简单随机抽样教学设计.docx

合集下载

《简单随机抽样》word版 公开课一等奖教案

《简单随机抽样》word版 公开课一等奖教案

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料.这些资料因为用的比拟少,所以在全网范围内,都不易被找到.您看到的资料,制作于2021年,是根据最|新版课本编辑而成.我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品.本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最|终形成了本作品.本作品为珍贵资源,如果您现在不用,请您收藏一下吧.因为下次再搜索到我的时机不多哦!4.2 简单随机抽样学习目标:1、了解简单随机抽样的概念2、知道简单随机抽样的方法3、知道简单随机抽样经常使用的地方.4、学习重点:理解和把握简单随机抽样的概念5、学习难点:理解简单随机抽样的方法,并能尝试性的进行简单的操作.学习过程一创设情境,引入新课交流与发现为了了解本校学生暑期参加体育活动的情况,学校准备抽取一局部学生进行问卷调查,现有四个发放调查问卷的方案,你认为按下面的调查方法取得的结果能放映全校学生的一般情况吗?如果不能,应当如何改良调查方法?方案一:发给学校田径队的30名同学方案二:调查每个班的男同学方案三:从每个班随机抽取1名同学方案四:从每个班抽取一半学生进行调查二合作交流,探索新知1.简单随机抽样的含义为了获取能够客观反映问题的结果, 通常按照总体内的每个个体被抽到的时机都相等的原那么抽取样本, 那么这种抽样方法叫做简单随机抽样.注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素.2.讨论P/88实验与探究,思考:根据你的理解,简单随机抽样有哪些主要特点?(1 )总体的个体数有限;(2 )样本的抽取是逐个进行的,每次只抽取一个个体;(3 )抽取的样本不放回,样本中无重复个体;(4 )每个个体被抽到的时机都相等,抽样具有公平性.三.例题讲解例1:李大伯为了估计一袋大豆种子中大豆的粒数,先从袋中取出50粒,做上记号,然后放回袋中,将豆粒搅匀,再从袋中取出100粒,,从这100粒中,找出带记号的大豆,如果带记号的大豆有两粒,便可以估计出袋中所有大豆的粒数,你知道他是怎样估计的吗?四实际应用1、某校的黑板报上刊登了一篇题为?大局部学生不吃早餐?的报道,文章说. "通过对课间学校商品部买小食品的20名同学的调查发现16人是因为没有吃早餐而去买零食,由此判断,我校80%的同学在家不吃早餐〞2、在某次篮球赛中,解说员介绍了参加美国职业篮球队的3名中国籍队员的身高,有位观众把这3个人的平均身高与美国人的平均身高进行比拟,得出一个结论:"中国人的平均身高比美国人高〞.由(1)和(2) ,你悟出了什么道理?在选取样本时应注意:1.所选取的样本必须具有代表性.3.样本要防止遗漏某一个群体.这样所选取的样本才能反映总体的特性,才比拟适宜.五.课堂小结:六.当堂达标:1、以下调查中的抽取方法合理吗(1 )为了了解全班同学的身高,小明调查了其中十名同学的身高(2 )为了了解全班同学的体重,小明调查了他所在班级|的全体同学的体重2、为了估计一袋小麦的粒数,先从袋中取出100粒,做上记号,然后放回袋中,将其搅匀,再从袋中取出100粒,找出带记号的小麦有四粒,那么袋中共有多少粒小麦?七、作业:P/90 -P/91习题4.2 1、2、3、4选作5本课教学反思本节课主要采用过程教案法训练学生的听说读写.过程教案法的理论根底是交际理论,认为写作的过程实质上是一种群体间的交际活动,而不是写作者的个人行为.它包括写前阶段,写作阶段和写后修改编辑阶段.在此过程中,教师是教练,及时给予学生指导,更正其错误,帮助学生完成写作各阶段任务.课堂是写作车间, 学生与教师, 学生与学生彼此交流, 提出反应或修改意见, 学生不断进行写作, 修改和再写作.在应用过程教案法对学生进行写作训练时, 学生从没有想法到有想法, 从不会构思到会构思, 从不会修改到会修改, 这一过程有利于培养学生的写作能力和自主学习能力.学生由于能得到教师的及时帮助和指导,所以,即使是英语根底薄弱的同学,也能在这样的环境下,写出较好的作文来,从而提高了学生写作兴趣,增强了写作的自信心.这个话题很容易引起学生的共鸣,比拟贴近生活,能激发学生的兴趣, 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴.在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下根底.此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时那么对语法知识进行讲解.在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高.再者,培养学生的学习兴趣,增强教案效果,才能防止在以后的学习中产生两极分化.在教案中任然存在的问题是,学生在"说〞英语这个环节还有待提高,大局部学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一局部学生的学习成绩的提高还有待研究.。

简单随机抽样教学案 (1)

简单随机抽样教学案 (1)

简单随机抽样一、教学目的1.理解并掌握简单随机抽样的定义、特点和适用范围.2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.二、教学重点1.理解并掌握简单随机抽样的定义、特点和适用范围.2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.三、教学难点掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.解析:由随机数法的抽样过程可知选出的5个个体是08,02,14,07,01,即第5个个体的编号是01.答案:D 点评:1.在利用随机数法抽样的过程中应注意:(1)编号要求数位相同.(2)第一个数字的抽取是随机的.(3)读数的方向是任意的,且事先定好的.2.随机数法的特点:优点:简单易行.它很好地解决了当总体中的个体数较多时用抽签法制签难的问题.缺点:当总体中的个体数很多,需要的样本容量也很大时,用随机数法抽取样本容易重号.变式探究3设某总体是由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号是________7816 6572 0802 6314 0702 4369 9728 10983204 9234 4935 8200 3623 4869 6938 7491解析:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次为08,02,14,07,02,10,其中第二个和第五个都是02,重复.可知对应的数值为08,02,14,07,10,则第5个个体的编号为10.答案:10随堂自测1.下列抽样方法是简单随机抽样的是( )A .从50个零件中一次性抽取5个做质量检验B .从50个零件中有放回地抽取5个做质量检验C .从整数集中逐个抽取10个分析是奇数还是偶数D .运动员从8个跑道中随机抽取一个跑道2.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为( )A .①②③④B .①③④②C .③②①④D .④③①②3.下列抽样试验中,用抽签法方便的是( )A .从某工厂生产的3 000件产品中抽取600件进行质量检验B .从某工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C .从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D .从某厂生产的3 000件产品中抽取10件进行质量检验解析:A 总体容量较大,样本容量也较大,不适宜用抽签法;B 总体容量较小,样本容量也较小,可用抽签法;C 中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D 总体容量较大,不适宜用抽签法.故选B.答案:B4.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是________位.解析:由于所编号码的位数和读数的位数要一致,因此所编号码的位数最少是四位.从0000到1000,或者是从0001到1001等.答案:四5.假设要抽查某种品牌的850颗种子的发芽率,抽取60颗进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第2列的数3开始向右读,请你依次写出最先检测的4颗种子的编号____________________.(下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:第8行第2列的数3开始向右读第一个小于850的数字是301,第二个数字是637,也符合题意,第三个数字是859,大于850,舍去,第四个数字是169,符合题意,第五个数字是555,符合题意,故答案为:301,637,169,555.6、在一个个体数目为2 003的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为( )A. 201B. 1001C. 2 003100 D . 2 0001答案:C7、现用系统抽样抽取了一个容量为30的样本,其总体中含有300个个体,则总体中的个体编号后所抽取的两个相邻号码之差可定为( )A .300B .30C .10D .不确定简单随机抽样一、学习目的1.理解并掌握简单随机抽样的定义、特点和适用范围.2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.变式探究3设某总体是由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号是________7816 6572 0802 6314 0702 4369 9728 10983204 9234 4935 8200 3623 4869 6938 7491五、课堂练习1.下列抽样方法是简单随机抽样的是()A.从50个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从整数集中逐个抽取10个分析是奇数还是偶数D.运动员从8个跑道中随机抽取一个跑道2.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为()A.①②③④B.①③④②C.③②①④D.④③①②3.下列抽样试验中,用抽签法方便的是()A.从某工厂生产的3 000件产品中抽取600件进行质量检验B.从某工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验4.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是________位.5.假设要抽查某种品牌的850颗种子的发芽率,抽取60颗进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第2列的数3开始向右读,请你依次写出最先检测的4颗种子的编号____________________.(下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 546、在一个个体数目为2 003的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为( )A. 201B. 1001C. 2 003100 D . 2 00017、现用系统抽样抽取了一个容量为30的样本,其总体中含有300个个体,则总体中的个体编号后所抽取的两个相邻号码之差可定为( )A .300B .30C .10D .不确定8、从容量为N 的总体中抽取容量为n 的样本,若用系统抽样法,则抽样间隔为( )A.n N B .n C .[n N ] D .[n N ]+1六、课堂小结1、如何抽取样本,直接关系到对总体估计的准确程序,因此抽样时要保证每一个个体都可能被抽到,每一个个体被抽到的机会都是均等的,满足这样条件的抽样是随机抽样.2.在利用随机数法抽样的过程中应注意:(1)编号要求数位相同.(2)第一个数字的抽取是随机的.(3)读数的方向是任意的,且事先定好的.3.随机数法的特点:优点:简单易行.它很好地解决了当总体中的个体数较多时用抽签法制签难的问题.缺点:当总体中的个体数很多,需要的样本容量也很大时,用随机数法抽取样本容易重号.八、教学反思。

【新教材教案】9.1.1 简单随机抽样 教学设计(1)-人教A版高中数学必修第二册.doc

【新教材教案】9.1.1 简单随机抽样 教学设计(1)-人教A版高中数学必修第二册.doc

9.1.1简单随机抽样本节《普通高中课程标准数学教科书-必修二(人教A版)第九章《9.1.1简单随机抽样》,本节的主要内容包括:统计问题的特征、统计中的抽样思想、科学抽样的三个必备条件以及简单随机抽样的概念及两种抽样方法,(1)抽签法,(2)随机数法,这两种种方法的操作步骤和注意事项。

从而发展学生的直观想象、逻辑推理、数学建模的核心素养。

1.教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.2.教学难点:抽签法和随机数法的实施步骤.多媒体通过人口普查 问题,让学生感受学 习抽样方法的必要 性,发展学生数学抽 象、逻辑推理的核心 素养。

断总体的人口变动情况.像这样,根据一定目的,从总体中抽取一部分个体进行调查,并 以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调 查.我们把从总体中抽取的那部分个体称为样本,样本中包含的个体 数称为样本量.调查样本获得的变量值称为样本的观测数据,简称样 本数据.抽样调查的目的是为了了解总体的情况.例如,抽样调查一批待 售袋装牛奶的细菌数是否超标,其目的是要了解整批牛奶的细菌含量 超标情况,而不只是局限在抽查到的那几袋牛奶的情况.因此,通过抽 样调查了解总体的情况,自然希望抽取的样本数据能很好地反映总体 的情况,即样本含有和总体基本相同的信息.2015 年呈国假设口袋中有红色和白色共1000个小球,除颜色外,小球的大 小、质地完全相同,你能通过抽样调查的方法估计带中红球所占的比 例吗?这里袋中所有小球是调查的总体,每一个小球是个体,小球的颜 色是所关心的变量.我们可以从袋中随机地摸出一个球,记录颜色后 放回,摇匀后再摸出一个球,如此重复n 次.根据初中的概率知识可知, 随着摸球次数的增加,摸到红球的频率会逐渐稳定于摸到红球的概率,即口袋中红球所占的比例,因此,我们可以通过放回摸球,用频率估计出红球的比例.在有放回地摸球中,同一个小球有可能被摸中多次,极端情况是每次摸到同一个小球,而被重复摸中的小球只能提供同一个小球的颜色信息,如果我们采用不放回摸球,即从袋中摸出一个球后不再放回袋中,每次摸球都在余下的球中随机摸取,这样就可以避免同一个小球被重复摸中.特别地,当样本量n=1000时,不放回摸球已经把袋中的所有球取出,这就完全了解了袋中红球的比例,而有放回摸球一般还不能对袋中红球的比例作出准确的判断.1.概念:一般地,设一个总体含有N个个体,从中地抽取n个个体作为样本(〃寸V),如果每次抽取时总体内的各个个体被抽到的机会,就把这种抽样方法叫作简单随机抽样,这样抽取的样本,叫作简单随机样本.;简单随机抽样;逐个不放回;都相等2.最常用的简单随机抽样方法有两种:抽签法;随机数法3.简单随机抽样的特点n有限的;小于或等于;逐个抽取;不放回;一N问题1 一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全体高一年级学生的平均身高,以便设定可调节课桌椅的标准高度. 已知树人中学高一年级有712名学生,如果要通过简单随机抽样的方法调查高一年级学生的平均身高,应该怎么抽取样本?在这个问题中,树人中学全部高一年级的学生构成调查的总体,每一位学生是个体,学生的身高是调查的变量.与“探究,,栏目中估计红球的比例类似,我们可以对高一年级进行简单随机抽样,用抽出的样本的平均身高估计高一年级学生的平均身高.实现简单随机抽样的方法有很多,抽签法和随机数法是比较常用的两种方法.下面分别介绍这两种方法.1.抽签法:先给712名学生编号,例如按1〜712进行编号,然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的学生进入样本,直到抽足样本所需要的人数. 为什么要给学生编号?编号用学号可以吗?(1)抽签法的定义:一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中搅拌均匀,每次不放回地从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法的优点是简单易行,缺点是当总体较大时,操作起来比较麻烦,费时、费力,又不方便.因此,抽签法一般适用于总体中个体数不多的情形. 你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?学生掌握简单随机抽样的两种基本方法,并熟悉的应用能力,提升推理论证能力,提高学生的数学抽象、数学建模及逻辑推理的核心素养。

(完整版)2.1.1简单随机抽样教案

(完整版)2.1.1简单随机抽样教案
对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是
分析] 简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是
2:某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽
10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?
分析] 简单随机抽样一般采用两种方法:抽签法和随机数表法。
、简单随机抽样每个个体入样的可能性都相等,均为n/N,但是这里一定要将
第n次每个个体入样的可能性、特定的个体在第n次被



n次,就得
n的样本。
抽签法的一般步骤:
1)将总体的个体编号。
2)连续抽签获取样本号码。
、随机数法的定义:
500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行
800袋牛奶编号,可以编为000,001,…,799。
8行第7列的数7(为了
1的第6行至第10行)。
49 54 43 54 82 17 37 93 23 78
3)简单随机样本是从总体中逐个抽取的。
4)简单随机抽样是一种不放回的抽样。
5)简单随机抽样的每个个体入样的可能性均为n/N。
考?
1)从无限多个个体中抽取50个个体作为样本。
2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样
、抽签法的定义。
N个个体编号,把号码写在号签上,将号
1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状
100个数,将这些号签放在一起,进行均匀搅拌,接着
10个号签,然后测量这个10个号签对应的轴的直径。
2:(随机数表法)将100件轴编号为00,01,…99,在随机数表中选

简单随机抽样教学设计

简单随机抽样教学设计

简单随机抽样教学设计第1篇:上海教师资格证考试:简单随机抽样教案2017上海教师资格证考试:简单随机抽样教案简单随机抽样教案一、教学目标【知识与技能】能够准确叙述出随机抽样的概念,可以利用抽签法解决简单的实际问题。

【过程与方法】在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

【情感态度与价值观】通过对现实生活统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

二、教学重、难点【重点】掌握简单随机抽样常见的抽签法.【难点】理解简单随机抽样的科学性,以及由此推断结论的可靠性.三、教学过程(一)创设情境,导入新课请问下列调查是“普查”还是“抽样”调查?(1)一锅水饺的味道(2)旅客上飞机前的安全检查(3)一批炮弹的杀伤半径(4)一批彩电的质量情况(5)美国总统的民意支持率学生经过讨论后得出答案。

引出课题。

(二)师生互动,探索新知在学生明确了抽样与普查的区别之后,为了加深对抽样概念的理解设计如下例题。

例1:语文老师为了了解某班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么? A.在班级12名班委名单中逐个抽查5位同学进行背诵B.在班级45名同学中逐一抽查10位同学进行背诵先让学生分析、选择B后,师生一起归纳其特征,让学生体验B 种抽样的科学性,然后教师指出这就是简单随机抽样,最后板书课题——简单随机抽样及其定义。

简单随机抽样的含义:一般地,设一个总体有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,则这种抽样方法叫做简单随机抽样。

教师总结简单随机抽样的特点:(1)总体的个数有限;(2)样本的抽取式逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体(4)每个个体被抽到的机会都相等,抽样具有公平性例2.在班级45名同学中逐一抽查10位同学进行背诵的抽签步骤是什么呢? 先让学生独立思考,然后分小组合作学习,各小组推荐一位同学发言,最后师生一起归纳“抽签法”步骤,教师板书上面步骤。

简单随机抽样 优秀教案

简单随机抽样 优秀教案

简单随机抽样优秀教案教学目标】1.理解简单随机抽样的概念,能够描述抽签法和随机数表法的步骤。

2.能够根据样本情况选择适当的抽样方法。

教学重点】理解简单随机抽样的概念,掌握抽签法和随机数表法的步骤,能够从总体中抽取样本。

教学难点】理解简单随机抽样的概念,掌握抽签法和随机数表法的步骤。

教学过程】一、情境导入:1.国务院在2000年11月1日进行了第五次全国人口普查的登记工作,结果显示我国人口总数为万。

这个例子用到了什么统计方法?它的优缺点是什么?你有其他的想法吗?答:这个例子用到了普查的统计方法。

优点是全面准确,缺点是工作量大,在大部分统计案例中无法实现(检查具有破坏性)。

还可以使用随机抽样的方法。

2.你认为在这个例子中预测结果出错的原因是什么?答:所选样本没有代表性。

3.假设你是一名食品卫生工作人员,需要对某食品店内的一批小包装饼干进行卫生达标检验,你会怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。

那么,应当怎样获取样本呢?二、新知探究:一)简单随机抽样的概念:一般地,从一个总体含有N个个体中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

思考:简单随机抽样的每个个体入样的可能性为多少?(n/N)二)抽签法和随机数表法:1.抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

抽签法的一般步骤:1)将总体的个体编号;2)连续抽签获取样本号码。

思考:抽签法有什么优点和缺点?当总体个体数较多时,使用抽签法方便吗?解析:操作简便易行,但当总体个数较多时工作量大,也很难做到“搅拌均匀”。

2.随机数表法利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法。

如何利用随机数表进行样本抽取?以检验某公司生产的500克袋装牛奶质量为例,从800袋牛奶中抽取60袋进行检验。

简单随机抽样教学设计

简单随机抽样教学设计

简单随机抽样教学设计教学目标:1.了解简单随机抽样的定义和原则。

2.掌握简单随机抽样的方法和步骤。

3.通过实际操作,能够进行简单随机抽样。

教学过程:一、导入(5分钟)通过提问调动学生的思维,引导他们思考“什么是抽样”和“为什么要进行抽样”。

二、讲解简单随机抽样的定义和原则(10分钟)1.定义:简单随机抽样是指从总体中随机地抽取一些样本,使得每一个样本都有相同被抽取的机会。

2.原则:(1)每个样本都有相同的被抽取机会。

(2)抽取的样本是随机的,不受抽样者的影响。

三、讲解简单随机抽样的方法和步骤(15分钟)1.方法:(1)把每一个样本编上号码。

(2)利用随机数表或随机数发生器,通过抽取数字的方式确定要抽取的样本。

2.步骤:(1)确定样本容量。

(2)编制总体名单,每个样本编上号码。

(3)利用随机数表或随机数发生器,确定要抽取的样本。

(4)按照所确定的号码,抽取样本。

四、实践操作简单随机抽样(30分钟)1.将学生分成小组,每个小组有一份总体名单和一个随机数表。

2.每个小组的成员依次根据随机数表上的数字,确定要抽取的样本。

3.记录每个小组抽取的样本,并进行简单分析。

五、总结(10分钟)1.向学生征集他们的实践感想和体会。

2.提出一些问题,引导学生进行思考和讨论,如“随机数表和随机数发生器有何区别?”、“你们觉得简单随机抽样有什么应用场景?”等。

六、拓展延伸(15分钟)1.介绍其他抽样方法,如系统抽样、分层抽样等。

2.让学生在实际生活中找到应用抽样方法的案例,并进行分享。

七、课堂作业(5分钟)要求学生总结本节课所学的内容,并根据自己的理解写一篇关于简单随机抽样的小文章。

教学评价:1.观察学生在实践操作中的表现,包括参与度、操作准确度等。

2.评价学生在总结小结中对简单随机抽样的理解和应用能力。

教学反思:本节课教学内容相对较为简单,但是实践操作环节需要引导学生进行实际操作,确保学生对简单随机抽样有自主的了解和掌握。

9.1.1.1简单随机抽样+教学设计

9.1.1.1简单随机抽样+教学设计

9.1 随机抽样9.1.1.1 简单随机抽样教学目标:1.通过阅读课本了解数据的调查方法;2.通过阅读课本了解简单随机抽样;3.通过问题掌握简单随机抽样的常用方法.教学重点:了解简单随机抽样和良种常用方法教学难点:会用抽签法和随机数法进行简单随机抽样教学过程:一、导入新课,板书课题想必大家都听说过人口普查,那么人口普查是如何进行的,面对庞大的数据不方便全面收集的时候,又该如何处理呢,本节课我们就来学习一下简单随机抽样。

【板书:简单随机抽样】二、出示目标,明确任务1.了解调查数据的方法。

2.了解何为简单随机抽样3.掌握简单随机抽样的常用方法三、学生自学,独立思考学生看书,教师巡视,督促学生认真看书下面,阅读课本P173-P177页内容,思考如下问题(4min):1.找出阅读内容中的知识点。

2.找出阅读内容中的重点。

3.找出阅读内容中的困惑点,疑难点。

四、自学指导,紧扣教材1.自学指导1(5min)阅读课本173-175页问题1以上内容,思考并完成如下问题(1)什么是全面调查?人口普查是否为全面调查?(2)什么是总体?什么是个体?(3)什么是抽样调查?何为样本,何为样本容量?(4)抽样调查的目的是什么?(5)放回和不放回简单抽样分别是什么?统称为什么?自学指导2(5min)阅读课本175-177页,思考并完成以下问题(1)简单随机抽样常用的两种方法有?(2)抽签法如何操作,优点是什么?(3)随机数法如何操作,优点是什么?(4)用简单随机抽样方法抽取样本,样本量是否越大越好?五、自学展示,精讲点拨1.学生口头回答自学指导问题,教师点拨并板书(答案见PPT)2.书面检测:在以下调查中,总体、个体各是什么?哪些适合用全面调查?哪些适合用抽样调查?(1)调查一个班级学生每周的体育锻炼时间(2)调查一个地区结核病的发病率(3)调查一批炮弹的杀伤半径(4)调查一个水库所有鱼中草鱼所占的比例精讲点拨:自学指导1:点拨1.全面调查与抽样调查的区别;全面调查是对每一个对象进行调查,抽样调查时抽取一部分进行调查。

人教版高中必修3(B版)2.1.1简单随机抽样教学设计 (2)

人教版高中必修3(B版)2.1.1简单随机抽样教学设计 (2)

人教版高中必修3(B版)2.1.1简单随机抽样教学设计一、前言在数学中,当我们想要研究人群中某一特定特征的平均值时,我们可以采用抽样方式进行研究。

而其中一种最常用的抽样方式就是简单随机抽样。

本篇文档将介绍人教版高中必修3(B版)2.1.1简单随机抽样的具体内容,并提供一份教学设计供教师参考。

二、简单随机抽样简单随机抽样是指从人群中随机选择样本的方法。

它具有如下特点:1.每一个人都有同等的机会被选中;2.样本与总体中每一个人是无序的;3.产生的样本可能会有偏差。

简单随机抽样的公式如下:$$ P(A_1 \\cap A_2 \\cap \\cdots \\cap A_n)=\\frac{n!}{(n-r)!n^r} $$ 其中,n表示人群中的总人数,r表示样本数量,n!表示n的阶乘。

三、教学设计1. 教学目标通过本课的学习,学生将掌握以下几个方面的内容:1.理解简单随机抽样的概念及其公式;2.学习如何利用简单随机抽样研究人群中某一特定特征的平均值;3.培养学生逻辑思维能力,提高学生的数学素养。

2. 教学过程(1)知识导入教师可以通过提出以下问题来引起学生的兴趣:•如果你想研究全校高三学生的平均身高,你会如何做?•如果你想研究全班同学英语成绩的平均值,你会如何做?引导学生思考并探讨简单随机抽样的概念及其作用。

(2)相关知识点讲解教师可以通过讲解以下内容来帮助学生理解简单随机抽样的相关概念:1.抽样的概念及其分类;2.简单随机抽样的概念及其公式。

(3)案例分析和练习教师可以通过这部分内容来帮助学生加深理解并提高应用能力。

1.提供一组数据让学生进行简单随机抽样,并计算样本中某一特定特征的平均值;2.提供一组数据和问题,要求学生进行简单随机抽样并回答问题。

(4)归纳总结教师可以根据本课的内容,让学生进行归纳总结,并提出疑问。

教师可以在这部分内容中解答学生的疑问,并进行讨论。

3. 教学评价教师可以通过以下方法来对学生的学习效果进行评价:1.课堂小测验;2.学生个人或小组作业报告;3.班级或个人综合成绩等。

示范教案( 简单随机抽样)

示范教案(  简单随机抽样)

诚西郊市崇武区沿街学校第二章统计本章教材分析现代社会是信息化的社会,数字信息随处可见,因此专门研究如何搜集、整理、分析数据的科学——统计学就备受重视.统计学是研究如何搜集、整理、分析数据的科学,它可以为人们制定决策提供根据.在客观世界中,需要认识的现象无穷无尽.要认识某现象的第一步就是通过观察或者者试验获得观测资料,然后通过分析这些资料来认识此现象.如何获得有代表性的观测资料并可以正确地加以分析,是正确地认识未知现象的根底,也是统计所研究的根本问题.本章主要介绍最根本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容.从义务教育阶段来看,统计知识的教学从小学到初中分为三个阶段,在每个阶段都要学习搜集、整理、描绘和分析数据等处理数据的根本方法,教学目的随着学段的升高逐渐进步.在义务教育阶段的统计与概率知识的根底上,课程标准要求通过实际问题及情境,进一步介绍随机抽样、样本估计总体、线性回归的根本方法,理解用样本估计总体及其特征的思想,体会统计思维与确定性思维的差异;通过实习作业,较为系统地经历数据搜集与处理的全过程,进一步体会统计思维与确定性思维的差异.本章教学时间是是约需7课时,详细分配如下〔仅供参考〕:随机抽样2.1.1简单随机抽样整体设计教学分析教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法:抽签法和随机数法.值得注意的是为了使学生获得简单随机抽样的经历,教学中要注意增加学生理论的时机.例如,用抽签法决定班里参加某项活动的代表人选,用随机数法从全年级同学中抽取样本计算平均身高等等.三维目的1.能从现实生活或者者其他学科中推出具有一定价值的统计问题,进步学生分析问题的才能.2.理解随机抽样的必要性和重要性,进步学生学习数学的兴趣.3.学会用抽签法和随机数法抽取样本,培养学生的应用才能.重点难点教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的施行步骤.课时安排1课时教学过程导入新课抽样的方法很多,某个抽样方法都有各自的优越性与局限性,针对不同的问题应中选择适当的抽样方法.教师点出课题:简单随机抽样.推进新课新知探究提出问题(1)在1936年美国总统选举前,一份颇有名气的杂志(LiteraryDigest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将中选下一届总统.为了理解公众意向,调查者通过簿和车辆登记簿上的名单给一大批人发了调查表(注意在1936年和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:你认为预测结果出错的原因是什么?由此可以总结出什么教训?〔2〕假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进展卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?〔3〕请总结简单随机抽样的定义.讨论结果:(1)预测结果出错的原因是:在民意测验的过程中,即抽取样本时,抽取的样本不具有代表性.1936年拥有和汽车的美国人只是一小部分,那时大部分人还很穷.其调查的结果只是富人的意见,不能代表穷人的意见.由此可以看出,抽取样本时,要使抽取出的样本具有代表性,否那么调查的结果与实际相差较大.(2)要对这批小包装饼干进展卫生达标检查,只能从中抽取一定数量的饼干作为检验的样本,用样本的卫生情况来估计这批饼干的卫生情况.假设对这批饼干全部检验,那么费时费力,等检查完了,这批饼干可能就超过保质期了,再就是会破坏这批饼干的质量,导致无法出售.获取样本的方法是:将这批小包装饼干,放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取〔这样可以保证每一袋饼干被抽到的可能性相等〕,这样就可以得到一个样本.通过检验样本来估计这批饼干的卫生情况.这种抽样方法称为简单随机抽样.(3)一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),假设每次抽取时总体内的各个个体被抽到的时机都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.提出问题(1)抽签法是大家最熟悉的,也许同学们在做某种游戏,或者者者选派一部分人参加某项活动时就用过抽签法.例如,高一(2)班有45名学生,现要从中抽出8名学生去参加一个座谈会,每名学生的时机均等.我们可以把45名学生的学号写在小纸片上,揉成小球,放到一个不透明袋子中,充分搅拌后,再从中逐个抽出8个号签,从而抽出8名参加座谈会的学生.请归纳抽签法的定义.总结抽签法的步骤.(2)你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?(3)随机数法是利用随机数表或者者随机骰子或者者计算机产生的随机数进展抽样.我们仅学习随机数表法即利用随机数表产生的随机数进展简单随机抽样的方法.怎样利用随机数表产生样本呢下面通过例子来说明.假设我们要考察某公司消费的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进展检验.利用随机数表抽取样本时,可以按照下面的步骤进展.第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数.例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行.)16227794394954435482173793237887352096438426349164 84421753315724550688770474476721763350258392120676 63016378591695556719981050717512867358074439523879 33211234297864560782524207443815510013429966027954 57608632440947279654491746096290528477270802734328第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉.按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出.这样我们就得到一个容量为60的样本.请归纳随机数表法的步骤.(4)当N=100时,分别以0,3,6为起点对总体编号,再利用随机数表抽取10个号码.你能说出从0开始对总体编号的好处吗?(5)请归纳随机数表法的优点和缺点.讨论结果:(1)一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法的步骤是:1°将总体中个体从1—N编号;2°将所有编号1—N写在形状、大小一样的号签上;3°将号签放在一个不透明的容器中,搅拌均匀;4°沉着器中每次抽取一个号签,并记录其编号,连续抽取n次;5°从总体中将与抽取到的签的编号相一致的个体取出.(2)抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,假设标号的签搅拌得不均匀,会导致抽样不公平.因此说当总体中的个体数很多时,用抽签法不方便.这时用随机数法.(3)随机数表法的步骤:1°将总体中个体编号;2°在随机数表中任选一个数作为开始;3°规定从选定的数读取数字的方向;4°开始读取数字,假设不在编号中,那么跳过,假设在编号中那么取出,依次取下去,直到取满为止;5°根据选定的号码抽取样本.(4)从0开始编号时,号码是00,01,02,…,99;从3开始编号时,号码是003,004,…,102;从6开始编号时,号码是006,007,…,105.所以以3,6为起点对总体编号时,所编的号码是三位,而从0开始编号时,所编的号码是两位,在随机数表中读数时,读取两位比读取三位要时,所以从0开始对总体编号较好.(5)综上所述可知,简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.但是,假设总体中的个体数很多时,对个体编号的工作量太大,即使用随机数表法操作也并不方便快捷.另外,要想“搅拌均匀〞也非常困难,这就容易导致样本的代表性差.应用例如例1某车间工人加工一种轴一一共100件,为了理解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.解法一〔抽签法〕:①将100件轴编号为1,2, (100)②做好大小、形状一样的号签,分别写上这100个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④逐个抽取10个号签;⑤然后测量这10个号签对应的轴的直径的样本.解法二〔随机数表法〕:①将100件轴编号为00,01,…99;②在随机数表中选定一个起始位置,如取第22行第1个数开始(见教材附录1:随机数表);③规定读数的方向,如向右读;④依次选取10个为68,34,30,13,70,55,74,77,40,44,那么这10个号签相应的个体即为所要抽取的样本.点评:此题主要考察简单随机抽样的步骤.抽签法的关键是为了保证每个个体被抽到的可能性相等而必须搅拌均匀,当总体中的个体无差异,并且总体容量较小时,用抽签法;用随机数表法读数时,所编的号码是几位,读数时相应地取连续的几个数字,当总体中的个体无差异,并且总体容量较多时,用抽签法.变式训练1.以下抽样的方式属于简单随机抽样的有____________.〔1〕从无限多个个体中抽取50个个体作为样本.〔2〕从1000个个体中一次性抽取50个个体作为样本.〔3〕将1000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.〔4〕箱子里一一共有100个零件,从中选出10个零件进展质量检验,在抽样操作中,从中任意取出一个零件进展质量检验后,再把它放回箱子.〔5〕福利彩票用摇奖机摇奖.解析:〔1〕中,很明显简单随机抽样是从有限多个个体中抽取,所以〔1〕不属于;〔2〕中,简单随机抽样是逐个抽取,不能是一次性抽取,所以〔2〕不属于;很明显〔3〕属于简单随机抽样;〔4〕中,抽样是放回抽样,但是简单随机抽样是不放回抽样,所以〔4〕不属于;很明显〔5〕属于简单随机抽样.答案:〔3〕〔5〕2.要从某厂消费的30台机器中随机抽取3台进展测试,写出用抽签法抽样样本的过程.分析:由于总体容量和样本容量都较小,所以用抽签法.解:抽签法,步骤:第一步,将30台机器编号,号码是01,02, (30)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入不透明的袋子中,并充分搅匀.第四步,从袋子中依次抽取3个号签,并记录上面的编号.第五步,所得号码对应的3台机器就是要抽取的样本.例2人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?解:简单随机抽样的本质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.点评:判断简单随机抽样时,要紧扣简单随机抽样的特征:逐个、不放回抽取且保证每个个体被抽到的可能性相等.变式训练如今有一种“够级〞游戏,其用具为四副扑克,包括大小鬼〔又称为花〕在内一一共216张牌,参与人数为6人并坐成一圈.“够级〞开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌〔这叫开牌〕,然后按逆时针方向,根据这张牌上的数字来确定谁先抓牌,这6人依次从216张牌中抓取36张牌,问这种抓牌方法是否是简单随机抽样?解:在这里只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌可能性不一样,所以不是简单随机抽样.知能训练1.为了理解全校240名学生的身高情况,从中抽取40名学生进展测量,以下说法正确的选项是〔〕A.总体是240B.个体C.样本是40名学生D.样本容量是40答案:D2.为了理解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是〔〕A.总体B.个体C.总体的一个样本D.样本容量答案:C3.一个总体中一一共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,那么某一特定个体被抽到的可能性是____________.1答案:104.为了检验某种产品的质量,决定从40件产品中抽取10件进展检查,如何用简单随机抽样抽取样本?解:方法一〔抽签法〕:①将这40件产品编号为1,2, (40)②做好大小、形状一样的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.方法二〔随机数表法〕:①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第8行第9列的数5开始,;③从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.拓展提升现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进展质量检验.如何用随机数法设计抽样方案?分析:重新编号,使每个号码的位数一样.解:方法一:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比方,选第6行第7个数“9〞,向右读.第三步,从数“9”开始,向右读,每次读取三位,凡不在010—600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.方法二:第一步,将每个元件的编号加100,重新编号为110,111,112,...,199,200, (700)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比方,选第8行第1个数“6〞,向右读.第三步,从数“6〞开始,向右读,每次读取三位,凡不在110—700中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到630,163,567,199,507,175.第四步,这6个号码分别对应原来的530,63,467,99,407,75.这些号码对应的6个元件就是要抽取的对象.课堂小结1.简单随机抽样是一种最简单、最根本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,假设标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法一样,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适宜总体容量较小的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为N n ,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,防止在解题中出现错误.作业课本本节练习2、3.设计感想本节教学设计以课程标准的要求为指导,重视引导学生参与到教学中,表达了学生的主体地位.同时,根据高考的要求,适当拓展了教材,做到了用教材,而不是教教材.。

《简单随机抽样》的重点学习学习教案.doc

《简单随机抽样》的重点学习学习教案.doc

《简单随机抽样》教案教学目标一、知识与技能1.通过生活中的实例,体会不同的抽样方法会得到不同的调查结果;2.了解简单随机抽样的意义;二、过程与方法1.通过实验与探究的方法,让学生进一步感受在随机抽样中,结果的随机性和只有样本容量足够便可推断总体;2.通过探究进一步了解、掌握简单随机抽样的特点;三、情感态度和价值观1.使学生认识到数学和日常生活息息相关,从而增进学习数学的乐趣,在活动中培养学生的合作竞争意识和解决问题的能力;2.通过分组讨论学习,体会合作学习的兴趣;教学重点简单随机抽样的意义;教学难点获取数据时,会判断调查方式是否合适;教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备三角板,练习本;课时安排1课时教学过程一、导入新课为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法 ?二、新课学习方法 1:调查学校田径队的30 名同学选取的样本是田径队的同学,他们暑假中体育活动多方法 2:调查每个班的男同学只调查男同学,没调查女同学方法 3:从每班抽取 1 名学生进行调查选取的样本容量太小,不能客观的反映全校学生方法 4:选取每个班级中的一半学生进行调查选取的容量太大,需要花费较多的时间和人力对于上面所提出的问题,我们只要得到一部分样本数据就可以对于总体情况进行估计。

到的样本能够客观地反映问题,那么对总体的估计就会准确一些,否则估计就会差一些,为此,我们总是希望寻找一个抽取样本的好方法。

简单随机抽样的含义:如果得为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽取样本的方法叫做简单随机抽样。

注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。

在学校门口随机询问,或者利用学号,抽取一定数量的学生进行调查。

《简单随机抽样》示范课教案【高中数学】

《简单随机抽样》示范课教案【高中数学】

《简单随机抽样》教学设计◆教学目标1.通过实例,了解简单随机抽样的含义及其解决问题的过程,掌握两种简单随机抽样方法:抽签法和随机数表法;2.掌握用抽签法、随机数表法进行抽样的步骤,了解随机数表的制作方法和思想;3.在简单的实际情境中,能够根据实际问题的特点,设计恰当的抽样方法解决问题.◆教学重难点◆教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:理解等可能性的含义、抽签法和随机数法的实施步骤.◆教学过程一、新课导入情境:某校要了解高一(2)班学生的视力情况,决定从班级里45名学生中抽取10名学生进行检查.以下几种抽取方法,你认为可行吗?(1)从戴眼镜的学生中抽取10名进行严查;(2)从没有佩戴眼镜的学生中抽取10名进行检查;(3)从女生中抽取10名进行检查.显然,以上3中抽样方法都具有一定的片面性.那么,怎样抽取样本才是合理的呢?这节课我们就一起来探究!设计意图:通过学生身边的简单具体实例,从直观感受的基础上体会抽样的必要性,为下面的学习做铺垫.二、新知探究问题1:怎样抽取样本,才能使样本更好地代表总体?答案:尽量使样本的分布能近似于总体的分布,例如,在调查学校学生的身高时,若身高在160 cm~170 cm的学生占总体的40%,那么样本中160 cm~170 cm的学生占样本容量的40%,这样得出的结论更准确.因为抽查是由部分来推断总体,所以其结果具有不确定性,在处理这个矛盾的过程中,人们经过长期的实践总结,得出了抽查的基本方法——随机抽样.定义:在抽样调查中,每个个体被抽到的可能性均相同的抽样方法,称为随机抽样.一般地,从N(N为正整数)个不同个体构成的总体中,逐个不放回地抽取n(1≤n<N)个个体组成样本,并且每次抽取时总体内的每个个体被抽到的可能性相等,这样的抽样方法通常叫作简单随机抽样.简单随机抽样是一种最基本的抽样方法,对于不知道某些特别信息的总体,往往采用简单随机抽样.【概念巩固】下面抽取样本的方式是简单随机抽样吗?为什么?1.从无限多个个体中抽取50个个体作为样本.2.箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里.3.从50个个体中一次性抽取5个个体作为样本.思路点拨:要判断所给的抽样方式是否是简单随机抽样,关键是看它们是否符合简单随机抽样的特点.答案:1.不是简单随机抽样.因为被抽取样本的总体的个体数是无限的而不是有限的;2.不是简单随机抽样.简单随机抽样是不放回抽样,而它是放回抽样;3.不是简单随机抽样.因为它是一次性抽取,而不是“逐个”抽取.总结:简单随机抽样具备以下四个特点:①总体的个体数较少,②逐个抽取,③不放回抽样,④等可能抽样.判断抽样方法是否是简单随机抽样,只需看是否符合上述四个特点,若有一条不符合就不是简单随机抽样.设计意图:通过学生身边的简单具体实例,从直观感受的基础上体会简单随机抽样的特点,提高学生的抽象概括能力和语言表达能力.问题2:在解决实际问题时,怎样才能保证等可能抽取呢?探究:某校要了解高一(2)班学生的视力情况,决定从班级里45名学生中抽取10名学生进行检查.答案:将这45名学生进行编号;再做45个编号分别为1~45的“签”(也称“阄”),放入密封的容器或袋中(从外面看不见内部),并充分搅拌;最后从容器或袋中随机抽取10个签,记下10个签的编号,与签的编号相同的学生的视力即组成需要的样本,这种抽样方法称为抽签法.一般地,用抽签法从个体个数为N的总体中抽取一个容量为k的样本的步骤是:(1)给总体中的N个个体编号;(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽取1个号签,连续抽取k次;(5)将总体中与抽到的号签的编号一致的k个个体取出.追问1:哪些步骤保证每个个体被抽到的可能性是一样的?答案:形状、大小相同的号签;不透明的箱子;搅拌均匀.追问2:抽签法有哪些优点和缺点?答案:优点:简单易行;缺点:总体容量非常大时,费时费力,不容易搅拌均匀,会导致抽样不公平.问题3:当总体中所含个体数较多时,抽签法虽然能够保证样本的代表性,但是制签的过程也比较麻烦,如何简化制签的过程呢?答案:制作一个表,这个表由0,1,2,3,4,5,6,7,8,9这10个数字组成,表中任一位置出现任一数字的概率相同,且不同位置的数字之间是独立的.这样的表称为随机数表,其中的每个数都称为“随机数”,于是,我们只要按一定的规则从随机数表中选取号码就可以了,这种抽样方法叫作随机数表法.抽签法和随机数表法都是简单随机抽样.思考:如何用随机数表法求解本节开头的问题?(1)对45名学生按01,02,03,…,45编号;(2)在随机数表中随机地确定一个数字,如第8行第29列的数字7作为开始,为便于说明,我们将附录中的6~10行摘录如下:(3)从数字7开始向右读下去,每次读两位,凡不在01~45中的数跳过去不读,遇到已经读过的数也跳过去,便可依次得到12,07,44,39,38,33,21,34,29,42这10个号码,编号为这10个号码的学生的视力即组成一个容量为10的样本.当随机地选定开始的数后,读数的方向可以向右,也可以向左、向上、向下等.追问:你能总结出用随机数表法抽取样本的步骤吗?答案:(1)对总体中的个体编号(每个号码位数一致);(2)在随机数表中任选一个数;(3)从选定的数开始按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止;(4)根据选定的号码抽取样本.总结:在用随机数法抽取样本时,应注意以下几点:(1)编号位数一致,一是为了便于查找,二是要保证每个个体被抽取的概率相等;(2)抽样时所需的随机数表可临时产生,也可以沿用已有的随机数表;(3)读数的起点、读取方向都是随机的,且事先定好.设计意图:帮助学生了解随机数表,熟悉随机数法抽取样本的过程,进一步积累基本活动经验.三、应用举例例1:(多选)下列关于简单随机抽样的叙述正确的是( )A .一定要逐个抽取B .它是一种最简单、最基本的抽样方法C .总体中的个数必须是有限的D .先被抽取的个体被抽到的可能性要大解析:由简单随机抽样的特点可以得出判断.A 、B 、C 都正确,并且在抽样过程中,每个个体被抽到的可能性都相等,不分先后.答案:ABC .例2:用随机数表法从1000 名学生男生抽取25 人参加某项运动,则某男学生被抽到的概率是_______;将1000名学生分别编号000、001、002……999,从随机数表的第5行(下表为随机数表的第5-8行)第11列开始,向右读取,则抽取的第5个样本的号码是____.5556 8526 6166 8231 2438 8455 4618 44452635 7900 3370 9160 1620 3882 7757 49503211 4919 7306 4916 7677 8733 9974 67322748 6198 7164 4148 7086 2888 8519 1620解析:根据简单随机抽样的特点,每个个体被抽到的概率相同.所以某男生被抽到的概率为25÷1000×100%=2.5%;抽取出的号码分别为668、231、243、884、554,所以第五名被抽取出的学生编号为554.例3:用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A .110,110B .310,15C .15,310D .310,310 解析:根据简单随机抽样的定义知个体a 两次被抽到的可能性相同,均为310.答案:D . 四、课堂练习1.下面的抽样方法是简单随机抽样的个数是( )①某班45名同学,学校指定个子最高的5名同学参加学校的一项活动;②从2021生产线连续生产的产品中一次性抽取3个进行质检;③一儿童从玩具箱中的2022个玩具中随意拿出一件玩,玩完放回再拿一件,连续玩了5次.A .1B .2C .3D .02.总体由编号为 01,02,…,19,20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 4369 9728 01983202 9234 4935 8200 3623 4869 6938 7481A . 08B . 07C .02D .013.某总体容量为M,其中带有标记的有N个,现用简单随机抽样从中抽出一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为_______.4.下列抽样试验中,适合用抽签法的是()A.从某厂生产的3000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验参考答案:1.解析:①不是,因为它不是等可能;②不是,因为它是“一次性”抽取;③不是,因为它是有放回的.答案:D.2、解析:由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.答案:D.3、解析:总体中带有标记的比例是NM ,则抽取的m个个体中带有标记的个数估计为NmM.答案:NmM.4、解析:A中总体容量较大,样本量也较大,不适宜用抽签法;B中总体容量较小,样本量也较小,可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D中虽然样本量较小,但总体容量较大,不适宜用抽签法.故选B.答案:B.五、课堂小结设计意图:引导学生对本节课所学知识方法有一个全面的认识,培养学生的归纳总结能力,帮助学生深化对知识的理解与掌握,体会研究解决实际问题的思路、途径、方法,为进一步学习打下坚实基础.六、布置作业教材第216页练习第1,2题.。

初中简单随机抽样教案

初中简单随机抽样教案

教案:初中简单随机抽样教学目标:1. 让学生理解随机抽样的概念,知道随机抽样的意义和作用。

2. 学会使用简单随机抽样的方法进行数据收集和分析。

3. 培养学生的观察能力、思考能力和动手能力。

教学重点:1. 随机抽样的概念和意义。

2. 简单随机抽样的方法。

教学难点:1. 随机抽样的实际操作。

教学准备:1. PPT课件。

2. 学生分组,每组准备一些小物品,如糖果、小球等。

教学过程:一、导入(5分钟)1. 利用PPT课件,展示一些生活中的随机抽样现象,如彩票抽奖、糖果包装上的随机颜色等。

2. 引导学生思考:这些现象有什么共同特点?它们的意义和作用是什么?二、自主学习(10分钟)1. 让学生阅读教材,了解随机抽样的概念和意义。

2. 学生分享学习心得,教师点评并总结。

三、课堂讲解(15分钟)1. 讲解简单随机抽样的方法,如抽签法、随机数表法等。

2. 举例说明如何使用这些方法进行数据收集和分析。

四、实践操作(15分钟)1. 学生分组,每组选择一种物品进行随机抽样。

2. 教师巡回指导,解答学生在操作过程中遇到的问题。

3. 各组汇报抽样结果,教师点评并总结。

五、课堂小结(5分钟)1. 让学生回顾本节课所学内容,总结随机抽样的概念、意义和作用。

2. 强调随机抽样在实际生活中的应用价值。

六、课后作业(课后自主完成)1. 结合教材,思考生活中还有哪些随机抽样的现象?它们是如何实现的?2. 尝试使用简单随机抽样的方法,对身边的物品进行数据收集和分析。

教学反思:本节课通过引导学生观察生活中的随机抽样现象,让学生了解随机抽样的概念和意义。

通过课堂讲解和实践操作,让学生学会使用简单随机抽样的方法进行数据收集和分析。

在教学过程中,要注意关注学生的学习情况,及时解答学生的问题,确保学生能够掌握所学知识。

同时,要注重培养学生的观察能力、思考能力和动手能力,提高学生的学习兴趣和积极性。

简单随机抽样一等奖创新教学设计

简单随机抽样一等奖创新教学设计

简单随机抽样一等奖创新教学设计作为一等奖创新教学设计,简单随机抽样是一种常见而有效的抽样方法。

在这篇文章中,我将详细介绍简单随机抽样的定义、原理、步骤以及其在教学设计中的应用。

简单随机抽样是指从总体中无放回地、以等概率地随机选择一定数量的个体作为样本的抽样方法。

在应用简单随机抽样时,首先需要清楚定义总体以及样本的概念。

总体是指我们所研究的整个群体,而样本是从总体中抽取出来、代表总体的一部分个体。

简单随机抽样的原理是基于概率论的基本规则。

在一个总体中,每个个体被选中的概率应该是相等的,也就是每个个体被选中的机会应该是一样的。

通过简单随机抽样,我们可以有效地减少抽样误差,并且保证样本的代表性。

下面是简单随机抽样的具体步骤:1.确定总体:首先需要明确我们所研究的总体是什么,例如一些年级的学生、一些地区的居民等。

2.确定样本容量:确定需要抽取的样本数量。

样本容量需要根据具体的研究目的和条件来确定,一般来说,样本容量越大,抽样误差越小。

3.编号:将总体中的个体按照一定的顺序进行编号,可以使用计算机或者手工进行编号。

4.随机抽取样本:使用随机数表、计算机随机数发生器等方法进行随机抽取样本。

将生成的随机数与编号对应,选择相应编号的个体作为样本。

5.统计分析:对样本进行统计分析,得出结果。

简单随机抽样在教学设计中的应用非常广泛。

通过简单随机抽样,我们可以在不同群体中随机选择一部分个体作为样本,进行教学设计的评估和改进。

例如,我们可以随机选择一些学生进行教学实验,比较实验组和对照组的学习效果,评估教学设计的有效性。

此外,简单随机抽样还可以帮助教师了解学生的兴趣、能力等方面的差异,有针对性地进行个性化教学。

总之,简单随机抽样是一等奖创新教学设计中常用的抽样方法之一、通过简单随机抽样,我们可以有效地减少抽样误差,保证样本的代表性,为教学设计的评估和改进提供科学的基础。

2.1.1简单随机抽样教案

2.1.1简单随机抽样教案

《简单随机抽样》教案教学目标:(1)正确明白得随机抽样的概念,把握抽签法、随机数表法的一样步骤;(2)在解决统计问题的进程中,学会用简单随机抽样的方式从整体中抽取样本;(3)感受抽样统计的重要性和必要性.教学重点、难点:正确明白得简单随机抽样的概念,把握抽签法及随机数法的步骤,并能灵活应用相关知识从整体中抽取样本。

教学进程:一、问题情境情境1:假设你作为一名食物卫生工作人员,要对某食物店内的一批小包装饼干进行卫生达标查验,你预备如何做?情境2:学校的投影仪灯泡的平均利用寿命是3000小时,“3000小时”如此一个数据是如何得出的呢?二、学生活动由于饼干的数量较大,不可能一一检测,只能从中抽取必然数量的饼干作为查验的样本;考察灯泡的利用寿命带有破坏性,因此,只能从一批灯泡中抽取一部份(例如抽取10个)进行测试,然后用取得的这一部份灯泡的利用寿命的数据去估量这一批灯泡的寿命;(抽样调查),那么,应当如何获取样本呢?三、建构数学1.统计的有关概念:统计的大体思想:用样本去估量整体;整体:所要考察对象的全部;个体:整体中的每一个考察对象;样本:从整体中抽取的一部份个体叫整体的一个样本;样本容量:样本中个体的数量;抽样:从整体中抽取一部份个体作为样本的进程叫抽样。

2.抽样的常见方式:(一)简单随机抽样的概念一样地,设一个整体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),若是每次抽取时整体内的各个个体被抽到的机遇都相等,就把这种抽样方式叫做简单随机抽样。

说明:简单随机抽样必需具有下列特点:(1)简单随机抽样要求被抽取的样本的整体个数N是有限的。

(2)简单随机样本数n小于等于样本整体的个数N。

(3)简单随机样本是从整体中逐个抽取的。

(4)简单随机抽样是一种不放回的抽样。

(5)简单随机抽样的每一个个体入样的可能性均为n/N。

(二)简单随机抽样实施的方式:(1)抽签法:一样地,抽签法确实是把整体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,持续抽取n次,就取得一个容量为n的样本。

2022年教学教材《2.1简单随机抽样 》优秀教案

2022年教学教材《2.1简单随机抽样 》优秀教案

第十四章统计抽样简单随机抽样教材在?统计?一章较为系统地介绍了数据处理的过程:从现实世界或其他学科中提出具有一定价值的统计问题;根据问题的具体情境,能通过抽样、试验、设计调查问卷等方式收集数据;尽可能有效、清晰地表示数据,并对数据作出合理的解释;通过对数据的分析作出合理的决策;形成对数据处理过程进行初步评价的意识.1教学重点:理解简单随机抽样的目的和根本要求2教学难点:掌握简单随机抽样中的抽签法、随机数表法的一般步骤多媒体调试、讲义分发。

在我国,食品平安问题越来越受到人们的关注,、和各级政府部门也高度重视,从制度建设和管理上都做了大量的、卓有成效的工作,取得了良好的效果问题某报告称,食品质量检测人员对某品牌牛奶的抽检合格率为%,你知道这一数据是怎么得到的吗?提示抽取少量的牛奶作为样本来检测得到的知识点一简单随机抽样一般地,从个体数为N的总体中逐步不放回地取出n个个体作为样本n<N,如果每个个体都有相同的时机被取到,那么这样的抽样方法称为简单随机抽样.知识点二抽签法、随机数表法1.抽签法抽取样本的步骤1将总体中的N个个体编号;2将这N个号码写在形状、大小相同的号签上;3将号签放在同一箱中,并搅拌均匀;4从箱中每次抽出1个号签,连续抽取次;5将总体中与抽到的号签的编号一致的个个体取出,这样就得到一个容量为的样本.2.随机数表法抽取样本的步骤1对总体中的个体编号每个号码位数一致;2在随机数表中任选一个数;3从选定的数开始按一定的方向读下去,假设得到的号码在编号中,那么取出;假设得到的号码不在编号中或前面已经取出,那么跳过,如此继续下去,直到取满为止;4根据选定的号码抽取样本.3.抽签法与随机数表法的异同点一、对简单随机抽样的概念理解例1关于简单随机抽样,以下说法正确的选项是________.填序号①它要求被抽取样本的总体的个数有限;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等可能抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.答案①②③④解析根据简单随机抽样的概念及特征可知,①②③④都属于简单随机抽样的特点.反思感悟简单随机抽样必须具备以下特点1被抽取样本的总体中的个体数N是有限的.2抽取的样本是从总体中逐个抽取的.3简单随机抽样是一种不放回抽样.4简单随机抽样是一种等可能的抽样.如果四个特点有一个不满足,就不是简单随机抽样.跟踪训练1判断以下抽样方式是否是简单随机抽样?1在某车间包装一种产品,在自动包装的传送带上每隔30分钟抽一包产品,称其质量是否合格;2彩民选号,从装有36个大小、形状都相同的号签中的盒子中无放回地逐个抽出6个号签.解由简单随机抽样的特点可知,1不是简单随机抽样.2是简单随机抽样.二、抽签法例2某卫生单位为了支援抗震救灾,要在18名志愿者中选取6人组成医疗小组去参加救治工作,请用抽签法设计抽样方案.解方案如下:第一步将18名志愿者编号,号码为1,2,3,…,18第二步将号码分别写在形状、大小相同的纸条上,揉成团,制成号签.第三步将得到的号签放到一个不透明的盒子中,充分搅匀.第四步从盒子中依次取出6个号签,并记录上面的编号.第五步与所得号码对应的志愿者就是医疗小组成员.反思感悟一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.跟踪训练21上海某中学从40名学生中选1人作为上海男篮啦啦队的成员,采用下面两种选法,使用的是抽签法的序号是________.①将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;②将39个白球与1个红球球除颜色外,其他完全相同混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为啦啦队成员.答案①解析①满足抽签法的特征,是抽签法;②不是抽签法,因为抽签法要求所有的号签编号互不相同,而②中39个白球无法相互区分.2在社区公益活动中,某单位共有50名志愿者参与了报名,现要从中随机抽取8人参加一项活动,请用抽签法进行抽样,并写出过程.解第一步,将50名志愿者编号,号码为1,2,3,…,50第二步,将号码分别写在大小、形状、质地都相同的纸条上,揉成团,制成号签.第三步,将所有号签放入一个不透明的箱子中,搅拌均匀.第四步,一次取出1个号签,连取8次不放回抽取,并记录其编号.第五步,将对应编号的志愿者选出即可.三、随机数表法例3某企业要调查消费者对某产品的需求量,要从95户居民家庭中抽选10户居民,请用随机数表法抽选样本,附局部随机数表:85384405274898760602160852997161279430219298027768269162778384572784833982021145939073792422021221048870883460074636解第一步将95户居民家庭进行编号,每一户家庭一个编号,即01~95第二步在随机数表中,随机确定抽样的起点和抽样的顺序.如假定从第1行第6列的数字开始读取,读数顺序从左往右.横的数列称为“行〞,纵的数列称为“列〞.第三步依次抽出10个号码,假设得到的号码在编号中,那么取出;假设得到的号码不在编号中或前面已经取出那么跳过,如此继续下去,直到取满为止,得到的样本号码是:40,52,74,89,87,60,21,85,29,16由此产生10个样本号码,编号为这些号码的居民家庭就是抽样调查的对象.反思感悟随机数表法抽样的3个步骤1编号:这里的所谓编号,实际上是新编数字号码.2确定读数方向:为了保证选取数字的随机性,应在面对随机数表之前就指出开始数字的纵横位置,然后确定读数方向.3获取样本:读数在总体编号内的取出,而读数不在总体编号内的和已取出的不算,依次下去,直至得到容量为n的样本.跟踪训练3总体由编号为01,02,…,19,20210个个体组成,利用下面的随机数表选取5个个体,选取方法:从随机数表第1行的第5列数字开始由左到右一次选取两个数字,那么选出来的第5个个体的编号为________.答案01解析从随机数表第1行的第5列数字开始由左到右一次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件的数字依次为02,14,07,01,故第5个数为011.下面抽样方法是简单随机抽样的是A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1 000箱可乐中一次性抽取2021行质量检查C.某连队从2021战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个中逐个不放回地随机抽取2个进行质量检验假设10个已编好号,对编号随机抽取答案D解析A中,平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;B中,一次性抽取不符合简单随机抽样逐个抽取的特点,故错误;C中,50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误.2.抽签法确保样本代表性的关键是A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案B解析假设样本具有很好的代表性,那么每一个个体被抽取的时机相等,故需要对号签搅拌均匀.3.假设用简单随机抽样从个体数为10的总体中抽取一个容量为3的样本,分三次抽取,那么其中个体甲在三次抽取中抽到的可能性________填“相等〞或“不相等〞.答案相等解析简单随机抽样过程中每个个体被抽到的可能性相等.4.为了了解参加运动会的2 000名运发动的年龄情况,从中抽取2021发动的年龄进行统计分析.就这个问题,以下说法中正确的有________.填序号①2 000名运发动是总体;②每名运发动是个体;③所抽取的2021发动是一个样本;④样本容量为2021⑤这个抽样方法可采用随机数表法抽样;⑥每名运发动被抽到的时机相等.答案④⑤⑥解析 2 000名运发动的年龄是总体,每名运发动的年龄是个体,2021发动的年龄是样本,故①②③错误;④⑤⑥正确.5.某班有51名学生,学号从00到50,数学老师在上统计课时,运用随机数表法选取5名学生提问,老师首先选定随机数表中的第21行第29个数5开始,然后向右读,如果不在50以内或与前面所取数字相同那么跳过去,那么被提问的5名学生的学号是________.附:随机数表的第21行第21个数到第22行第10个数: (461628355494750899233708)9200488033694598…答案08,23,37,00,48要判断所给的抽样方法是不是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点:总体有限、逐个抽取、无放回抽取、等可能抽取。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单随机抽样教学设计
简单随机抽样是指从总体 N 个单位中任意抽取 n 个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。

简单随机抽样是人教版数学必修 3 的知识点。

以下是本人为你整
理的简单随机抽样教学设计,希望能帮到你。

《简单随机抽样》教学设计
三维目标:
1、知识与技能:正确理解随机抽样的概念,掌握抽
签法、随机数表法的一般步骤 ;
2、过程与方法:(1)能够从现实生活或其他学科中
提出具有一定价值的统计问题; (2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

3、情感态度与价值观:通过对现实生活和其他学科
中统计问题的提出,体会数学知识与现实世界及各学科知识之
间的联系,认识数学的重要性。

4、重点与难点:正确理解简单随机抽样的概念,掌
握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中
抽取样本。

教学方法:讲练结合法
教学用具:多媒体
课时安排: 1 课时
教学过程:
一、问题情境
假设你作为一名食品卫生工作人员,要对某食品店内
的一批小包装饼干进行卫生达标检验,你准备怎样做? 显然,你只能从中抽取一定数量的饼干作为检验的样本。

( 为什么 ?)
那么,应当怎样获取样本呢?
二、探究新知
1、统计的有关概念:总体:在统计学中, 所有考察对象的全体叫做总体.个体:每一个考察的对象叫做个体.样本:从总体中抽取的一部分个体叫做总体的一个样本.样本容量:样本中个体的数目叫做样本的容量.统计的基本思想:用
样本去估计总体.
2、简单随机抽样的概念一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本 (n ≤N), 如
果每次抽取时总体内的各个个体被抽到的机会都相等,就把这
种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随
机样本。

下列抽样的方式是否属于简单随机抽样 ?为什么 ? (1) 从无限多个个体中抽取 50 个个体作为样本。

(2) 箱子里共有 100 个
零件,从中选出 10 个零件进行质量检验,在抽样操作中,从中任
意取出一个零件进行质量检验后,再把它放回箱子。

(3)从 8 台电脑中,不放回地随机抽取 2 台进行质量检查( 假设8 台电脑已编好号,对编号随机抽取)
3、常用的简单随机抽样方法有:
(1)抽签法的定义。

一般地,抽签法就是把总体中的
N个个体编号,把号码写在号签上,将号签放在一个容器中,
搅拌均匀后,每次从中抽取一个号签,连续抽取n 次,就得到一个容量为n 的样本。

思考 ? 你认为抽签法有什么优点和缺点:当总体中的
个体数很多时,用抽签法方便吗 ? 例 1. 若已知高一 (6) 班总共有
57 人,现要抽取 8 位同学出来做游戏,请设计一个抽取的方法,要使得每位同学被抽到的机会相等。

分析:可以把 57 位同学的学号分写在大小,地都相同
的片上,折叠或揉成小球,把片集中在一起并充分拌后,在从中
个抽出 8 片,再出片上的学号
的同学即可 .基本步:第一步:将体的所有N 个个体从 1至 N 号 ; 第二步:准 N 个号分上些号,将号
放在容器中拌均匀后每次抽取一个号,不放回地取
n 次; 第三步:将取出的 n 个号上的号所的 n 个个体作本。

(2)随机数法的定:利用随机数表、随机数骰子或算机
生的随机数行抽,叫随机数表法,里介随
机数表法。

怎利用随机数表生本呢 ?下面通例子来
明,假我要考察某公司生的500 克袋装牛奶的量是否达,从800 袋牛奶中抽取60 袋行,利用随机数表
抽取本,可以按照下面的步行。

第一步,先将800袋牛奶号,可以000, 001,⋯, 799。

第二步,在随机数表中任一个数,例如出第8 行第 7 列的数 7( 了便于明,下面摘取了附表 1 的第 6 行至
第 10行)。

1622779439495443548217379323 78 84 42
17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59
16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56
07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49
17 46 09 62 87 35 20 96 43 84 26 34 91 64 21
76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38
79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02
73 43 28 第三步,从定的数 7 开始向右 ( 数的方向也可以是向左、向上、向下等 ) ,得到一个三位数 785,由于785<799,明号 785
在体内,将它取出 ;
向右,得到916,由于 916>799,将它去掉,
按照种方法向右,又取出 567,199, 507,⋯,依次下去,直到本的 60 个号全部取出,我就得到一个容量 60 的本。

三、堂
四、堂小
1. 随机抽的概念一般地,一个体的个体
数N,如果通逐个抽取的方法从中抽取一个本,且每次抽取
各个个体被抽到的概率相等,就称的抽随机抽。

2. 随机抽的方法:抽法随机数表法
五、后作
P57 1 、2
六、板
1、的有关概念
2、随机抽的概念
3、常用的随机抽方法有:(1) 抽法(2) 随机数表法
4、堂
《随机抽》知点
一、随机抽:
1.随机抽的概念:
一个体含有 N 个个体,从中逐个不放回地抽取 n 个个体作本 (n ≤N),如果每次抽取体内的各个个体被
抽到的机会都相等,就把种抽方法叫做随机抽.
2.最常用的随机抽方法有两种——抽法和随
机数法 .
二、系统抽样的步骤
假设要从容量为N 的总体中抽取容量为n 的样本:
(1)先将总体的 N 个个体编号 ;
(2)确定分段间隔 k,对编号进行分段,当是整数时,
取 k=;
(3) 在第 1 段用简单随机抽样确定第一个个体编号
l(l≤k);
(4)按照一定的规则抽取样本 . 通常是将 l 加上间隔 k 得到第 2 个个体编号l+k ,再加 k 得到第 3 个个体编号l+2k ,依次进行下去,直到获取整个样本.
三、分层抽样
1.分层抽样的概念:
在抽样时,将总体分成互不交叉的层,然后按照一定
的比例,从各层独立地抽取一定数量的个体,将各层取出的个
体合在一起作为样本,这种抽样方法是分层抽样.
2.当总体是由差异明显的几个部分组成时,往往选用
分层抽样的方法 .
3.分层抽样时,每个个体被抽到的机会是均等的.
看了“简单随机抽样教学设计”的人还看了:
1.心理健康课教学案例
2.学会合理消费教学设计
3.高二数学《概率的基本性质》教学设计
4.青春期心理健康教育教案
5.青少年心理健康教案
;。

相关文档
最新文档