简单随机抽样教学设计
简单随机抽样教案

简单随机抽样教案一、教学目标1.了解简单随机抽样的定义和特点;2.掌握简单随机抽样的抽样方法;3.理解简单随机抽样的应用场景。
二、教学内容1. 简单随机抽样的定义和特点简单随机抽样是指从总体中随机地抽取n个样本,使得每个样本被抽中的概率相等。
简单随机抽样的特点有:•抽样结果具有代表性;•抽样过程简单易行;•抽样误差可控制。
2. 简单随机抽样的抽样方法简单随机抽样的抽样方法有以下几种:(1)纸条抽签法将总体中每个个体的编号写在纸条上,放入一个容器中,然后从中随机抽取n个纸条,对应的个体即为样本。
(2)随机数表法利用随机数表,从总体中随机抽取n个个体作为样本。
(3)随机数发生器法利用计算机随机数发生器,从总体中随机抽取n个个体作为样本。
3. 简单随机抽样的应用场景简单随机抽样适用于总体中个体之间没有明显差异的情况,例如:•人口普查;•质量检验;•市场调查等。
三、教学过程1. 简单随机抽样的定义和特点教师通过讲解,让学生了解简单随机抽样的定义和特点,并与其他抽样方法进行比较,让学生明确简单随机抽样的优势。
2. 简单随机抽样的抽样方法教师通过实例演示,让学生掌握纸条抽签法、随机数表法和随机数发生器法的抽样方法,并让学生分析各种方法的优缺点。
3. 简单随机抽样的应用场景教师通过实例演示,让学生了解简单随机抽样的应用场景,并让学生思考在实际应用中如何选择合适的抽样方法。
四、教学评价教师可以通过以下方式对学生进行评价:•课堂练习:让学生在课堂上完成简单随机抽样的练习题,检查学生对知识点的掌握情况;•作业评估:布置简单随机抽样的作业,检查学生对知识点的理解和应用能力;•实践评价:让学生在实际应用中进行简单随机抽样,并对抽样结果进行分析和评价。
五、教学反思简单随机抽样是统计学中最基本的抽样方法,对于学生来说,掌握简单随机抽样的定义、特点和抽样方法非常重要。
在教学过程中,教师应该注重实例演示和练习,让学生通过实践掌握知识点,提高学生的应用能力。
高中数学简单随机抽样教案

高中数学简单随机抽样教案
教学目标:
1. 了解简单随机抽样的原理和方法。
2. 学会使用数学方法进行简单随机抽样。
3. 掌握简单随机抽样的应用场景和意义。
教学内容:
1. 简单随机抽样的概念和特点。
2. 简单随机抽样的步骤和方法。
3. 简单随机抽样的应用案例。
教学步骤:
1. 引入:介绍简单随机抽样的概念和重要性。
2. 讲解:讲解简单随机抽样的步骤和方法。
3. 演示:进行简单随机抽样的实际操作演示。
4. 练习:让学生进行简单随机抽样的练习。
5. 总结:总结本节课学习的内容,并强调简单随机抽样的应用意义。
教学资源:
1. 教学课件。
2. 抽样器具。
3. 实际数据样本。
教学评价:
1. 口头回答问题。
2. 练习题答题。
3. 实际操作抽样。
教学延伸:
1. 学生可根据所学内容,设计简单随机抽样实验,并分析结果。
2. 学生可在现实生活中应用简单随机抽样方法,进行一些实际调查或研究。
教学反思:
本节课主要讲解了简单随机抽样的原理和方法,通过实际操作演示,帮助学生掌握了简单随机抽样的应用技巧。
在教学中应注重理论与实践相结合,激发学生的学习兴趣,提高学习效果。
简单随机抽样教学设计

简单随机抽样教学设计第1篇:上海教师资格证考试:简单随机抽样教案2017上海教师资格证考试:简单随机抽样教案简单随机抽样教案一、教学目标【知识与技能】能够准确叙述出随机抽样的概念,可以利用抽签法解决简单的实际问题。
【过程与方法】在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
【情感态度与价值观】通过对现实生活统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
二、教学重、难点【重点】掌握简单随机抽样常见的抽签法.【难点】理解简单随机抽样的科学性,以及由此推断结论的可靠性.三、教学过程(一)创设情境,导入新课请问下列调查是“普查”还是“抽样”调查?(1)一锅水饺的味道(2)旅客上飞机前的安全检查(3)一批炮弹的杀伤半径(4)一批彩电的质量情况(5)美国总统的民意支持率学生经过讨论后得出答案。
引出课题。
(二)师生互动,探索新知在学生明确了抽样与普查的区别之后,为了加深对抽样概念的理解设计如下例题。
例1:语文老师为了了解某班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么? A.在班级12名班委名单中逐个抽查5位同学进行背诵B.在班级45名同学中逐一抽查10位同学进行背诵先让学生分析、选择B后,师生一起归纳其特征,让学生体验B 种抽样的科学性,然后教师指出这就是简单随机抽样,最后板书课题——简单随机抽样及其定义。
简单随机抽样的含义:一般地,设一个总体有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,则这种抽样方法叫做简单随机抽样。
教师总结简单随机抽样的特点:(1)总体的个数有限;(2)样本的抽取式逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体(4)每个个体被抽到的机会都相等,抽样具有公平性例2.在班级45名同学中逐一抽查10位同学进行背诵的抽签步骤是什么呢? 先让学生独立思考,然后分小组合作学习,各小组推荐一位同学发言,最后师生一起归纳“抽签法”步骤,教师板书上面步骤。
《简单随机抽样》示范课教学设计【高中数学教案】

《简单随机抽样》教学设计1.以探究具体问题为导向,引入简单随机抽样的概念,引导学生从现实生活或其他学科中提出具有一定价值的统计问题;在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
2.正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
3.通过对现实生活中实际问题进行简单随机抽样,感知应用数学知识解决实际问题的方法。
1.正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤。
2.能够从现实生活或其他学科中提出具有一定价值的统计问题;3.在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
4.通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
【教学重点】简单随机抽样的概念,抽签法及随机数法的操作步骤。
【教学难点】对样本随机性的理解。
抽签纸,图表等。
(一)知识回顾统计学:研究客观事物的数量特征和数量关系,它是关于数据的搜集、整理、归纳和分析方法的科学。
统计的基本思想:用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。
数理统计所要解决的问题是如何根据样本来推断总体?总体、个体、样本、样本容量的概念:总体:所要考察对象的全体。
个体:总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做这个总体的一个样本。
样本容量:样本中个体的数目。
(二)新课导入在1936年美国总统选举前,一份颇有名气的杂志的工作人员做了一次民意测验,调查兰顿和罗斯福中谁将当选下一届总统。
为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(在1936年电话和汽车只有少数富人拥有),通过分析收回的调查表,显示兰顿非常受欢迎。
于是此杂志预测兰顿将在选举中获胜。
实际选举结果正好相反,最后罗斯福在选举中获胜。
其数据如下:①预测结果出错的原因是什么?抽取的样本不具有代表性,调查结果只能代表富人的意见。
高中数学随机抽样教案设计

高中数学随机抽样教案设计按照随机的原则,即保证总体中每一个对象都有已知的、非零的概率被选入作为研究的对象,保证样本的代表性。
接下来是小编为大家整理的高中数学随机抽样教案设计,希望大家喜欢!高中数学随机抽样教案设计一“简单随机抽样“教学设计说明一、本课教学内容的本质、地位、作用分析(一)教材所处的地位和前后联系本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.(二)教学重点①简单随机抽样的概念,②常用实施方法:抽签法和随机数表法(三)教学难点对简单随机抽样概念中“每次抽取时各个个体被抽到的概率相等”的理解.二、教学目标分析1、知识目标(1)理解并掌握简单随机抽样的概念、特点和步骤.(2)掌握简单随机抽样的两种方法:抽签法和随机数表法.2、能力目标(1)会用抽签法和随机数表法从总体中抽取样本,并能运用这两种方法和思想解决有关实际问题.(2)灵活运用简单随机抽样的方法解释日常生活中的常见非数学问题的现象,加强观察问题、分析问题和解决问题的能力培养.3、情感、态度目标(1)培养学生收集信息和处理信息、加工信息的实际能力,分析问题、解决问题的能力.(2)培养学生热爱生活、学会生活的意识,强化他们学生活的知识、学生存的技能,提高学生的动手能力.三、教学问题诊断本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据收集的方法应该由目的与要求所决定的,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据收集的方法,要从随机现象本身的规律性来看待数据收集的方法.特别是要突出简单随机样本的两个特征.要改变学生仅从形式上来理解简单随机抽样的问题.在教学中学生可能会产生随机抽样中简单随机抽样、系统抽样和分层抽样的雏形,教师不必进一步明确界定概念,可待后续的学习中进一步完善.如何发现随机抽样的公平性,也就是“如何去观察,才能发现规律”。
数学《简单随机抽样》教案

数学《简单随机抽样》教案一、教学目标:1. 能够正确理解和定义简单随机抽样。
2. 能够通过例子和实例解决简单随机抽样的相关问题。
二、教学重点:1. 理解简单随机抽样的概念和原理。
2. 了解简单随机抽样的应用领域和常见问题。
三、教学难点:1. 解决复杂问题中的简单随机抽样。
2. 掌握相关的统计方法和计算公式。
四、教学方法:讲解法、案例分析法、问题解决法。
五、教学过程:1. 引入:请学生们回忆一下自己前些天的一些活动,比如上学、做作业、出门逛街等,问问同学们这些活动中有哪些是随机的,哪些不是随机的。
2. 讲解:简单随机抽样是统计学中的一种基本抽样方法。
在简单随机抽样中,我们从总体中随机地选出 n 个样本,使得每个样本被选中的概率相等。
这样的样本叫做简单随机样本。
3. 例子:例如,我们在一家公司进行问卷调查时,可以先从公司全体员工中随机抽取一部分人做为样本,对这部分人进行问卷调查,并将调查结果推广到整个员工群体中。
这样的调查结果,就是一个基于简单随机抽样的统计结果。
4. 练习:下面有几个案例,请根据已知信息进行简单随机抽样。
(1)某小学有200名学生,现在要从中抽取40名学生进行问卷调查,请问应该如何进行简单随机抽样?(2)某厂家要对自己生产的汽车零部件进行质量检测,为此需要从生产线上随机抽取100个零部件,请问应该如何进行简单随机抽样?5. 解答:(1)将200名学生标号为1~200,然后使用随机数生成器生成40个1~200之间的随机数,将对应的学生选中即可。
(2)随机选取100个零部件,每个零部件被选中的概率相等,可以使用随机数生成器或抽签等方法进行抽样。
六、教学总结:通过以上例子,我们可以看出,简单随机抽样是一种基本的统计学方法,广泛应用于各个领域。
在进行简单随机抽样时,我们需要确保每个样本被选中的概率相等,这样才能保证样本的代表性和可靠性。
简单随机抽样--优质获奖精品教案 (19)

2.1 随机抽样【教学目标】1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.【教法指导】本节重点是能从现实生活或其他学中提出具有一定价值的统计问题及学会简单随机抽样方法,了解分层和系统抽样方法;难点是对样本随机性的理解;本节知识的主要学习方法是动手与观察,思考与交流,归纳与总结.加强新旧知识之间的联系,培养自己分析问题、解决问题的能力,从而获得学习数学的方法.【教学过程】课本导读一、总体、个体、样本在统计里,把所考察对象的某一数值指标的全体构成的集合看成总体,其中构成总体的每一个考察的对象为个体.从总体中随机抽取若干个个体构成的集合叫做总体的一个样本,样本中包含的个体数目叫做样本容量.二、随机抽样抽样时保持每一个个体都可能被抽到,每一个个体被抽到的机会是均等的,满足这样条件的抽样是随机抽样.三、简单随机抽样1.定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.最常用的简单随机抽样的方法抽签法和随机数法.四、系统抽样1.定义当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取1个个体得到所需要的样本,这种抽样方法叫做系统抽样.五、分层抽样1.定义在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法就叫做分层抽样.2.分层抽样的操作步骤第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.六、三种抽样方法的区别与联系适用范围总体中个体数较少总体中个体数较多总体由差异明显的几部分组成疑难辨析1.简单随机抽样(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次抽到的可能性最大.( )[ 学 ](2)从20个零件中用简单随机抽样一次性抽取3个进行质量检测.( )(3)从100件玩具随机拿出一件,放回后再拿出一件,连续拿5次,是简单随机抽样.( )2.系统抽样(1)当总体中个体数较多时,应采取系统抽样法.( )(2)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( )3.分层抽样(1)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( )(2)某地区教育部门要调查中小学生的近视情况及形成原因,要抽取1 的学生进行调查,可用分层抽样进行.( )[ 学 ]4.三种抽样方法的比较(1)某班有45人,现抽取5人参加一项社会活动,则可以用简单随机抽样法抽取.( )(2)某校即将召开学生代表大会,现要从高一、高二、高三共抽取60名代表,则可用分层抽样方法抽取.( )(3)三种抽样方法,不论是哪一种,总体中每一个个体被抽到的机会均等.( )(3)根据三种抽样方法的规则可知,每个个体被抽到的机会均等.题型一简单随机抽样例1第十二届全运会将于2013年8月31日至9月12日在辽宁省沈阳市举行,沈阳某大学为了支持大运会,从报名的30名大三学生中选8人组成志愿小组,请用抽签法和随机数表法设计抽样方案.探究一通过本例题让学生了解利用简单随机抽样抽取样本时条件及步骤.1.条件(1)总体的个数较少,利用随机数表法或抽签法可容易获得样本;2.步骤(1)随机数表法的操作步骤 编号、选起始数、读数、获取样本;(2)抽签法的操作步骤 编号、制签、搅匀、抽取.学思考题一1、下列问题中,最适合用简单随机抽样方法抽样的是 ( )A .某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B .从10台冰箱中抽出3台进行质量检查C .某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D .某乡农田有 山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量 答案 B解析 A 的总体容量较大,用简单随机抽样法比较麻烦;B 的总体容量较少,用简单随机抽样法比较方便;C 由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D 总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.2.利用抽签法,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )A.13B.514C.14D.10273.用随机数表进行抽样有以下几个步骤①将总体中的个体编号;②获取样本号码;③选定开始的数字,这些步骤的先后顺序应为( )A.①②③ B.①③②C.③②① D.③①②4.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同5.现有120台机器,请用随机数表法抽取10台机器,写出抽样过程.【分析】已知N=120,n=10,用随机数表法抽样时编号000,001,002,…,119,抽取10个编号(都是三位数),对应的机器组成样本.【解析】第一步,先将120台机器编号,可以编为000,001,002, (119)第二步,在随机数表中任选一个数作为开始,任选一个方向作为读数方向,例如选出第9行第7列的数3,向右读;第三步,从选定的数3开始向右读,每次读取三位,凡不在000~119中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080, 003,105,107,083,092;第四步,以上这10个号码074,100,094,052,080,003,105,107,083,092所对应的10台机器就是要抽取的对象.题型二 系统抽样例2、 1、某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数 =80050=16,即每16人抽取一人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是________.【解析】 (1)因为采用系统抽样方法,每16人抽取一人,1~16中随机抽取一个数抽到的是7,所以在第 组抽到的是7+16( -1),所以从33~48这16个数中应取的数是7+16×2=39.【答案】392、某装订厂平均每小时大约装订图书360册,要求检验员每小时抽取40册图书,检验其质量状况,请你设计一个抽样方案.3.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程.【分析】 按1∶5的比例确定样本容量,再按系统抽样的步骤进行,关键是确定第1段的编号.【解析】 按照1∶5的比例抽取样本,则样本容量为15×295=59.抽样步骤是(1)编号按现有的号码;(2)确定分段间隔=5,把295名同学分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生;(3)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(1≤l≤5);(4)那么抽取的学生编号为l+5(=0,1,2,...,58),得到59个个体作为样本,如当l=3时的样本编号为3,8,13, (288)293.[ 学 ]探究二通过本例题让学生理解系统抽样的特点及步骤.(1)通过例2的(1)(2)让学生理解系统抽样的特点是等距离抽样,若第一组抽取号码a,然后以d为间距依次等距离抽取后面的编号,抽出的所有号码为a+d ( =0,1,2,…,n-1),其中n是组数.(2)通过例2的(3)让学生理解系统抽样的步骤第一步,将总体的N个个体编号.第二步,确定分段间隔,对编号进行分段.第三步,在第1段用简单随机抽样确定起始个体编号l.第四步,按照一定的规则抽取样本.思考题二(1)一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10组,组号依次为1,2,3,…,10,现用系统抽样抽取一个容量为10的样本,并规定如果在第一组随机抽取的号码为m,那么在第(=2,3,…,10)组中抽取的号码的个位数字与m +的个位数字相同.若m=6,则该样本的全部号码是__________________.(2)将某班的60名学生编号 01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.题型三、分层抽样例3、(1)(2013·湖南卷)某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A.抽签法 B.随机数法C.系统抽样法 D.分层抽样法(2)[2012·江苏卷] 某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.(3)[2012·天津卷] 某地区有小学150所,中学75所,大学25所,现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.(4)某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( )A.15,5,25 B.15,15,15C.10,5,30 D.15,10,20(5)某城市有210家百货商店,其中大型商店20家、中型商店40家、小型商店150家,为了掌握各商店的营业情况,计划抽取一个容量为21的样本,按照分层抽样方法抽取时,各种百货商店分别要抽取多少家?并写出抽样过程.探究三通过本例题让学生理解分成抽样的特点及步骤,各部分之间有明显的差异是分层抽样的依据,至于各层内用什么方法抽样是灵活的.分层抽样中,个体被抽中的机会均等,体现了抽样的公平性.(1)通过例3(1)让学生了解什么情况采用分层抽样;(2)通过例3(2)(3)(4)让学生理解分层抽样的抽样比如何计算;(3)通过例3(5)让学生理解分层抽样的步骤.思考题三、(1)[2012·南阳一模] 某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中抽取若干人组成调查小组,相关数据见下表 相关人员数[ ] 抽取人数 公务员35 b 教师a 3 自由职业者28 4则调查小组的总人数为( )A .84B .12C .81D .14(2)[2012·江西重点中学一模] 在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本 ①采用随机抽样法,将零件编号为00,01,02,…,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则( )A .不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B .①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C .①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同(3)[2012·吉林一模] 从总数为N的一群学生中抽取一个容量为100的样本,若每个学生被抽取的概率为14,则N的值为( )A.25 B.75 C.400 D.5004.某公司有三个部门,第一个部门800个员工,第二个部门604个员工,第三个部门500个员工,现在用按部门分层抽样的方法抽取一个容量为380名员工的样本,求应该剔除几个人,每个部门应该抽取多少名员工?随堂测评1.现要完成下列3项抽样调查①从10盒酸奶中抽取3盒进行食品卫生检查.②技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取听众意见,需要请32位听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意义,拟抽取一个容量为20的样本.较为合理的抽样方法是( )A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样[2012·漳州三校二联] 某学校为了调查高二年级的80名文学生和高三年级的120名文学生完成课后作业所需时间,采取了两种抽样调查的方式第一种由学生会的同学随机抽取高二年级8名和高三年级12名同学进行调查;第二种由教务处对该年级的文学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,则这两种抽样的方法依次为( )A.分层抽样,简单随机抽样B.抽签法,随机数表法C.分层抽样,系统抽样D.简单随机抽样,系统抽样3.[2013·南通中学联考] 某地有居民2万户,从中随机抽取200户,调查是否已安装安全救助报警系统,调查结果如下表所示[ ] 外户原住户已安装60 35未安装45 604.某商场想通过检查发票及销售记录的 2 快速估计每月的销售总额.采取如下方法从某本发票的存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…,发票上的销售额组成一个调查样本.这种抽取样本的方法是( )A.抽签法 B.随机数表法C.系统抽样法 D.其他方式的抽样5.为了考察某校的教学水平,将抽查这个学校高三年级部分学生的本学年考试成绩进行考察.为了全面地反映实际情况,采取以下三种方式进行(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同).①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的学习成绩;②每个班都抽取1人,共计14人,考察14个学生的成绩;③把学校高三年级的学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进行考察(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).根据上面的叙述,试回答下列问题(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是什么?(2)上面三种抽取方式各自采用何种抽取样本的方法?(3)试分别写出上面三种抽取方式各自抽取样本的步骤.。
简单随机抽样 优秀教案

简单随机抽样优秀教案教学目标】1.理解简单随机抽样的概念,能够描述抽签法和随机数表法的步骤。
2.能够根据样本情况选择适当的抽样方法。
教学重点】理解简单随机抽样的概念,掌握抽签法和随机数表法的步骤,能够从总体中抽取样本。
教学难点】理解简单随机抽样的概念,掌握抽签法和随机数表法的步骤。
教学过程】一、情境导入:1.国务院在2000年11月1日进行了第五次全国人口普查的登记工作,结果显示我国人口总数为万。
这个例子用到了什么统计方法?它的优缺点是什么?你有其他的想法吗?答:这个例子用到了普查的统计方法。
优点是全面准确,缺点是工作量大,在大部分统计案例中无法实现(检查具有破坏性)。
还可以使用随机抽样的方法。
2.你认为在这个例子中预测结果出错的原因是什么?答:所选样本没有代表性。
3.假设你是一名食品卫生工作人员,需要对某食品店内的一批小包装饼干进行卫生达标检验,你会怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。
那么,应当怎样获取样本呢?二、新知探究:一)简单随机抽样的概念:一般地,从一个总体含有N个个体中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
思考:简单随机抽样的每个个体入样的可能性为多少?(n/N)二)抽签法和随机数表法:1.抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
抽签法的一般步骤:1)将总体的个体编号;2)连续抽签获取样本号码。
思考:抽签法有什么优点和缺点?当总体个体数较多时,使用抽签法方便吗?解析:操作简便易行,但当总体个数较多时工作量大,也很难做到“搅拌均匀”。
2.随机数表法利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法。
如何利用随机数表进行样本抽取?以检验某公司生产的500克袋装牛奶质量为例,从800袋牛奶中抽取60袋进行检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教必修三“简单随机抽样”教学设计
王晓东
(江苏省启东市汇龙中学 226200)
一、内容和内容解析:
本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时。
本节课通过结合具体的实际问题情景,使学生认识到随机抽样的必要性和重要性,进而分析得到简单随机抽样的定义、常用实施方法。
这些活动的实施就是想引导学生从现实生活或其它学科中提出具有一定价值的统计问题,初步形成运用统计的思想和方法(用数据说话)来思考问题和解决问题的习惯。
从教材编写的顺序来看,“简单随机抽样”是苏教版《普通高中课程标准实验教科书·数学3(必修)》第二章“统计”中的“抽样方法”中的第一课时。
统计知识是现代公民必备的知识,统计的基本思想方法是用样本去估计总体,这就要求样本具有良好的代表性,而样本代表性的优劣,则完全依赖于抽样方法,所以本节课为后面学习其它较复杂的抽样方法和对以后统计思想的理解提供了知识基础。
从知识的应用价值来看,重视数学知识的应用和关注人文内涵是新教材的显著特点。
丰富的生活实例为学生用数学的眼光看待生活中,体验生活即数学的理念,体验用算法思想解决模式化问题的作用,有助于学生对统计思想和方法的掌握,增加学生的感性认识。
基于上述分析,确定本节课的教学重点:抽样操作步骤的算法思想,简单随机抽样方案的设计。
二、目标和目标解析
通过本节课的教学,使学生在参与数据搜集和处理的过程中,亲历数学建模的过程,初步学会统计的基本方法、初步体验统计思想。
具体地有以下几方面的目标:
1.知识目标:了解抽样的必要性和重要性,理解简单随机抽样的概念及特点,掌握用抽签法、随机数表法进行简单随机抽样的一般步骤,了解随机数表的制作方法和思想。
2.发展目标:体会算法流程图在解决实际问题中的应用,对具体问题进行简单随机抽样方案的设计并进行简单随机抽样,感受统计思想和方法。
3.情感目标:体验统计知识与现实世界的紧密联系,领会生活即数学的理念,培养学生热爱生活、学会生活的情感和意识。
三、教学问题诊断分析:
学生已有的认知基础是,初中学习过统计的基础知识,并对总体、样本、个体等知识有了初步的了解,对为什么要进行抽样已有了感性认识。
但对如何实施抽样缺乏系统的了解。
对简单随机抽样的概念的认识上,学生对抽签法有感性认识,但对抽样过程的科学、合理、使每个个体被抽到的可能性相等的理解存在差异,因而对概念的本质理解也可能有所差异。
在利用抽签法进行简单随机抽样时,学生对此方法比较熟悉,但对程序化或流程图式的解决问题模式接触不多,因而可能出现解题过程的不完善。
在利用随机数表法进行简单随机抽样时,学生在对物件进行标号时由于位数的不一致而可能产生抽样过程的错误,同时在选号的规则上可能带来一些误差。
基于上述分析,确定本节课的教学难点:准确认识简单随机抽样的概念,准确进行简单随机抽样的方案设计并实施抽样。
四、教学条件支持分析:
考虑到学生的知识水平和理解能力以及课堂教学的信息量,教师可从信息技术和数学知识的有效整合入手,从实际生活中提炼数学素材,从激励学生探究知识入手,通过直观演示,优化教学,使学生在熟悉的知识背景下探求新知。
通过视频片断,实例图片,Excel表格的综合应用,丰富学生的体验,给学生多一点空间和时间,把任务角色还给学生,使学生亲历数学发现、创造的过程,获得对数学价值的认识,通过分层激励,让不同层次的学生获得最大进步。
五、教学过程设计
1.问题情景
情景1:了解本班同学对奥运会中国女排能否夺冠的看法。
情景2:观看视频“中央电视台每周质量报告——苏丹红事件”。
[设计意图]利用学生的好奇心和求知欲,激发学生探究新知的兴趣和动力。
2.建构数学
问题1;调查女排能否夺冠时所使用的方法是什么?
(抽样调查,简单的随机抽样)
问题2:每周产品质量报告出台的过程是什么?
(确定总体——抽取样本——检查化验——出台报告)
师:上述两个情景都用到了抽样调查,并且都是最简单的抽样方法。
这一种抽样方法我
们称为简单随机抽样。
[设计意图]从学生熟悉的情景出发,体验简单随机抽样的实物模型,为概念的提出提供
现实基础。
提出简单随机抽样的定义:从个体总数为N的总体中(总体个数有限)逐个不放回地
取出n个个体(n<N)作为样本,如果每个个体都有相同的机会被取到,那么这样的抽样方
法叫简单随机抽样。
数学实践1:请同学们举一些生活中简单随机抽样的实例
[设计意图]加深对概念的理解,体会简单随机抽样的特点。
问题3:简单随机抽样有何特点?
(①总体个数有限(有限性)②逐个地进行抽取(逐个性)③它是一种不放回抽样(不
放回性)④等机会抽样(公平性))
问题4:(观看体育彩票开奖仪式)如何实施简单随机抽样。
(抽签法)
[设计意图]利用生活中的问题让学生直观体会简单随机抽样的实施步骤。
问题5:抽签法的定义及实施步骤如何?
(抽签法:对总体中的N个个体进行编号,把号码写在号签上,将号签放在一个容器中,
搅拌均匀后,每次从中取出一个号签,连续抽n次,得到一个容量为n的样本。
)
[设计意图]体会算法流程图对解决实际问题的意义,加深概念间的联系。
问题6:抽签法有何优缺点?
(优点:简单易行,缺点是当总体的容量较大时,制签不方便,同时有标号的签搅拌不
易均匀,易导致抽样不公平)
[设计意图]总结抽签法的优点及不足,为知识的过渡打下伏笔。
问题7:如何改进抽签法的不足?
(用随机数表法。
随机数表:用随机方法产生的数表。
随机数表法:按一定的规则到随机数表中选取号码的方法。
)
数学实践3:课后参阅课本P40,用Excel制作一张随机数表。
[设计意图]让学生亲历制作随机数表的过程,使学生加深对随机数表中各个数字的随机
性的认识,帮助学生理解随机数表法的合理性。
3.数学应用
例1.下列抽取样本的方式是属于简单随机抽样的是。
⑴从无限多个个体中抽取100个个体作样本
⑵盒子里有80个零件,从中任意拿出一个进行检验,完毕后把它放回,共进行5次。
⑶从8台电脑中不放回地逐次抽取2台进行质量检验(假设8台电脑已编好号,对编号随机抽取)
[设计意图]加深对简单随机抽样的特点的巩固,为其它抽样方法的学习打下基础。
例2.第1小组有15名同学,现要从中抽取5名同学参加一个讨论会,用抽签法完成方案设计。
[设计意图]进一步巩固抽签法的特点及解题步骤,体会用算法流程图思想解决实际问题的作用。
例3.要考察某公司生产的500克袋装牛奶的质量是否达标,现从80袋牛奶中抽取8袋进行检验,试用随机数表法完成方案设计。
[设计意图]加深用随机数表法进行简单随机抽样的理解,总结用随机数表法进行简单随机抽样的流程框图。
(步骤:
)
4.课堂竞技场
(模仿中央电视台非常6+1栏目的形式,设置一星、二星、三星题,进行师生的互动,检测本节课的效果。
)
⑴(一星题)下面的抽样方法是简单随机抽样吗?为什么?
①某班45名同学,指定个子最高的5名同学参加学校组织的某项活动
②(二星题)要了解同学们对春晚的看法,特从本学校选取100名学生进行调查
⑵高一(2)班有50名学生,学号从01到50,现要用随机数表法选5名学生参加座谈会,现先选定随机数表中第21行第7个数1,得到第一个学生的学号为13,然后向右依次选取,那么选取的5个学生的学号为。
⑶(三星题)学校团委从报名的18名志愿者中选取6人组成志愿小组到社区进行环保宣传,请用抽签法完成方案设计。
⑷(三星题)某单位有老年职工30人,中年职工50人,青年职工40人,若分别从老
年职工、中年职工、青年职工中随机抽取3人,5人,4人参加会议,请用随机数表法完成设计方案。
[设计意图]对本节的内容作系统检测,设置不同层次的题目体现分层激励的原则,仿中央电视台非常6+1的环节设置可以活跃课堂气氛,增强学生的参与度,体验成功的喜悦。
5.回顾反思
通过引导学生回顾简单随机抽样的概念及实施方法,鼓励学生积极回答,最后教师再从数学思想方法上作总结:简单随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素,影响公正性。
6.作业设计
必做题:书本P42 练习1、2、3、4
思考题:下面给出某村委会调查本村各户收入情况所作的抽样,阅读后并回答问题:①
本村人口1200人,户数300,每户平均人口4人;②应抽户数30;③抽样间隔:4030
1200 ;④确定第一样本户:编号为12的户为第一样本户;⑥确定第二样本户:12+40=52,52为第二样本户……
⑴该过程中何处用到简单随机抽样?
⑵该抽样是何种抽样,存在哪些问题?如何修改?
[设计意图]再一次感受简单随机抽样的特点,为下节系统抽样的学习作准备
六、教学心得
1.本节课能注重学生发展的自主性(设置分层式练习和开放性作业)和数学学习的实践性(设置数字实践),主张给学生多一点空间、时间,使学生在亲历知识结论的探索中获得对数学价值的认识。
2.整个教学过程突出三个注重,即①注重学生参与知识的形成过程,体验应用数学知识解决问题的乐趣;②注重师生间、同学间的互动协作,共同提高;③注重从现实生活中提炼有价值的数学问题,形成用数学思想方法思考实际问题的习惯。
3.面对不同程度的教学对象,学生的基础反应情况和感悟情况不一,因此在教学时间上应作适当的调整,对课堂竞技场等环节视实际情况作灵活的增删。