拉深工艺系数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉深件坯料形状和尺寸是以冲件形状和尺寸为基础,按体积不变原则和相似原则确定。体积不变原则,即对于不变薄拉深,假设变形前后料厚不变,拉深前坯料表面积与拉深后冲件表面积近似相等,得到坯料尺寸;相似原则,即利用拉深前坯料的形状与冲件断面形状相似,得到坯料形状。当冲件的断面是圆形、正方形、长方形或椭圆形时,其坯料形状应与冲件的断面形状相似,但坯料的周边必须是光滑的曲线连接。对于形状复杂的拉深件,利用相似原则仅能初步确定坯料形状,必须通过多次试压,反复修改,才能最终确定出坯料形状,因此,拉深件的模具设计一般是先设计拉深模,坯料形状尺寸确定后再设计冲裁模。

由于金属板料具有板平面方向性和模具几何形状等因素的影响,会造成拉深件口部不整齐,因此在多数情况下采取加大工序件高度或凸缘宽度的办法,拉深后再经过切边工序以保证零件质量。切边余量可参考表4.3.1和表4.3.2。

当零件的相对高度H/d很小,并且高度尺寸要求不高时,也可以不用切边工序。

首先将拉深件划分为若干个简单的便于计算的几何体,并分别求出各简单几何体的表面积。把各简单几何体面积相加即为零件总面积,然后根据表面积相等原则,求出坯料直径。

图 4.3.1 圆筒形拉深件坯料尺寸计算图

在计算中,零件尺寸均按厚度中线计算;但当板料厚度小于1mm时,也可以按外形或内形尺寸计算。常用旋转体零件坯料直径计算公式见表4.3.3。

该类拉深零件的坯料尺寸,可用久里金法则求出其表面积,即任何形状的母线绕轴旋转一周所得到的旋转体面积,等于该母线的长度与其重心绕该轴线旋转所得周长的乘积。如图4.3.2所示,旋转体表面积为 A。

图4.3.2 旋转体表面积计算图

1.拉深系数的定义

图4.4.1 圆筒形件的多次拉深

在制定拉深工艺时,如拉深系数取得过小,就会使拉深件起皱、断裂或严重变薄超差。因此拉深系数减小有一个客观的界限,这个界限就称为极限拉深系数。极限拉深系数与材料性能和拉深条件有关。从工艺的角度来看,极限拉深系数越小越有利于减少工序数。

2.影响极限拉深系数的因素

(3)拉深工作条件

图4.4.2 凸凹模圆角半径对极限拉深系数的响

但凸、凹模圆角半径也不宜过大,过大的圆角半径,会减少板料与凸模和凹模端面的接触面积及压料圈的压料面积,板料悬空面积增大,容易产生失稳起趋。

凸、凹模之间间隙也应适当,太小,板料受到太大的挤压作用和摩擦阻力,增大拉深力;间隙太大会影响拉深件的精度,拉深件锥度和回弹较大。

2)摩擦润滑凹模和压料圈与板料接触的表面应当光滑,润滑条件要好,以减少摩擦阻力和筒壁传力区的拉应力。而凸模表面不宜太光滑,也不宜润滑,以减小由于凸模与材料的相对滑动而使危险断面变薄破裂的危险。

3)压料圈的压料力压料是为了防止坯料起皱,但压料力却增大了筒壁传力区的拉应力,压料力太大,可能导致拉裂。拉深工艺必须正确处理这两者关系,做到既不起皱又不拉裂。为此,必须正确调整压料力,即应在保证不起皱的前堤下,尽量减少压料力,提高工艺的稳定性。

此外,影响极限拉深系数的因素还有拉深方法、拉深次数、拉深速度、拉深件的形状等。采用反拉深、软模拉深等可以降低极限拉深系数;首次拉深极限拉深系数比后次拉深极限拉深系数小;拉深速度慢,有利于拉深工作的正常进行,盒形件角部拉深系数比相应的圆筒形件的拉深系数小。

3.极限拉深系数的确定

由于影响极限拉深系数的因素很多,目前仍难采用理论计算方法准确确定极限拉深系数。在实际生产中,极限拉深系数值一般是在一定的拉深条件下用实验方法得出的。表4.4.1

和表4.4.2是圆筒形件在不同条件下各次拉深的极限拉深系数。

在实际生产中,并不是在所有情况下都采用极限拉深系数。为了提高工艺稳定性和零件质量,适宜采用稍大于极限拉深系数的值。

1.拉深次数的确定

注:

1.表中拉深数据适用于08钢、10钢和15Mn钢等普通拉深碳钢及黄铜H62。对拉深性能较差的材料,如20钢、25钢、Q215钢、Q235钢、硬铝等应比表中数值大1.5%~2.0%;而对塑性较好的材料,如05钢、08钢、10钢及软铝等应比表中数值小1.5%~2.0%。

2. 表中数据适用于未经中间退火的拉深。若采用中间退火工序时,则取值应比表中数值小2%~3%。

3.表中较小值适用于大的凹模圆角半径〔rA=(8~15)t〕,较大值适用于小的凹模圆角半径〔rA=(4~8)t〕。

注:此表适用于08钢、10钢及15Mn钢等材料。其余各项同表4.4.1之注。

(1)查表法根据工件的相对高度即高度H与直径d之比值,从表4.4.3中查得该工件拉深次数。

注:

1.大的H/d值适用于第一道工序的大凹模圆角〔rA(8~15)t〕。

2.小的H/d值适用于第一道工序的小凹模圆角〔rA(4~8)t〕。

3.表中数据适用材料为08F钢、10F钢。

(3)计算方法拉深次数的确定也可采用计算方法进行确定,其计算公式如下:

2.各次拉深工序件尺寸的确定

(1)工序件直径的确定

确定拉深次数以后,由表查得各次拉深的极限拉深系数,适当放大,并加以调整,其原则是:

无凸缘圆筒形件拉深工序计算流程如图4.4.3所示。

图4.4.3 无凸缘圆筒形件拉深工序计算流程

例4.4.1

求图4.4.4所示筒形件的坯料尺寸及拉深各工序件尺寸。材料为10钢,板料厚度t=2mm。

图4.4.4 无凸缘圆筒形件

以上计算所得工序件有关尺寸都是中径尺寸,换算成工序件的外径和总高度后,绘制的工序件草图如图4.4.5所示。

1.压料装置与压料力

为了解决拉深过程中的起皱问题,生产实际中的主要方法是在模具结构上采用压料装置。常用的压料装置有刚性压料装置和弹性压料装置两种(详见4.7)。是否采用压料装置主要看拉深过程中是否可能发生起皱,在实际生产中可按表4.4.4来判断拉深过程中是否起皱和采用压料装置。

图4.4.5 拉深工序件草图

压料装置产生的压料力FY大小应适当,FY太小,则防皱效果不好;FY太大,则会增大传力区危险断面上的拉应力,从而引起材料严重变薄甚至拉裂。因此,实际应用中,在保证变形区不起皱的前提下,尽量选用小的压料力。

随着拉深系数的减小,所需压料力是增大的。同时,在拉深过程中,所需压料力也是变化的,一般起皱可能性最大的时刻所需压料力最大。理想的压料力是随起皱可能性变化而变化,但压料装置很难达到这样的要求。

相关文档
最新文档