不再是一门枯燥的学科,而是充满着艺术和美感的学科。
通过欣赏和研究数学中的对称美,我们可以更好地理解数学的本质,也能够更好地欣赏数学的美。
数学中的对称美
在 我们学 习数学知识过程 中,时常会遇 到利 用图形 的对 称 、数 字的对称 以及公 式的对称来解决 实际 的数 学难 题 ,这也
是数学 中对称 美的主要表现形式。数 字对称是 以一个数字为 中 心 ,其 两 边 的 数 字 成 对应 关 系 。例如 :98789,9876789,987656789
(.二)圆锥 曲 线 中 的 求值 问题
在 我们 数学课程 中,时常会利 用对 称性质 来解 决圆锥 曲
线 数形 问题 ,不仅 能 提 高 我 们 的 做 题 效 率 ,还 能 实 现 将 繁 琐 的
问题 简单化 ,从而实现求解的 目的。例如 :把椭 圆 + =1
D
l0
的长轴 MN 分成平均 8份 ,并将 X轴与每个分 点作 垂直于椭
称性质 ,这样 的解决 方法不仅 能 简化 解决过程 ,提 高我们 的做
题 效 率 ,还 能 加 深 我 们 对 椭 圆相 关知 识 的 理 解 ,进 一 步发 现 数
学 中的 对 称 关。
(三)数 形 结 合 的 求值 问题
数形结合 求值是 我们数学课程常遇 到的问题 ,并且 对于
我 们学生 而言存在 着一定 的解题难度 。而利用 图形 的对称性
求 cos(— -)+co8(— 一)+cos(—兰垩一)的值。首先,设要求解的
|
|
/
值 为 x。其 次 ,根据 构 造 三 角 函 数 对偶 式 定论 得 出 ,cos与 sin转
化值为:y=sm(— )+sm(—笔一)+sin( )。最后,通过计算
|
l
对称的美教案优质6篇
对称的美教案优质6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、述职报告、演讲稿、心得体会、合同协议、条据文书、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, job reports, speeches, insights, contract agreements, documents, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!对称的美教案优质6篇只有认真对待每次写教案的机会,我们才能够更好地理解学生的学习需求和特点,教案能够帮助教师进行教学反思和总结,不断提升自身的教学能力和水平,下面是本店铺为您分享的对称的美教案优质6篇,感谢您的参阅。
数学中的对称美
数学中的对称美沧源县芒卡镇中心完小张瑞【摘要】对称是一个广阔的主题,在艺术和自然两方面都意义重大。
对称是自然界和人类社会中普遍存在的形式之一,是其运动、变化和发展的规律之一;对称是一个广阔的主题,在艺术和自然两方面都意义重大;对称是指图形或事物对某点,某直线或某平面而言,在大小、形状或排列上具有一一对应关系。
数学则是它的根本。
对称美是数学美的最重要的特征。
【关键词】对称;对称性;数学美;对称美对称是自然界和人类社会中普遍存在的形式之一,是其运动、变化和发展的规律之一;对称是一个广阔的主题,在艺术和自然两方面都意义重大;对称是指图形或事物对某点,某直线或某平面而言,在大小、形状或排列上具有一一对应关系。
数学则是它的根本。
虽然数学没有明显地提到善和美,但善和美也不能完全和数学分离。
因为美的主要形式就是秩序、匀称和确定性,这些正是数学所研究的原则。
——亚里士多德【1】在数学中对称的概念略有拓广,常把某些具有关联或对立的概念视为对称,这样对称美便成了数学美中的一个重要组成部分。
同时也为人们研究数学提供了某些启示。
对称性是数学美的最重要的特征;是数学家追求的目标;也是数学发现与创造中的重要的美学因素。
著名德国数学家和物理学家魏尔说:“美和对称紧密相连。
”【1】由于现实中处处有对称,既有轴对称、中心对称等的空间对称,又有周期、节奏和旋律的时间对称,还有与时空坐标无关的更为复杂的对称。
作为研究现实世界的空间形式与数量关系的数学,自然会渗透着圆满和自然的对称美。
例如,函数与反函数图像关于y=x对称;代数中的代数式化简时的共轭因子;多项式方程虚根的成对出现;线性方程组的克莱姆法则,都给人以一种对称性的美感。
谈到几何之美,人们更忘不了对称。
【1】数学的对称美分为两种:一种是数(式)的对称性美,主要体现在数(式)的结构上,例如,加法的交换律a+b=b+a,乘法的交换律ab=ba,a与b的位置具有对称关系,但又是可以变化的,变化的结果与原来的位置反而形成一种整齐的美感、均衡感,简洁明快,一目了然,代数式是数(式)的对称式,结构严谨、特殊,了解这类问题一定需要特殊的方法,从而显示了它的神秘感、奇妙感。
数学中的对称美与应用
数学中的对称美与应用对称美是指几何学中的一种美学概念,它被广泛应用于物理、化学、生物学等领域的探索中。
数学中的对称美可以被描述为一种几何图形或物体内部存在的对称性,在相应的坐标系下这些图形或物体具有某种显然的、自相似的结构。
对称美通常具有对称轴、对称平面或中心对称等特点,这种特点使得对称的物体或图形看起来更加美丽、和谐。
以下是对称美在数学中以及应用中的一些例子。
对称美在数学中的应用非常广泛,涉及到各种数学领域,包括代数、几何学、拓扑学等。
例如:1、在代数学中,组合对称群是一类置换群,是一个很重要的研究对象。
它可以被用来表达许多数学符号的对称性,例如多项式、方程式、矩阵等。
2、在几何学中,对称美非常常见。
对称美被用来研究各种几何图形或物体,例如圆、球、多面体等。
同时,它也是研究对称性的基础,例如对称轴、对称平面、中心对称等。
3、在拓扑学中,拓扑对称群是一类保持拓扑不变的对称变换群。
它是一种非常有价值的工具,可以被用来描述各种物理现象,如宇宙学和材料科学中的晶体结构。
除了在数学中,对称美在物理、化学、生物学等领域中也得到了广泛的应用。
以下是一些具体的例子:1.在物理学中,对称性非常重要。
物理学家通过研究各种力的对称性来解释物理现象。
例如,电磁场的旋转对称性被用来解释电磁波、光谱和相对论中的许多现象。
2.在化学中,对称性是研究分子结构和反应过程的重要工具。
例如,化学中的对称元素周期表将化学元素根据它们的原子结构和性质排列了出来。
对称性还被用来研究分子的光谱和热力学性质等。
3.在生物学中,对称是形态学和基因组学等领域的重要工具。
例如,在进化中,对称性被用来研究物种的发展过程和生物形态的起源。
总之,对称美是一种非常重要的概念,它不仅在数学中具有重要意义,也被广泛应用于物理、化学、生物学等领域的研究中。
通过深入研究对称美这一概念,我们可以更好地理解这些领域中的现象,并为解决实际问题提供有用的工具和方法。
数学中的对称美
数学中的对称美数学的对称美分为两种:一种是数(式)的对称性美,主要体现在数(式)的结构上,例如,加法的交换律a+b=b+a,乘法的交换律ab=ba,a与b的位置具有对称关系,但是可以变化的,变化的结果与原来的位置反而形成一种整齐的美感、均衡感,简洁明快,一目了然,从而显示了它的神秘感、奇妙感。
另一种是图形的对称性,整体美、简洁美,图形的对称是指组成图形的部分与部分之间、整体与整体之间的一种统一和谐关系。
例如轴对称图形和中心对称图形等,这些图形匀称美观,所以在日常生活中用途非常广泛,许多建筑师和美术工作者常常采用一些对称图形,设计出美丽的装饰图案。
倒影对称的建筑物,对称的图案,是随处可见的。
绘画中利用对称,文学作品中也有对称手法。
在数学中则表现在几何图形中有点对称、线对称、面对称。
在几何图形中对称的图形给人以美的享受,而不对称的现象中同样存在着美,这就是黄金分割的美或者更深层次的对称美。
如:一条线段关于它的中点对称,这条线段若左端点的坐标为0,右端点的坐标为1,那么中点在0.5处。
又如:似乎黄金分割点(在0.618处)不是对称点,但若将左端记为A,右端记为B,黄金分割点记为C,则AC2=AB·BC而且C关于中点的对称点D也是AB的黄金分割点,因为,再进一层看,D又是AC的黄金分割点;C是DB的黄金分割点。
类似地一直讨论下去,这可视为一种连环对称。
如今,设计师和艺术家们已经利用这一规律创造出了许多令人心碎的建筑和无价的艺术珍宝。
在中学数学中,有关数与形的对称现象极为常见,这种对称有的是形象的,有的是抽象的观念和方法上的对称。
等边三角形是关于它的每条高线的轴对称图形,平行四边形是关于它的两条对角线交点的中心对称图形。
圆锥、圆柱、圆台是关于它的轴截面的对称图形。
代数中常利用来构造一元二次方程,几何中常利用对称思想添加辅助线,数学的对称美已成为人们研究解决问题的重要思想方法,它的作用越来越显得重要。
数学中的对称之美
数学中的对称之美对称是数学中的一种重要概念,它在几何、代数、组合等领域都有广泛的应用。
对称不仅令人赏心悦目,还具有深刻的数学原理和应用。
本文将介绍数学中的对称之美,从几何、代数和组合的角度探讨对称的定义、性质和应用。
一、几何中的对称几何中的对称指的是图形或物体的镜像对称性,即通过某个轴或点进行镜像变换后,图形或物体不变。
镜像对称性是几何中最基本的对称性,它可以在平面和空间中进行。
1. 平面镜像对称平面中的图形具有对称性,当图形沿着某个直线折叠时,两个部分能够完全重合,这个折叠轴就是图形的对称轴。
对称轴两侧的点、线段或面积完全相等,形成了镜像对称。
平面镜像对称广泛应用于建筑、艺术和设计中。
许多大型建筑物都具有对称的外观,如印度泰姬陵和法国巴黎圣母院。
这些对称性不仅令建筑物显得庄重与美观,还有助于加强建筑物的结构稳定性。
2. 空间镜像对称空间中的图形、物体以及立体体积都可以具有对称性。
空间镜像对称是指物体通过某个点进行旋转180度,或绕某个轴进行旋转,使得物体保持不变。
空间镜像对称在科学研究和日常生活中都有重要应用。
例如,在化学中,有机分子的手性对称性对其化学性质起着决定性作用。
生物学中的DNA分子结构也具有空间对称性,这种对称性对于遗传编码具有重要意义。
二、代数中的对称代数中的对称包括代数方程、函数和算式的对称性。
这种对称性涉及运算的交换性、反射性和任意替换性。
1. 运算的交换对称性在代数运算中,加法和乘法具有交换对称性。
即对于任意的数a和b,a+b=b+a,ab=ba。
这种对称性使得代数运算更加灵活、简洁。
交换对称性在抽象代数中有着重要的地位。
例如,群是一种具有封闭性、结合律、单位元和逆元的代数结构,满足群运算的交换对称性的群称为阿贝尔群。
2. 函数的对称性函数的对称性包括奇偶性和周期性。
奇函数满足f(-x)=-f(x),即关于坐标原点对称;偶函数满足f(-x)=f(x),即关于y轴对称。
周期函数在一定区间内具有重复性的对称性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学教学中的对称美宿迁市宿城一中王林内容摘要:各科教学都就有机地对学生进行美育,在数学中蕴含着丰富的美学资源。
在教学时,教师可以运用信息技术更好地去揭示数学中的内涵美。
创设美的情境,让学生在情境中感受图形和算式的对称美,并激发学生创造对称美的作品。
运用信息技术演绎几何图形的奇特景观和奇妙的解题方法,让学生体验数学的奇异美。
还可以收集一些美的信息,让学生在阅读和欣赏时体会数学的和谐美。
关键词:对称美和谐美在全面推选素质教育的今天,审美教育受到了人们的广泛重视。
正如苏霍姆林斯基所说:“教育,如果没有美,没有艺术,那是不可思议的。
”如今语文、音乐、美术等学科开展了大量的美育活动,但是在数学方面的美育活动却很少。
数学作为教育中的一门重要学科,能够缺少美的教育吗?早在古希腊著名的思想家、数学家——柏拉图,就已经对“数学美”作了深刻的论述。
其实数学中蕴含着丰富的美学资源,从美的对象来看:有式的美、形的美、符号的美、黄金分割及比例美等;从美的表现形式来看:有对称的美、和谐美、奇异美、统一的美、简洁的美等。
在数学教学中,运用信息技术揭示这些美,能引起学生对数学美的赞叹,激发创造美的热情,培养学生的数学美感,提升学生的数学才能,现就如何揭示数学对称美、奇异美、和谐美方面谈几点做法,以求赐教。
一、创设美的情境,让学生感受数学的对称美。
“对称”既是数学概念,又是一个重要美学概念。
在数学中大量的图形和算式都形象直观体现了对称美。
1、展示美的画面,创作美的对称图形。
在教学时用多媒体展示各种美丽的对称图形,能创设一个美的情境,让学生在美的情境受到美的熏陶、理解美的价值、创造美的作品。
如轴对称图形在学生认识了轴对称图形的特征后,师:“同学们,现在正是春暖花开,外出活动的好时节,让我们一起到轴对称图形王国去走一走吧![动画呈现:在美丽的轴对称图形王国,有漂亮的蝴蝶,可爱的小蜜蜂,逗人的青蛙等各种小动物;有0、3、8、B、E、D、Y、H、K等数字与字母:有雄伟壮丽的天安门、美丽迷人的艾菲尔铁塔,庄严肃穆的天坛、历史悠久的故宫等中外名胜古迹;还有红双喜字、树叶……]随着一幅幅美丽画面的不断变换,学生的眼睛亮了起来,赞叹之声此伏彼起,“真是太美了!”学生已经真真切切地感受到了对称图形的美,师:“正因为有了这么多对称与不对称,才让我们的世界如此五彩缤纷、美丽动人。
”美丽的画面,优美的意境,让学生理解了对称美的价值。
师:我们欣赏了这么多美丽的轴对称图形,同学们能不能利用轴对称图形的特征创作一幅你喜欢的作品呢?此时,学生的情已融入轴对称图形王国,此刻,让他们进行创作,能不跃跃欲试吗?在教师的指导下,学生在windon98画板中,利用“复制”“粘贴”“翻转”等命令创作了许多作品。
如:国旗是一个国家的象征,许多国家的国旗都具有对称美。
以下是部分国家的国旗,请欣赏:(1) (2) (3)(4) (5)在这些图形中,学生还配上了各种各样的颜色,真是五彩缤纷,漂亮极了!设计图(1)的学生说:“我设计的这个轴对称图形。
”设计图(3)的学生说:“我给图形填充颜红,它就变成了几条美丽的彩带。
”设计图(5)的学生说:“我给两边填充不同颜色,中间填充白色,既可以把它看成美术体,又可以看成数字。
”学生作品的精彩纷呈,充分展示了学生的数学才能。
学生对作品的理解,更衬托了对称美的文化内涵。
2、探索美的秘密,创编美的等式。
教学时用多媒体展示美丽的对称等式,创设一个问题情境,把问题陷藏在情境之中,激发学生的探究欲望,引导学生进行美的创造。
初探多媒体出示请仔细观察这此致美丽的算式,你发现了它美的秘密吗?33×22=22×33 13×62=26×31 14×82=28×4125×52=25×52 34×86=68×43 46×96=69×64学生激烈的讨论交流后,发现了算式的秘密:数学的位置是关于等量对称的,把每个数的十位数字和个位数字调换位置,所得的两位数与原来的两位数乘积相等。
再探多媒体出示:根据对称等式的特征,你能不能创造一些类似的对称等式?在学生的积极探索下,发现对称算式成立与不成立的规律,同时创造了许多美丽的对称等式。
如:35×53=35×53 55×77=77×55 123×642=246×32112×84=48×21 13×93=39×31 112×422=224×211学生在探索过程中,不仅揭开了对称美的秘密,还受到了对称美的启示,创造了美的对称等式,这不就是美的魅力吗?3、从回文数中得到启发,巧解等差数列回文数有许多如:2002年就是一个回文数,下一个回文数就要等到2112年,整数乘法中最有趣的一个回文数就是:1×1=1,11×11=121,111×111=12321②。
根据这一规律可以巧算出:111111111×111111111=12345678987654321,学生对于回文数这一特殊结果,大都觉得非常惊讶,对此产生浓厚的兴趣,感叹数的对称美。
对称作为一种美,在宇宙万物中成为一个永恒的定理,就象有阴就有阳,有黑就有白一样,说的更玄乎一些,像现代物理学理论中所推论的那样有正物质就有反物质,如,我们生活中所看到感受到的一切客观事物都是正物质,同样宇宙中也存在我们看不见的能量和正物质一样相等的反物质,这样宇宙才均衡,就像宇宙中有你,同样也存在着“反你”,如果有一天“你们”一握手,那么你和“反你”就顿时消失,就像5+(-5)=0一样,说来有些荒唐,可是这种设想在解答一些难题时,却显得巧妙、易懂。
如在学习中对程度比较好的学生上等差数列求和时,大都用公式:(首项+末项)×项数÷2来教学,可对于成绩较差学生要掌握和理解有一定困难。
如一道“有女不善织”的古代算术题:有位妇女不善织布,她每天织的布都比上一天要减少一些,减少的数量是相等的,她第一天织了五尺,最后一天织了一尺,一共织了三十天,她一共织了多少尺布?这题的难点在于除了第一天和最后一天,中间每天织的布不是整数,而且每天比上一天少织多少布也不易求。
可运用对称的思想是这样解答的:假设还有另一位姑娘也和这位妇女一样织布,只不过她与这位妇女织布的情况刚好相反:姑娘每天织的布都比上一天要增加一些,增加的数量是相等的,她第一天织一尺,最后一天织五尺,也织了三十天,由此可知,姑娘和妇女所织布的总长度是相等的,妇女所织的布每天减少的数量与姑娘织布每天增加的布的数量是相等的,因此每天两人共织的布为六尺,三十天共织6×30=180尺,每人织90尺。
这题的巧妙之处在于将抽象的一组等差数列求和转化为形象生动的形似回文数一般的对称求和方法,也和物理学中所说的正物质和反物质有异曲同工之妙。
其实做为等差数列求和都可以用这种思路解答,运用对称的思维来理解等差数列比单纯讲求和公式要形象、生动的多。
二、从轴对称图形中发现对称原理的运用根据轴对称图形的一半和对称轴可以精确的画出轴对称图形的另一半图形,这是在教学了轴对称图形后常见的习题。
在数学中,轴对称图形同时也为人们研究数学提供了某些启示,例如它在博弈问题中也常运用这一原理。
如:桌面上有21个棋子,排成一排,你一次可以拿一粒也可以拿两粒棋子,甚至可以拿三个棋子。
想拿哪里的棋子都行,不必按顺序拿,但拿两粒或三粒棋子时必须是相邻的即中间没有空隔或其他棋子,问:“两人轮流拿谁拿到最后一粒谁赢,你如果先拿能保证赢吗?”这题看上去挺复杂,按排列组合众多拿法要想一一分析清楚太费力,其实运用对称原理就非常简单,先拿的人只要先拿走中间一粒,即第十一粒棋,这样左、右两边各剩十粒,这样对方拿左边的棋子,你就拿右边的棋子,并且个数和位置和他对称,如果对方拿右边的棋子,你就按照他拿左边的棋子,总之只要保持左、右两边的棋子剩下的个数和位置一样,只要他有的拿,你也有的拿,因此最后一粒必然落入你手中,因此先拿必胜,如果棋子是20粒(偶数个),你就先拿中间的两粒,让左右两边各剩9粒棋子,这样你就必胜。
类似的题目还有如:用若干一元的硬币两人轮流将它摆在一个大圆盘上,要求硬币之间不能重叠,谁摆不下谁算输,是先摆赢还是后摆赢?显然根据对称原理,先摆的人只要先占住圆心,以后对方摆哪你就照他在对面对称着摆出,只要他有空间摆,那么在相对称的地方也必定有空间摆,直至对方摆不下为止,对方先输。
其实这两题的思维方法都来自轴对称图形的基本特征,教师在教学完轴对称图形的内容后可以适当的渗透这方面的知识,学生即乐于学习,又加深对轴对称图形知识的运用和深层理解,发现对称的美,感受到数学的魅力。
三、在方程解题中渗透对称思想,帮助学生从算术思维到代数思维的转变。
大家都知道算术思维是逆向思维,而方程思维是顺向思维。
用方程的思维可以解答一些算术方法较难解决的问题。
可小学生对算术的解法根深蒂固,可对方程的解法却始终有排斥的心理。
如六年级下册的正反比例应用题,许多学生用算术解都做的出来,可是用比例解却总是搞不清正反比例,原因在于他们受算术解法知识的负迁移影响,努力去找问题的答案而不是去找不变的量,对方程缺乏深层的理解,没有认识到方程本身就是运用对称的原理,不论正反比例关键是要找到不变的量,方程的左边和右边就像轴对称图形的左右两边虽然不完全一样但是大小一样。
左边和右边找到了不变的量也就找到了方程。
同样的在解方程中也可运用对称的原理使得问题简单的多,如:解方程:5x+6=3x+11这题方程的左右两边都有x时如果用初中的知识移项很好解答,可在小学用方程对称的原理也很容易解答:如果方程的左右两边同时拿走3x,方程左右两边还成立吗?显然依然相等,因此这题就简化为:2 x+6=11,这样的思维方法每个学生都明白,同时也加深了对方程的理解。
“对称”在数学上的表现是普遍的:轴对称、中心对称、对称多项式等,从奇偶性上也可以视为对称,从运算关系角度看互逆运算也可看为对称关系,还有许许多多的地方都体现出它的魅力,就像亚里士多德所说的那样:虽然数学没有明显地提到善和美,但善和美也不能和数学完全分离①。
因为美的主要形式就是秩序、匀称和确定性,这些正是数学所研究的原则。
我们做为新课程理念指导下的教师不仅要传授学生知识,更重要的是要培养学生发现美、创造美的能力,让学生在学数学的过程中发现数学的美,深深的被数学的魅力感动,进一步提高了数学素养,努力去探索世界的真、善、美,就像一位物理学家所说的那样:如果一个理论它是美的,那它一定是个真理。