排列组合问题的几种基本方法(复

合集下载

高中数学排列组合问题的常见解题方法和策略(完整版)

高中数学排列组合问题的常见解题方法和策略(完整版)

高中数学排列组合问题的常见解题方法和策略江西省永丰中学陈保进排列组合问题是高中数学的一个难点,它和实际问题联系紧密,题型多样,解题思路灵活多变,学生不容易掌握。

下面介绍一些常见的排列组合问题的解题方法和策略。

1.相邻问题捆绑法:将相邻的几个元素捆绑成一组,当作一个大元素参与排列例1:A ,B ,C ,D ,E 五人站成一排,如果A ,B 必须相邻,则不同的排法种数为_____解析:把A ,B 捆绑,视为一个整体,整体内部排序,有22A 种情况,再将整体和另外三人排序,有44A 种情况,所以答案为22A ×44A =48注意:小集团问题也可以用捆绑法变式1:7人排成一排,甲、乙两人中间恰好有3人,则不同的排法有_____种解析:把甲、乙及中间3人看作一个整体,答案为720333522=⨯⨯A A A 2.不相邻问题插空法:不相邻问题,可先把其他元素全排列,再把需要不相邻的元素插入到其他元素的空位或两端例2:七人并排站成一行,如果甲乙丙两两不相邻,那么不同的排法种数是_____解析:先将其它4人全排列,共44A 种情况,再将甲乙丙插入到其他4人的空位或两端,共35A 种情况,所以答案为44A ×35A =14403.定序问题用除法:若要求某几个元素必须保持一定的顺序,可用除法例3:A ,B ,C ,D ,E 五人站成一列,如果A 必须在B 前面,则不同的排法种数有_____解析:先将5人全排列,共55A 种情况,考虑A ,B 的顺序有22A 种,符合题意的只有一种,所以答案为602255=A A 4.特殊元素优先考虑例4:8名男生排成一排,其中甲不站最左边,乙不站最右边,有种排法解析:①甲在最右边时,其他的可全排,有77A 种不同排法②甲不在最右边时,可从余下6个位置中任选一个,有16A 种,再排乙,有16A 种排法,其余人全排列,共有77A +16A ×16A ×66A =30960种不同排法5.特殊位置优先考虑例5:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有种解析:翻译工作是特殊位置,先选择一人参加翻译工作,14C 种情况,再从其他5人中选择5人参加导游、导购、保洁工作,有35A 种情况,答案为14C ×35A =2406.分组、分配问题:先分组后分配,如果是整体平均分组或部分平均分组,最后计算组数时要除以n n A (n 为均分的组数),避免重复计数例6:将6本不同的书分给甲、乙、丙3名学生,其中一人得1本,一人得2本,一人得3本,则有________种不同的分法解析:第一步把书按数量1,2,3分成三组,不是平均分组,有332516C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故共有3606033=⨯A 种情况A BC DE变式1:将6本不同的书分给甲、乙、丙3名学生,其中有两人各得1本,一人得4本,则有________种不同的分法解析:第一步把书按数量1,1,4分成三组,为部分平均分组,有1522441516=A C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故有901533=⨯A 种情况变式2:将6本不同的书分给甲、乙、丙3名学生,每人得2本,则有_______种不同的分法解析:第一步把书按数量2,2,2分成三组,为整体平均分组,有1533222426=A C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故有901533=⨯A 种情况变式3:某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有_____种解析:①按照人数2,2,1分成3组;②按照人数3,1,1分成3组答案为15033221112353322112325=⨯+⨯A A C C C A A C C C 7.正难则反,考虑反面:例7:从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为解析:493739=-C C 此法适用于至多、至少、有、没有这类问题8.分类法(含多个限制条件的排列组合问题、多元问题)例8:甲、乙、丙、丁四位同学高考之后计划去A ,B ,C 三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A 社区,乙不去B 社区,则不同的安排方法种数为解析:分2种情况,①乙去A 社区,再将丙丁二人安排到B ,C 社区,有22A 种情况,②乙不去A 社区,则乙必须去C 社区,若丙丁都去B 社区,有1种情况,若丙丁中有1人去B 社区,则先在丙丁中选出1人,安排到B 社区,剩下1人安排到A 或C 社区,有2×2=4种情况,所以答案为2+1+4=7变式1:由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有个解析:元素多,取出的情况多种,个位数字可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个数,合计为300个变式2:在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种解析:只需考虑三张奖券的归属情况,①有三人各得一张奖券,情况数为34A ;②一人获两张奖券一人获一张奖券,情况数为362423=A C ,故答案为609.可重复的排列求幂法例9:把6名实习生分配到7个车间实习,每个车间人数不限,共有种不同方法解析:每名实习生有7种分配方法,答案为7×7×7×7×7×7×7=76种不同的分法10.多排问题单排法例10:6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是解析:先排前排,36A 种情况,再排后排,33A 种情况,答案为720663336==⨯A A A如果没有条件限制,把元素排成几排和排成一排情况一样多变式1:8个人排成前后两排,每排4人,其中甲乙要排在前排,丙要排在后排,有种排法解析:先排甲乙和丙,还剩5个位置,让5个人做全排列,答案为5760551424=⨯⨯A A A 11.相同元素的分配问题隔板法(名额分配问题也可用隔板法)例11:将7个相同的小球放入四个不同的盒子,每个盒子都不空,放法有种解析:可以在7个小球的6个空位中插入3块木板,每一种插法对应一种放法,故放法有3620C =种变式1:把20个相同的球全放入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不少于其编号数,则有种放法解析:先向1,2,3号三个盒子中分别放入0,1,2个球后还余下17个球,然后再把这17个球分成3份,每份至少一球,运用隔板法,共有216120C =种放法12.选排问题先取后排例12:10名同学合影,站成了前排3人,后排7人,现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为解析:首先从后排的7人中抽2人,有27C 方法;再将这2人安排在前排,第一人有4种放法,第二人有5种放法,答案为2745420C ⨯⨯=变式1:摄像师要对已坐定一排照像的6位小朋友的座位顺序进行调整,要求其中恰有3人座位不调整,则不同的调整方案的种数为______解析:从6人中任选3人有36C 种情况,将这3人位置全部进行调整,有1112112C C C ⨯⨯=种情况,答案为36240C ⨯=13.部分合条件问题排除法例13:以正方体的顶点为顶点的四面体共有个解析:正方体8个顶点从中每次取四点,理论上可构成48C 个四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以答案为481258C -=变式1:四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有种A、150种B、147种C、144种D、141种解析:从10个点中任取4个的组合数为410210C =,其中4点共面的分三类:①4点在同一侧面或底面的共4组,即46460C ⨯=种②每条棱上的三点和它的对棱的中点共面,这样的共6种③所有棱的6个中点中,4点构成平行四边形共面的有3种答案为210-(60+6+3)=14114.构造模型,等价转化例14:马路上有编号为1,2,3…9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?解析:此问题相当于一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯种方法。

排列组合常见15种解题方法

排列组合常见15种解题方法

排列组合常用的十五种方法一.特殊元素和特殊位置优先策略例1.由0,1, 2, 3, 4, 5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有C;.〔I.然后排首位共有C:, 甲最后排其它位置共有& | | J由分步计数原理得C:C;A; = 288 C] A:C;练习题:1. 7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有疋斎崙=480种不同的排法要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题•即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.练习题:2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为_____________ 三•不相邻问题插空策略例3. 一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场, 则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有&种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种犹不同的方法,由分步计数原理,节目的不同顺序共有貳处____________ 种元素相离问题可先把没有位宜要求的元素进行排队再把不相邻元素插入中间和两练习题:3.某班新年联欢会原定的5个节目己排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 _______四•定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有丄种坐法,则共有A;丽法。

排列组合的5种方法

排列组合的5种方法

排列组合的5种方法排列组合是数学中一个重要的概念,用于解决许多实际问题。

在这篇文章中,我们将介绍五种常见的方法来解决排列组合问题。

第一种方法是使用乘法原则。

乘法原则是指如果一个事件有m种可能的方式发生,另一个事件有n种可能的方式发生,那么这两个事件同时发生的方式有m * n种。

例如,如果有3个人可以选择一个水果和2种颜色的衣服,那么总共有3 * 2 = 6种可能性。

第二种方法是使用加法原则。

加法原则是指如果一个事件有m种可能的方式发生,另一个事件有n种可能的方式发生,那么这两个事件至少有m + n种可能性。

例如,如果有3个人可以选择两种不同的水果,那么至少有3 + 3 = 6种可能性。

第三种方法是使用排列。

排列是指从一组对象中选择有序的一部分对象。

如果有n个对象,要从中选择r个对象进行排列,那么排列的数量可以用以下公式来计算:P(n, r) = n! / (n - r)!。

其中,n!表示n的阶乘,即n * (n - 1) * (n - 2) * ... * 2 * 1。

例如,如果有4个人要站成一排,那么有P(4, 4) = 4! / (4 - 4)! = 4! / 0! = 4! = 4 * 3 * 2 * 1 = 24种可能性。

第四种方法是使用组合。

组合是指从一组对象中选择无序的一部分对象。

如果有n个对象,要从中选择r个对象进行组合,那么组合的数量可以用以下公式来计算:C(n, r) = n! / (r! * (n - r)!)。

例如,如果有4个人要从中选择2个人进行分组,那么有C(4, 2) = 4! / (2! * (4 - 2)!) = 4! / (2! * 2!) = (4 * 3 * 2 * 1) / ((2 * 1) * (2 * 1)) = 6种可能性。

第五种方法是使用二项式定理。

二项式定理是一个用于展开二项式的公式。

它可以用于计算排列和组合的值。

二项式定理可以表示为:(a + b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + C(n, 2) * a^(n-2) * b^2 + ... + C(n, n) * a^0 * b^n。

排列组合常见21种解题方法

排列组合常见21种解题方法

排列组合常见21种解题方法排列组合是高中数学中的重要知识点,也是考试中常见的题型。

在解决排列组合问题时,我们可以运用多种方法来求解,下面将介绍常见的21种解题方法。

1. 直接法,根据排列组合的定义,直接计算排列或组合的个数。

2. 公式法,利用排列组合的公式进行计算,如排列公式P(n,m)=n!/(n-m)!,组合公式C(n,m)=n!/(m!(n-m)!)。

3. 递推法,通过递推关系式求解排列组合问题,如利用排列数的递推关系P(n,m)=P(n-1,m)+P(n-1,m-1)。

4. 分类讨论法,将问题进行分类讨论,分别求解每种情况的排列组合个数,然后合并得出最终结果。

5. 组合数性质法,利用组合数的性质,如C(n,m)=C(n,n-m),C(n,m)=C(n-1,m)+C(n-1,m-1),简化计算过程。

6. 二项式定理法,利用二项式定理展开式子,求解排列组合问题。

7. 二项式系数法,利用二项式系数的性质,如n个不同元素的排列个数为n!,n个相同元素的排列个数为1,简化计算过程。

8. 容斥原理法,利用容斥原理求解排列组合问题,排除重复计算的部分。

9. 对称性法,利用排列组合的对称性质,简化计算过程。

10. 逆向思维法,从问题的逆向思考,求解排列组合问题。

11. 生成函数法,利用生成函数求解排列组合问题,将排列组合问题转化为多项式求解。

12. 构造法,通过构造合适的排列组合模型,求解问题。

13. 图论法,将排列组合问题转化为图论问题,利用图论算法求解。

14. 动态规划法,利用动态规划算法求解排列组合问题,降低时间复杂度。

15. 贪心算法法,利用贪心算法求解排列组合问题,简化计算过程。

16. 模拟法,通过模拟排列组合过程,求解问题。

17. 枚举法,将所有可能的排列组合情况列举出来,求解问题。

18. 穷举法,通过穷举所有可能的情况,求解问题。

19. 数学归纳法,利用数学归纳法证明排列组合的性质,求解问题。

排列组合解题方法

排列组合解题方法

排列组合解题方法排列组合题在高考试题中占据较大比例,或单独命题,或与概率内容相结合,由于排列组合题抽象性较强,解题思路灵活,方法多样,切入点多,学生在解题过程中往往容易出现思维遗漏、或重复的错误。

下面就是小编给大家带来的排列组合解题方法,希望大家喜欢!相离问题插空法主要用来解决 2 个或若干个不相邻元素的排列组合问题,是解决排列组合问题的常见方法之一。

它是指先把无位置要求,无条件限制的元素排列好,然后对有位置要求,受条件限制的元素进行整理,再将受条件限制的元素插入到已排列好的无条件限制元素的间隙或两端中。

例 1 在一张节目单中原有 6 个节目,若保持这些节目相对顺序不变,再添加进去 3 个节目,则所有不同的添加方法共有多少种?解析:该题若直接进行解答较为麻烦,此时可以借助相离问题插空法,可以使问题迎刃而解。

先将原来的6 个节目排列好,这时中间和两端有 7 个空位,然后用一个节目去插 7 个空位,有 A 种方法;接着再用另一个节目去插 8 个空位,有 A 种方法;将最后一个节目插入到 9 个空位中,有 A 种方法,由乘法原理得:所有不同的添加方法 AAA=504 种。

例 2 停车场划出一排 12 个停车位置,今有 8 辆车需要停放,要求空位置连在一起,不同的停车方法有多少种?解析:先排好 8 辆车有 A 种方法,要求空位置连在一起,则在每 2 辆之间及其两端的9 个空当中任选一个,将空位置插入其中有 C 种方法。

故共有 AC 种方法。

相邻问题捆绑法作为排列组合题最为常见的解法之一,就是在解决对于某几个元素相邻问题时,将相邻元素作为整体加以考虑,视为一个“大”元素参与排序,然后再单独对大元素内部各元素间的排列顺序进行一一分析排列。

例 3 有 6 名同学排成一排,其中甲、乙两人必须排在一起的不同排法有多少种?解析:由于甲、乙两人必须要排在一起,故可将甲、乙两人捆绑起来作为一个整体进行考虑,即将两人视为一人,再与其他四人进行全排列,则有 A 种排法,甲、乙两人之间有 A 种排法。

排列组合问题常用的解题方法含答案

排列组合问题常用的解题方法含答案

排列组合问题常用的解题方法含答案高中数学排列组合问题常用的解题方法一、相邻问题捆绑法题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列.例1:五人并排站成一排.如果甲、乙必须相邻且乙在甲的右边.那么不同的排法种数有种。

二、相离问题插空法元素相离(即不相邻)问题.可先把无位置要求的几个元素全排列.再把规定相离的几个元素插入上述几个元素间的空位和两端.例2:七个人并排站成一行.如果甲乙两个必须不相邻.那么不同排法的种数是。

三、定序问题缩倍法在排列问题中限制某几个元素必须保持一定顺序.可用缩小倍数的方法.例3:A、B、C、D、E五个人并排站成一排.如果 B必须站A的右边(A、B可不相邻).那么不同的排法种数有。

四、标号排位问题分步法把元素排到指定号码的位置上.可先把某个元素按规定排入.第二步再排另一个元素.如此继续下去.依次即可完成.例4:将数字1、2、3、4填入标号为1、2、3、4的四个方格里.每格填一个数.则每个方格的标号与所填数字均不相同的填法有。

五、有序分配问题逐分法有序分配问题是指把元素按要求分成若干组.可用逐步下量分组法。

例5:有甲、乙、丙三项任务.甲需2人承担.乙丙各需1人承担.从10人中选出4人承担这三项任务.不同的选法总数有。

六、多元问题分类法元素多.取出的情况也有多种.可按结果要求.分成不相容的几类情况分别计算.最后总计。

例6:由数字 .组成且没有重复数字的六位数.其中个位数字小于十位数字的共有个。

例7:从…100这100个数中.任取两个数.使它们的乘积能被7整除.这两个数的取法(不计顺序)共有多少种例8:从.…100这100个数中.任取两个数.使其和能被4整除的取法(不计顺序)有多少种七、交叉问题集合法某些排列组合问题几部分之间有交集.可用集合中求元素个数公式=+-?。

n A B n A n B n A B()()()()例 9:从6名运动员中选出4个参加4×100m接力赛.如果甲不跑第一棒.乙不跑第四棒.共有多少种不同参赛方法八、定位问题优先法某个(或几个)元素要排在指定位置.可先排这个(几个)元素.再排其他元素。

高中数学排列组合问题的几种基本方法

高中数学排列组合问题的几种基本方法
2015/10/4 20
• 练习: 有12个人,按照下列要求分配,求不同的分法种 数. (1)分为两组,一组7人,一组5人; (2)分为甲、乙两组,甲组7人,乙组5人; (3)分为甲、乙两组,一组7人,一组5人; (4)分为甲、乙两组,每组6人; (5)分为两组,每组6人; (6)分为三组,一组5人,一组4人,一组3人; (7)分为甲、乙、丙三组,甲组5人,乙组4人,丙组3人; (8)分为甲、乙、丙三组,一组5人,一组4人,一组3人; (9)分为甲、乙、丙三组,每组4人; (10)分为三组,每组4人.
2015/10/4
解: 如图所示
4 7 A4 A7
→ ↑ → ↑ ↑ → → → ↑ → → 1 ① 2 ② ③ 3 4 5 ④ 6 7
8
4. 隔板法: n个 相同小球放入m(m≤n)个盒子里,要求每个 盒子里至少有一个小球的放法等价于n个相同小球 串成一串从间隙里选m-1个结点剪截成m段. 例4. 某校准备参加今年高中数学联赛,把16个选手 名额分配到高三年级的1-4 个教学班,每班至少一个 名额,则不同的分配方案共有___种. 解: 问题等价于把16个相同小球放入4个盒子里, 每个盒子至少有一个小球的放法种数问题. 3 将16个小球串成一串,截为4段有 C15 455 种截断法,对应放到4个盒子里. 因此,不同的分配方案共有455种 .
例6. 从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直 线方程Ax+By+C=0中的A、B、C,所得的经过坐标 原点的直线有_________条. 解:所有这样的直线共有
A 210 条, 1 2 其中不过原点的直线有 A6 A6 180 条,
3 7
15
∴所得的经过坐标原点的直线有210-180=30条.

排列组合24种解题技巧

排列组合24种解题技巧

排列组合24种解题技巧1.排序问题相邻问题捆绑法相离问题插空排定序问题缩倍法(插空法)定位问题优先法多排问题单排法圆排问题单排法可重复的排列求幂法全错位排列问题公式法2.分组分配问题平均分堆问题去除重复法(平均分配问题)相同物品分配的隔板法全员分配问题分组法有序分配问题逐分法3.排列组合中的解题技巧至多至少间接法染色问题合并单元格法交叉问题容斥原理法构造递推数列法(一)排序问题1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.A B C D E五人并排站成一排,如果A,B必须相邻且B在A的右边,则不同的排法有例1.,,,,()A、60种B、48种C、36种D、24种A 种,解析:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424答案:D.2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有( )A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

例4.现有1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?解析:老师在中间三个位置上选一个有13A 种,4名同学在其余4个位置上有44A 种方法;所以共有143472A A =种。

解答排列组合问题常用的几种途径

解答排列组合问题常用的几种途径

体,即为一个“对象”,4 本不同年级的物理书也看成一
个整体,即为另一个“对象”,把两个“对象”排成一排

A2 2
种排法;
第二步,对数学书、物理书两个“对象”内部的元素
分别进行排列,数学书“对象”内部的元素有
A3 3
种排列
方法,物理书“对象”内部的元素有
A
4 4
种排列方法.
因此,符合题意的排列方法共有
同元素.将这 10 个相同元素排成一排,元素之间有 9 个
空,选出 2 个空插入隔板,可把 10 个元素分成 3 份,分
配给每个班级,所以共有
C2 9
=
36种
分配方案.
本题为相同元素的分配问题,可采用隔板法对问
题进行求解.隔板法的适用范围较窄,同学们在解题时
需首先确定问题是否为相同元素的分配问题,再采用
A22∙A33∙A
4 4
=
288种
.
本题中要求数学书必须相邻,物理书也必须相
邻,则本题即为相邻问题,可采用捆绑法对问题进行
求解.
二、运用插空法
若问题中要求几个元素不能相邻,则需采用插空
法,即先将无限制条件的元素全排列;再将指定的不
能相邻的元素插入已排好元素的间隙或两端位置,从
而将各个元素按照题目要求排列好.
隔板法求解.
四、借助倍缩法
有些问题中要求部分元素有固定的顺序,此时我
们可用倍缩法进行求解.先将所有元素进行全排列;然
后用所有元素的全排列数除以定序元素的全排列数,
即可得到问题的答案.
例 4.现将 4 名男生、3 名女生(身高各不相同)这 7
名学生排成一行.若女生按照从矮到高的顺序排列(从

排列组合题型及解题方法

排列组合题型及解题方法

排列组合题型及解题方法
排列组合是数学中的一个重要概念,用于计算对象的不同排列或组合的数量。

在解决排列组合问题时,可以使用以下几种常见的方法:
1. 计数法:根据问题的条件,逐步计算出排列或组合的数量。

例如,如果要求从n个不同的元素中选取r个元素进行排列,可以使用计数法计算出排列的数量为n(n-1)(n-2)...(n-r+1)。

2. 公式法:排列组合问题有一些常用的公式,可以直接使用这些公式计算出排列或组合的数量。

例如,排列的数量可以使用阶乘计算,组合的数量可以使用组合公式计算。

3. 递归法:对于一些复杂的排列组合问题,可以使用递归的方法进行求解。

递归法的基本思想是将问题分解为更小的子问题,并通过递归调用解决子问题。

4. 动态规划法:对于一些具有重叠子问题的排列组合问题,可以使用动态规划的方法进行求解。

动态规划法的基本思想是将问题划分为多个阶段,并通过保存中间结果来避免重复计算。

在实际应用中,排列组合问题常常与概率、统计、组合优化等领域相关。

解决排列组合问题需要灵活运用数学知识和方法,同时也需要具
备一定的逻辑思维能力。

高中数学排列组合问题的几种基本方法

高中数学排列组合问题的几种基本方法

前 排
后 排
一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研
练习题:有两排座位,前排 11 个座位,后排 12 个座位, 现安排 2 人就座规定前排中间的 3 个座位不能坐,并且 这 2 人不左右相邻,那么不同排法的种数是
346
A 2 17
2 20
4 C52 A 4
排列组合混合问题先选后排策略
5 5
4 6
练习2:某班新年联欢会原定的5个节目已排成节 目单,开演前又增加了两个新节目.如果将这两个 节 目插入原节目单中,那么不同插法的种数为多 少? 练习3:某班新年联欢会原定的5个节目已排成节 目单,开演前又增加了两个新节目.如果将这两 个新节目插入原节目单中,且两个新节目不相 邻,那么不同插法的种数为多少?
5 13 4 8 4 4 2 2
C C C /A
1540
C C A / A 90
2 2 4 2 2 6 2 2
例2 . 7人排成一排.甲、乙两人不相邻,有多少 种不同的排法?
解:分两步进行: 第1步,把除甲乙外的一般人排列: 问题时,可以先排“一 般”元素然后插入“特殊”元素,使问题得以 解决. ♀ ♀ ♀ ♀ ♀♀ ♀ ↑ ↑ ↑ ↑ ↑ ↑
种,其余4组球与盒子需错位排列有9种放法. 故所求方法有15×9=135种.
7.剔除法 从总体中排除不符合条件的方法数,这是一 种间接解题的方法.
排列组合应用题往往和代数、三角、立体几何、平面 解析几何的某些知识联系,从而增加了问题的综合性,解 答这类应用题时,要注意使用相关知识对答案进行取舍.
例7. 从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直 线方程Ax+By+C=0中的A、B、C,所得的经过坐标 原点的直线有_________条. 解:所有这样的直线共有

排列组合问题的基本解法

排列组合问题的基本解法

排列组合问题的基本解法排列组合问题是组合数学中常见的一类问题,涉及到在给定条件下对一组元素进行排列或组合的情况。

它在多个领域中都有广泛的应用,如概率论、统计学、计算机算法等。

本文将介绍排列组合问题的基本概念和解法。

排列是指将一组元素按照一定顺序进行排列的方式。

设有n个元素,从中选择r个元素进行排列,排列的总数可以使用阶乘的方式计算。

例如,当n=5,r=3时,可以从5个元素中选择3个进行排列,排列的总数为5!/(5-3)。

= 60.组合是指在一组元素中选择r个元素,并忽略其排列顺序的方式。

组合的总数可以使用组合数的方式计算。

例如,当n=5,r=3时,可以从5个元素中选择3个进行组合,组合的总数为5!/[3!(5-3)!] = 10.公式法排列组合问题可以通过数学公式直接计算。

当需要求解排列数时,使用阶乘的公式可得到结果。

当需要求解组合数时,使用组合数的公式可得到结果。

递归法递归法是一种常用的解决排列组合问题的方法。

通过将问题分解为较小规模的子问题,并逐步求解,最终得到结果。

递归法可以使用编程语言中的递归函数来实现。

迭代法迭代法是一种通过循环计算的方法,逐步生成排列组合的所有可能性。

可以使用循环结构和条件判断来实现迭代法。

以上是排列组合问题的基本解法介绍,具体问题的求解方法可以根据实际情况选择合适的解法。

排列问题排列问题是数学中的一个概念,指的是从给定的一组元素中选择若干个元素并按照一定的顺序排列的问题。

在排列问题中,每个元素只能出现一次。

解决排列问题时,我们需要确定以下几个要素:元素的总数:即给定的一组元素中有多少个元素。

选取元素的个数:即从给定的一组元素中选择多少个元素进行排列。

元素的顺序:即排列中每个元素的位置相对于其他元素的位置。

解决排列问题解决排列问题的基本思路是利用排列的性质进行计算。

以下是解决排列问题的基本步骤:确定元素的总数和选取元素的个数。

计算排列的总数,可以使用排列公式来计算,排列公式如下:排列公式](/____formula.png)其中,n 表示元素的总数,r 表示选取元素的个数。

排列组合问题的解题方法总结很非常好的方法(高三复习很合适)全

排列组合问题的解题方法总结很非常好的方法(高三复习很合适)全

排列组合问题的解题方法总结一、相邻问题 “捆绑法”:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。

例1:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.解: 因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有66A 种排法,其中女生内部也有33A 种排法,根据乘法原理,共有6363A A 种不同的排法. 练1-1:7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法练1-2:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 练1-3:6个人排成一排,甲、乙二人必须相邻的排法有多少种?解:将甲、乙二人“捆绑”起来看作一个元素与其它4个元素一起排列,有A55种,甲、乙二人的排列有A22种,共有A22·A55=240种.二、不相邻问题 “插空法”:对元素不相邻问题,可先不考虑限制条件先排其它元素,再将不相邻元素插入已排好元素的空隙中(包括两端)即可。

例2: 学校组织老师学生一起看电影,同一排电影票12张。

8个学生,4个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法?分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.解:先排学生共有88A 种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有47A 种选法.根据乘法原理,共有的不同坐法为4878A A 种.练2-1:一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的 出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的 6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练2-2:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果 将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30练2-3:用1,2,3,4,5,6,7,8组成没有重复数字的八位数,其中1与2相邻、3与4相邻、5与6相邻、7与8不相邻的八位数共有 个. 解:先“相邻”排列成三个“大元素”,再三个“大元素”排列,最后7与8“插空”,共有2223222234576A A A A A =种.三、特殊元素(或位置) “优先法”:排列组合问题无外乎“元素”与“位置”的关系问题,即某个元素排在什么位置或某个位置上排什么元素的问题.因此,对于有限制条件的排列组合问题,可从限制元素(或位置)入手,优先考虑。

解决排列组合问题的常用方法

解决排列组合问题的常用方法
第二类,从97件正品中抽取2件,并将3件次品全部抽取,有 种
按分类计数原理有 种
2、在∠AOB的OA边上取m个点,在OB边上取n个点(均除O点外),连同O点共m+n+1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )
第一类办法从OA边上(不包括O)中任取一点与从OB边上(不包括O)中任取两点,可构造一个三角形,有C C 个;第二类办法从OA边上(不包括O)中任取两点与OB边上(不包括O)中任取一点,与O点可构造一个三角形,有C C 个;第三类办法从OA边上(不包括O)任取一点与OB边上(不包括O)中任取一点,与O点可构造一个三角形,有C C 个由加法原理共有N=C C +C C +C C 个三角形
【例2】用0,1,2,3,4,5这六个数字,
(1)可以组成多少个数字不重复的三位数?
(2)可以组成多少个数字允许重复的三位数?
(3)可以组成多少个数字不允许重复的三位数的奇数?
(4)可以组成多少个数字不重复的小于1000的自然数?
(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?
解(1)分三步:①先选百位数字.由于0不能作百位数,因此有5种选法;
分组(堆)问题的六个模型:①有序不等分;②有序等分;③有序局部等分;④无序不等分;⑤无序等分;⑥无序局部等分;
插空法:解决一些不相邻问题时,可以先排一些元素然后插入其余元素,
捆绑法:相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列。
排除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法
点评:以上问题归纳为
分给人(有序)
分成堆(无序)
非均匀
均匀
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合问题的几种基本方法(复习归纳)
排列组合问题
1. 分组(堆)问题
分组(堆)问题的六个模型:①无序不等分;
②无序等分;③无序局部等分;(④有序不等分;
⑤有序等分;⑥有序局部等分.)
处理问题的原则:
①若干个不同的元素“等分”为m个堆,要将选取出每一个堆的组合数的乘积除以m!
②若干个不同的元素局部“等分”有m个均等堆,要将选取出每一个堆的组合数的乘积除以m!
③非均分堆问题,只要按比例取出分完再用乘法原理作积.
④要明确堆的顺序时,必须先分堆后再把堆数当作元素个数作全排列.
1. 分组(堆)问题
例1.有四项不同的工程,要发包给三个工程队,要求每个工程队至少要得到一项工程. 共有多少种不同的发包方式?
解:要完成发包这件事,可以分为两个步骤:⑴先将四项工程分为三“堆”,有
211421226C C C A
种分法;
⑵再将分好的三“堆”依次给三个工程队, 有3!=6种给法.
∴共有6×6=36种不同的发包方式.
2.插空法:
解决一些不相邻问题时,可以先排“一般”元素然后插入“特殊”元素,使问题得以解决. ♀ ♀ ♀ ♀ ♀
♀ ♀
↑ ↑ ↑ ↑ ↑ ↑
例2 . 7人排成一排.甲、乙两人不相邻,有多少种不同的排法?
解:分两步进行:
55A 有=120种排法
第1步,把除甲乙外的一般人排列:
第2步,将甲乙分别插入到不同的间隙或两端中(插孔):
26A 有=30种插入法
120303600∴⨯共有=种排法
()种不同的排法有225566P P P -∴
3.捆绑法
相邻元素的排列,可以采用“局部到整体”的排法,即将相邻的元素局部排列当成“一个”元素,然后再进行整体排列.
例3 . 6人排成一排.甲、乙两人必须相邻,有多少种不的排法?
♀ ♀
♀ ♀ ♀ ♀ ♀ ♀
解:(1)分两步进行:
甲 乙
几个元素不能相邻时,先排一
般元素,再让特殊元素插孔.
第一步,把甲乙排列(捆绑):
22
A 有=2种捆法
第二步,甲乙两个人的梱看作一个元素与其它的排队:
55A 有=120种排法
2120240∴⨯共有=种排法
()种不同的排法有225566P P P -∴
4.消序法(留空法)
几个元素顺序一定的排列问题,一般是先排列,再消去这几个元素的顺序.或者,先让其它元素选取位置排列,留下来的空位置自然就是顺序一定的了.
例4. 5个人站成一排,甲总站在乙的右侧的有多少种站法?
几个元素必须相邻时,先捆绑成一
个元素,再与其它的进行排列.
5
5A
种站法,
解法1:将5个人依次站成一排,有
22
A
然后再消去甲乙之间的顺序数
535522543A A A =⨯⨯= ∴甲总站在乙的右侧的有站法总数为
解法2:先让甲乙之外的三人从5个位置选出3个站好,有
35A
种站法,留下的两个位置自然给甲乙有1种站法
33551A A
⨯= ∴甲总站在乙的右侧的有站法总数为
4.消序法(留空法)
解: 如图所示
变式:如下图所示,有5横8竖构成的方格图,从A 到B 只能上行或右行共有多少条不同的路线?
B A
也可以看作是
1,2,3,4,5,6,7,
①,②,③,④顺
序一定的排列,有 11
114
7
47
A A A
B
将一条路经抽象为如下的一个排法
(5-1)+(8-1)=11格: → 1
↑ ① → 2 ↑ ② ↑ ③ → 3 → 4 → 5 ↑ ④ → 6 → 7
其中必有四个↑和七个→组成!
所以, 四个↑和七个→一个排序就对应一条路经,
514(51)(81)11
C C --+-=
所以从A 到B 共有
条不同的路径.
5.剪截法(隔板法):
n 个 相同小球放入m(m ≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n 个相同小球串成一串从间隙里选m-1个结点剪截成m 段.
例5. 某校准备参加今年高中数学联赛,把16个选手名额分配到高三年级的1-4 个教学班,每班至少一个名额,则不同的分配方案共有___种. 解:问题等价于把16个相同小球放入4个盒子里,每个盒子至少有一个小球的放法种数问题.
3 15455
C
将16个小球串成一串,截为4段有
种截断法,对应放到4个盒子里.
因此,不同的分配方案共有455种.
5.剪截法:
n个相同小球放入m(m≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n 个相同小球串成一串从间隙里选m-1个结点剪截成m段.
变式:某校准备参加今年高中数学联赛,把16个选手名额分配到高三年级的1-4 个教学班,每班的名额不少于该班的序号数,则不同的分配方案共有___种.
解:问题等价于先给2班1个,3班2个,4班
3个,再把余下的10个相同小球放入4个盒子里,每个盒子至少有一个小球的放法种数问题.
3 984
C=
将10个小球串成一串,截为4段有
种截断法,对应放到4个盒子里.
因此,不同的分配方案共有84种.
6.错位法:
编号为1至n的n个小球放入编号为1到 n的n 个盒子里,每个盒子放一个小球.要求小球与盒子的编号都不同,这种排列称为错位排列.
特别当n=2,3,4,5时的错位数各为1,2,9,44. 例6. 编号为1至6的6个小球放入编号为1至6的6个盒子里,每个盒子放一个小球,其中恰有2个小球与盒子的编号相同的放法有____种. 解:选取编号相同的两组球和盒子的方法有
2 615
C=
种,其余4组球与盒子需错位排列有9种放法. 故所求方法有15×9=135种.
7.剔除法
从总体中排除不符合条件的方法数,这是一种间接解题的方法.
排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.
例7. 从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_________条.
3 7210
A=
解:所有这样的直线共有条,
12 66180
A A
⨯=
其中不过原点的直线有
条,
∴所得的经过坐标原点的直线有210-180=30条.
巩固练习
1.将3封不同的信投入4个不同的邮筒,则不同的投法的种数是( )
A.43
B.34
C.3
4A D.3
4C
B
2.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出 3种,分别种在不同土质的三块地上,其中黄瓜必须种植,不同的种植方法共有( )
A.24种
B.18种
C.12种
D.6种 B
巩固练习
3. 12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )
A.4448412C C C 种
B.34448412C C C 种
C.3348412A C C 种
D.334448412A C C C 种
A
4. 5个人排成一排,其中甲、乙不相邻的排法
种数是()
A.6
B.12
C.72
D.144 C。

相关文档
最新文档