1单纯形法
单纯形法求解过程
单纯形法求解过程单纯形法是一种经典的线性规划求解方法,它是由乔治·达竞士等人在1947年提出的。
该方法的基本思想是,通过在单纯形空间内不断移动顶点的位置来寻找最优解。
单纯形法是目前广泛应用的线性规划求解方法之一,它求解线性规划问题可大大地简化计算过程。
单纯形法的求解过程包括以下几个步骤:1. 将线性规划问题转化为标准形式线性规划问题的标准形式为:$ \max_{x} \ \ c^T x $$s.t. \ Ax=b$$x\geq 0$其中,$x$是要求解的向量;$b$是一个常数向量;$A$是一个$m\times n$的矩阵;$c$是一个常数向量。
2. 初始化单纯形表因为单纯形法是通过移动顶点来寻找最优解的方法,因此需要初始化单纯形表。
单纯形表是将原始的约束条件表示为不等式形式时形成的。
例如,对于一个带有3个变量的线性规划问题,其单纯形表的形式如下:CB | X1 | X2 | X3 | X4 | RHS----|-----|-----|-----|-----|----0 | a11| a12| a13| 0 | b10 | a21| a22| a23| 0 | b20 | a31| a32| a33| 0 | b31 | z1 | z2 | z3 | 0 | 0其中,CB代表成本系数,X1、X2、X3、X4分别代表变量。
a11、a12、a13等代表矩阵A中的元素,b1、b2、b3代表矩阵b中的元素。
3. 选择进入变量和离开变量在单纯形表中,规定最后一列为等式右边的常数(RHS),即b。
在单纯形法的求解过程中,首先需要选择一个“进入变量”,即在单纯形表的第一行中,寻找一个系数为正的变量,使得将其加入目标函数后,目标函数值可以上升。
这里以X1为例,X1为进入变量。
接着,需要选择一个“离开变量”,即在单纯形表中,寻找一个使得添加X1变量后,约束条件不改变且取得约束条件中系数最小的一个变量离开。
运筹学第5章 单纯形法
0 0 1
在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的 各列向量所组成,称之为初始可行基,其相应的基本可行解叫初始基 本可行解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作 为初始可行基,我们将构造初始可行基,具体做法在以后详细讲述。
8Leabharlann §1 单纯形法的基本思路和原理
二、 最优性检验 所谓最优性检验就是判断已求得的基本可行解是否是最优解。
5
§1 单纯形法的基本思路和原理
线性规划解之间的关系:
1.可行解与最优解: 最优解一定是可行解,但可行解不一定是最优解。
2. 可行解与基本解: 基本解不一定是可行解,可行解也不一定是基本解。
3. 可行解与基本可行解: 基本可行解一定是可行解,但可行解不一定是基本可行解。
4. 基本解与基本可行解: 基本可行解一定是基本解, 但基本解不一定是基本可行解。
9
§1 单纯形法的基本思路和原理
2.最优解判别定理
对于求最大目标函数的问题中,对于某个基本可行解,如
果所有检验数 j≤0,则这个基本可行解是最优解。 下面我
们用通俗的说法来解释最优解判别定理。设用非基变量表示
的目标函数为: z z0 j xj jJ 由于所有的xj的取值范围为大于等于零,当所有的 j都小
由线性代数的知识知道,如果我们在约束方程组系数矩阵中找
到一个基,令这个基的非基变量为零,再求解这个m元线性方程组就
可得到唯一的解了,这个解我们称之为线性规划的基本解。
在此例中我们不妨找到
1 1 0 B3 1 0 0
为A的一个基,令这个基的非
1 0 1
基变量x1,s2为零。这时约束方程就变为基变量的约束方程:
第五章 单 纯 形 法
单纯形法原理 单纯形表
单纯形法原理单纯形表单纯形法原理与单纯形表的详实解析在数学领域中,特别是在线性规划问题的研究中,单纯形法是一种十分重要的求解方法。
它是由美国数学家乔治·丹齐格在1947年提出的一种迭代算法,用于解决具有多个变量和约束条件的优化问题。
本文将围绕单纯形法的原理和单纯形表这两个核心概念进行详细的解析。
一、单纯形法原理单纯形法的基本思想是通过一系列可行解逐步逼近目标函数的最大值或最小值。
这些可行解形成一个点集,称为单纯形。
每次迭代过程中,算法都会选择一个新的顶点作为下一个单纯形的顶点,这个新的顶点应该使目标函数有所改进。
重复这一过程,直到达到最优解或者满足停止准则为止。
单纯形法的步骤如下:1. 构造初始单纯形:首先,需要找到一个包含至少两个可行解的多边形,这就是初始单纯形。
2. 判断是否达到最优解:如果当前顶点的目标函数值已经是全局最优解,那么算法结束。
3. 选择换入变量:如果当前顶点不是最优解,那么需要选择一个非基变量来替换基变量。
这个被选中的非基变量应该是能够使目标函数最大化的变量。
4. 计算换出变量:确定了换入变量后,需要计算相应的换出变量。
这可以通过解一个线性方程组来实现。
5. 更新单纯形:用新选出的变量替换旧的变量,得到新的单纯形。
6. 回到第二步,继续判断是否达到最优解。
二、单纯形表单纯形表是单纯形法的重要工具,它记录了单纯形法每一步的详细信息。
每个列代表一个基变量,而每个行则代表一个约束条件。
表中还包括目标函数的系数、常数项以及松弛变量和剩余变量的系数。
在单纯形表中,每一行代表一个约束条件,包括它的系数、常数项以及松弛变量和剩余变量的系数。
每一列则代表一个基变量,包括它的系数和该变量对应的值。
在每一步迭代过程中,单纯形表都会被更新以反映当前的解状态。
通过观察单纯形表的变化,我们可以清楚地看到迭代过程是如何进行的,以及如何通过调整基变量来改进目标函数的值。
总结来说,单纯形法是一种有效的解决线性规划问题的方法,其核心在于构造并不断更新单纯形表,通过迭代寻找最优解。
运筹学单纯形法
16
三、其他解旳情况 1、无穷多种解 例2 解LP问题:
min Z x1 2 x2 x3 0 x4 0 x5
xx51
1 2c 5 3c
其中c是满足非负性旳任意常数。
21
再由
x1,
x5
旳非负性,知:
x1 x2
1 2c c
0 0
x5 5 3c 0
解出 0 c 5 3
最优解为:
(2c 1, c,0,0,5 3c)T (其中0 c 5 )
3
最优值为:max S 1.
22
2、无最优解旳两种情况:
相应地,将 X 0代入目的函数得 Z ( X 0 ) 0
从数学角度看,若让非基变量 x1, x2 取值从零增长,
6
min Z 2x1 x2 0x3 0x4 0x5
相应旳目旳函数值Z也将随之降低。所以有可能找到一种 新旳基本可行解,使其目旳函数值有所改善。即进行基变
换,换一种与它相邻旳基。再注意到 x1 前旳系数-2比 x2
x3
6 x1 x1
2x2 x2
x4 x5
xi 0
i 1,,5
15 24 5
目前可行基{ x3, x4 , x5 }所相应旳基本可行解
X 0 (0,0,15,24,5)T
(相应可行域旳 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
意味着该厂不安排生产,所以没有利润。
2
单纯形法计算步骤
单纯形法计算步骤引言单纯形法是一种常用的数学优化方法,主要用于求解线性规划问题。
它的基本思想是通过不断地在可行解集合内移动,逐步靠近最优解,直到找到最优解。
本文将介绍单纯形法的基本步骤,以帮助读者了解如何使用该方法解决线性规划问题。
步骤一:建立线性规划模型在使用单纯形法之前,首先需要建立线性规划模型。
线性规划模型由决策变量、目标函数和约束条件组成。
决策变量是需要在问题中决策的变量,目标函数是需要最大化或最小化的目标,约束条件是限制决策变量取值范围的条件。
步骤二:将线性规划模型转化为标准形式单纯形法只适用于标准形式的线性规划模型。
标准形式要求目标函数为最大化,并且所有的约束条件都是等式形式。
如果初始线性规划模型不符合标准形式,我们可以通过适当的代数操作将其转化为标准形式。
步骤三:构造初始单纯形表初始单纯形表是单纯形法求解线性规划问题的起点。
它由决策变量、松弛变量、人工变量、目标函数系数和约束条件组成。
初始单纯形表的构造方法如下: 1. 将决策变量的系数及其对应的松弛变量、人工变量放在单纯形表的第一行。
2. 将目标函数的系数放在单纯形表的第一列。
3. 将约束条件的系数及其对应的松弛变量、人工变量放在单纯形表的其他行。
步骤四:确定基变量和非基变量基变量是单纯形表中拥有非零系数的变量,非基变量是单纯形表中拥有零系数的变量。
基变量和非基变量的确定方法如下: 1. 将目标函数的系数列中不为零的变量作为基变量。
2. 将约束条件中非零系数列中对应的变量作为基变量。
3. 剩余的变量作为非基变量。
步骤五:计算单纯形表中的系数根据基变量和非基变量的定义,我们可以计算单纯形表中的系数。
计算方法如下: 1. 将基变量的系数列除以对应的基变量系数。
2. 将非基变量的系数列减去对应的基变量系数列乘以非基变量所在行和基变量所在行之间的系数。
步骤六:检查是否达到最优解在每次迭代过程中,都需要检查是否达到最优解。
如果单纯形表中目标函数系数列的所有值都是非负的,表示已经达到最优解;否则,需要进行下一次迭代。
最优化方法Lecture3_单纯形法1
cB 0 0 4
xB x3 x4 x1 T B1b 7 6 3T , xN x2 x5 T 0
f1 cB B1b 12, w cB B1 0 0 4
z2 c2 wP2 c2 4 z5 c5 wP5 c5 4 最大判别数是z2 c2, x2是进基变量。计算
xk
min
bi yik
|
yik
0
br yrk
0
则得新解 x x1, , xr1, 0, xr1, , xm , 0, , xk , 0, , 0T
且
f x f
x0
zk
ck
br yrk
f
x0
.
旧基为 P1, , Pr , , Pm 新基为 P1, , Pk , , Pm
xr 为离基变量 xk 为进基变量。
2 s.t.
BxB NxN b
xB B1b B1NxN
xB , xN 0
min
3 s.t.
f x cB B1b B1NxN cN xN
xB B1NxN B1b
1 等价于
xB , xN 0
min f x
4
s.t.
0 f x Im xB
B1NxN B1b
f x 0xB cB B1N cN xN cB B1b
y2 B1P2 1 5 1T , 而b B1b 7 6 3T
br yr1
min
b1 y12
,
b2 y22
min
7
1
,
6 5
6 5
b2 y22
x4为离基变量,用P2代替P4得到新基。
1 2 1 0 0
A P1
P2
P3
P4
单纯形法
四、单纯形法的实现——单纯形表
例1:煤电油例 Max Z=7 x1 +12x2 9 x1 +4x2≤360 化为标准型 s.t. 4x1 +5x2 ≤200 3 x1 +10x2 ≤300 x1 , x2≥0 s.t. Max Z=7 x1 +12x2 9 x1 +4x2 +x3 4x1 +5x2 3 x1 +10x2 x1 ,…,x5≥0 +x4 =360 = 200
•
“≥”型约束,减松弛变量;
练习1.3 请将例1.1的约束化为标准型
Maxz = 7 x1 + 12 x 2 ⎧9 x1 + 4 x 2 ≤ 360 ⎪4 x1 + 5 x 2 ≤ 200 s.t.⎨ 3x1 + 10 x 2 ≤ 300 ⎪x , x ≥ 0 ⎩ 1 2
则约束化为
= 360 ⎧9 x1 + 4 x 2 + x3 ⎪4 x + 5 x 2 + x4 = 200 s.t.⎨ 1 3 x1 + 10 x 2 + x5 = 300 ⎪x , x , x , x , x ≥ 0 ⎩ 1 2 3 4 5
例4 下面为某线性规划的约束
=1 ⎧ x1 + 2 x2 + x3 ⎪ + x4 = 3 ⎨2 x1 − x2 ⎪ x1 , , x4 ≥ 0 ⎩ 请例举出其基矩阵和相应的基向量、基变量。
解:
本例中, A = ⎡1 2 1 0⎤,A中的2阶可逆子阵有 ⎢ 2 − 1 0 1⎥ ⎦ ⎣
问题:本例的A中一共有几个基?—— 6个。
易见,增加的松弛变量的系数恰构成一个单位阵I。
一般地,记松弛变量的向量为 X s,则
运筹学02-单纯形法
反之,若经过迭代,不能把人工变量都变
为非基变量,则表明原LP问题无可行解。
19
第2章
单纯形法
2.3 人工变量法
2.3.1 大M法
在原问题的目标函数中添上全部人工变量,并令其系数 都为-M,
而M是一个充分大的正数。即
max z = c1x1 + c2x2 + c3x3 + … + cnxn – M( xn+1 + xn+2 +…+ xn+m )
思路:由一个基本可行解转化为另一个基本可行解。 等价改写为 目标方程 max z max z = 3x1+5x2 z -3x1 -5x2 = 0 z -3x1 -5x2 x1 +x3 x1 +x3 = 8 2x2 +x4 2x2 +x4 = 12 s.t. s.t. 3x1+4x2 +x5 3x1 + 4x2 +x5 = 36 x1 , x2 ,x3,x4,x5 x1 , x2 ,x3,x4,x5 ≥ 0
以主列中正值元素为分母,同行右端常数为分子,求比值;
6
第2章
单纯形法
2.1 单纯形法的基本思想
(Ⅰ)
用换基运算 将X0 转化为 另一个基本 可行解 X1。
z- 3x1 -5x2 = 0 0 换基运算—— x1 +x3 = 8 ① 方程组的初等变换 目的是把主列变为 22x2 +x4 = 12 ② 单位向量:主元变 3x1 + 4x2 +x5 = 36 ③ 为1,其余变为0。 X0 = ( 0, 0, 8, 12, 36 )T z0 = 0
⑴ 当前基:m阶排列阵
第二章 单纯形法
15
华东交通大学工业工程与物流管理系
单纯形法的求解步骤
重复步骤2~5,直到终止。
判优换基迭代
判优换基迭代 判优换基迭代 判优 最优解
运筹学Leabharlann 16华东交通大学工业工程与物流管理系
基本可行解的改进
• 换入变量的确定——最大增加原则
假设检验向量σN=(CN- CB B-1N )=(σm+1, σm+2, …,σn), 若其中有两个以上的检验数为正,选取最大正检验数所对应的 非基变量为换入变量。 若:max{σj| σj>0,m+1≤j≤n}= σm+K 则选取对应的xm+k为换入变量。
1 0 B 0 1
2 / 5 3 / 5 1 / 5 N 6 / 5 1 / 5 2 / 5
17 / 5 b 6/5
CB (3,5), CN (2,1,1)
再转向步骤(2) 运筹学
25
华东交通大学工业工程与物流管理系
(2)检验X’=(0,0,4,0,3)T是否最优:
检验向量 N CN CB B N
1
1 / 2 1 1 / 2 N (5,2,1) (3,1) (1,4,2) 5 / 2 3 1 / 2
华东交通大学工业工程与物流管理系
单纯形法
线性规划问题的几何意义: • 凸集:没有凹入部分,内部没有空洞。实习圆、实 心球体、实心立方体都是凸集;两个凸集的交集是 凸集。 • 若线性规划问题存在可行域,则可行域是凸集。 • 线性规划问题的基可行解对应可行域的顶点。 • 若可行域有界,线性规划问题的目标函数一定可以 在其可行域的顶点上达到最优。
由最优解判别定理,非基变量检验数σ1=1>0, 所 以X‘=(0,0,4,0,3)T不是最优解
单纯形法求解过程
单纯形法求解过程单纯形法是一种用于求解线性规划问题的迭代算法。
它是由美国数学家George Dantzig在1947年提出的。
单纯形法的目标是通过不断地沿着一些方向逼近最优解,最终找到使目标函数取得最大(或最小)值的最优解。
单纯形法的求解过程可以分为以下几个步骤:1.标准化问题:将线性规划问题转化为标准化形式。
标准化的目的是将原问题转化为一个等价问题,使得约束条件全部为等式,且目标函数的系数都为非负数。
2.设置初始解:选择一个初始可行解作为起始点。
起始点可以通过代入法求解出来,或者通过其他启发式算法得到。
初始可行解需要满足所有约束条件,即满足等式以及非负性约束。
3.检验最优性:计算当前解的目标函数值,并检验这个值是否是最优解。
如果当前解是最优解,算法终止;否则,进入下一步。
4.选择进入变量:从目标函数的系数中选择一个可以增大(最大化问题)或减小(最小化问题)目标函数值的变量作为进入变量。
选择进入变量的策略可以有多种,例如最大增益法或者随机选择法。
5.计算离基变量:选择一个出基变量并将其移出基变量集合。
离基变量的选择通常采用最小比率法,即选择使得约束条件最紧张的变量。
6.更新解:通过求解一个新的线性方程组来计算新的解,更新基变量集合和非基变量集合。
由于每次只有一个变量进基,一个变量出基,将保持可行解的性质。
7.转到步骤3:重复步骤3-6,直到找到最优解。
单纯形法的关键在于选择进入变量和离基变量,以及求解线性方程组。
进入变量的选择决定了算法在解空间中的方向,而离基变量的选择决定了算法沿着哪个方向逼近最优解。
在实际应用中,单纯形法往往需要进行大量的迭代计算,因此效率可能不是很高。
为了提高效率,可以采用一些改进的单纯形法,例如双线性法、内点法等。
总结起来,单纯形法是一种基于迭代的算法,通过每次选择一个进入变量和一个离基变量来逐步逼近最优解。
虽然它的计算复杂度较高,但是在实践中仍然是一种很受欢迎的求解线性规划问题的方法。
单纯形法原理
单纯形法原理
单纯形法是线性规划中常用的一种方法,用于求解极值问题。
它的基本思想是通过不断迭代的方式,逐渐接近最优解。
单纯形法的基本步骤如下:
1. 将线性规划问题转化为标准型。
标准型的约束条件为≤,目标函数为最大化,且所有变量的取值范围为非负数。
2. 利用人为变量引入的方法,将标准型问题转化为初始单纯形表。
3. 选择合适的初始基变量,并计算出对应的基变量解。
4. 计算单纯形表中的评价函数。
如果所有评价函数中的系数都为非负数,则当前基变量解为最优解,过程结束。
否则,继续进行下一步。
5. 选择进入变量和离开变量。
进入变量是指取值为负的评价函数系数对应的变量,离开变量是指进入变量在当前基变量解中最先达到0的变量。
6. 迭代计算,通过变换基变量,逐渐接近最优解。
具体的计算方式为将进入变量对应列调整为单位向量,同时更新初始单纯形表中其它列的数值。
7. 重复步骤4至步骤6,直至得到最优解为止。
值得注意的是,单纯形法的执行依赖于初始基变量的选择,不同的初始基变量可能会得到不同的最优解。
因此,在实际应用中,需要通过灵活选择初始基变量来提高求解效果。
第三章2 单纯形法1
,可以构成基本矩
阵 (单位矩阵) 因而不需要加任何变量直接就能求出基本可行解。 ,
第二节 单纯形法
再看课本 20 页的例题 1,当化为标准型后,变量 x3 的系数列
0 向量为 1 1 , 所以只需要再构造出一个变量的系数列向量为 0
第二节 单纯形法
本节主要介绍单纯形法的计算步骤及线性 规划解的讨论方面的内容
一.单纯形法的基本思路 求出线性规划问题的初始基本可行解X(0),并充分 运用它提供的信息,编制初始单纯形表。 (0)是否最优?为此,需要建立一个判别标准。 判别X 如X(0)不是最优,就将一个基变量换出,将一个非 基变量换入,组成另一组基本可行解,迭代为另一张 单纯形表,使新的目标函数值较原有的为优。如此逐 步迭代,若问题有最优解,那么经有限次迭代就可求 出最优解。
只要有一个人工变量不 为零,目标函数将永远 不能求得最大值
xj ≥ 0 j=1,2,3,4,5,6
由人工变量 x5,x6 系数列向量构成的矩阵(单位矩阵)就是一个 满秩矩阵,以它为基本矩阵,x5,x6 为基变量求得的基本解为: (x1,x2, x3,x4, x5,x6)=(0, 0,0,0,2,5)
第二节 单纯形法
大家前面已经学过,化一般线性规划模型为标准型时,对“≤”约束 引入了松弛变量,松弛变量对应的系数列向量是非常特殊的。在课本例题2 中(16 页) 4,x5 是松弛变量,对应的系数列向量组成的矩阵为 0 1 ,由 ,x 文献(3)中的知识可知该矩阵是形式最简单的满秩矩阵(单位矩阵) ,因而 可以作为基本矩阵。 2.求基本解的方法: 令所有的非基变量全为零,就可以解出基变量的值。例 2 中由单位矩 阵解出的基本解为 x4= 100,x5 =120。此时,线性规划问题的基本解为: (x1,x2,x3,x4,x5)=(0,0,0,100,120) 非基变量 基变量
运筹学-单纯形法1课件
例2:
cj CB XB 0 x3 0 x4
σj 0 X3 1 x1
σj
maxZ x 1 x 2
s.t.
2x 1 x1
x2 x2
100 50
x1,x2 0
1
1
00
bi x1 x2 x3 x4
100 -2 1
1
0
50 [ 1 ] -1 0 1
11
0
0
200 0 -1 1 2
50 1 -1 0 1
唯一最优解;
• a4<0,a5<0, a6≥0
无穷多最优解;
• a6≥0,a4≤0, a5≤0, a4=0或a5=0
无界;
• a6≥0,a5>0,a2≤0, a3≤0
无可行解;
• a4≤0,a5≤0, x4或x2为人工变量, a6≥0 ;
非最优,继续换基: X3换入,x2换出
• x1为人工变量, a6>0 • a4>0,a4>a5;a6/a1>2→a1>0
0 -M -M
x5 x6 x7 θ
0 0 04 -1 1 0 1
0 0 13
-M 0 0 x2入, x6出
1 -1 0 1 -1 1 0 -
3 -3 1 1
3M -1/2
0 1/2
-4M 0 1/2 -1/2 0 1/3 -1/2 1/6
x1入, x7出 9 3/2
3/2 -M-3/2 -M+1/2 x3入, x1出
28.09.2024
11
练习: 列出初始单纯形表,并求解第2小题 的最优解
P55,2.2(1) 2.
28.09.2024
12
单纯形表
单纯形法
单纯形法一、单纯形法的原理线性方程组的解:⎩⎨⎧=----=+-+-4322425432154321x x x x x x x x x x (1) 5个未知数,两个方程组。
方程的解多于1个。
两种初等变换:51)方程组的任一方程乘上一个不为零的数。
2)方程组的任一方程两边同乘上一个常数,分别加到另一个方程的两边。
式(1)做变换得到:(①×-1)⎩⎨⎧=-+-=+-+-2322242543254321x x x x x x x x x (2) 式(2)做变换得到:(②×2)⎩⎨⎧=-+-=---232642354325431x x x x x x x x (3)方程组(1)、(2)、(3)同解,可令0543===x x x 。
得到:61=x ,22=x 。
选择3x ,4x ,5x 不同的值,相应地有不同的1x 和2x 的值,因此方程组有多组解。
基本变量:如果变量i x 的系数在某一个方程为1,而在其它所有方程为0,则称i x 为该方程组中的基本变量。
非基本变量:凡不是基本变量的变量都叫做非基本变量。
1x ,2x 为基本变量;3x ,4x ,5x 为非基本变量。
旋转运算:运用初等变换,可使一给定变量化为基本变量,这一运算,成为旋转运算。
基本变量的个数,与方程的个数相同。
基本解:设非基本变量为0,求得相应的基本变量的值,得到一组解,这组解称为基本解。
基本可行解:基变量的值为非负时的基本解称为基本可行解。
单纯形法的思路;1)先不考虑目标函数,从满足约束条件开始,寻求一个初始基本可行解; 2)求具有较佳目标函数值的另一个基本可行解,以改进初始解;3)对目标函数做有限次的改善。
当某一个基本可行解不能再得到改善时,即求得最优解,单纯形法结束。
二、单纯形算法例:54321325max x x x x x Z +-++= 约束条件为:⎪⎩⎪⎨⎧≥≥≥≥≥=+++=+++0,0,0,0,0743********53214321x x x x x x x x x x x x x (5) 以上线性规划问题中,具有: 1)全部变量非负;2)全部约束条件都是等式;5 3)右端常数都是正的。
单纯形法
目录第一章单纯形法的提出……………………………………………………………1.1 单纯形法提出背景……………………………………………………………第二章单纯形法的一般原理………………………………………………………2.1 单纯形法的基本思路…………………………………………………………2.2 确定初始基本可行解…………………………………………………………2.3 最优性检验……………………………………………………………………2.4 基变换…………………………………………………………………………2.5 解的判别定理…………………………………………………………………2.6 单纯形法求解线性规划问题的程序框图……………………………………第三章表格单纯形法………………………………………………………………3.1单纯型表求解…………………………………………………………………3.2 用单纯形法求解线性规划问题的举例………………………………………第四章人工变量及其处理方法……………………………………………………4.1大M法…………………………………………………………………………4.2两阶段法………………………………………………………………………4.3无最优解和无穷多最优解……………………………………………………4.4退化与循环……………………………………………………………………第五章单纯形法的矩阵表示………………………………………………………总结……………………………………………………………………………………参考文献………………………………………………………………………………第一章 单纯形法的提出1.1 单纯形法的提出背景单纯形法是1947年由George Bernard Dantzing(1914-2005)创建的,单纯形法的创建标志着线性规划问题的诞生。
线性规划问题是研究在线性约束条件下,求线性函数的极值问题。
然而,对这类极值问题,经典的极值理论是无能为力的,只有单纯形法才能有效解决这类极值问题的求解。
单纯形法的原理
单纯形法是一种线性规划的求解方法,其基本思想是在线性规划问题的可行域内,通过不断迭代,逐步找到最优解。
单纯形法的原理可以概括为以下几个步骤:1. 确定线性规划问题的可行域:对于一个线性规划问题,首先需要确定其可行域,即所有满足约束条件的解的集合。
可行域通常是一个凸多边形,也可以表示为一个凸锥。
2. 确定初始基:在单纯形法中,我们需要选取一个初始基,即一个初始的可行解,来开始迭代过程。
初始基可以是一个非基变量为零的点,也可以是通过某种启发式算法得到的一个初始可行解。
3. 判断最优解:在得到初始基之后,我们需要判断该基是否是最优解。
如果该基对应的目标函数值已经满足要求,则该基是最优解。
否则,我们需要找到一个非基变量,其对应的系数在约束条件下最小,来继续迭代。
4. 确定换入变量:在找到一个非基变量后,我们需要确定一个换入变量,即需要被替换掉的那个基变量。
通常情况下,我们选择当前基中对应的系数最小的非基变量作为换入变量。
5. 进行迭代:在确定了换入变量之后,我们需要进行迭代,将当前基中的某个基变量替换为非基变量,得到一个新的基。
具体来说,我们可以使用高斯消元法来计算新的基变量的系数,并更新当前基的矩阵表示。
6. 判断收敛:在完成一次迭代后,我们需要判断当前基是否已经收敛到最优解。
如果当前基已经满足精度要求,或者达到了一定的迭代次数上限,我们可以认为已经找到了最优解,停止迭代。
否则,我们需要回到步骤3,继续迭代过程。
单纯形法的原理比较简单,其核心思想是通过不断迭代,逐步逼近最优解。
该方法具有良好的数值稳定性和广泛的应用范围,是求解线性规划问题的一种常用方法之一。
需要注意的是,在实际应用中,单纯形法可能会面临一些问题,例如初始基的选择、系数矩阵的奇异性等问题,需要进行一定的处理和优化。
除了单纯形法外,还有许多其他的线性规划求解方法,例如内点法、外点法、椭球算法等。
这些方法各有优缺点和适用范围,可以根据具体问题的特点进行选择和组合使用。
单纯形法
z z0 j x j
j m 1
n(1.2.21)称 j ( j m 1 ,, n ) 为检验数。
定理1.2.1 设(1.2.17)和(1.2.21)是最大
化线性规划问题关于当前基本可行解x*的两个典式。
若关于非基变量的所有检验数σ j≤0成立,则当前
基本可行解x*就是最优解。 将σ j≤0称为最大化问题的最优性准则。显然, 对于最小化问题最优性准则应是σ j≥0。
30x1 + x3 = 160 - 20x2 5x1 = 15 - x2 - x4 (1.2.6) x1 + x5 = 4 进一步分析,用消元法将(1.2.6)中x1的系数列向量 (30,5,1)T 化成(1.2.3)中x4的系数矩阵(0,1,0)T
的形式。得到:
x3 = 70 - 14x2 + 6x4 x1 = 3 - 1/5x2 - 1/5x4
(b'1, b'2, … , b'm ,0 , …, 0)T是当前基本可行解。若有一个非
基变量xm+t的检验数σ
m+t>0,且xm+t对应的系数列向量
P'm+t=(a'1,m+t,a'2,m+t,„,a'm,m+t)中,所有分量a'i,m+t≤0,则该 线性规划问题具有无界解(或称无最优解)。
1.2.2 单纯形表
x2= 5 - 1/14x3 + 3/7x4
x1 = 2 + 1/70x3 - 2/7x4
(1.2.11)
x5 = 2 - 1/70x3+ 2/7x4
将(1.2.11)代入目标函数式,得到用非基变 量x 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x6 M bi/aij* 1 (3) 0 4
M 0
-2M7 M7 2 M 3 M 1
1 0
10 0
1/2 (1/2)
17/2 1/2
0 1
7 0
1/2 1/2
3/2 3/2
0 1
7 7
1/2 1/2
3ห้องสมุดไป่ตู้2
M+3/2
6 (2)
III 10 x1 2 2 最 8 x2 36 优 c j zj 解
6
关于标准型解的若干基本概念:
• 标准型有 n+m 个变量, m 个约束行 • “基”的概念 – 在标准型中,技术系数矩阵有 n+m 列,即 A = ( P1, P2 , … , Pn+m ) – A中线性独立的 m 列,构成该标准型的一个基,即 B = ( P1, P2 , … , Pm ), | B | 0 – P1 , P2 , … , Pm 称为基向量 – 与基向量对应的变量称为基变量,记为 XB = ( x1 , x2 , … , xm )T,其余的变量称为非基变量, 记为 XN = ( xm+1 , xm+2 , … , xm+n ) T ,有 X = XB + XN – 最多有 个基
bi min aij* 0 i aij* (1.2.4)
13
4 确定入变量的最大值和出变量 – 设第 i* 行使 最小,则第 i* 行对应的基 变量称为出变量,第 i* 行称为主行 5 迭代过程 – 主行 i* 行与主列 j* 相交的元素ai*j* 称为 主元,迭代以主元为中心进行 – 迭代的实质是线性变换,即要将主元 ai*j* 变为1,主列上其它元素变为0,变换步 骤如下: (1)变换主行
– 任何时候,基变量对应的列都构成一个单位矩阵 – 当前表中的 b 列表示当前基变量的解值,通过变换 B 1 b 得到 (资源已变成产品) – 当前非基变量对应的向量可通过变换 B 1 AN 得到, 表示第 j 个变量对第 i 行对应的基变量的消耗率 aij – 非基变量的机会成本由 给出 m – 注意基变量所对应的行 z j i 1 ci ' aij
4
• 目标函数为min型,价值系数一律反号。令 f(x) = f(x) = -CX, 有 min f(x) = - max [- f(x)] = - max f (x) • 第i 个约束的bi 为负值,则该行左右两端系数同时 反号,同时不等号也要反向 • 第i 个约束为 型,在不等式左边增加一个非负的 变量xn+i ,称为松弛变量;同时令 cn+i = 0 • 第i 个约束为 型,在不等式左边减去一个非负的 变量xn+i ,称为剩余变量;同时令 cn+i = 0 • 若xj 0,令 xj= -xj ,代入非标准型,则有xj 0 • 若xj 不限,令 xj= xj - xj, xj 0,xj 0,代入非 标准型
解的几种情况: 唯一解
无有限最优解-- max,λj > 0 但Pj 0 min,λj < 0 但Pj 0
无穷多解--最优表中非基变量检验数有为0者。
无可行解--最优表中人工变量在基中,且=0。 建模有问题
退化解问题
当出基不止一个选择之际
19
12
标准型的单纯型算法
1 找初始基础可行基 – 对于(max,),松弛变量对应的列构成一个单位阵 2 检验当前基础可行解是否为最优解 – 所有检验数 cj zj0,则为最优解,否则 3 确定改善方向 – 从 (cj zj) > 0 中找最大者,选中者称为入变量, xj* – 第j*列称为主列 4 确定入变量的最大值和出变量 – 最小比例原则
ai * j a i * j a i * j *
j 1,2,, m n
14
人工变量的引入及其解法
★ 当约束条件为“”型,引入剩余变量和人工变量
• 由于所添加的剩余变量的技术系数为1,不能构成 初始基变量,为此引入一个人为的变量(注意,此 时约束条件已为“=”型),以便取得初始基变量, 故称为人工变量 • 由于人工变量在原问题的解中是不能存在的,应尽 快被迭代出去,因此人工变量在目标函数中对应的 价值系数应具有惩罚性,称为罚系数。罚系数的取 值视解法而定 • 两种方法
b 100 120 zj cj- z j x1 40 2 3 0 40 x2 45 3 3 0 45 x3 24 1 2 0 24 x4 0 1 0 0 0 x5 0 0 1 0 0
11
CB XB x4 0 x5 0 OBJ = 0
单纯型表中元素的几点说明
x1 序 b 40 号 CB XB 45 x2 100/3 2/3 x5 II 0 20 (1) OBJ = 1500 30 c j-zj 10 x2 45 1 0 45 0 x3 x4 24 0 1/3 1/3 1 1 15 15 9 15 x5 0 0 1 0 0 bi/aij* 50 (20)
– 大M法 – 二阶段法
15
大M法的求解过程
min f ( x ) 10 x1 8 x2 7 x3
例
s.t.
6 2 x1 x2 x1 x2 x3 4 x1 , x2 , x3 0
max[ f ( x )] max( 10 x1 8 x2 7 x3 Mx6 ) s.t. x4 x6 6 2 x1 x2 x5 4 x1 x2 x3 x1 , x2 , x3 , x4 , x5 , x6 0
5
变换的方法:
变换举例:
原非标准型 : min f ( x ) 3x1 2 x2 4 x3 2 x1 3x2 4 x3 300 x 5 x 6 x 400 1 2 3 s.t. x1 x2 x3 200 x3 不限, x1 , x2 0 4 x3 0 x4 0 x5 0 x6 标准型 : max f ( x ) 3x1 2 x2 4 x3 4 x3 x4 2 x1 3x2 4 x3 x 5 x 6 x 6 x x 1 2 3 3 5 s.t. x3 x6 x1 x2 x3 , x3 , x4 , x5 , x6 x1 , x2 , x3 300 400 200 0
§1 单纯形法
(2)、判定解是否最优 Z=0+40X1+50X2 当X1从0↗或X2从0↗ Z从0↗ ∴ X(1) 不是最优解
2
B2=(P3 P4 P2)
Z=0+40X1+50X2
X3 +2X2 =30-X1 2X2=24-X5
④
①
X4+2X2 =60-3X1
②
③
3
线性规划问题的标准形式
为了使线性规划问题的解法标准,就要把一般形式化为标准 形式
1 0
10 0
0 1
8 0
1 2
6 1
1 1
2 2
1 2
6 6
1 1
2
M+2
答:最优解为 x1=2, x2=2, x3=0, OBJ=36
17
大M法的一些说明
–大M法实质上与原单纯型法一样,M可看 成一个很大的常数 – 人工变量被迭代出去后就不会再成为基变 量 – 当检验数都满足最优条件,但基变量中仍 有人工变量,说明原线性规划问题无可行 解 –大M法手算很不方便 –因此提出了二阶段法 •计算机中常用大M法 •二阶段法手算可能容易 18
16
单纯型表迭代过程
序 号 CB XB b I M x6 6 4 初 7 x3 6M28 始 c j zj 解 3 10 x1 II 7 x3 1
37 c j zj
x1 10 (2) 1
x2 8 1 1
x3 7 0 1
7 0
x4 0 1 0
M M
x5 0 0 1
7
关于标准型解的若干基本概念:
• 可行解与非可行解 – 满足约束条件和非负条件的解 X 称为可行解,满足约 束条件但不满足非负条件的解 X 称为非可行解 • 基础解 – 令非基变量 XN = 0,求得基变量 XB的值称为基础解 即 XB = B-1 b – XB 是基础解的必要条件为XB 的非零分量个数 m • 基础可行解 – 基础解 XB 的非零分量都 0 时,称为基础可行解,否 则为基础非可行解 – 基础可行解的非零分量个数 < m 时,称为退化解
8
线性规划标准型问题解的关系
非可行解 约束方程的 基础 解空间 可行解 可行解
基础解
退化解
9
1.5.4 单纯型表及其格式
10
例 试列出下面线性规划问题的初始单纯型表
max f ( x ) 40 x1 45 x2 24 x3 s.t. 2 x1 3 x2 x3 100 3 x1 3 x2 2 x3 120 x1 , x2 , x3 0