高中数学导数的应用

合集下载

导数在高中数学函数中的应用体会

导数在高中数学函数中的应用体会

导数在高中数学函数中的应用体会高中数学中,导数是用来计算相关物理和数学问题的重要工具。

它为我们提供了有效的方法去探究物理世界和数学问题的变化规律。

导数可以在高中数学函数中应用于计算函数上某一点处的切线斜率,检验函数是单调递增还是单调递减,找出函数的极大值、极小值以及拐点等等。

就我的经历而言,我在学习高中数学函数时写的第一篇文章就是关于导数的。

当时,我很好奇物理世界发生的变化情况,于是我开始通过导数算法去研究函数上的斜率如何可以帮助我们来解决问题。

随后,我发现,通过计算函数上某一点处的切线斜率,我们可以检验函数是单调递增还是单调递减、找出函数的极大值、极小值以及拐点等等。

这些工作都是有效的,能够更好地理解物理原理、数学规律及这些规律带来的问题。

此外,导数在高中数学函数中也可以应用于解决微积分问题,因为这种方法可以更快、更精确地求出积分的具体值。

同时,导数的应用也有助于我们更深入地理解函数的变化趋势。

总之,导数在高中数学函数中可以实现很多功能,它为我们提供了有效的方法去探究物理世界和数学问题的变化规律,是科学家深入探究科学现象的重要手段。

导数在高中数学函数中还可以应用于计算函数两点的位移的大小,计算函数在某一区间上的变化情况,以及在某一时刻函数处于最大或最小状态等。

同时,导数也可以用于求解定积分中的某一特定点处的函数值,以及求解一元微分方程。

甚至可以用来探究不同时刻函数变化对物理世界的影响。

此外,导数在高中数学函数中也可以应用于建立函数与其他函数的图形之间的关系,进而更深入地研究函数的变化规律,从而能够给我们带来新的认识。

最后,应用导数的另一个方面就是开发算法,用于解决物理和数学问题,例如在量子力学中,可以利用导数算法来求解相关的微分方程。

总的来说,导数在高中数学函数中的应用十分广泛,它能够让我们更好地理解物理原理、数学规律及这些规律带来的问题,为研究人员提供有效的研究手段。

对我来说,学习高中数学函数中的导数过程是一次有趣的体验。

高中数学导数的应用

高中数学导数的应用

高中数学导数的应用导数是高中数学中的重要概念之一,它在许多实际问题中都有着广泛的应用。

本文将从几个不同的角度来讨论导数的应用。

一、函数的局部性质导数描述了函数在某一点附近的局部变化情况。

通过计算导数,我们可以判断函数在某点上是增函数还是减函数,从而了解函数的局部性质。

例如,对于一条直线函数,导数恒为常数,表示函数在任意一点上都是增函数或减函数;而对于一个二次函数,导数可以告诉我们函数的凹凸性质。

二、切线与法线导数还可以用来求解函数的切线和法线方程。

对于一条曲线,通过求解曲线上某一点的导数,我们可以得到切线的斜率,从而得到切线方程。

同样地,法线的斜率可以通过切线的斜率和导数的关系求解,进而得到法线方程。

这种应用在物理学中特别有用,例如计算质点在曲线上的运动轨迹时,我们需要知道质点的切线方程,以便求解其运动速度和加速度等物理量。

三、最值问题导数也可以用来解决函数的最值问题。

对于一个连续函数,其最值出现在导数为零的点或者定义域的端点上。

因此,通过求解导数为零的方程,我们可以得到函数的极值点,从而求解最值问题。

这一应用在经济学中尤为重要,例如在成本和收益问题中,我们需要确定某种产品的生产数量,以使总利润最大化。

四、曲线的凹凸性与拐点通过导数的符号变化,我们可以判断函数在某一区间上的凹凸性以及确定曲线的拐点。

当导数在某一区间上始终大于零时,函数在该区间上是凹函数;反之,当导数在某一区间上始终小于零时,函数在该区间上是凸函数。

而导数在某一点上发生跃变时,可以判断该点为函数的拐点。

这一应用在优化问题和工程设计中具有重要意义,例如在物体运动问题中,我们需要找到最优的运动轨迹,以使得物体的速度变化最小。

总结起来,导数的应用非常广泛。

无论是研究函数的局部性质、求解切线和法线方程、解决最值问题,还是分析曲线的凹凸性与拐点,导数都发挥着重要的作用。

因此,对于高中数学学习者来说,深入理解导数的概念和应用是非常重要的。

只有掌握了导数的应用,才能更好地解决实际问题,并在日后的学习和工作中受益。

高中数学导数的概念及其意义

高中数学导数的概念及其意义

高中数学导数的概念及其意义
导数(Derivative)概念及意义
一、导数的定义
1、导数的定义
导数是一种描述曲线的变化率的度量,它表示的是做一个变量的变化
的大小和另一个变量的变化的方向以及变化的变化率之间的关系。

2、导数的计算公式
导数的计算公式为:y’=limΔx→0 (f(x+Δx)-f(x))/Δx,其中f(x)表示函数,Δx表示x在很小的量度上的变动值。

3、导数的形式表示
导数的形式有两种:一种是函数的图象,用斜率来表示;另一种是用
函数的微分式表示。

二、导数的意义
1、导数的实际意义
导数的实际意义是曲线某一点上的斜率,它表示曲线在该点处的变化率,也就是曲线在该点处的微小位移对应的函数值的变化率。

2、导数的数学意义
数学意义上,导数是一种尺度,也是一种衡量函数变化率的标准,它可以实现曲线的斜率变化规律,从而发现函数的性质,如果曲线的斜率变化率是恒定的,就可以称这种曲线为等差线。

3、导数的应用
导数的应用非常广泛,目前主要在图形科学、机器学习、控制理论和金融计算等领域。

_高中数学第一章导数及其应用2

_高中数学第一章导数及其应用2

f(x)=1x
f ′(x)=-x12=-x-2
f(x)= x
f ′(x)=21 x=12x-12
f(x)=x3
f′(x)=3x2
结论:若f(x)=xα(α为有理数),则f′(x)=αxα-1.
1.y=c表示平行于x轴的直线,或与x轴重合的直线, 其斜率为0,故y=c上任一点处的导数值为____0____, 直线y=x的斜率为1,故直线y=x上任一点处的导数值 为___1_____.
[分析] 只需求出K、Q两点的横坐标即可.
[解析]
设P(x0,y0),则kl1=y′|x=x0=2
1 x0
.
∵直线l1与l2垂直,则kl2=-2 x0,
∴直线l2的方程为y-y0=-2 x0(x-x0).
∵点P(x0,y0)在曲线y= x上,∴y0= x0.
在直线l2的方程中令y=0,则- x0=-2 x0(x-x0).
2.当y=c表示路程关于时间的函数时,常数c表明路 程不变化,因此一直处于__静__止____状态,故瞬时速度 为___0_____,因此y′=____0____;
当y=x表示路程关于时间的函数时,路程的改变量等 于时间的改变量,因此物体做匀速直线运动,瞬时速 度为___1_____,故y′=____1____.
当P点不是切点时,设切点为A(x0,y0),由定义可求得切 线的斜率为k=3x20.
∵A在曲线上,∴y0=x30,∴xx300--82=3x20,
∴x30-3x20+4=0,∴(x0+1)(x0-2)2=0, ∴x0=-1或x0=2(舍去),∴y0=-1,k=3, 此时切线方程y+1=3(x+1),即3x-y+2=0. 故经过点P的曲线的切线有两条,方程为12x-y-16=0和 3x-y+2=0. [警示] 求曲线过点P的切线时,应注意检验点P是否在曲 线上,若点P在曲线上,应分P为切点和P不是切点讨论.

高中数学的解析函数的导数与导数应用

高中数学的解析函数的导数与导数应用

高中数学的解析函数的导数与导数应用高中数学中,解析函数是一种以公式形式表示的函数,可以通过解析的方式进行计算和研究。

在解析函数的学习中,导数是一个重要的概念,它描述了解析函数在某个点处的变化率。

导数的应用也具有广泛的实际意义,可以用于解决许多实际问题。

本文将对高中数学的解析函数的导数与导数应用进行论述。

一、解析函数的导数解析函数的导数是指在某个点处的变化率,可以用极限表示。

对于解析函数f(x),它的导数可以表示为f'(x)或者dy/dx。

导数的计算方法有很多种,如使用定义法、求导法则等,根据不同的函数类型,选择合适的方法进行计算。

在解析函数的导数计算中,常见的函数类型有多项式函数、三角函数和指数函数等。

对于多项式函数,可以利用求导法则进行计算,如常数规则、幂规则和求和规则等。

对于三角函数和指数函数,可以使用相应的导数公式进行计算,如sin(x)的导数是cos(x),e^x的导数仍然是e^x等。

通过求导可以得到解析函数在各个点处的导数值,导数也可以表示为函数图像的斜率。

导数的正负还可以判断函数在某个点的增减性,当导数大于0时,函数是递增的;当导数小于0时,函数是递减的;当导数等于0时,函数取得极值。

二、导数的应用导数不仅仅是一个概念,它还有广泛的实际应用。

在物理学、经济学、工程学等领域,导数可以用于解决许多实际问题。

以下是导数应用的几个例子:1. 切线与曲线的问题:导数可以用于求解曲线上某点的切线方程。

通过求解导数可以得到切线的斜率,再结合该点的坐标,就可以得到切线方程。

这在几何问题和物理问题中都有应用,例如研究物体的运动轨迹时,需要知道某个时刻的速度和加速度。

2. 最值问题:导数还可以用于求解函数的最值。

通过求解导数为0的点,可以找到函数的极值点。

这在优化问题中很常见,例如求解最大面积、最小成本等问题。

3. 函数图像的研究:导数可以用于研究函数的图像特征。

通过分析导数的正负、增减性、凹凸性等,可以了解函数图像的形状和变化规律。

高中数学导数

高中数学导数

高中数学导数
导数是高中数学中非常基础的一个知识点,它在数学和其他领域中有着广泛的应用。

下面将通过以下几个列表对导数进行详细介绍。

一、导数的定义
1. 函数在某一点的导数表示函数在该点的变化率,可以用极限的概念来表示。

2. 导数也可以表示为函数在某一点的切线斜率,即切线的斜率越大,则函数在该点的导数越大。

二、导数的求法
1. 使用导数的定义式,即求出一段极小的区间内函数的平均变化率的极限,这可以用极限的概念来表示。

2. 利用导数的性质进行求导,如求和、差、积、商等。

3. 利用基本函数的导数公式,如多项式、幂函数、指数函数、对数函数、三角函数等。

三、导数的应用
1. 导数可以用于求极值,即函数取得最大值或最小值的点。

2. 导数可以用于解决曲线的渐近线问题,如求水平渐近线和垂直渐近线。

3. 导数可以用于解决函数图像的凹凸性问题,即函数在凹还是凸的区间。

四、常见的导数公式
1. 常数函数的导数为零。

2. 幂函数的导数为 $n*x^{n-1}$。

3. 指数函数 $a^x$ 的导数为 $a^x\ln(a)$。

4. 对数函数 $\ln(x)$ 的导数为 $\frac{1}{x}$。

5. 三角函数的导数公式:
$\sin(x)$ 的导数为 $\cos(x)$;
$\cos(x)$ 的导数为 $-\sin(x)$;
$\tan(x)$ 的导数为 $\sec^2(x)$。

以上就是导数的基本概念和应用。

导数是高中数学中的重要内容,我们需要掌握导数的求法和基本公式,并熟练应用导数解决问题。

高中数学导数的应用教案

高中数学导数的应用教案

高中数学导数的应用教案
教学目标:学生能够理解导数的概念,掌握导数在实际问题中的应用,并能够运用导数解决相关问题。

教学重点和难点:掌握导数在实际问题中的应用。

教学准备:教师准备课件、实例题目,学生准备笔记本、笔。

教学过程:
一、导入(10分钟)
通过一个生活实例引入导数的概念,让学生初步了解导数在实际中的意义。

二、概念讲解(15分钟)
1. 温故导数的定义和性质;
2. 导数的应用领域;
3. 导数在实际问题中的意义和作用。

三、实例分析(20分钟)
教师通过实例问题,引导学生运用导数进行问题求解,如最值问题、速度问题等。

四、练习(15分钟)
让学生在课堂上进行练习题目,加深对导数应用的理解。

五、总结(10分钟)
通过讨论和总结,让学生掌握导数在实际问题中的应用方法,并复习导数的相关概念。

六、作业布置(5分钟)
布置相关作业,让学生巩固所学知识。

教学反思:
通过实例讲解和练习,能够有效帮助学生掌握导数在实际问题中的应用方法。

同时,通过讨论和总结,可以使学生更深入地理解导数的概念和性质。

高中数学一元函数的导数及其应用

高中数学一元函数的导数及其应用

高中数学一元函数的导数及其应用
一元函数的导数是描述函数变化率的一个重要概念,它在高中数学中占有重要地位。

本文将从以下几个方面来介绍一元函数的导数及其应用。

1. 导数的定义及其运算法则
首先,我们需要了解导数的定义及其运算法则。

导数的定义是:函数$f(x)$在$x_0$处的导数为$f'(x_0)=limlimits_{Delta
xto0}dfrac{f(x_0+Delta x)-f(x_0)}{Delta x}$。

而导数的运算法则包括:常数求导法则、和差求导法则、积法求导法则、商法求导法则、复合函数求导法则以及反函数求导法则等。

2. 导数的图像及其性质
导数的图像是很有特点的,对于一些数学问题,我们可以通过导数图像来解决。

在本文中,我们将介绍导数图像的性质,如导数曲线的斜率、升降区间、极值和拐点等。

3. 极值与最值问题
极值与最值问题是高中数学中的一个重要问题,它跟导数密切相关。

在本文中,我们将介绍如何通过导数来求得函数的极值与最值,并讲解极值与最值的应用。

4. 函数图像的绘制
函数图像的绘制是高中数学中的一个必修内容,它要求我们能够通过导数来判断函数的升降性、极值和拐点等,从而画出函数的图像。

在本文中,我们将介绍如何通过导数来刻画函数图像的特点,并讲解
函数图像的绘制方法。

总之,本文的目的是让读者对一元函数的导数及其应用有一个全面的认识,从而更好地掌握高中数学的相关知识。

高中数学函数求导公式的推导及应用实例

高中数学函数求导公式的推导及应用实例

高中数学函数求导公式的推导及应用实例一、导数的基本概念在高中数学中,我们学习了函数的概念,函数的导数是函数在某一点处的变化率。

导数的概念是数学中非常重要的概念,它不仅在数学中有广泛的应用,也在其他学科中有着重要的地位。

二、导数的定义函数f(x)在点x处的导数定义为:$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$其中,$\Delta x$表示自变量x的增量。

三、导数的计算为了更方便地计算导数,我们需要推导出一些常用的函数求导公式。

下面,我们将介绍一些常见的函数求导公式及其推导过程。

1. 常数函数对于常数函数f(x) = c,其中c为常数,它的导数为0。

这是因为常数函数在任意一点的变化率都为0。

2. 幂函数对于幂函数f(x) = x^n,其中n为正整数,它的导数为:$$f'(x) = n \cdot x^{n-1}$$这个公式可以通过导数的定义进行推导。

3. 指数函数指数函数f(x) = a^x,其中a为正实数且不等于1,它的导数为:$$f'(x) = a^x \cdot \ln a$$这个公式可以通过对数函数的导数公式进行推导。

4. 对数函数对数函数f(x) = \log_a x,其中a为正实数且不等于1,它的导数为:$$f'(x) = \frac{1}{x \cdot \ln a}$$这个公式可以通过指数函数的导数公式进行推导。

5. 三角函数常见的三角函数有正弦函数、余弦函数和正切函数。

它们的导数公式如下:$$\sin' x = \cos x$$$$\cos' x = -\sin x$$$$\tan' x = \sec^2 x$$这些公式可以通过三角函数的定义和导数的定义进行推导。

四、导数的应用实例导数在数学中有着广泛的应用,下面我们将通过一些实例来说明导数的应用。

高中数学公式大全导数的计算与应用公式

高中数学公式大全导数的计算与应用公式

高中数学公式大全导数的计算与应用公式高中数学公式大全:导数的计算与应用公式1. 导数的定义与计算在微积分中,导数是用来描述函数变化率的重要工具。

对于函数f(x),导数可以用极限来定义,并可以使用以下公式进行计算:(1) 一阶导数:f'(x) = lim (h→0) [f(x+h) - f(x)] / h(2) 高阶导数:f''(x) = (d/dx) [f'(x)](3) 链式法则:若函数f(x)和g(x)都可导,则复合函数 (f(g(x))) 的导数可以计算为:(f(g(x)))' = f'(g(x)) * g'(x)2. 常用导数公式(1) 常数函数导数:如果f(x)是一个常数c,则f'(x) = 0(2) 幂函数导数:对于函数f(x) = x^n,其中n是实数常数,则f'(x) = n * x^(n-1)(3) 指数函数导数:对于函数f(x) = a^x,其中a是常数且a>0且a≠1,则f'(x) = a^x * ln(a)(4) 对数函数导数:对于函数f(x) = log_a(x),其中a是常数且a>0且a≠1,则f'(x) = 1 / (x * ln(a))(5) 三角函数导数:sin'(x) = cos(x)cos'(x) = -sin(x)tan'(x) = sec^2(x)cot'(x) = -csc^2(x)sec'(x) = sec(x) * tan(x)csc'(x) = -csc(x) * cot(x)3. 导数的应用导数在数学中有广泛的应用,以下介绍几个常见的应用领域。

(1) 切线与法线:导数可以用来求解函数在某一点的切线和法线。

函数在某一点的导数即为该点切线的斜率,法线的斜率为切线斜率的负倒数。

(2) 极值点与拐点:通过求解函数的导数为零的点,可以判断函数的极大值和极小值。

高中数学中的导数应用案例全面解析与计算

高中数学中的导数应用案例全面解析与计算

高中数学中的导数应用案例全面解析与计算导数是高中数学中的一个重要概念,在不同的数学问题中都有广泛的应用。

本文将通过一些具体案例,全面解析和计算导数的应用,以帮助读者更好地理解和应用导数。

案例一:汽车行驶问题假设一辆汽车以恒定的速度行驶,车速为v(t)(单位:m/s)。

我们需要求出汽车行驶过程中的加速度a(t)。

根据导数的定义,加速度a(t)可以表示为车速v(t)对时间t的导数,即a(t) = dv(t)/dt。

由此,我们可以通过求车速对时间的导数得到加速度。

在具体计算中,我们可以用一个具体的函数来描述车速v(t)的变化规律。

例如,假设车速v(t) = 2t + 3,其中t为时间(单位:s)。

根据导数的计算规则,这个函数的导数即为加速度。

对v(t)进行求导,有:dv(t)/dt = d(2t + 3)/dt = 2因此,这辆汽车的加速度恒定为2 m/s²。

案例二:曲线的切线问题假设有一条曲线y = f(x),我们需要求出该曲线在某一点P(x0, y0)处的切线斜率k。

根据导数的定义,斜率k可以表示为曲线y = f(x)在点P处的斜率,即k = dy/dx |x=x0。

其中,dy/dx表示y对x的导数,"|"表示在x=x0的意思。

在实际计算中,我们首先需要确定曲线函数f(x)的具体形式,以及点P(x0, y0)的坐标。

然后,对曲线函数进行求导,并将x的值代入导函数,即可得到切线斜率k的值。

以一个具体的例子来说明。

假设曲线为y = x²,要求在点P(2, 4)处的切线斜率k。

首先,对曲线函数y = x²进行求导,得到导函数dy/dx = 2x。

然后,将点P(2, 4)中的x坐标代入导函数2x,即可得到切线斜率:k = dy/dx |x=2 = 2(2) = 4所以,在曲线y = x²的点P(2, 4)处,切线的斜率为4。

通过以上两个案例,我们可以看到导数在不同数学问题中的应用。

【高中数学】高中数学导数的定义,公式及应用总结

【高中数学】高中数学导数的定义,公式及应用总结

【高中数学】高中数学导数的定义,公式及应用总结高中数学导数的定义,公式及应用总结导数的定义:当自变量的增量δx=x-x0,δx→0时函数增量δy=f(x)-f(x0)与自变量增量之比的音速存有且非常有限,就说道函数f在x0点可微,称作f在x0点的导数(或变化率).函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在p0[x0,f(x0)]点的切线斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

通常地,我们得出结论用函数的导数去推论函数的多寡性(单调性)的法则:设y=f(x)在(a,b)内可微。

如果在(a,b)内,f'(x)>0,则f(x)在这个区间就是单调减少的(该点切线斜率减小,函数曲线显得“平缓”,持续上升状)。

如果在(a,b)内,f'(x)<0,则f(x)在这个区间就是单调增大的。

所以,当f'(x)=0时,y=f(x)存有极大值或极小值,极大值中最大者就是最大值,极小值中最轻者就是最小值求导数的步骤:求函数y=f(x)在x0处为导数的步骤:①求函数的增量δy=f(x0+δx)-f(x0) ②求平均变化率③取极限,得导数。

导数公式:①c'=0(c为常数函数); ②(x^n)'=nx^(n-1)(n∈q*);熟记1/x的导数③(sinx)'=cosx;(cosx)'=-sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx(cscx)'=-cotx·cscx(arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(x(x^2-1)^1/2) (arccscx)'=-1/(x(x^2-1)^1/2) ④(sinhx)'=hcoshx(coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2(sechx)'=-tanhx·sechx(cschx)'=-cothx·cschx(arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1)(x<1) (arcothx)'=1/(x^2-1)(x>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)⑤(e^x)'=e^x;(a^x)'=a^xlna(ln为自然对数) (inx)'=1/x(ln为自然对数) (logax)'=(xlna)^(-1),(a>0且a不等于1)(x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2)导数的应用领域:1.函数的单调性(1)利用导数的符号推论函数的多寡性利用导数的符号推论函数的多寡性,这就是导数几何意义在研究曲线变化规律时的一个应用领域,它体现了数形融合的思想.通常地,在某个区间(a,b)内,如果f'(x)>0,那么函数y=f(x)在这个区间内单调递减;如果f'(x)<0,那么函数y=f(x)在这个区间内单调递增. 如果在某个区间内恒存有f'(x)=0,则f(x)就是常数函数. 特别注意:在某个区间内,f'(x)>0就是f(x)在此区间上以增函数的充分条件,而不是必要条件,如f(x)=x3在r内就是增函数,但x=0时f'(x)=0。

高中数学《导数及其应用》知识点总结

高中数学《导数及其应用》知识点总结

《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。

2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。

函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。

3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=. 4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。

由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。

当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。

特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。

5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。

2024年高考数学总复习第三章《导数及其应用》导数的概念及运算

2024年高考数学总复习第三章《导数及其应用》导数的概念及运算

2024年高考数学总复习第三章《导数及其应用》§3.1导数的概念及运算最新考纲1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵.2.通过函数图象直观理解导数的几何意义.3.能根据导数定义求函数y =c (c 为常数),y =x ,y =x 2,y =1x 的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|0x x =,即f ′(x 0)=lim Δx →ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx.(2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间(a ,b )内的导函数.记作f ′(x )或y ′.2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0).3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=0f (x )=x α(α∈Q *)f ′(x )=αx α-1f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=e xf ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln a f (x )=ln xf ′(x )=1xf(x)=log a x(a>0,a≠1)f′(x)=1 x ln a4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)f(x)g(x)′=f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).概念方法微思考1.根据f′(x)的几何意义思考一下,|f′(x)|增大,曲线f(x)的形状有何变化?提示|f′(x)|越大,曲线f(x)的形状越来越陡峭.2.直线与曲线相切,是不是直线与曲线只有一个公共点?提示不一定.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.(×)(2)f′(x0)=[f(x0)]′.(×)(3)(2x)′=x·2x-1.(×)题组二教材改编2.若f(x)=x·e x,则f′(1)=.答案2e解析∵f′(x)=e x+x e x,∴f′(1)=2e.3.曲线y=1-2x+2在点(-1,-1)处的切线方程为.答案2x-y+1=0解析∵y′=2(x+2)2,∴y′|x=-1=2.∴所求切线方程为2x-y+1=0.题组三易错自纠4.如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是()答案D解析由y =f ′(x )的图象知,y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.5.若f (x )=sin xx ,则f ′π2=________.答案-4π2解析∵f ′(x )=x cos x -sin xx 2,∴f ′π2=-4π2.6.(2017·天津)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为.答案1解析∵f ′(x )=a -1x,∴f ′(1)=a -1.又∵f (1)=a ,∴切线l 的斜率为a -1,且过点(1,a ),∴切线l 的方程为y -a =(a -1)(x -1).令x =0,得y =1,故l 在y 轴上的截距为1.题型一导数的计算1.已知f (x )=sin x 21-2cos 2x4f ′(x )=.答案-12cos x 解析因为y =sin x 2-cos x2=-12sin x ,所以y ′=-12sin x ′=-12(sin x )′=-12cos x .2.已知y =cos xe x,则y ′=________.答案-sin x +cos x e x解析y ′=cos xe x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos xe x.3.f (x )=x (2019+ln x ),若f ′(x 0)=2020,则x 0=.答案1解析f ′(x )=2019+ln x +x ·1x=2020+ln x ,由f ′(x 0)=2020,得2020+ln x 0=2020,∴x 0=1.4.若f (x )=x 2+2x ·f ′(1),则f ′(0)=.答案-4解析∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2,∴f ′(x )=2x -4,∴f ′(0)=-4.思维升华1.求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,尽量避免不必要的商的求导法则,这样可以减少运算量,提高运算速度减少差错.2.(1)若函数为根式形式,可先化为分数指数幂,再求导.(2)复合函数求导,应由外到内逐层求导,必要时可进行换元.题型二导数的几何意义命题点1求切线方程例1(1)(2018·湖北百所重点高中联考)已知函数f (x +1)=2x +1x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为()A .1B .-1C .2D .-2答案A解析由f (x +1)=2x +1x +1,知f (x )=2x -1x =2-1x .∴f ′(x )=1x2,∴f ′(1)=1.由导数的几何意义知,所求切线的斜率k =1.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为.答案x -y -1=0解析∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴0=x 0ln x 0,0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0.命题点2求参数的值例2(1)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b =.答案1解析由题意知,y =x 3+ax +b 的导数为y ′=3x 2+a ,3+a +b =3,×12+a =k ,+1=3,由此解得k =2,a =-1,b =3,∴2a +b =1.(2)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m =.答案-2解析∵f ′(x )=1x,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,∴m =-2.命题点3导数与函数图象例3(1)已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是()答案B解析由y =f ′(x )的图象是先上升后下降可知,函数y =f (x )图象的切线的斜率先增大后减小,故选B.(2)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=.答案0解析由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,∴g ′(3)=1+30.思维升华导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值k =f ′(x 0).(2)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),1=f (x 1),0-y 1=f ′(x 1)(x 0-x 1)求解即可.(3)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况.跟踪训练(1)(2018·全国Ⅰ)已知f (x )=x 2,则曲线y =f (x )过点P (-1,0)的切线方程是.答案y =0或4x +y +4=0解析设切点坐标为(x 0,x 20),∵f ′(x )=2x ,∴切线方程为y -0=2x 0(x +1),∴x 20=2x 0(x 0+1),解得x 0=0或x 0=-2,∴所求切线方程为y =0或y =-4(x +1),即y =0或4x +y +4=0.(2)设曲线y =1+cos xsin x 在点x -ay +1=0平行,则实数a =.答案-1解析∵y ′=-1-cos xsin 2x,∴y ′π2x ==-1.由条件知1a=-1,∴a =-1.(3)(2018·开封模拟)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是.答案(-∞,2)解析函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x<2,所以a 的取值范围是(-∞,2).1.已知函数f (x )=1x cos x ,则f (π)+f ()A .-3π2B .-1π2C .-3πD .-1π答案C解析因为f ′(x )=-1x 2cos x +1x (-sin x ),所以f (π)+f =-1π+2π×(-1)=-3π.2.(2018·衡水调研)设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为()A .e 2B .e C.ln 22D .ln 2答案B解析由f (x )=x ln x ,得f ′(x )=ln x +1.根据题意知,ln x 0+1=2,所以ln x 0=1,即x 0=e.3.曲线y =sin x +e x 在点(0,1)处的切线方程是()A .x -3y +3=0B .x -2y +2=0C .2x -y +1=0D .3x -y +1=0答案C解析y ′=cos x +e x ,故切线斜率k =2,切线方程为y =2x +1,即2x -y +1=0.4.设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数f ′(x )的图象可能是()答案C解析原函数的单调性是当x <0时,f (x )单调递增;当x >0时,f (x )的单调性变化依次为增、减、增,故当x <0时,f ′(x )>0;当x >0时,f ′(x )的符号变化依次为+,-,+.故选C.5.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是()A.3π4, B.π4,,3π4 D.0答案A解析求导可得y ′=-4e x +e -x +2,∵e x +e -x +2≥2e x ·e -x +2=4,当且仅当x =0时,等号成立,∴y ′∈[-1,0),得tan α∈[-1,0),又α∈[0,π),∴3π4≤α<π.6.(2018·广州调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为()A .eB .-e C.1eD .-1e答案C解析y =ln x 的定义域为(0,+∞),且y ′=1x,设切点为(x 0,ln x 0),则y ′|0x x ==1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1e.7.(2018·鹰潭模拟)已知曲线f (x )=2x 2+1在点M (x 0,f (x 0))处的瞬时变化率为-8,则点M 的坐标为.答案(-2,9)解析∵f (x )=2x 2+1,∴f ′(x )=4x ,令4x 0=-8,则x 0=-2,∴f (x 0)=9,∴点M 的坐标是(-2,9).8.已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点的横坐标为________.答案2解析设切点坐标为(m ,n )(m >0),对y =14x 2-3ln x 求导得y ′=12x -3x ,可令切线的斜率为12m-3m =-12,解方程可得m =2(舍去负值).9.若曲线y =ln x 的一条切线是直线y =12x +b ,则实数b 的值为.答案-1+ln 2解析由y =ln x ,可得y ′=1x,设切点坐标为(x 0,y 0),由曲线y =ln x 的一条切线是直线y=12x +b ,可得1x 0=12,解得x 0=2,则切点坐标为(2,ln 2),所以ln 2=1+b ,b =-1+ln 2.10.(2018·云南红河州检测)已知曲线f (x )=x ln x 在点(e ,f (e))处的切线与曲线y =x 2+a 相切,则a =______.答案1-e解析因为f ′(x )=ln x +1,所以曲线f (x )=x ln x 在x =e 处的切线斜率为k =2,则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e.由于切线与曲线y =x 2+a 相切,故y =x 2+a 可联立y =2x -e ,得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e.11.已知f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,且它们在同一平面直角坐标系内的图象如图所示.(1)若f (1)=1,则f (-1)=;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为.(用“<”连接)答案(1)1(2)h (0)<h (1)<h (-1)解析(1)由题图可得f ′(x )=x ,g ′(x )=x 2,设f (x )=ax 2+bx +c (a ≠0),g (x )=dx 3+ex 2+mx +n (d ≠0),则f ′(x )=2ax +b =x ,g ′(x )=3dx 2+2ex +m =x 2,故a =12,b =0,d =13,e =m =0,所以f (x )=12x 2+c ,g (x )=13x 3+n ,由f (1)=1,得c =12,则f (x )=12x 2+12,故f (-1)=1.(2)h(x)=f(x)-g(x)=12x2-13x3+c-n,则有h(-1)=56+c-n,h(0)=c-n,h(1)=16+c-n,故h(0)<h(1)<h(-1).12.已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.解(1)∵f′(x)=3x2-8x+5,∴f′(2)=1,又f(2)=-2,∴曲线在点(2,f(2))处的切线方程为y+2=x-2,即x-y-4=0.(2)设曲线与经过点A(2,-2)的切线相切于点P(x0,x30-4x20+5x0-4),∵f′(x0)=3x20-8x0+5,∴切线方程为y-(-2)=(3x20-8x0+5)·(x-2),又切线过点P(x0,x30-4x20+5x0-4),∴x30-4x20+5x0-2=(3x20-8x0+5)(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或1,∴经过点A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.13.已知函数f(x)=e x-mx+1的图象为曲线C,若曲线C存在与直线y=e x垂直的切线,则实数m的取值范围是()D.(e,+∞)答案B解析由题意知,方程f′(x)=-1e有解,即ex-m=-1e有解,即ex=m-1e有解,故只要m-1e>0,即m>1e即可,故选B.14.(2018·泰安模拟)若曲线f(x)=a cos x与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,求a+b的值.解依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,f ′(0)=g ′(0),即-a sin 0=2×0+b ,得b =0.又m =f (0)=g (0),即m =a =1,因此a +b =1.15.给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.已知函数f (x )=5x +4sin x -cos x 的“拐点”是M (x 0,f (x 0)),则点M ()A .在直线y =-5x 上B .在直线y =5x 上C .在直线y =-4x 上D .在直线y =4x 上答案B 解析由题意,知f ′(x )=5+4cos x +sin x ,f ″(x )=-4sin x +cos x ,由f ″(x 0)=0,知4sin x 0-cos x 0=0,所以f (x 0)=5x 0,故点M (x 0,f (x 0))在直线y =5x 上.16.已知函数f (x )=x -3x.(1)求曲线f (x )过点(0,-3)的切线方程;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解(1)f ′(x )=1+3x2,设切点为(x 0,y 0),则曲线y =f (x )在点(x 0,y 0)处的切线方程为y -y 0x -x 0),∵切线过(0,-3),∴-30-x 0),解得x 0=2,∴y 0=12,∴所求切线方程为y -12=74(x -2),即y =74x -3.(2)设P (m ,n )为曲线f (x )上任一点,由(1)知过P 点的切线方程为y -n x -m ),即y x -m ),令x =0,得y =-6m,从而切线与直线x =0令y =x ,得y =x =2m ,从而切线与直线y =x 的交点为(2m,2m ),∴点P (m ,n )处的切线与直线x =0,y =x 所围成的三角形的面积S =12·|-6m |·|2m |=6,为定值.。

高中数学教学中导数与积分的应用

高中数学教学中导数与积分的应用

高中数学教学中导数与积分的应用
高中数学教学中导数与积分的应用
一、导数的应用
1、利用导数求单调递增函数的最大值或者最小值:由单调递减函数的导数可得其函数值最大值或者最小值,从而可以求得其实际应用中的最优解。

2、利用导数求函数的极值点:即可以利用偏导数来求函数的极值点,或者可以利用数值的比较定义来求函数的极大值、极小值,也可以利用泰勒展开式来求取函数的极值点。

3、确定函数的单调性:即可以利用导数的正负号来判断函数的单调性,如果导数大于0,函数在这个点上是增函数;如果导数小于0,函数在这个点上是减函数;如果导数为0,则函数在这个点上可能是极值点,也可能是拐点;如果符号不确定,则函数也有可能是极值点。

4、利用导数求函数的图象:即可以利用导数的正负号和符号的变化来确定对应的函数的图象,从而可以绘制出函数的图象,便于深入理解和分析函数的特征。

二、积分的应用
1、利用积分解决天文学中多个行星系统运动的问题:即可以利用数学分析,将复杂的运动实际上拆分为部分简单的问题,然后利用椭圆积分解决这些简单问题,从而可以获得比较完整的多个行星系统运动的计算结果。

2、利用积分解决物理中电势场的问题:可以利用积分的方法来解决电荷的吸引力的问题,从而可以获得电场的完整的计算结果,有助于深入理解物理系统中电场的行为特征。

3、利用积分解决圆的求面积的问题:即可以利用园形的极限表示计算圆的面积,有助于深入理解数学分析中极限概念的应用。

4、利用积分求无穷级数的和:即可以利用普通积分法求人级数的和,如将无穷级数转化为定积分,也可以利用无穷级数求积分,从而有助于深入理解积分概念的应用和实际结果。

高中数学知识点总结导数的应用之函数的极值与最值

高中数学知识点总结导数的应用之函数的极值与最值

高中数学知识点总结导数的应用之函数的极值与最值高中数学知识点总结:导数的应用之函数的极值与最值在高中数学中,导数是一个重要的概念和工具,它被广泛应用于各个数学领域。

其中的一个应用就是求解函数的极值与最值。

本文将针对这一知识点进行总结和讨论。

I. 导数和极值函数的极值指的是函数在某个区间上的最大值或最小值。

在求解极值问题时,我们可以利用导数的性质来进行分析和计算。

下面是一些常见的求解函数极值的方法:1. 极值的必要条件若函数f(x)在x=a处取得极值,那么导数f'(a)存在,且f'(a)=0,或者导数不存在(函数在该点有间断点或者不可导)。

2. 极值的充分条件若函数f(x)在x=a点的左右两侧导数符号相反,即f'(a-)和f'(a+)异号,那么f(x)在x=a处取得极值。

- 若f'(a-)>0且f'(a+)<0,那么极值为极大值;- 若f'(a-)<0且f'(a+)>0,那么极值为极小值。

3. 临界点和拐点临界点是指导数为零或不存在的点,对于一元函数来说,临界点多对应于函数的极值点。

拐点是指在函数图像上出现凹凸性突变的点,即曲线的凸度方向改变的点。

II. 求解函数的极值步骤在应用导数求解函数极值时,一般需要按照以下步骤进行:1. 求取函数f(x)的导数f'(x)。

2. 解方程f'(x)=0,求得导数为零的临界点。

3. 利用极值的充分条件,对临界点进行分析判断。

4. 若需要,进一步计算临界点处的函数值和边界点处的函数值进行比较。

5. 得到函数的极值。

III. 求解函数的最值函数的最大值和最小值称为最值,求解最值问题需要考虑函数的定义域和导数的变化情况。

下面是一些常见的求解函数最值的方法:1. 函数在开区间内求最值若函数f(x)在开区间(a, b)内进行求最大值,我们需要进行以下步骤:- 求取函数f(x)的导数f'(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的应用 1.函数的单调性(1)利用导数的符号判断函数的增减性注意:在某个区间内,f'(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件,如f(x)=x3在R 内是增函数,但x=0时f'(x)=0。

也就是说,如果已知f(x)为增函数,解题时就必须写f'(x)≥0。

(2)求函数单调区间的步骤 ①确定f(x)的定义域; ②求导数; ③由(或)解出相应的x 的范围.当f'(x)>0时,f(x)在相应区间上是增函数;当f'(x)<0时,f(x)在相应区间上是减函数. 2.函数的极值(1)函数的极值的判定①如果在两侧符号相同,则不是f(x)的极值点;②极大值与极小值判断3.求函数极值的步骤 ①确定函数的定义域; ②求导数; ③在定义域内求出所有的驻点,即求方程及的所有实根;④检查在驻点左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 4.函数的最值(1)如果f(x)在[a,b ]上的最大值(或最小值)是在(a ,b)内一点处取得的,显然这个最大值(或最小值)同时是个极大值(或极小值),它是f(x)在(a ,b)内所有的极大值(或极小值)中最大的(或最小的),但是最值也可能在[a ,b ]的端点a 或b 处取得,极值与最值是两个不同的概念. (2)求f(x)在[a ,b]上的最大值与最小值的步骤 ①求f(x)在(a ,b)内的极值;②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值. 7. 注意事项(1)函数图像看增减,导数图像看正负。

(2)极大值不一定比极小值大。

高阶导数的求法:由高阶导数的定义逐步求高阶导数. 一般用来寻找解题方法。

【例题解析】考点1 导数的概念【例1】.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 .【例2】.设函数()1x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P ,则实数a 的取值范围是 ( )A.(-∞,1)B.(0,1) C .(1,+∞) D. [1,+∞)[解答过程]由0,,1;, 1.1x a x a a x x -<∴<<<<-当a>1时当a<1时()()()//2211,0.11111.x x a x a x a a y y x x x x a ------⎛⎫=∴===> ⎪--⎝⎭--∴> 综上可得M P 时, 1.a ∴>考点2 曲线的切线(1)关于曲线在某一点的切线 求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线 :若一直线同时与两曲线相切,则称该直线为两曲线的公切线.【例3】.已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. (I )求24ab -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式. 解答过程:(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根,设两实根为12x x ,(12x x <),则21x x -=2104x x <-≤.于是04<,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.(II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l的方程是(1)(1)(1)y f f x '-=-,即21(1)32y a b x a=++--,因为切线l在点(1())A f x ,处过()y f x =的图象,所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则1x =不是()g x 的极值点.而()g x 321121(1)3232x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--. 解法二:同解法一得21()()[(1)]32g x f x a b x a =-++--2133(1)[(1)(2)]322a x x x a =-++-+.因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<). 当11m x <<时,()0g x <,当21x m <<时,()0g x >;或当11m x <<时,()0g x >,当21x m <<时,()0g x <. 设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则当11m x <<时,()0h x >,当21x m <<时,()0h x >;或当11m x <<时,()0h x <,当21x m <<时,()0h x <.由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102ah =⨯++=, 所以2a=-,又由248a b -=,得1b =-,故321()3f x x x x =--.【例4.】若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=[解答过程]与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=.【例5】.过坐标原点且与x 2+y 2 -4x +2y +25=0相切的直线的方程为 ( )A .y =-3x 或y =31x B. y =-3x 或y =-31x C.y =-3x 或y =-31x D. y =3x 或y =31x[解答过程]解法1:设切线的方程为,0.y kx kx y =∴-=又()()()22521,2,1.2x y -++=∴-圆心为213830., 3.3k k k k =+-=∴==-1,3.3y x y x ∴==-或 【例6】已知两抛物线a x y C x x y C +-=+=2221:,2:, a 取何值时1C ,2C 有且只有一条公切线,求出此时公切线的方程. 解答过程:函数x x y 22+=的导数为22'+=x y ,曲线1C 在点P(12112,x x x +)处的切线方程为))(2(2)2(11121x x x x x y -+=+-,即 211)1(2x x x y -+=①曲线1C 在点Q ),(222a x x +-的切线方程是)(2)(222x x x a x y --=+--即a x x x y ++-=2222② 若直线l 是过点P 点和Q 点的公切线,则①式和②式都是l 的方程,故得1,1222121+=--=+x x x x ,消去2x 得方程,0122121=+++a x x 若△=0)1(244=+⨯-a ,即21-=a 时,解得211-=x ,此时点P 、Q 重合.∴当时21-=a ,1C 和2C 有且只有一条公切线,由①式得公切线方程为14y x =- .考点3 导数的应用1.. 求函数的解析式; 2. 求函数的值域; 3.解决单调性问题; 4.求函数的极值(最值);5.构造函数证明不等式. 典型例题【例7】.函数)(x f 定义域为开区间),(b a ,导函数)(x f '在),(b a 内图象如图,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D . 4个【例8】 设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c<成立,求c 的取值范围.解答过程:(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>.所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[]03x ∈,时,()f x 的最大值为(3)98f c =+.因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<,解得1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞,,.【例9】函数y x x =+-+243的值域是_____________.解答过程:由24030x x +≥+≥⎧⎨⎩得,x ≥-2,即函数的定义域为[,)-+∞2.y x x x x x x '=+-+=+-++⋅+12412323242243,又2324282324x x x x x +-+=++++,∴当x ≥-2时,y '>0, ∴函数y x x =+-+243在(,)-+∞2上是增函数,而f ()-=-21,∴=+-+y x x 243的值域是[,)-+∞1.【例10】已知函数()θθcos 163cos 3423+-=x x x f ,其中θ,R x ∈为参数,且πθ20≤≤.(1)当0cos =θ,判断函数()x f 是否有极值;(2)要使函数()f x 的极小值大于零,求参数θ的取值范围;(3)若对(2)中所求的取值范围内的任意参数θ,函数()x f 在区间()a a ,12-内都是增函数,求实数a 的取值范围. [解答过程](Ⅰ)当cos 0θ=时,3()4f x x =,则()f x 在(,)-∞+∞内是增函数,故无极值.(Ⅱ)2'()126cos f x x x θ=-,令'()0f x =,得12cos 0,2x x θ==.由(Ⅰ),只需分下面两种情况讨论.①当cos 0θ>时,随x的变化'()f x 的符号及()f x 的变化情况如下表:因此,函数()f x 在cos 2x θ=处取得极小值cos f()2θ,且3cos 13()cos 2416f θθθ=-+.要使cos ()02f >,必有213cos (cos )044θθ-->,可得0cos θ<由于0cos θ≤≤3116226ππππθθ<<<<或. 错误!未找到引用源。

相关文档
最新文档