等离子体产生原理ppt课件
合集下载
等离子体及其在环境中的应用(共28张PPT)
精品资料
正、负电晕放电随电压(diànyā)变化的图像
5 mm
精品资料
5 mm
介质阻挡 放电( (zǔdǎng) DBD)
• 也叫无声放电。结合(jiéhé)了辉光放电和电晕放电的优点,可以在大气压 条件下产生大面积低温等离子体[32],且体系温度与活性粒子的密度 均适中。将绝缘介质插入两个电极之间,防止电极的直接击穿形成 火花弧光放电,从而形成均匀稳定的大面积等离子体。
精品资料
精品资料
电除尘
• 电除尘器是利用电晕放电产生的大量离子(lízǐ)使得粒子荷电,并使荷电 粒子在电场力的驱动下移向集尘板,从而将微粒从气流中分离出来的 装置。用电除尘的方法分离、捕集气体中的尘粒。
精品资料
精品资料
空气净化
精品资料
精品资料
臭氧 发生器 (chòuyǎng)
• 臭氧(chòuyǎng)是一种氧化和杀菌性能极高的氧化剂,被广泛用于食品加工存 储与保鲜、医疗卫生及餐具消毒和水处理等行业。臭氧(chòuyǎng)易分解为氧, 不便于收集贮存,必须在常温或低温下现场生产。臭氧(chòuyǎng)的主要生产
精品资料
精品资料
Influent gas
NTP/Catalyst
Effluent gas
Influent gas
NTP
Catalyst
Effluent gas
精品资料
高压 放电水处理 (gāoyā)
• 水下高压放电是在由尖端电极极不均匀电场中产生的。还可向溶液通 入气体,促进局部放电和等离子体通道的形成、增加活性物质数量, 从而处理(chǔlǐ)难降解有机废水和水体消毒灭菌。
精品资料
辉光 放电 (huī ɡuānɡ)
正、负电晕放电随电压(diànyā)变化的图像
5 mm
精品资料
5 mm
介质阻挡 放电( (zǔdǎng) DBD)
• 也叫无声放电。结合(jiéhé)了辉光放电和电晕放电的优点,可以在大气压 条件下产生大面积低温等离子体[32],且体系温度与活性粒子的密度 均适中。将绝缘介质插入两个电极之间,防止电极的直接击穿形成 火花弧光放电,从而形成均匀稳定的大面积等离子体。
精品资料
精品资料
电除尘
• 电除尘器是利用电晕放电产生的大量离子(lízǐ)使得粒子荷电,并使荷电 粒子在电场力的驱动下移向集尘板,从而将微粒从气流中分离出来的 装置。用电除尘的方法分离、捕集气体中的尘粒。
精品资料
精品资料
空气净化
精品资料
精品资料
臭氧 发生器 (chòuyǎng)
• 臭氧(chòuyǎng)是一种氧化和杀菌性能极高的氧化剂,被广泛用于食品加工存 储与保鲜、医疗卫生及餐具消毒和水处理等行业。臭氧(chòuyǎng)易分解为氧, 不便于收集贮存,必须在常温或低温下现场生产。臭氧(chòuyǎng)的主要生产
精品资料
精品资料
Influent gas
NTP/Catalyst
Effluent gas
Influent gas
NTP
Catalyst
Effluent gas
精品资料
高压 放电水处理 (gāoyā)
• 水下高压放电是在由尖端电极极不均匀电场中产生的。还可向溶液通 入气体,促进局部放电和等离子体通道的形成、增加活性物质数量, 从而处理(chǔlǐ)难降解有机废水和水体消毒灭菌。
精品资料
辉光 放电 (huī ɡuānɡ)
低温等离子体介绍PPT课件
进而H2S被OH自由基氧化分解。 H2S + OH →(HO·H2S)→ H2O + SH
SH + O2 → SO + OH
13
以苯乙烯为例说明:
苯乙烯在高能电子的攻击下,可发生如下反应:
C6H5CH C2 H •
C 6H 5 C H C• H H •
C 6H 5C H C2H e C6H5••CH C2 H
0.01秒
53
54
6-3 第三代等离子体应用于 山东新华制药股份有限公司酯类废气处理
①新华制药异味气 体等离子体处理装 置
55
56
6-4 正在应用和即将应用的工程案例
一. 烟台恒邦化工助剂有限公司黄药生产--异丙(丁、 戊)醇和CS2废气处理
Q=6000M3/h,废气浓度15000mg/L 二. 吉林石化化肥厂污水站—醇、醛、胺类废气处理
42
第二代介质阻挡放电工业废气处理装置:
43
第三代低温等离子体 工业废气处理装置
44
等离子体放电管工作状况图:
45
第三代 产品试 验装置
试验现 场
46
中石化齐鲁分公司腈纶厂试验装置
47
组合式实验平台
48
移动式一体化试验平台
设计试验车1辆,组合式试验设备2台,建设实验 室200m2,试验车间1000m2。
移动试验车
49
六.工程应用及样板工程
50
6-1 第二代等离子体应用于 上海化纤(集团)有限公司H2S、CS2废气处理
等离子体 废气处理 装置图
51
52
6-2 第三代等离子体应用于 齐鲁石化腈纶厂有机胺废气处理
②齐鲁石化腈纶厂 恶臭气体等离子体 处理装置
SH + O2 → SO + OH
13
以苯乙烯为例说明:
苯乙烯在高能电子的攻击下,可发生如下反应:
C6H5CH C2 H •
C 6H 5 C H C• H H •
C 6H 5C H C2H e C6H5••CH C2 H
0.01秒
53
54
6-3 第三代等离子体应用于 山东新华制药股份有限公司酯类废气处理
①新华制药异味气 体等离子体处理装 置
55
56
6-4 正在应用和即将应用的工程案例
一. 烟台恒邦化工助剂有限公司黄药生产--异丙(丁、 戊)醇和CS2废气处理
Q=6000M3/h,废气浓度15000mg/L 二. 吉林石化化肥厂污水站—醇、醛、胺类废气处理
42
第二代介质阻挡放电工业废气处理装置:
43
第三代低温等离子体 工业废气处理装置
44
等离子体放电管工作状况图:
45
第三代 产品试 验装置
试验现 场
46
中石化齐鲁分公司腈纶厂试验装置
47
组合式实验平台
48
移动式一体化试验平台
设计试验车1辆,组合式试验设备2台,建设实验 室200m2,试验车间1000m2。
移动试验车
49
六.工程应用及样板工程
50
6-1 第二代等离子体应用于 上海化纤(集团)有限公司H2S、CS2废气处理
等离子体 废气处理 装置图
51
52
6-2 第三代等离子体应用于 齐鲁石化腈纶厂有机胺废气处理
②齐鲁石化腈纶厂 恶臭气体等离子体 处理装置
等离子体物理学导论ppt课件
3、等离子体响应时间: 静态等离子体的德拜长度,主要取决于低温成分的德 拜长度。在较快的过程中,离子不能响应其变化,在 鞘层内不能随时达到热平衡的玻尔兹曼分布,只起到 常数本底作用,此时等离子体的德拜长度只由电子成 份决定。 等离子体的响应时间: 1)、建立德拜屏蔽所需要的时间 2)、等离子体对外加电荷扰动的响应时间 3)、电子以平均的热速度跨越鞘层空间所
)1/ 2 , lD
(lD2i
l ) 2 1/ 2 De
提示:
A1:是的,排空同号电荷,调整粒子密度 A2: 低温成份(稳态过程)、
由电子德拜长度决定(短时间尺度运动过程)
4、德拜屏蔽是一个统计意义上的概念,表现在上述推导过程
中使用的热平衡分布特征,电势的连续性等概念成立的前
提是: 德拜球内存在足够多的粒子
德拜屏蔽概念的几个要点: 1、电屏蔽、维持准中性 2、基本尺度:空间尺度 3、响应时间:时间尺度 4、统计意义:等离子体参数
等离子体概念成立的两个判据: 时空尺度、统计意义
后面还有一个,共同保障集体效应的发挥!
三、 等离子体Langmuir振荡: 等离子体振荡示意图
x=0
物理图像:密度扰动电荷分离(大于德拜半径尺度)电场 驱动粒子(电子、离子)运动“过冲”运动 往返振荡等离子体最重要的本征频率: 电子、离子振荡频率
1. 捕获与约束 逃逸与屏蔽 (反抗约束) 由自由能与捕获能平衡决定! 德拜长度: 1、随数密度增加而减小,即更 小范围内便可获得足够多的屏蔽用的粒子
2、随温度升高而增大:温度代表粒子 自由能,零温度则屏蔽电子缩为薄壳
德拜屏蔽是两个过程竞争的结果: 约束与逃逸 (反抗约束) 屏蔽与准中性 由自由能与相互作用能平衡决定!
消除流行的错误的温度概念: 荧光灯管内的电子温度为20,000K 日冕气体温度高达百万度,却烧不开一杯水
微波与等离子体PPT课件
辉光放电:从直流到微波的所有频率带的电源产生
各种不同的电离状态。辉光放电法所产生的低温等 离子体在薄膜材料的制备技术中得到了非常广泛的 应用。
燃烧:通过燃烧,火焰中的高能粒子相互之间发生
碰撞,从而导致气体发生电离,这种电离通常称之 为热电离。另外,特定的热化学反应所放出的能量 也能够引起电离。
超 短 波
红 外 光
3
2 微波的产生
微波通常由直流电或50Hz交流电通过一特殊的 器件来获得。
产生微波的器件有许多种,但主要分为两大类: 半导体器件和电真空器件。电真空器件是利用电 子在真空中运动来完成能量变换的器件,或称之 为电子管。在电真空器件中能产生大功率微波能 量的有磁控管、多腔速调管、微波三、四极管、 行波管等。在目前微波加热领域特别是工业应用 中使用的主要是磁控管及速调管。
它广泛存在于宇宙中,常被视为是除去固、液、 气外,物质存在的第四态 .
24
25
等离子体与气体的区别
普通气体由分子构成,分子之间相互作用力是短程
力,仅当分子碰撞时,分子之间的相互作用力才有 明显效果,理论上用分子运动论描述.
在等离子体中,带电粒子之间的库仑力是长程力,
库仑力的作用效果远远超过带电粒子可能发生的局 部短程碰撞效果,等离子体中的带电粒子运动时, 能引起正电荷或负电荷局部集中,产生电场;电荷 定向运动引起电流,产生磁场.电场和磁场要影响 其他带电粒子的运动,并伴随着极强的热辐射和热 传导;等离子体能被磁场约束作回旋运动等.等离 子体的这些特性使它区别于普通气体被称为物质的 第四态。
8
选择性加热
物质吸收微波的能力,主要由其介质损耗因 数来决定。介质损耗因数大的物质对微波的吸 收能力就强,相反,就弱。由于各物质的损耗 因数存在差异,微波加热就表现出选择性加热 的特点。
各种不同的电离状态。辉光放电法所产生的低温等 离子体在薄膜材料的制备技术中得到了非常广泛的 应用。
燃烧:通过燃烧,火焰中的高能粒子相互之间发生
碰撞,从而导致气体发生电离,这种电离通常称之 为热电离。另外,特定的热化学反应所放出的能量 也能够引起电离。
超 短 波
红 外 光
3
2 微波的产生
微波通常由直流电或50Hz交流电通过一特殊的 器件来获得。
产生微波的器件有许多种,但主要分为两大类: 半导体器件和电真空器件。电真空器件是利用电 子在真空中运动来完成能量变换的器件,或称之 为电子管。在电真空器件中能产生大功率微波能 量的有磁控管、多腔速调管、微波三、四极管、 行波管等。在目前微波加热领域特别是工业应用 中使用的主要是磁控管及速调管。
它广泛存在于宇宙中,常被视为是除去固、液、 气外,物质存在的第四态 .
24
25
等离子体与气体的区别
普通气体由分子构成,分子之间相互作用力是短程
力,仅当分子碰撞时,分子之间的相互作用力才有 明显效果,理论上用分子运动论描述.
在等离子体中,带电粒子之间的库仑力是长程力,
库仑力的作用效果远远超过带电粒子可能发生的局 部短程碰撞效果,等离子体中的带电粒子运动时, 能引起正电荷或负电荷局部集中,产生电场;电荷 定向运动引起电流,产生磁场.电场和磁场要影响 其他带电粒子的运动,并伴随着极强的热辐射和热 传导;等离子体能被磁场约束作回旋运动等.等离 子体的这些特性使它区别于普通气体被称为物质的 第四态。
8
选择性加热
物质吸收微波的能力,主要由其介质损耗因 数来决定。介质损耗因数大的物质对微波的吸 收能力就强,相反,就弱。由于各物质的损耗 因数存在差异,微波加热就表现出选择性加热 的特点。
《等离子显示原》课件
对未来研究的建议和展望
技术改进
针对等离子显示技术的效率和寿命问题,需要进一步研究和改进,如 优化电极结构、气体成分和驱动电路等。
新型应用
探索等离子显示技术在新型显示领域的应用,如透明显示、柔性显示 和可穿戴显示等。
环境影响
关注等离子显示技术的环保影响,研究其在生产和使用过程中的能耗 和废弃物处理问题,推动绿色生产。
技术特点
应用领域
等离子显示技术以其高亮度、宽视角 、快速响应和真彩色的特点,在显示 领域占据一席之地。
等离子显示技术在电视、公共信息显 示、高端商业展示等领域有广泛应用 ,尤其在大型显示和高清显示方面具 有优势。
工作原理
通过气体放电产生紫外线激发荧光物 质,从而实现显示效果。其工作原理 涉及多个物理过程和复杂的电场分布 。
在等离子显示器中,气体 放电产生等离子体,进而 激发荧光物质发出可见光 ,形成图像。
等离子显示技术的发展历程
1940年代
等离子显示技术的概念被提出,但当时技 术尚不成熟。
1960年代
等离子显示技术开始进入研究阶段,初步 实现了一些实验性显示。
1990年代
等离子显示技术开始商业化应用,PDP( Plasma Display Panel)产品问世。
与其他技术的比较
深入研究等离子显示技术与液晶显示、有机发光二极管显示等其他主 流显示技术的优劣比较,为未来显示技术的发展提供参考。
谢谢您的聆听
THANKS
03
等离子显示技术应用
等离子电视
大屏幕显示
01
等离子电视以其42英寸以上的大屏幕显示而著名,为用户提供
家庭影院般的观影体验。
高清晰度
02
等离子电视能提供高达1080p的分辨率,展现出清晰、细腻的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
• 若碰撞电子能量足够高,电子吸收的能量就可以使其 脱离核的束缚而成为自由电子,也就是分子发生了 “电离”,用XY+表示 。
• 电子对分子XY的碰撞也可以使之分解成为X原子和Y 原子(离解/裂解)。用“:”表示分子中成键的电子 对,离解过程可以表示为X:YX + Y。这样带有未成 对电子 的X,Y就容易发生化学反应,故称为化学活 性或基团。
3
等离子体特性
等离子体的基本反应过程 激发: XY + e XY*+e 退激:XY*XY+hv(光子)
离解: XY + e X + Y + e
电离: XY + e XY+ + 2e X+ + Y + 2e
电子和离子在电场中受加速 粒子间的碰撞产生热效应、粒 子和固体表面的碰撞
等离子体特性应用
发光特性 <光学应用> 化学活性 <化学应用> 导电性 <电气应用> 高速粒子 <力学应用> 产生高温 <热学应用>
等离子体的应用
反应离子刻蚀:RIE、ICP
薄膜沉积: 等离子体增强化学气相沉积 (PECVD) 微波增强化学气相沉积 (MPECVD)
1
等离子体的产生
在等离子体气体中,以电子碰撞双原子分子XY为例,若 碰撞能量小,则会发生弹性碰撞,电子的动能不会改变。若 碰撞能量很高,分子中绕核运动的低能电子,就会在碰撞中 获得足够的能量,被激发至离核较远的高能级轨道上运动。 我们把这种高能级状态的分子称为激发态分子,用XY*表示。 激发态分子中的电子从高能级跳回到低能级时,便以发光的 形式发出多余能量(辉光放
• 若碰撞电子能量足够高,电子吸收的能量就可以使其 脱离核的束缚而成为自由电子,也就是分子发生了 “电离”,用XY+表示 。
• 电子对分子XY的碰撞也可以使之分解成为X原子和Y 原子(离解/裂解)。用“:”表示分子中成键的电子 对,离解过程可以表示为X:YX + Y。这样带有未成 对电子 的X,Y就容易发生化学反应,故称为化学活 性或基团。
3
等离子体特性
等离子体的基本反应过程 激发: XY + e XY*+e 退激:XY*XY+hv(光子)
离解: XY + e X + Y + e
电离: XY + e XY+ + 2e X+ + Y + 2e
电子和离子在电场中受加速 粒子间的碰撞产生热效应、粒 子和固体表面的碰撞
等离子体特性应用
发光特性 <光学应用> 化学活性 <化学应用> 导电性 <电气应用> 高速粒子 <力学应用> 产生高温 <热学应用>
等离子体的应用
反应离子刻蚀:RIE、ICP
薄膜沉积: 等离子体增强化学气相沉积 (PECVD) 微波增强化学气相沉积 (MPECVD)
1
等离子体的产生
在等离子体气体中,以电子碰撞双原子分子XY为例,若 碰撞能量小,则会发生弹性碰撞,电子的动能不会改变。若 碰撞能量很高,分子中绕核运动的低能电子,就会在碰撞中 获得足够的能量,被激发至离核较远的高能级轨道上运动。 我们把这种高能级状态的分子称为激发态分子,用XY*表示。 激发态分子中的电子从高能级跳回到低能级时,便以发光的 形式发出多余能量(辉光放